linux/arch/x86/mm/mpx.c
<<
>>
Prefs
   1/*
   2 * mpx.c - Memory Protection eXtensions
   3 *
   4 * Copyright (c) 2014, Intel Corporation.
   5 * Qiaowei Ren <qiaowei.ren@intel.com>
   6 * Dave Hansen <dave.hansen@intel.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/slab.h>
  10#include <linux/mm_types.h>
  11#include <linux/syscalls.h>
  12#include <linux/sched/sysctl.h>
  13
  14#include <asm/insn.h>
  15#include <asm/mman.h>
  16#include <asm/mmu_context.h>
  17#include <asm/mpx.h>
  18#include <asm/processor.h>
  19#include <asm/fpu/internal.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include <asm/trace/mpx.h>
  23
  24static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  25{
  26        if (is_64bit_mm(mm))
  27                return MPX_BD_SIZE_BYTES_64;
  28        else
  29                return MPX_BD_SIZE_BYTES_32;
  30}
  31
  32static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  33{
  34        if (is_64bit_mm(mm))
  35                return MPX_BT_SIZE_BYTES_64;
  36        else
  37                return MPX_BT_SIZE_BYTES_32;
  38}
  39
  40/*
  41 * This is really a simplified "vm_mmap". it only handles MPX
  42 * bounds tables (the bounds directory is user-allocated).
  43 */
  44static unsigned long mpx_mmap(unsigned long len)
  45{
  46        struct mm_struct *mm = current->mm;
  47        unsigned long addr, populate;
  48
  49        /* Only bounds table can be allocated here */
  50        if (len != mpx_bt_size_bytes(mm))
  51                return -EINVAL;
  52
  53        down_write(&mm->mmap_sem);
  54        addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  55                       MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
  56        up_write(&mm->mmap_sem);
  57        if (populate)
  58                mm_populate(addr, populate);
  59
  60        return addr;
  61}
  62
  63enum reg_type {
  64        REG_TYPE_RM = 0,
  65        REG_TYPE_INDEX,
  66        REG_TYPE_BASE,
  67};
  68
  69static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
  70                          enum reg_type type)
  71{
  72        int regno = 0;
  73
  74        static const int regoff[] = {
  75                offsetof(struct pt_regs, ax),
  76                offsetof(struct pt_regs, cx),
  77                offsetof(struct pt_regs, dx),
  78                offsetof(struct pt_regs, bx),
  79                offsetof(struct pt_regs, sp),
  80                offsetof(struct pt_regs, bp),
  81                offsetof(struct pt_regs, si),
  82                offsetof(struct pt_regs, di),
  83#ifdef CONFIG_X86_64
  84                offsetof(struct pt_regs, r8),
  85                offsetof(struct pt_regs, r9),
  86                offsetof(struct pt_regs, r10),
  87                offsetof(struct pt_regs, r11),
  88                offsetof(struct pt_regs, r12),
  89                offsetof(struct pt_regs, r13),
  90                offsetof(struct pt_regs, r14),
  91                offsetof(struct pt_regs, r15),
  92#endif
  93        };
  94        int nr_registers = ARRAY_SIZE(regoff);
  95        /*
  96         * Don't possibly decode a 32-bit instructions as
  97         * reading a 64-bit-only register.
