linux/drivers/block/brd.c
<<
>>
Prefs
   1/*
   2 * Ram backed block device driver.
   3 *
   4 * Copyright (C) 2007 Nick Piggin
   5 * Copyright (C) 2007 Novell Inc.
   6 *
   7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
   8 * of their respective owners.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/moduleparam.h>
  14#include <linux/major.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/highmem.h>
  18#include <linux/mutex.h>
  19#include <linux/radix-tree.h>
  20#include <linux/fs.h>
  21#include <linux/slab.h>
  22#ifdef CONFIG_BLK_DEV_RAM_DAX
  23#include <linux/pfn_t.h>
  24#endif
  25
  26#include <linux/uaccess.h>
  27
  28#define SECTOR_SHIFT            9
  29#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  30#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  31
  32/*
  33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  34 * the pages containing the block device's contents. A brd page's ->index is
  35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  36 * with, the kernel's pagecache or buffer cache (which sit above our block
  37 * device).
  38 */
  39struct brd_device {
  40        int             brd_number;
  41
  42        struct request_queue    *brd_queue;
  43        struct gendisk          *brd_disk;
  44        struct list_head        brd_list;
  45
  46        /*
  47         * Backing store of pages and lock to protect it. This is the contents
  48         * of the block device.
  49         */
  50        spinlock_t              brd_lock;
  51        struct radix_tree_root  brd_pages;
  52};
  53
  54/*
  55 * Look up and return a brd's page for a given sector.
  56 */
  57static DEFINE_MUTEX(brd_mutex);
  58static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  59{
  60        pgoff_t idx;
  61        struct page *page;
  62
  63        /*
  64         * The page lifetime is protected by the fact that we have opened the
  65         * device node -- brd pages will never be deleted under us, so we
  66         * don't need any further locking or refcounting.
  67         *
  68         * This is strictly true for the radix-tree nodes as well (ie. we
  69         * don't actually need the rcu_read_lock()), however that is not a
  70         * documented feature of the radix-tree API so it is better to be
  71         * safe here (we don't have total exclusion from radix tree updates
  72         * here, only deletes).
  73         */
  74        rcu_read_lock();
  75        idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  76        page = radix_tree_lookup(&brd->brd_pages, idx);
  77        rcu_read_unlock();
  78
  79        BUG_ON(page && page->index != idx);
  80
  81        return page;
  82}
  83
  84/*
  85 * Look up and return a brd's page for a given sector.
  86 * If one does not exist, allocate an empty page, and insert that. Then
  87 * return it.
  88 */
  89static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  90{
  91        pgoff_t idx;
  92        struct page *page;
  93        gfp_t gfp_flags;
  94
  95        page = brd_lookup_page(brd, sector);
  96        if (page)
  97                return page;
  98
  99        /*
 100         * Must use NOIO because we don't want to recurse back into the
 101         * block or filesystem layers from page reclaim.
 102         *
 103         * Cannot support DAX and highmem, because our ->direct_access
 104         * routine for DAX must return memory that is always addressable.
 105         * If DAX was reworked to use pfns and kmap throughout, this
 106         * restriction might be able to be lifted.
 107         */
 108        gfp_flags = GFP_NOIO | __GFP_ZERO;
 109#ifndef CONFIG_BLK_DEV_RAM_DAX
 110        gfp_flags |= __GFP_HIGHMEM;
 111#endif
 112        page = alloc_page(gfp_flags);
 113        if (!page)
 114                return NULL;
 115
 116        if (radix_tree_preload(GFP_NOIO)) {
 117                __free_page(page);
 118                return NULL;
 119        }
 120
 121        spin_lock(&brd->brd_lock);
 122        idx = sector >> PAGE_SECTORS_SHIFT;
 123        page->index = idx;
 124        if (radix_tree_insert(&brd->brd_pages, idx, page)) {
 125                __free_page(page);
 126                page = radix_tree_lookup(&brd->brd_pages, idx);
 127                BUG_ON(!page);
 128                BUG_ON(page->index != idx);
 129        }
 130        spin_unlock(&brd->brd_lock);
 131
 132        radix_tree_preload_end();
 133
 134        return page;
 135}
 136
 137static void brd_free_page(struct brd_device *brd, sector_t sector)
 138{
 139        struct page *page;
 140        pgoff_t idx;
 141
 142        spin_lock(&brd->brd_lock);
 143        idx = sector >> PAGE_SECTORS_SHIFT;
 144        page = radix_tree_delete(&brd->brd_pages, idx);
 145        spin_unlock(&brd->brd_lock);
 146        if (page)
 147                __free_page(page);
 148}
 149
 150static void brd_zero_page(struct brd_device *brd, sector_t sector)
 151{
 152        struct page *page;
 153
 154        page = brd_lookup_page(brd, sector);
 155        if (page)
 156                clear_highpage(page);
 157}
 158
 159/*
 160 * Free all backing store pages and radix tree. This must only be called when
 161 * there are no other users of the device.
