linux/arch/x86/kernel/vm86_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994  Linus Torvalds
   3 *
   4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
   5 *                stack - Manfred Spraul <manfred@colorfullife.com>
   6 *
   7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
   8 *                them correctly. Now the emulation will be in a
   9 *                consistent state after stackfaults - Kasper Dupont
  10 *                <kasperd@daimi.au.dk>
  11 *
  12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13 *                <kasperd@daimi.au.dk>
  14 *
  15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16 *                caused by Kasper Dupont's changes - Stas Sergeev
  17 *
  18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19 *                Kasper Dupont <kasperd@daimi.au.dk>
  20 *
  21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22 *                Kasper Dupont <kasperd@daimi.au.dk>
  23 *
  24 *   9 apr 2002 - Changed stack access macros to jump to a label
  25 *                instead of returning to userspace. This simplifies
  26 *                do_int, and is needed by handle_vm6_fault. Kasper
  27 *                Dupont <kasperd@daimi.au.dk>
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/capability.h>
  34#include <linux/errno.h>
  35#include <linux/interrupt.h>
  36#include <linux/syscalls.h>
  37#include <linux/sched.h>
  38#include <linux/sched/task_stack.h>
  39#include <linux/kernel.h>
  40#include <linux/signal.h>
  41#include <linux/string.h>
  42#include <linux/mm.h>
  43#include <linux/smp.h>
  44#include <linux/highmem.h>
  45#include <linux/ptrace.h>
  46#include <linux/audit.h>
  47#include <linux/stddef.h>
  48#include <linux/slab.h>
  49#include <linux/security.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/io.h>
  53#include <asm/tlbflush.h>
  54#include <asm/irq.h>
  55#include <asm/traps.h>
  56#include <asm/vm86.h>
  57
  58/*
  59 * Known problems:
  60 *
  61 * Interrupt handling is not guaranteed:
  62 * - a real x86 will disable all interrupts for one instruction
  63 *   after a "mov ss,xx" to make stack handling atomic even without
  64 *   the 'lss' instruction. We can't guarantee this in v86 mode,
  65 *   as the next instruction might result in a page fault or similar.
  66 * - a real x86 will have interrupts disabled for one instruction
  67 *   past the 'sti' that enables them. We don't bother with all the
  68 *   details yet.
  69 *
  70 * Let's hope these problems do not actually matter for anything.
  71 */
  72
  73
  74/*
  75 * 8- and 16-bit register defines..
  76 */
  77#define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
  78#define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
  79#define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
  80#define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
  81
  82/*
  83 * virtual flags (16 and 32-bit versions)
  84 */
  85#define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
  86#define VEFLAGS (current->thread.vm86->veflags)
  87
  88#define set_flags(X, new, mask) \
  89((X) = ((X) & ~(mask)) | ((new) & (mask)))
  90
  91#define SAFE_MASK       (0xDD5)
  92#define RETURN_MASK     (0xDFF)
  93
  94void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  95{
  96        struct tss_struct *tss;
  97        struct task_struct *tsk = current;
  98        struct vm86plus_struct __user *user;
  99        struct vm86 *vm86 = current->thread.vm86;
 100        long err = 0;
 101
 102        /*
 103         * This gets called from entry.S with interrupts disabled, but
 104         * from process context. Enable interrupts here, before trying
 105         * to access user space.