  98         */
  99        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 100                nr_registers -= 8;
 101
 102        switch (type) {
 103        case REG_TYPE_RM:
 104                regno = X86_MODRM_RM(insn->modrm.value);
 105                if (X86_REX_B(insn->rex_prefix.value))
 106                        regno += 8;
 107                break;
 108
 109        case REG_TYPE_INDEX:
 110                regno = X86_SIB_INDEX(insn->sib.value);
 111                if (X86_REX_X(insn->rex_prefix.value))
 112                        regno += 8;
 113                break;
 114
 115        case REG_TYPE_BASE:
 116                regno = X86_SIB_BASE(insn->sib.value);
 117                if (X86_REX_B(insn->rex_prefix.value))
 118                        regno += 8;
 119                break;
 120
 121        default:
 122                pr_err("invalid register type");
 123                BUG();
 124                break;
 125        }
 126
 127        if (regno >= nr_registers) {
 128                WARN_ONCE(1, "decoded an instruction with an invalid register");
 129                return -EINVAL;
 130        }
 131        return regoff[regno];
 132}
 133
 134/*
 135 * return the address being referenced be instruction
 136 * for rm=3 returning the content of the rm reg
 137 * for rm!=3 calculates the address using SIB and Disp
 138 */
 139static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
 140{
 141        unsigned long addr, base, indx;
 142        int addr_offset, base_offset, indx_offset;
 143        insn_byte_t sib;
 144
 145        insn_get_modrm(insn);
 146        insn_get_sib(insn);
 147        sib = insn->sib.value;
 148
 149        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 150                addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 151                if (addr_offset < 0)
 152                        goto out_err;
 153                addr = regs_get_register(regs, addr_offset);
 154        } else {
 155                if (insn->sib.nbytes) {
 156                        base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
 157                        if (base_offset < 0)
 158                                goto out_err;
 159
 160                        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
 161                        if (indx_offset < 0)
 162                                goto out_err;
 163
 164                        base = regs_get_register(regs, base_offset);
 165                        indx = regs_get_register(regs, indx_offset);
 166                        addr = base + indx * (1 << X86_SIB_SCALE(sib));
 167                } else {
 168                        addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 169                        if (addr_offset < 0)
 170                                goto out_err;
 171                        addr = regs_get_register(regs, addr_offset);
 172                }
 173                addr += insn->displacement.value;
 174        }
 175        return (void __user *)addr;
 176out_err:
 177        return (void __user *)-1;
 178}
 179
 180static int mpx_insn_decode(struct insn *insn,
 181                           struct pt_regs *regs)
 182{
 183        unsigned char buf[MAX_INSN_SIZE];
 184        int x86_64 = !test_thread_flag(TIF_IA32);
 185        int not_copied;
 186        int nr_copied;
 187
 188        not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
 189        nr_copied = sizeof(buf) - not_copied;
 190        /*
 191         * The decoder _should_ fail nicely if we pass it a short buffer.
 192         * But, let's not depend on that implementation detail.  If we
 193         * did not get anything, just error out now.
 194         */
 195        if (!nr_copied)
 196                return -EFAULT;
 197        insn_init(insn, buf, nr_copied, x86_64);
 198        insn_get_length(insn);
 199        /*
 200         * copy_from_user() tries to get as many bytes as we could see in
 201         * the largest possible instruction.  If the instruction we are
 202         * after is shorter than that _and_ we attempt to copy from
 203         * something unreadable, we might get a short read.  This is OK
 204         * as long as the read did not stop in the middle of the
 205         * instruction.  Check to see if we got a partial instruction.
 206         */
 207        if (nr_copied < insn->length)
 208                return -EFAULT;
 209
 210        insn_get_opcode(insn);
 211        /*
 212         * We only _really_ need to decode bndcl/bndcn/bndcu
 213         * Error out on anything else.
 214         */
 215        if (insn->opcode.bytes[0] != 0x0f)
 216                goto bad_opcode;
 217        if ((insn->opcode.bytes[1] != 0x1a) &&
 218            (insn->opcode.bytes[1] != 0x1b))
 219                goto bad_opcode;
 220
 221        return 0;
 222bad_opcode:
 223        return -EINVAL;
 224}
 225
 226/*
 227 * If a bounds overflow occurs then a #BR is generated. This
 228 * function decodes MPX instructions to get violation address
 229 * and set this address into extended struct siginfo.
 230 *
 231 * Note that this is not a super precise way of doing this.
 232 * Userspace could have, by the time we get here, written
 233 * anything it wants in to the instructions.  We can not
 234 * trust anything about it.  They might not be valid
 235 * instructions or might encode invalid registers, etc...
 236 *
 237 * The caller is expected to kfree() the returned siginfo_t.
 238 */
 239siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
 240{
 241        const struct mpx_bndreg_state *bndregs;
 242        const struct mpx_bndreg *bndreg;
 243        siginfo_t *info = NULL;
 244        struct insn insn;
 245        uint8_t bndregno;
 246        int err;
 247
 248        err = mpx_insn_decode(&insn, regs);
 249        if (err)
 250                goto err_out;
 251
 252        /*
 253         * We know at this point that we are only dealing with
 254         * MPX instructions.