 162 */
 163#define FREE_BATCH 16
 164static void brd_free_pages(struct brd_device *brd)
 165{
 166        unsigned long pos = 0;
 167        struct page *pages[FREE_BATCH];
 168        int nr_pages;
 169
 170        do {
 171                int i;
 172
 173                nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
 174                                (void **)pages, pos, FREE_BATCH);
 175
 176                for (i = 0; i < nr_pages; i++) {
 177                        void *ret;
 178
 179                        BUG_ON(pages[i]->index < pos);
 180                        pos = pages[i]->index;
 181                        ret = radix_tree_delete(&brd->brd_pages, pos);
 182                        BUG_ON(!ret || ret != pages[i]);
 183                        __free_page(pages[i]);
 184                }
 185
 186                pos++;
 187
 188                /*
 189                 * This assumes radix_tree_gang_lookup always returns as
 190                 * many pages as possible. If the radix-tree code changes,
 191                 * so will this have to.
 192                 */
 193        } while (nr_pages == FREE_BATCH);
 194}
 195
 196/*
 197 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 198 */
 199static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
 200{
 201        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 202        size_t copy;
 203
 204        copy = min_t(size_t, n, PAGE_SIZE - offset);
 205        if (!brd_insert_page(brd, sector))
 206                return -ENOSPC;
 207        if (copy < n) {
 208                sector += copy >> SECTOR_SHIFT;
 209                if (!brd_insert_page(brd, sector))
 210                        return -ENOSPC;
 211        }
 212        return 0;
 213}
 214
 215static void discard_from_brd(struct brd_device *brd,
 216                        sector_t sector, size_t n)
 217{
 218        while (n >= PAGE_SIZE) {
 219                /*
 220                 * Don't want to actually discard pages here because
 221                 * re-allocating the pages can result in writeback
 222                 * deadlocks under heavy load.
 223                 */
 224                if (0)
 225                        brd_free_page(brd, sector);
 226                else
 227                        brd_zero_page(brd, sector);
 228                sector += PAGE_SIZE >> SECTOR_SHIFT;
 229                n -= PAGE_SIZE;
 230        }
 231}
 232
 233/*
 234 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 235 */
 236static void copy_to_brd(struct brd_device *brd, const void *src,
 237                        sector_t sector, size_t n)
 238{
 239        struct page *page;
 240        void *dst;
 241        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 242        size_t copy;
 243
 244        copy = min_t(size_t, n, PAGE_SIZE - offset);
 245        page = brd_lookup_page(brd, sector);
 246        BUG_ON(!page);
 247
 248        dst = kmap_atomic(page);
 249        memcpy(dst + offset, src, copy);
 250        kunmap_atomic(dst);
 251
 252        if (copy < n) {
 253                src += copy;
 254                sector += copy >> SECTOR_SHIFT;
 255                copy = n - copy;
 256                page = brd_lookup_page(brd, sector);
 257                BUG_ON(!page);
 258
 259                dst = kmap_atomic(page);
 260                memcpy(dst, src, copy);
 261                kunmap_atomic(dst);
 262        }
 263}
 264
 265/*
 266 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 267 */
 268static void copy_from_brd(void *dst, struct brd_device *brd,
 269                        sector_t sector, size_t n)
 270{
 271        struct page *page;
 272        void *src;
 273        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 274        size_t copy;
 275
 276        copy = min_t(size_t, n, PAGE_SIZE - offset);
 277        page = brd_lookup_page(brd, sector);
 278        if (page) {
 279                src = kmap_atomic(page);
 280                memcpy(dst, src + offset, copy);
 281                kunmap_atomic(src);
 282        } else
 283                memset(dst, 0, copy);
 284
 285        if (copy < n) {
 286                dst += copy;
 287                sector += copy >> SECTOR_SHIFT;
 288                copy = n - copy;
 289                page = brd_lookup_page(brd, sector);
 290                if (page) {
 291                        src = kmap_atomic(page);
 292                        memcpy(dst, src, copy);
 293                        kunmap_atomic(src);
 294                } else
 295                        memset(dst, 0, copy);
 296        }
 297}
 298
 299/*
 300 * Process a single bvec of a bio.