 106         */
 107        local_irq_enable();
 108
 109        if (!vm86 || !vm86->user_vm86) {
 110                pr_alert("no user_vm86: BAD\n");
 111                do_exit(SIGSEGV);
 112        }
 113        set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
 114        user = vm86->user_vm86;
 115
 116        if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
 117                       sizeof(struct vm86plus_struct) :
 118                       sizeof(struct vm86_struct))) {
 119                pr_alert("could not access userspace vm86 info\n");
 120                do_exit(SIGSEGV);
 121        }
 122
 123        put_user_try {
 124                put_user_ex(regs->pt.bx, &user->regs.ebx);
 125                put_user_ex(regs->pt.cx, &user->regs.ecx);
 126                put_user_ex(regs->pt.dx, &user->regs.edx);
 127                put_user_ex(regs->pt.si, &user->regs.esi);
 128                put_user_ex(regs->pt.di, &user->regs.edi);
 129                put_user_ex(regs->pt.bp, &user->regs.ebp);
 130                put_user_ex(regs->pt.ax, &user->regs.eax);
 131                put_user_ex(regs->pt.ip, &user->regs.eip);
 132                put_user_ex(regs->pt.cs, &user->regs.cs);
 133                put_user_ex(regs->pt.flags, &user->regs.eflags);
 134                put_user_ex(regs->pt.sp, &user->regs.esp);
 135                put_user_ex(regs->pt.ss, &user->regs.ss);
 136                put_user_ex(regs->es, &user->regs.es);
 137                put_user_ex(regs->ds, &user->regs.ds);
 138                put_user_ex(regs->fs, &user->regs.fs);
 139                put_user_ex(regs->gs, &user->regs.gs);
 140
 141                put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
 142        } put_user_catch(err);
 143        if (err) {
 144                pr_alert("could not access userspace vm86 info\n");
 145                do_exit(SIGSEGV);
 146        }
 147
 148        tss = &per_cpu(cpu_tss, get_cpu());
 149        tsk->thread.sp0 = vm86->saved_sp0;
 150        tsk->thread.sysenter_cs = __KERNEL_CS;
 151        load_sp0(tss, &tsk->thread);
 152        vm86->saved_sp0 = 0;
 153        put_cpu();
 154
 155        memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
 156
 157        lazy_load_gs(vm86->regs32.gs);
 158
 159        regs->pt.ax = retval;
 160}
 161
 162static void mark_screen_rdonly(struct mm_struct *mm)
 163{
 164        struct vm_area_struct *vma;
 165        spinlock_t *ptl;
 166        pgd_t *pgd;
 167        pud_t *pud;
 168        pmd_t *pmd;
 169        pte_t *pte;
 170        int i;
 171
 172        down_write(&mm->mmap_sem);
 173        pgd = pgd_offset(mm, 0xA0000);
 174        if (pgd_none_or_clear_bad(pgd))
 175                goto out;
 176        pud = pud_offset(pgd, 0xA0000);
 177        if (pud_none_or_clear_bad(pud))
 178                goto out;
 179        pmd = pmd_offset(pud, 0xA0000);
 180
 181        if (pmd_trans_huge(*pmd)) {
 182                vma = find_vma(mm, 0xA0000);
 183                split_huge_pmd(vma, pmd, 0xA0000);
 184        }
 185        if (pmd_none_or_clear_bad(pmd))
 186                goto out;
 187        pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 188        for (i = 0; i < 32; i++) {
 189                if (pte_present(*pte))
 190                        set_pte(pte, pte_wrprotect(*pte));
 191                pte++;
 192        }
 193        pte_unmap_unlock(pte, ptl);
 194out:
 195        up_write(&mm->mmap_sem);
 196        flush_tlb();
 197}
 198
 199
 200
 201static int do_vm86_irq_handling(int subfunction, int irqnumber);
 202static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
 203
 204SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
 205{
 206        return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
 207}
 208
 209
 210SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
 211{
 212        switch (cmd) {
 213        case VM86_REQUEST_IRQ:
 214        case VM86_FREE_IRQ:
 215        case VM86_GET_IRQ_BITS:
 216        case VM86_GET_AND_RESET_IRQ:
 217                return do_vm86_irq_handling(cmd, (int)arg);
 218        case VM86_PLUS_INSTALL_CHECK:
 219                /*
 220                 * NOTE: on old vm86 stuff this will return the error
 221                 *  from access_ok(), because the subfunction is
 222                 *  interpreted as (invalid) address to vm86_struct.
 223                 *  So the installation check works.