 255         */
 256        insn_get_modrm(&insn);
 257        bndregno = X86_MODRM_REG(insn.modrm.value);
 258        if (bndregno > 3) {
 259                err = -EINVAL;
 260                goto err_out;
 261        }
 262        /* get bndregs field from current task's xsave area */
 263        bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
 264        if (!bndregs) {
 265                err = -EINVAL;
 266                goto err_out;
 267        }
 268        /* now go select the individual register in the set of 4 */
 269        bndreg = &bndregs->bndreg[bndregno];
 270
 271        info = kzalloc(sizeof(*info), GFP_KERNEL);
 272        if (!info) {
 273                err = -ENOMEM;
 274                goto err_out;
 275        }
 276        /*
 277         * The registers are always 64-bit, but the upper 32
 278         * bits are ignored in 32-bit mode.  Also, note that the
 279         * upper bounds are architecturally represented in 1's
 280         * complement form.
 281         *
 282         * The 'unsigned long' cast is because the compiler
 283         * complains when casting from integers to different-size
 284         * pointers.
 285         */
 286        info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
 287        info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 288        info->si_addr_lsb = 0;
 289        info->si_signo = SIGSEGV;
 290        info->si_errno = 0;
 291        info->si_code = SEGV_BNDERR;
 292        info->si_addr = mpx_get_addr_ref(&insn, regs);
 293        /*
 294         * We were not able to extract an address from the instruction,
 295         * probably because there was something invalid in it.
 296         */
 297        if (info->si_addr == (void __user *)-1) {
 298                err = -EINVAL;
 299                goto err_out;
 300        }
 301        trace_mpx_bounds_register_exception(info->si_addr, bndreg);
 302        return info;
 303err_out:
 304        /* info might be NULL, but kfree() handles that */
 305        kfree(info);
 306        return ERR_PTR(err);
 307}
 308
 309static __user void *mpx_get_bounds_dir(void)
 310{
 311        const struct mpx_bndcsr *bndcsr;
 312
 313        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 314                return MPX_INVALID_BOUNDS_DIR;
 315
 316        /*
 317         * The bounds directory pointer is stored in a register
 318         * only accessible if we first do an xsave.
 319         */
 320        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 321        if (!bndcsr)
 322                return MPX_INVALID_BOUNDS_DIR;
 323
 324        /*
 325         * Make sure the register looks valid by checking the
 326         * enable bit.
 327         */
 328        if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 329                return MPX_INVALID_BOUNDS_DIR;
 330
 331        /*
 332         * Lastly, mask off the low bits used for configuration
 333         * flags, and return the address of the bounds table.
 334         */
 335        return (void __user *)(unsigned long)
 336                (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 337}
 338
 339int mpx_enable_management(void)
 340{
 341        void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 342        struct mm_struct *mm = current->mm;
 343        int ret = 0;
 344
 345        /*
 346         * runtime in the userspace will be responsible for allocation of
 347         * the bounds directory. Then, it will save the base of the bounds
 348         * directory into XSAVE/XRSTOR Save Area and enable MPX through
 349         * XRSTOR instruction.
 350         *
 351         * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 352         * expected to be relatively expensive. Storing the bounds
 353         * directory here means that we do not have to do xsave in the
 354         * unmap path; we can just use mm->context.bd_addr instead.
 355         */
 356        bd_base = mpx_get_bounds_dir();
 357        down_write(&mm->mmap_sem);
 358        mm->context.bd_addr = bd_base;
 359        if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
 360                ret = -ENXIO;
 361
 362        up_write(&mm->mmap_sem);
 363        return ret;
 364}
 365
 366int mpx_disable_management(void)
 367{
 368        struct mm_struct *mm = current->mm;
 369
 370        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 371                return -ENXIO;
 372
 373        down_write(&mm->mmap_sem);
 374        mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
 375        up_write(&mm->mmap_sem);
 376        return 0;
 377}
 378
 379static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 380                unsigned long *curval,
 381                unsigned long __user *addr,
 382                unsigned long old_val, unsigned long new_val)
 383{
 384        int ret;
 385        /*
 386         * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 387         * the pointer that we pass to it to figure out how much
 388         * data to cmpxchg.  We have to be careful here not to
 389         * pass a pointer to a 64-bit data type when we only want
 390         * a 32-bit copy.