 301 */
 302static int brd_do_bvec(struct brd_device *brd, struct page *page,
 303                        unsigned int len, unsigned int off, bool is_write,
 304                        sector_t sector)
 305{
 306        void *mem;
 307        int err = 0;
 308
 309        if (is_write) {
 310                err = copy_to_brd_setup(brd, sector, len);
 311                if (err)
 312                        goto out;
 313        }
 314
 315        mem = kmap_atomic(page);
 316        if (!is_write) {
 317                copy_from_brd(mem + off, brd, sector, len);
 318                flush_dcache_page(page);
 319        } else {
 320                flush_dcache_page(page);
 321                copy_to_brd(brd, mem + off, sector, len);
 322        }
 323        kunmap_atomic(mem);
 324
 325out:
 326        return err;
 327}
 328
 329static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
 330{
 331        struct block_device *bdev = bio->bi_bdev;
 332        struct brd_device *brd = bdev->bd_disk->private_data;
 333        struct bio_vec bvec;
 334        sector_t sector;
 335        struct bvec_iter iter;
 336
 337        sector = bio->bi_iter.bi_sector;
 338        if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
 339                goto io_error;
 340
 341        if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
 342                if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) ||
 343                    bio->bi_iter.bi_size & ~PAGE_MASK)
 344                        goto io_error;
 345                discard_from_brd(brd, sector, bio->bi_iter.bi_size);
 346                goto out;
 347        }
 348
 349        bio_for_each_segment(bvec, bio, iter) {
 350                unsigned int len = bvec.bv_len;
 351                int err;
 352
 353                err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
 354                                        op_is_write(bio_op(bio)), sector);
 355                if (err)
 356                        goto io_error;
 357                sector += len >> SECTOR_SHIFT;
 358        }
 359
 360out:
 361        bio_endio(bio);
 362        return BLK_QC_T_NONE;
 363io_error:
 364        bio_io_error(bio);
 365        return BLK_QC_T_NONE;
 366}
 367
 368static int brd_rw_page(struct block_device *bdev, sector_t sector,
 369                       struct page *page, bool is_write)
 370{
 371        struct brd_device *brd = bdev->bd_disk->private_data;
 372        int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
 373        page_endio(page, is_write, err);
 374        return err;
 375}
 376
 377#ifdef CONFIG_BLK_DEV_RAM_DAX
 378static long brd_direct_access(struct block_device *bdev, sector_t sector,
 379                        void **kaddr, pfn_t *pfn, long size)
 380{
 381        struct brd_device *brd = bdev->bd_disk->private_data;
 382        struct page *page;
 383
 384        if (!brd)
 385                return -ENODEV;
 386        page = brd_insert_page(brd, sector);
 387        if (!page)
 388                return -ENOSPC;
 389        *kaddr = page_address(page);
 390        *pfn = page_to_pfn_t(page);
 391
 392        return PAGE_SIZE;
 393}
 394#else
 395#define brd_direct_access NULL
 396#endif
 397
 398static const struct block_device_operations brd_fops = {
 399        .owner =                THIS_MODULE,
 400        .rw_page =              brd_rw_page,
 401        .direct_access =        brd_direct_access,
 402};
 403
 404/*
 405 * And now the modules code and kernel interface.
 406 */
 407static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
 408module_param(rd_nr, int, S_IRUGO);
 409MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
 410
 411unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
 412module_param(rd_size, ulong, S_IRUGO);
 413MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 414
 415static int max_part = 1;
 416module_param(max_part, int, S_IRUGO);
 417MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
 418
 419MODULE_LICENSE("GPL");
 420MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
 421MODULE_ALIAS("rd");
 422
 423#ifndef MODULE
 424/* Legacy boot options - nonmodular */
 425static int __init ramdisk_size(char *str)
 426{
 427        rd_size = simple_strtol(str, NULL, 0);
 428        return 1;
 429}
 430__setup("ramdisk_size=", ramdisk_size);
 431#endif
 432
 433/*
 434 * The device scheme is derived from loop.c. Keep them in synch where possible
 435 * (should share code eventually).