 224                 */
 225                return 0;
 226        }
 227
 228        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 229        return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
 230}
 231
 232
 233static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
 234{
 235        struct tss_struct *tss;
 236        struct task_struct *tsk = current;
 237        struct vm86 *vm86 = tsk->thread.vm86;
 238        struct kernel_vm86_regs vm86regs;
 239        struct pt_regs *regs = current_pt_regs();
 240        unsigned long err = 0;
 241
 242        err = security_mmap_addr(0);
 243        if (err) {
 244                /*
 245                 * vm86 cannot virtualize the address space, so vm86 users
 246                 * need to manage the low 1MB themselves using mmap.  Given
 247                 * that BIOS places important data in the first page, vm86
 248                 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
 249                 * for example, won't even bother trying to use vm86 if it
 250                 * can't map a page at virtual address 0.
 251                 *
 252                 * To reduce the available kernel attack surface, simply
 253                 * disallow vm86(old) for users who cannot mmap at va 0.
 254                 *
 255                 * The implementation of security_mmap_addr will allow
 256                 * suitably privileged users to map va 0 even if
 257                 * vm.mmap_min_addr is set above 0, and we want this
 258                 * behavior for vm86 as well, as it ensures that legacy
 259                 * tools like vbetool will not fail just because of
 260                 * vm.mmap_min_addr.
 261                 */
 262                pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
 263                             current->comm, task_pid_nr(current),
 264                             from_kuid_munged(&init_user_ns, current_uid()));
 265                return -EPERM;
 266        }
 267
 268        if (!vm86) {
 269                if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
 270                        return -ENOMEM;
 271                tsk->thread.vm86 = vm86;
 272        }
 273        if (vm86->saved_sp0)
 274                return -EPERM;
 275
 276        if (!access_ok(VERIFY_READ, user_vm86, plus ?
 277                       sizeof(struct vm86_struct) :
 278                       sizeof(struct vm86plus_struct)))
 279                return -EFAULT;
 280
 281        memset(&vm86regs, 0, sizeof(vm86regs));
 282        get_user_try {
 283                unsigned short seg;
 284                get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
 285                get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
 286                get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
 287                get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
 288                get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
 289                get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
 290                get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
 291                get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
 292                get_user_ex(seg, &user_vm86->regs.cs);
 293                vm86regs.pt.cs = seg;
 294                get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
 295                get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
 296                get_user_ex(seg, &user_vm86->regs.ss);
 297                vm86regs.pt.ss = seg;
 298                get_user_ex(vm86regs.es, &user_vm86->regs.es);
 299                get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
 300                get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
 301                get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
 302
 303                get_user_ex(vm86->flags, &user_vm86->flags);
 304                get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
 305                get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
 306        } get_user_catch(err);
 307        if (err)
 308                return err;
 309
 310        if (copy_from_user(&vm86->int_revectored,
 311                           &user_vm86->int_revectored,
 312                           sizeof(struct revectored_struct)))
 313                return -EFAULT;
 314        if (copy_from_user(&vm86->int21_revectored,
 315                           &user_vm86->int21_revectored,
 316                           sizeof(struct revectored_struct)))
 317                return -EFAULT;
 318        if (plus) {
 319                if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
 320                                   sizeof(struct vm86plus_info_struct)))
 321                        return -EFAULT;
 322                vm86->vm86plus.is_vm86pus = 1;
 323        } else
 324                memset(&vm86->vm86plus, 0,
 325                       sizeof(struct vm86plus_info_struct));
 326
 327        memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
 328        vm86->user_vm86 = user_vm86;
 329
 330/*
 331 * The flags register is also special: we cannot trust that the user
 332 * has set it up safely, so this makes sure interrupt etc flags are
 333 * inherited from protected mode.