 391         */
 392        if (is_64bit_mm(mm)) {
 393                ret = user_atomic_cmpxchg_inatomic(curval,
 394                                addr, old_val, new_val);
 395        } else {
 396                u32 uninitialized_var(curval_32);
 397                u32 old_val_32 = old_val;
 398                u32 new_val_32 = new_val;
 399                u32 __user *addr_32 = (u32 __user *)addr;
 400
 401                ret = user_atomic_cmpxchg_inatomic(&curval_32,
 402                                addr_32, old_val_32, new_val_32);
 403                *curval = curval_32;
 404        }
 405        return ret;
 406}
 407
 408/*
 409 * With 32-bit mode, a bounds directory is 4MB, and the size of each
 410 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 411 * and the size of each bounds table is 4MB.
 412 */
 413static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 414{
 415        unsigned long expected_old_val = 0;
 416        unsigned long actual_old_val = 0;
 417        unsigned long bt_addr;
 418        unsigned long bd_new_entry;
 419        int ret = 0;
 420
 421        /*
 422         * Carve the virtual space out of userspace for the new
 423         * bounds table:
 424         */
 425        bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 426        if (IS_ERR((void *)bt_addr))
 427                return PTR_ERR((void *)bt_addr);
 428        /*
 429         * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 430         */
 431        bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 432
 433        /*
 434         * Go poke the address of the new bounds table in to the
 435         * bounds directory entry out in userspace memory.  Note:
 436         * we may race with another CPU instantiating the same table.
 437         * In that case the cmpxchg will see an unexpected
 438         * 'actual_old_val'.
 439         *
 440         * This can fault, but that's OK because we do not hold
 441         * mmap_sem at this point, unlike some of the other part
 442         * of the MPX code that have to pagefault_disable().
 443         */
 444        ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
 445                                   expected_old_val, bd_new_entry);
 446        if (ret)
 447                goto out_unmap;
 448
 449        /*
 450         * The user_atomic_cmpxchg_inatomic() will only return nonzero
 451         * for faults, *not* if the cmpxchg itself fails.  Now we must
 452         * verify that the cmpxchg itself completed successfully.
 453         */
 454        /*
 455         * We expected an empty 'expected_old_val', but instead found
 456         * an apparently valid entry.  Assume we raced with another
 457         * thread to instantiate this table and desclare succecss.
 458         */
 459        if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 460                ret = 0;
 461                goto out_unmap;
 462        }
 463        /*
 464         * We found a non-empty bd_entry but it did not have the
 465         * VALID_FLAG set.  Return an error which will result in
 466         * a SEGV since this probably means that somebody scribbled
 467         * some invalid data in to a bounds table.
 468         */
 469        if (expected_old_val != actual_old_val) {
 470                ret = -EINVAL;
 471                goto out_unmap;
 472        }
 473        trace_mpx_new_bounds_table(bt_addr);
 474        return 0;
 475out_unmap:
 476        vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 477        return ret;
 478}
 479
 480/*
 481 * When a BNDSTX instruction attempts to save bounds to a bounds
 482 * table, it will first attempt to look up the table in the
 483 * first-level bounds directory.  If it does not find a table in
 484 * the directory, a #BR is generated and we get here in order to
 485 * allocate a new table.
 486 *
 487 * With 32-bit mode, the size of BD is 4MB, and the size of each
 488 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 489 * and the size of each bound table is 4MB.
 490 */
 491static int do_mpx_bt_fault(void)
 492{
 493        unsigned long bd_entry, bd_base;
 494        const struct mpx_bndcsr *bndcsr;
 495        struct mm_struct *mm = current->mm;
 496
 497        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 498        if (!bndcsr)
 499                return -EINVAL;
 500        /*
 501         * Mask off the preserve and enable bits
 502         */
 503        bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 504        /*
 505         * The hardware provides the address of the missing or invalid
 506         * entry via BNDSTATUS, so we don't have to go look it up.
 507         */
 508        bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 509        /*
 510         * Make sure the directory entry is within where we think
 511         * the directory is.
 512         */
 513        if ((bd_entry < bd_base) ||
 514            (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 515                return -EINVAL;
 516
 517        return allocate_bt(mm, (long __user *)bd_entry);
 518}
 519
 520int mpx_handle_bd_fault(void)
 521{
 522        /*
 523         * Userspace never asked us to manage the bounds tables,
 524         * so refuse to help.