 436 */
 437static LIST_HEAD(brd_devices);
 438static DEFINE_MUTEX(brd_devices_mutex);
 439
 440static struct brd_device *brd_alloc(int i)
 441{
 442        struct brd_device *brd;
 443        struct gendisk *disk;
 444
 445        brd = kzalloc(sizeof(*brd), GFP_KERNEL);
 446        if (!brd)
 447                goto out;
 448        brd->brd_number         = i;
 449        spin_lock_init(&brd->brd_lock);
 450        INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
 451
 452        brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
 453        if (!brd->brd_queue)
 454                goto out_free_dev;
 455
 456        blk_queue_make_request(brd->brd_queue, brd_make_request);
 457        blk_queue_max_hw_sectors(brd->brd_queue, 1024);
 458        blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
 459
 460        /* This is so fdisk will align partitions on 4k, because of
 461         * direct_access API needing 4k alignment, returning a PFN
 462         * (This is only a problem on very small devices <= 4M,
 463         *  otherwise fdisk will align on 1M. Regardless this call
 464         *  is harmless)
 465         */
 466        blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
 467
 468        brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
 469        blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX);
 470        brd->brd_queue->limits.discard_zeroes_data = 1;
 471        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
 472#ifdef CONFIG_BLK_DEV_RAM_DAX
 473        queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
 474#endif
 475        disk = brd->brd_disk = alloc_disk(max_part);
 476        if (!disk)
 477                goto out_free_queue;
 478        disk->major             = RAMDISK_MAJOR;
 479        disk->first_minor       = i * max_part;
 480        disk->fops              = &brd_fops;
 481        disk->private_data      = brd;
 482        disk->queue             = brd->brd_queue;
 483        disk->flags             = GENHD_FL_EXT_DEVT;
 484        sprintf(disk->disk_name, "ram%d", i);
 485        set_capacity(disk, rd_size * 2);
 486
 487        return brd;
 488
 489out_free_queue:
 490        blk_cleanup_queue(brd->brd_queue);
 491out_free_dev:
 492        kfree(brd);
 493out:
 494        return NULL;
 495}
 496
 497static void brd_free(struct brd_device *brd)
 498{
 499        put_disk(brd->brd_disk);
 500        blk_cleanup_queue(brd->brd_queue);
 501        brd_free_pages(brd);
 502        kfree(brd);
 503}
 504
 505static struct brd_device *brd_init_one(int i, bool *new)
 506{
 507        struct brd_device *brd;
 508
 509        *new = false;
 510        list_for_each_entry(brd, &brd_devices, brd_list) {
 511                if (brd->brd_number == i)
 512                        goto out;
 513        }
 514
 515        brd = brd_alloc(i);
 516        if (brd) {
 517                add_disk(brd->brd_disk);
 518                list_add_tail(&brd->brd_list, &brd_devices);
 519        }
 520        *new = true;
 521out:
 522        return brd;
 523}
 524
 525static void brd_del_one(struct brd_device *brd)
 526{
 527        list_del(&brd->brd_list);
 528        del_gendisk(brd->brd_disk);
 529        brd_free(brd);
 530}
 531
 532static struct kobject *brd_probe(dev_t dev, int *part, void *data)
 533{
 534        struct brd_device *brd;
 535        struct kobject *kobj;
 536        bool new;
 537
 538        mutex_lock(&brd_devices_mutex);
 539        brd = brd_init_one(MINOR(dev) / max_part, &new);
 540        kobj = brd ? get_disk(brd->brd_disk) : NULL;
 541        mutex_unlock(&brd_devices_mutex);
 542
 543        if (new)
 544                *part = 0;
 545
 546        return kobj;
 547}
 548
 549static int __init brd_init(void)
 550{
 551        struct brd_device *brd, *next;
 552        int i;
 553
 554        /*
 555         * brd module now has a feature to instantiate underlying device
 556         * structure on-demand, provided that there is an access dev node.
 557         *
 558         * (1) if rd_nr is specified, create that many upfront. else
 559         *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
 560         * (2) User can further extend brd devices by create dev node themselves
 561         *     and have kernel automatically instantiate actual device
 562         *     on-demand. Example:
 563         *              mknod /path/devnod_name b 1 X   # 1 is the rd major
 564         *              fdisk -l /path/devnod_name
 565         *      If (X / max_part) was not already created it will be created
 566         *      dynamically.
 567         */
 568
 569        if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
 570                return -EIO;
 571
 572        if (unlikely(!max_part))
 573                max_part = 1;
 574
 575        for (i = 0; i < rd_nr; i++) {
 576                brd = brd_alloc(i);
 577                if (!brd)
 578                        goto out_free;
 579                list_add_tail(&brd->brd_list, &brd_devices);
 580        }
 581
 582        /* point of no return */
 583
 584        list_for_each_entry(brd, &brd_devices, brd_list)
 585                add_disk(brd->brd_disk);
 586
 587        blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
 588                                  THIS_MODULE, brd_probe, NULL, NULL);
 589
 590        pr_info("brd: module loaded\n");
 591        return 0;
 592
 593out_free:
 594        list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
 595                list_del(&brd->brd_list);
 596                brd_free(brd);
 597        }
 598        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 599
 600        pr_info("brd: module NOT loaded !!!\n");
 601        return -ENOMEM;
 602}
 603
 604static void __exit brd_exit(void)
 605{
 606        struct brd_device *brd, *next;
 607
 608        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 609                brd_del_one(brd);
 610
 611        blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
 612        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 613
 614        pr_info("brd: module unloaded\n");
 615}
 616
 617module_init(brd_init);
 618module_exit(brd_exit);
 619
 620