 334 */
 335        VEFLAGS = vm86regs.pt.flags;
 336        vm86regs.pt.flags &= SAFE_MASK;
 337        vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
 338        vm86regs.pt.flags |= X86_VM_MASK;
 339
 340        vm86regs.pt.orig_ax = regs->orig_ax;
 341
 342        switch (vm86->cpu_type) {
 343        case CPU_286:
 344                vm86->veflags_mask = 0;
 345                break;
 346        case CPU_386:
 347                vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 348                break;
 349        case CPU_486:
 350                vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 351                break;
 352        default:
 353                vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 354                break;
 355        }
 356
 357/*
 358 * Save old state
 359 */
 360        vm86->saved_sp0 = tsk->thread.sp0;
 361        lazy_save_gs(vm86->regs32.gs);
 362
 363        tss = &per_cpu(cpu_tss, get_cpu());
 364        /* make room for real-mode segments */
 365        tsk->thread.sp0 += 16;
 366
 367        if (static_cpu_has(X86_FEATURE_SEP))
 368                tsk->thread.sysenter_cs = 0;
 369
 370        load_sp0(tss, &tsk->thread);
 371        put_cpu();
 372
 373        if (vm86->flags & VM86_SCREEN_BITMAP)
 374                mark_screen_rdonly(tsk->mm);
 375
 376        memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
 377        force_iret();
 378        return regs->ax;
 379}
 380
 381static inline void set_IF(struct kernel_vm86_regs *regs)
 382{
 383        VEFLAGS |= X86_EFLAGS_VIF;
 384}
 385
 386static inline void clear_IF(struct kernel_vm86_regs *regs)
 387{
 388        VEFLAGS &= ~X86_EFLAGS_VIF;
 389}
 390
 391static inline void clear_TF(struct kernel_vm86_regs *regs)
 392{
 393        regs->pt.flags &= ~X86_EFLAGS_TF;
 394}
 395
 396static inline void clear_AC(struct kernel_vm86_regs *regs)
 397{
 398        regs->pt.flags &= ~X86_EFLAGS_AC;
 399}
 400
 401/*
 402 * It is correct to call set_IF(regs) from the set_vflags_*
 403 * functions. However someone forgot to call clear_IF(regs)
 404 * in the opposite case.
 405 * After the command sequence CLI PUSHF STI POPF you should
 406 * end up with interrupts disabled, but you ended up with
 407 * interrupts enabled.
 408 *  ( I was testing my own changes, but the only bug I
 409 *    could find was in a function I had not changed. )
 410 * [KD]
 411 */
 412
 413static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 414{
 415        set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
 416        set_flags(regs->pt.flags, flags, SAFE_MASK);
 417        if (flags & X86_EFLAGS_IF)
 418                set_IF(regs);
 419        else
 420                clear_IF(regs);
 421}
 422
 423static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 424{
 425        set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
 426        set_flags(regs->pt.flags, flags, SAFE_MASK);
 427        if (flags & X86_EFLAGS_IF)
 428                set_IF(regs);
 429        else
 430                clear_IF(regs);
 431}
 432
 433static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 434{
 435        unsigned long flags = regs->pt.flags & RETURN_MASK;
 436
 437        if (VEFLAGS & X86_EFLAGS_VIF)
 438                flags |= X86_EFLAGS_IF;
 439        flags |= X86_EFLAGS_IOPL;
 440        return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
 441}
 442
 443static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 444{
 445        return test_bit(nr, bitmap->__map);
 446}
 447
 448#define val_byte(val, n) (((__u8 *)&val)[n])
 449
 450#define pushb(base, ptr, val, err_label) \
 451        do { \
 452                __u8 __val = val; \
 453                ptr--; \
 454                if (put_user(__val, base + ptr) < 0) \
 455                        goto err_label; \
 456        } while (0)
 457
 458#define pushw(base, ptr, val, err_label) \
 459        do { \
 460                __u16 __val = val; \
 461                ptr--; \
 462                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 463                        goto err_label; \
 464                ptr--; \
 465                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 466                        goto err_label; \
 467        } while (0)
 468
 469#define pushl(base, ptr, val, err_label) \
 470        do { \
 471                __u32 __val = val; \
 472                ptr--; \
 473                if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 474                        goto err_label; \
 475                ptr--; \
 476                if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 477                        goto err_label; \
 478                ptr--; \
 479                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 480                        goto err_label; \
 481                ptr--; \
 482                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 483                        goto err_label; \