 525         */
 526        if (!kernel_managing_mpx_tables(current->mm))
 527                return -EINVAL;
 528
 529        if (do_mpx_bt_fault()) {
 530                force_sig(SIGSEGV, current);
 531                /*
 532                 * The force_sig() is essentially "handling" this
 533                 * exception, so we do not pass up the error
 534                 * from do_mpx_bt_fault().
 535                 */
 536        }
 537        return 0;
 538}
 539
 540/*
 541 * A thin wrapper around get_user_pages().  Returns 0 if the
 542 * fault was resolved or -errno if not.
 543 */
 544static int mpx_resolve_fault(long __user *addr, int write)
 545{
 546        long gup_ret;
 547        int nr_pages = 1;
 548
 549        gup_ret = get_user_pages((unsigned long)addr, nr_pages,
 550                        write ? FOLL_WRITE : 0, NULL, NULL);
 551        /*
 552         * get_user_pages() returns number of pages gotten.
 553         * 0 means we failed to fault in and get anything,
 554         * probably because 'addr' is bad.
 555         */
 556        if (!gup_ret)
 557                return -EFAULT;
 558        /* Other error, return it */
 559        if (gup_ret < 0)
 560                return gup_ret;
 561        /* must have gup'd a page and gup_ret>0, success */
 562        return 0;
 563}
 564
 565static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 566                                             unsigned long bd_entry)
 567{
 568        unsigned long bt_addr = bd_entry;
 569        int align_to_bytes;
 570        /*
 571         * Bit 0 in a bt_entry is always the valid bit.
 572         */
 573        bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 574        /*
 575         * Tables are naturally aligned at 8-byte boundaries
 576         * on 64-bit and 4-byte boundaries on 32-bit.  The
 577         * documentation makes it appear that the low bits
 578         * are ignored by the hardware, so we do the same.
 579         */
 580        if (is_64bit_mm(mm))
 581                align_to_bytes = 8;
 582        else
 583                align_to_bytes = 4;
 584        bt_addr &= ~(align_to_bytes-1);
 585        return bt_addr;
 586}
 587
 588/*
 589 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 590 * we might run off the end of the bounds table if we are on
 591 * a 64-bit kernel and try to get 8 bytes.
 592 */
 593static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 594                long __user *bd_entry_ptr)
 595{
 596        u32 bd_entry_32;
 597        int ret;
 598
 599        if (is_64bit_mm(mm))
 600                return get_user(*bd_entry_ret, bd_entry_ptr);
 601
 602        /*
 603         * Note that get_user() uses the type of the *pointer* to
 604         * establish the size of the get, not the destination.
 605         */
 606        ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 607        *bd_entry_ret = bd_entry_32;
 608        return ret;
 609}
 610
 611/*
 612 * Get the base of bounds tables pointed by specific bounds
 613 * directory entry.
 614 */
 615static int get_bt_addr(struct mm_struct *mm,
 616                        long __user *bd_entry_ptr,
 617                        unsigned long *bt_addr_result)
 618{
 619        int ret;
 620        int valid_bit;
 621        unsigned long bd_entry;
 622        unsigned long bt_addr;
 623
 624        if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
 625                return -EFAULT;
 626
 627        while (1) {
 628                int need_write = 0;
 629
 630                pagefault_disable();
 631                ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 632                pagefault_enable();
 633                if (!ret)
 634                        break;
 635                if (ret == -EFAULT)
 636                        ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 637                /*
 638                 * If we could not resolve the fault, consider it
 639                 * userspace's fault and error out.
 640                 */
 641                if (ret)
 642                        return ret;
 643        }
 644
 645        valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 646        bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 647
 648        /*
 649         * When the kernel is managing bounds tables, a bounds directory
 650         * entry will either have a valid address (plus the valid bit)
 651         * *OR* be completely empty. If we see a !valid entry *and* some
 652         * data in the address field, we know something is wrong. This
 653         * -EINVAL return will cause a SIGSEGV.
 654         */
 655        if (!valid_bit && bt_addr)
 656                return -EINVAL;
 657        /*
 658         * Do we have an completely zeroed bt entry?  That is OK.  It
 659         * just means there was no bounds table for this memory.  Make
 660         * sure to distinguish this from -EINVAL, which will cause
 661         * a SEGV.