 484        } while (0)
 485
 486#define popb(base, ptr, err_label) \
 487        ({ \
 488                __u8 __res; \
 489                if (get_user(__res, base + ptr) < 0) \
 490                        goto err_label; \
 491                ptr++; \
 492                __res; \
 493        })
 494
 495#define popw(base, ptr, err_label) \
 496        ({ \
 497                __u16 __res; \
 498                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 499                        goto err_label; \
 500                ptr++; \
 501                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 502                        goto err_label; \
 503                ptr++; \
 504                __res; \
 505        })
 506
 507#define popl(base, ptr, err_label) \
 508        ({ \
 509                __u32 __res; \
 510                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 511                        goto err_label; \
 512                ptr++; \
 513                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 514                        goto err_label; \
 515                ptr++; \
 516                if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 517                        goto err_label; \
 518                ptr++; \
 519                if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 520                        goto err_label; \
 521                ptr++; \
 522                __res; \
 523        })
 524
 525/* There are so many possible reasons for this function to return
 526 * VM86_INTx, so adding another doesn't bother me. We can expect
 527 * userspace programs to be able to handle it. (Getting a problem
 528 * in userspace is always better than an Oops anyway.) [KD]
 529 */
 530static void do_int(struct kernel_vm86_regs *regs, int i,
 531    unsigned char __user *ssp, unsigned short sp)
 532{
 533        unsigned long __user *intr_ptr;
 534        unsigned long segoffs;
 535        struct vm86 *vm86 = current->thread.vm86;
 536
 537        if (regs->pt.cs == BIOSSEG)
 538                goto cannot_handle;
 539        if (is_revectored(i, &vm86->int_revectored))
 540                goto cannot_handle;
 541        if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
 542                goto cannot_handle;
 543        intr_ptr = (unsigned long __user *) (i << 2);
 544        if (get_user(segoffs, intr_ptr))
 545                goto cannot_handle;
 546        if ((segoffs >> 16) == BIOSSEG)
 547                goto cannot_handle;
 548        pushw(ssp, sp, get_vflags(regs), cannot_handle);
 549        pushw(ssp, sp, regs->pt.cs, cannot_handle);
 550        pushw(ssp, sp, IP(regs), cannot_handle);
 551        regs->pt.cs = segoffs >> 16;
 552        SP(regs) -= 6;
 553        IP(regs) = segoffs & 0xffff;
 554        clear_TF(regs);
 555        clear_IF(regs);
 556        clear_AC(regs);
 557        return;
 558
 559cannot_handle:
 560        save_v86_state(regs, VM86_INTx + (i << 8));
 561}
 562
 563int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 564{
 565        struct vm86 *vm86 = current->thread.vm86;
 566
 567        if (vm86->vm86plus.is_vm86pus) {
 568                if ((trapno == 3) || (trapno == 1)) {
 569                        save_v86_state(regs, VM86_TRAP + (trapno << 8));
 570                        return 0;
 571                }
 572                do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 573                return 0;
 574        }
 575        if (trapno != 1)
 576                return 1; /* we let this handle by the calling routine */
 577        current->thread.trap_nr = trapno;
 578        current->thread.error_code = error_code;
 579        force_sig(SIGTRAP, current);
 580        return 0;
 581}
 582
 583void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 584{
 585        unsigned char opcode;
 586        unsigned char __user *csp;
 587        unsigned char __user *ssp;
 588        unsigned short ip, sp, orig_flags;
 589        int data32, pref_done;
 590        struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
 591
 592#define CHECK_IF_IN_TRAP \
 593        if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
 594                newflags |= X86_EFLAGS_TF
 595
 596        orig_flags = *(unsigned short *)&regs->pt.flags;
 597
 598        csp = (unsigned char __user *) (regs->pt.cs << 4);
 599        ssp = (unsigned char __user *) (regs->pt.ss << 4);
 600        sp = SP(regs);
 601        ip = IP(regs);
 602
 603        data32 = 0;
 604        pref_done = 0;
 605        do {
 606                switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 607                case 0x66:      /* 32-bit data */     data32 = 1; break;
 608                case 0x67:      /* 32-bit address */  break;
 609                case 0x2e:      /* CS */              break;
 610                case 0x3e:      /* DS */              break;
 611                case 0x26:      /* ES */              break;