 662         */
 663        if (!valid_bit)
 664                return -ENOENT;
 665
 666        *bt_addr_result = bt_addr;
 667        return 0;
 668}
 669
 670static inline int bt_entry_size_bytes(struct mm_struct *mm)
 671{
 672        if (is_64bit_mm(mm))
 673                return MPX_BT_ENTRY_BYTES_64;
 674        else
 675                return MPX_BT_ENTRY_BYTES_32;
 676}
 677
 678/*
 679 * Take a virtual address and turns it in to the offset in bytes
 680 * inside of the bounds table where the bounds table entry
 681 * controlling 'addr' can be found.
 682 */
 683static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 684                unsigned long addr)
 685{
 686        unsigned long bt_table_nr_entries;
 687        unsigned long offset = addr;
 688
 689        if (is_64bit_mm(mm)) {
 690                /* Bottom 3 bits are ignored on 64-bit */
 691                offset >>= 3;
 692                bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 693        } else {
 694                /* Bottom 2 bits are ignored on 32-bit */
 695                offset >>= 2;
 696                bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 697        }
 698        /*
 699         * We know the size of the table in to which we are
 700         * indexing, and we have eliminated all the low bits
 701         * which are ignored for indexing.
 702         *
 703         * Mask out all the high bits which we do not need
 704         * to index in to the table.  Note that the tables
 705         * are always powers of two so this gives us a proper
 706         * mask.
 707         */
 708        offset &= (bt_table_nr_entries-1);
 709        /*
 710         * We now have an entry offset in terms of *entries* in
 711         * the table.  We need to scale it back up to bytes.
 712         */
 713        offset *= bt_entry_size_bytes(mm);
 714        return offset;
 715}
 716
 717/*
 718 * How much virtual address space does a single bounds
 719 * directory entry cover?
 720 *
 721 * Note, we need a long long because 4GB doesn't fit in
 722 * to a long on 32-bit.
 723 */
 724static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 725{
 726        unsigned long long virt_space;
 727        unsigned long long GB = (1ULL << 30);
 728
 729        /*
 730         * This covers 32-bit emulation as well as 32-bit kernels
 731         * running on 64-bit hardware.
 732         */
 733        if (!is_64bit_mm(mm))
 734                return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 735
 736        /*
 737         * 'x86_virt_bits' returns what the hardware is capable
 738         * of, and returns the full >32-bit address space when
 739         * running 32-bit kernels on 64-bit hardware.
 740         */
 741        virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 742        return virt_space / MPX_BD_NR_ENTRIES_64;
 743}
 744
 745/*
 746 * Free the backing physical pages of bounds table 'bt_addr'.
 747 * Assume start...end is within that bounds table.
 748 */
 749static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 750                unsigned long bt_addr,
 751                unsigned long start_mapping, unsigned long end_mapping)
 752{
 753        struct vm_area_struct *vma;
 754        unsigned long addr, len;
 755        unsigned long start;
 756        unsigned long end;
 757
 758        /*
 759         * if we 'end' on a boundary, the offset will be 0 which
 760         * is not what we want.  Back it up a byte to get the
 761         * last bt entry.  Then once we have the entry itself,
 762         * move 'end' back up by the table entry size.
 763         */
 764        start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 765        end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 766        /*
 767         * Move end back up by one entry.  Among other things
 768         * this ensures that it remains page-aligned and does
 769         * not screw up zap_page_range()
 770         */
 771        end += bt_entry_size_bytes(mm);
 772
 773        /*
 774         * Find the first overlapping vma. If vma->vm_start > start, there
 775         * will be a hole in the bounds table. This -EINVAL return will
 776         * cause a SIGSEGV.
 777         */
 778        vma = find_vma(mm, start);
 779        if (!vma || vma->vm_start > start)
 780                return -EINVAL;
 781
 782        /*
 783         * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 784         * be split. So we need to look across the entire 'start -> end'
 785         * range of this bounds table, find all of the VM_MPX VMAs, and
 786         * zap only those.
 787         */
 788        addr = start;
 789        while (vma && vma->vm_start < end) {
 790                /*
 791                 * We followed a bounds directory entry down
 792                 * here.  If we find a non-MPX VMA, that's bad,
 793                 * so stop immediately and return an error.  This
 794                 * probably results in a SIGSEGV.
 795                 */
 796                if (!(vma->vm_flags & VM_MPX))
 797                        return -EINVAL;
 798
 799                len = min(vma->vm_end, end) - addr;
 800                zap_page_range(vma, addr, len);
 801                trace_mpx_unmap_zap(addr, addr+len);
 802
 803                vma = vma->vm_next;
 804                addr = vma->vm_start;
 805        }
 806        return 0;
 807}
 808
 809static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 810                unsigned long addr)
 811{
 812        /*
 813         * There are several ways to derive the bd offsets.  We
 814         * use the following approach here:
 815         * 1. We know the size of the virtual address space
 816         * 2. We know the number of entries in a bounds table
 817         * 3. We know that each entry covers a fixed amount of
 818         *    virtual address space.
 819         * So, we can just divide the virtual address by the
 820         * virtual space used by one entry to determine which
 821         * entry "controls" the given virtual address.
 822         */
 823        if (is_64bit_mm(mm)) {
 824                int bd_entry_size = 8; /* 64-bit pointer */
 825                /*
 826                 * Take the 64-bit addressing hole in to account.
 827                 */
 828                addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 829                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 830        } else {
 831                int bd_entry_size = 4; /* 32-bit pointer */
 832                /*
 833                 * 32-bit has no hole so this case needs no mask
 834                 */
 835                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 836        }
 837        /*
 838         * The two return calls above are exact copies.  If we
 839         * pull out a single copy and put it in here, gcc won't
 840         * realize that we're doing a power-of-2 divide and use
 841         * shifts.  It uses a real divide.  If we put them up
 842         * there, it manages to figure it out (gcc 4.8.3).
 843         */
 844}
 845
 846static int unmap_entire_bt(struct mm_struct *mm,
 847                long __user *bd_entry, unsigned long bt_addr)
 848{
 849        unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 850        unsigned long uninitialized_var(actual_old_val);
 851        int ret;
 852
 853        while (1) {
 854                int need_write = 1;
 855                unsigned long cleared_bd_entry = 0;
 856
 857                pagefault_disable();
 858                ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 859                                bd_entry, expected_old_val, cleared_bd_entry);
 860                pagefault_enable();
 861                if (!ret)
 862                        break;
 863                if (ret == -EFAULT)
 864                        ret = mpx_resolve_fault(bd_entry, need_write);
 865                /*
 866                 * If we could not resolve the fault, consider it
 867                 * userspace's fault and error out.
 868                 */
 869                if (ret)
 870                        return ret;
 871        }
 872        /*
 873         * The cmpxchg was performed, check the results.
 874         */
 875        if (actual_old_val != expected_old_val) {
 876                /*
 877                 * Someone else raced with us to unmap the table.
 878                 * That is OK, since we were both trying to do
 879                 * the same thing.  Declare success.
 880                 */
 881                if (!actual_old_val)
 882                        return 0;
 883                /*
 884                 * Something messed with the bounds directory
 885                 * entry.  We hold mmap_sem for read or write
 886                 * here, so it could not be a _new_ bounds table
 887                 * that someone just allocated.  Something is
 888                 * wrong, so pass up the error and SIGSEGV.
 889                 */
 890                return -EINVAL;
 891        }
 892        /*
 893         * Note, we are likely being called under do_munmap() already. To
 894         * avoid recursion, do_munmap() will check whether it comes
 895         * from one bounds table through VM_MPX flag.
 896         */
 897        return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
 898}
 899
 900static int try_unmap_single_bt(struct mm_struct *mm,
 901               unsigned long start, unsigned long end)
 902{
 903        struct vm_area_struct *next;
 904        struct vm_area_struct *prev;
 905        /*
 906         * "bta" == Bounds Table Area: the area controlled by the
 907         * bounds table that we are unmapping.
 908         */
 909        unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 910        unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 911        unsigned long uninitialized_var(bt_addr);
 912        void __user *bde_vaddr;
 913        int ret;
 914        /*
 915         * We already unlinked the VMAs from the mm's rbtree so 'start'
 916         * is guaranteed to be in a hole. This gets us the first VMA
 917         * before the hole in to 'prev' and the next VMA after the hole
 918         * in to 'next'.