 612                case 0x36:      /* SS */              break;
 613                case 0x65:      /* GS */              break;
 614                case 0x64:      /* FS */              break;
 615                case 0xf2:      /* repnz */       break;
 616                case 0xf3:      /* rep */             break;
 617                default: pref_done = 1;
 618                }
 619        } while (!pref_done);
 620
 621        switch (opcode) {
 622
 623        /* pushf */
 624        case 0x9c:
 625                if (data32) {
 626                        pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 627                        SP(regs) -= 4;
 628                } else {
 629                        pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 630                        SP(regs) -= 2;
 631                }
 632                IP(regs) = ip;
 633                goto vm86_fault_return;
 634
 635        /* popf */
 636        case 0x9d:
 637                {
 638                unsigned long newflags;
 639                if (data32) {
 640                        newflags = popl(ssp, sp, simulate_sigsegv);
 641                        SP(regs) += 4;
 642                } else {
 643                        newflags = popw(ssp, sp, simulate_sigsegv);
 644                        SP(regs) += 2;
 645                }
 646                IP(regs) = ip;
 647                CHECK_IF_IN_TRAP;
 648                if (data32)
 649                        set_vflags_long(newflags, regs);
 650                else
 651                        set_vflags_short(newflags, regs);
 652
 653                goto check_vip;
 654                }
 655
 656        /* int xx */
 657        case 0xcd: {
 658                int intno = popb(csp, ip, simulate_sigsegv);
 659                IP(regs) = ip;
 660                if (vmpi->vm86dbg_active) {
 661                        if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
 662                                save_v86_state(regs, VM86_INTx + (intno << 8));
 663                                return;
 664                        }
 665                }
 666                do_int(regs, intno, ssp, sp);
 667                return;
 668        }
 669
 670        /* iret */
 671        case 0xcf:
 672                {
 673                unsigned long newip;
 674                unsigned long newcs;
 675                unsigned long newflags;
 676                if (data32) {
 677                        newip = popl(ssp, sp, simulate_sigsegv);
 678                        newcs = popl(ssp, sp, simulate_sigsegv);
 679                        newflags = popl(ssp, sp, simulate_sigsegv);
 680                        SP(regs) += 12;
 681                } else {
 682                        newip = popw(ssp, sp, simulate_sigsegv);
 683                        newcs = popw(ssp, sp, simulate_sigsegv);
 684                        newflags = popw(ssp, sp, simulate_sigsegv);
 685                        SP(regs) += 6;
 686                }
 687                IP(regs) = newip;
 688                regs->pt.cs = newcs;
 689                CHECK_IF_IN_TRAP;
 690                if (data32) {
 691                        set_vflags_long(newflags, regs);
 692                } else {
 693                        set_vflags_short(newflags, regs);
 694                }
 695                goto check_vip;
 696                }
 697
 698        /* cli */
 699        case 0xfa:
 700                IP(regs) = ip;
 701                clear_IF(regs);
 702                goto vm86_fault_return;
 703
 704        /* sti */
 705        /*
 706         * Damn. This is incorrect: the 'sti' instruction should actually
 707         * enable interrupts after the /next/ instruction. Not good.
 708         *
 709         * Probably needs some horsing around with the TF flag. Aiee..
 710         */
 711        case 0xfb:
 712                IP(regs) = ip;
 713                set_IF(regs);
 714                goto check_vip;
 715
 716        default:
 717                save_v86_state(regs, VM86_UNKNOWN);
 718        }
 719
 720        return;
 721
 722check_vip:
 723        if (VEFLAGS & X86_EFLAGS_VIP) {
 724                save_v86_state(regs, VM86_STI);
 725                return;
 726        }
 727
 728vm86_fault_return:
 729        if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
 730                save_v86_state(regs, VM86_PICRETURN);
 731                return;
 732        }
 733        if (orig_flags & X86_EFLAGS_TF)
 734                handle_vm86_trap(regs, 0, X86_TRAP_DB);
 735        return;
 736
 737simulate_sigsegv:
 738        /* FIXME: After a long discussion with Stas we finally
 739         *        agreed, that this is wrong. Here we should
 740         *        really send a SIGSEGV to the user program.
 741         *        But how do we create the correct context? We
 742         *        are inside a general protection fault handler
 743         *        and has just returned from a page fault handler.
 744         *        The correct context for the signal handler
 745         *        should be a mixture of the two, but how do we
 746         *        get the information? [KD]
 747         */
 748        save_v86_state(regs, VM86_UNKNOWN);
 749}
 750
 751/* ---------------- vm86 special IRQ passing stuff ----------------- */
 752
 753#define VM86_IRQNAME            "vm86irq"
 754
 755static struct vm86_irqs {
 756        struct task_struct *tsk;
 757        int sig;
 758} vm86_irqs[16];
 759
 760static DEFINE_SPINLOCK(irqbits_lock);
 761static int irqbits;
 762
 763#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 764        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 765        | (1 << SIGUNUSED))
 766
 767static irqreturn_t irq_handler(int intno, void *dev_id)
 768{
 769        int irq_bit;
 770        unsigned long flags;
 771
 772        spin_lock_irqsave(&irqbits_lock, flags);
 773        irq_bit = 1 << intno;
 774        if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 775                goto out;
 776        irqbits |= irq_bit;
 777        if (vm86_irqs[intno].sig)
 778                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 779        /*
 780         * IRQ will be re-enabled when user asks for the irq (whether
 781         * polling or as a result of the signal)
 782         */
 783        disable_irq_nosync(intno);
 784        spin_unlock_irqrestore(&irqbits_lock, flags);
 785        return IRQ_HANDLED;
 786
 787out:
 788        spin_unlock_irqrestore(&irqbits_lock, flags);
 789        return IRQ_NONE;
 790}
 791
 792static inline void free_vm86_irq(int irqnumber)
 793{
 794        unsigned long flags;
 795
 796        free_irq(irqnumber, NULL);
 797        vm86_irqs[irqnumber].tsk = NULL;
 798
 799        spin_lock_irqsave(&irqbits_lock, flags);
 800        irqbits &= ~(1 << irqnumber);
 801        spin_unlock_irqrestore(&irqbits_lock, flags);
 802}
 803
 804void release_vm86_irqs(struct task_struct *task)
 805{
 806        int i;
 807        for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 808            if (vm86_irqs[i].tsk == task)
 809                free_vm86_irq(i);
 810}
 811
 812static inline int get_and_reset_irq(int irqnumber)
 813{
 814        int bit;
 815        unsigned long flags;
 816        int ret = 0;
 817
 818        if (invalid_vm86_irq(irqnumber)) return 0;
 819        if (vm86_irqs[irqnumber].tsk != current) return 0;
 820        spin_lock_irqsave(&irqbits_lock, flags);
 821        bit = irqbits & (1 << irqnumber);
 822        irqbits &= ~bit;
 823        if (bit) {
 824                enable_irq(irqnumber);
 825                ret = 1;
 826        }
 827
 828        spin_unlock_irqrestore(&irqbits_lock, flags);
 829        return ret;
 830}
 831
 832
 833static int do_vm86_irq_handling(int subfunction, int irqnumber)
 834{
 835        int ret;
 836        switch (subfunction) {
 837                case VM86_GET_AND_RESET_IRQ: {
 838                        return get_and_reset_irq(irqnumber);
 839                }
 840                case VM86_GET_IRQ_BITS: {
 841                        return irqbits;
 842                }
 843                case VM86_REQUEST_IRQ: {
 844                        int sig = irqnumber >> 8;
 845                        int irq = irqnumber & 255;
 846                        if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 847                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 848                        if (invalid_vm86_irq(irq)) return -EPERM;
 849                        if (vm86_irqs[irq].tsk) return -EPERM;
 850                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 851                        if (ret) return ret;
 852                        vm86_irqs[irq].sig = sig;
 853                        vm86_irqs[irq].tsk = current;
 854                        return irq;
 855                }
 856                case  VM86_FREE_IRQ: {
 857                        if (invalid_vm86_irq(irqnumber)) return -EPERM;
 858                        if (!vm86_irqs[irqnumber].tsk) return 0;
 859                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 860                        free_vm86_irq(irqnumber);
 861                        return 0;
 862                }
 863        }
 864        return -EINVAL;
 865}
 866
 867