 919         */
 920        next = find_vma_prev(mm, start, &prev);
 921        /*
 922         * Do not count other MPX bounds table VMAs as neighbors.
 923         * Although theoretically possible, we do not allow bounds
 924         * tables for bounds tables so our heads do not explode.
 925         * If we count them as neighbors here, we may end up with
 926         * lots of tables even though we have no actual table
 927         * entries in use.
 928         */
 929        while (next && (next->vm_flags & VM_MPX))
 930                next = next->vm_next;
 931        while (prev && (prev->vm_flags & VM_MPX))
 932                prev = prev->vm_prev;
 933        /*
 934         * We know 'start' and 'end' lie within an area controlled
 935         * by a single bounds table.  See if there are any other
 936         * VMAs controlled by that bounds table.  If there are not
 937         * then we can "expand" the are we are unmapping to possibly
 938         * cover the entire table.
 939         */
 940        next = find_vma_prev(mm, start, &prev);
 941        if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 942            (!next || next->vm_start >= bta_end_vaddr)) {
 943                /*
 944                 * No neighbor VMAs controlled by same bounds
 945                 * table.  Try to unmap the whole thing
 946                 */
 947                start = bta_start_vaddr;
 948                end = bta_end_vaddr;
 949        }
 950
 951        bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
 952        ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 953        /*
 954         * No bounds table there, so nothing to unmap.
 955         */
 956        if (ret == -ENOENT) {
 957                ret = 0;
 958                return 0;
 959        }
 960        if (ret)
 961                return ret;
 962        /*
 963         * We are unmapping an entire table.  Either because the
 964         * unmap that started this whole process was large enough
 965         * to cover an entire table, or that the unmap was small
 966         * but was the area covered by a bounds table.
 967         */
 968        if ((start == bta_start_vaddr) &&
 969            (end == bta_end_vaddr))
 970                return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 971        return zap_bt_entries_mapping(mm, bt_addr, start, end);
 972}
 973
 974static int mpx_unmap_tables(struct mm_struct *mm,
 975                unsigned long start, unsigned long end)
 976{
 977        unsigned long one_unmap_start;
 978        trace_mpx_unmap_search(start, end);
 979
 980        one_unmap_start = start;
 981        while (one_unmap_start < end) {
 982                int ret;
 983                unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 984                                                       bd_entry_virt_space(mm));
 985                unsigned long one_unmap_end = end;
 986                /*
 987                 * if the end is beyond the current bounds table,
 988                 * move it back so we only deal with a single one
 989                 * at a time
 990                 */
 991                if (one_unmap_end > next_unmap_start)
 992                        one_unmap_end = next_unmap_start;
 993                ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 994                if (ret)
 995                        return ret;
 996
 997                one_unmap_start = next_unmap_start;
 998        }
 999        return 0;
1000}
1001
1002/*
1003 * Free unused bounds tables covered in a virtual address region being
1004 * munmap()ed. Assume end > start.
1005 *
1006 * This function will be called by do_munmap(), and the VMAs covering
1007 * the virtual address region start...end have already been split if
1008 * necessary, and the 'vma' is the first vma in this range (start -> end).
1009 */
1010void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1011                unsigned long start, unsigned long end)
1012{
1013        int ret;
1014
1015        /*
1016         * Refuse to do anything unless userspace has asked
1017         * the kernel to help manage the bounds tables,
1018         */
1019        if (!kernel_managing_mpx_tables(current->mm))
1020                return;
1021        /*
1022         * This will look across the entire 'start -> end' range,
1023         * and find all of the non-VM_MPX VMAs.
1024         *
1025         * To avoid recursion, if a VM_MPX vma is found in the range
1026         * (start->end), we will not continue follow-up work. This
1027         * recursion represents having bounds tables for bounds tables,
1028         * which should not occur normally. Being strict about it here
1029         * helps ensure that we do not have an exploitable stack overflow.
1030         */
1031        do {
1032                if (vma->vm_flags & VM_MPX)
1033                        return;
1034                vma = vma->vm_next;
1035        } while (vma && vma->vm_start < end);
1036
1037        ret = mpx_unmap_tables(mm, start, end);
1038        if (ret)
1039                force_sig(SIGSEGV, current);
1040}
1041