linux/drivers/crypto/mv_cesa.c
<<
>>
Prefs
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/genalloc.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/kthread.h>
  16#include <linux/platform_device.h>
  17#include <linux/scatterlist.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/clk.h>
  21#include <crypto/internal/hash.h>
  22#include <crypto/sha.h>
  23#include <linux/of.h>
  24#include <linux/of_platform.h>
  25#include <linux/of_irq.h>
  26
  27#include "mv_cesa.h"
  28
  29#define MV_CESA "MV-CESA:"
  30#define MAX_HW_HASH_SIZE        0xFFFF
  31#define MV_CESA_EXPIRE          500 /* msec */
  32
  33#define MV_CESA_DEFAULT_SRAM_SIZE       2048
  34
  35/*
  36 * STM:
  37 *   /---------------------------------------\
  38 *   |                                       | request complete
  39 *  \./                                      |
  40 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  41 *                         /°\               |
  42 *                          |                | more scatter entries
  43 *                          \________________/
  44 */
  45enum engine_status {
  46        ENGINE_IDLE,
  47        ENGINE_BUSY,
  48        ENGINE_W_DEQUEUE,
  49};
  50
  51/**
  52 * struct req_progress - used for every crypt request
  53 * @src_sg_it:          sg iterator for src
  54 * @dst_sg_it:          sg iterator for dst
  55 * @sg_src_left:        bytes left in src to process (scatter list)
  56 * @src_start:          offset to add to src start position (scatter list)
  57 * @crypt_len:          length of current hw crypt/hash process
  58 * @hw_nbytes:          total bytes to process in hw for this request
  59 * @copy_back:          whether to copy data back (crypt) or not (hash)
  60 * @sg_dst_left:        bytes left dst to process in this scatter list
  61 * @dst_start:          offset to add to dst start position (scatter list)
  62 * @hw_processed_bytes: number of bytes processed by hw (request).
  63 *
  64 * sg helper are used to iterate over the scatterlist. Since the size of the
  65 * SRAM may be less than the scatter size, this struct struct is used to keep
  66 * track of progress within current scatterlist.
  67 */
  68struct req_progress {
  69        struct sg_mapping_iter src_sg_it;
  70        struct sg_mapping_iter dst_sg_it;
  71        void (*complete) (void);
  72        void (*process) (int is_first);
  73
  74        /* src mostly */
  75        int sg_src_left;
  76        int src_start;
  77        int crypt_len;
  78        int hw_nbytes;
  79        /* dst mostly */
  80        int copy_back;
  81        int sg_dst_left;
  82        int dst_start;
  83        int hw_processed_bytes;
  84};
  85
  86struct crypto_priv {
  87        void __iomem *reg;
  88        void __iomem *sram;
  89        struct gen_pool *sram_pool;
  90        dma_addr_t sram_dma;
  91        int irq;
  92        struct clk *clk;
  93        struct task_struct *queue_th;
  94
  95        /* the lock protects queue and eng_st */
  96        spinlock_t lock;
  97        struct crypto_queue queue;
  98        enum engine_status eng_st;
  99        struct timer_list completion_timer;
 100        struct crypto_async_request *cur_req;
 101        struct req_progress p;
 102        int max_req_size;
 103        int sram_size;
 104        int has_sha1;
 105        int has_hmac_sha1;
 106};
 107
 108static struct crypto_priv *cpg;
 109
 110struct mv_ctx {
 111        u8 aes_enc_key[AES_KEY_LEN];
 112        u32 aes_dec_key[8];
 113        int key_len;
 114        u32 need_calc_aes_dkey;
 115};
 116
 117enum crypto_op {
 118        COP_AES_ECB,
 119        COP_AES_CBC,
 120};
 121
 122struct mv_req_ctx {
 123        enum crypto_op op;
 124        int decrypt;
 125};
 126
 127enum hash_op {
 128        COP_SHA1,
 129        COP_HMAC_SHA1
 130};
 131
 132struct mv_tfm_hash_ctx {
 133        struct crypto_shash *fallback;
 134        struct crypto_shash *base_hash;
 135        u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 136        int count_add;
 137        enum hash_op op;
 138};
 139
 140struct mv_req_hash_ctx {
 141        u64 count;
 142        u32 state[SHA1_DIGEST_SIZE / 4];
 143        u8 buffer[SHA1_BLOCK_SIZE];
 144        int first_hash;         /* marks that we don't have previous state */
 145        int last_chunk;         /* marks that this is the 'final' request */
 146        int extra_bytes;        /* unprocessed bytes in buffer */
 147        enum hash_op op;
 148        int count_add;
 149};
 150
 151static void mv_completion_timer_callback(unsigned long unused)
 152{
 153        int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
 154
 155        printk(KERN_ERR MV_CESA
 156               "completion timer expired (CESA %sactive), cleaning up.\n",
 157               active ? "" : "in");
 158
 159        del_timer(&cpg->completion_timer);
 160        writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
 161        while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
 162                printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
 163        cpg->eng_st = ENGINE_W_DEQUEUE;
 164        wake_up_process(cpg->queue_th);
 165}
 166
 167static void mv_setup_timer(void)
 168{
 169        setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
 170        mod_timer(&cpg->completion_timer,
 171                        jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
 172}
 173
 174static void compute_aes_dec_key(struct mv_ctx *ctx)
 175{
 176        struct crypto_aes_ctx gen_aes_key;
 177        int key_pos;
 178
 179        if (!ctx->need_calc_aes_dkey)
 180                return;
 181
 182        crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 183
 184        key_pos = ctx->key_len + 24;
 185        memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 186        switch (ctx->key_len) {
 187        case AES_KEYSIZE_256:
 188                key_pos -= 2;
 189                /* fall */
 190        case AES_KEYSIZE_192:
 191                key_pos -= 2;
 192                memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 193                                4 * 4);
 194                break;
 195        }
 196        ctx->need_calc_aes_dkey = 0;
 197}
 198
 199static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 200                unsigned int len)
 201{
 202        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 203        struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 204
 205        switch (len) {
 206        case AES_KEYSIZE_128:
 207        case AES_KEYSIZE_192:
 208        case AES_KEYSIZE_256:
 209                break;
 210        default:
 211                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 212                return -EINVAL;
 213        }
 214        ctx->key_len = len;
 215        ctx->need_calc_aes_dkey = 1;
 216
 217        memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 218        return 0;
 219}
 220
 221static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 222{
 223        int ret;
 224        void *sbuf;
 225        int copy_len;
 226
 227        while (len) {
 228                if (!p->sg_src_left) {
 229                        ret = sg_miter_next(&p->src_sg_it);
 230                        BUG_ON(!ret);
 231                        p->sg_src_left = p->src_sg_it.length;
 232                        p->src_start = 0;
 233                }
 234
 235                sbuf = p->src_sg_it.addr + p->src_start;
 236
 237                copy_len = min(p->sg_src_left, len);
 238                memcpy(dbuf, sbuf, copy_len);
 239
 240                p->src_start += copy_len;
 241                p->sg_src_left -= copy_len;
 242
 243                len -= copy_len;
 244                dbuf += copy_len;
 245        }
 246}
 247
 248static void setup_data_in(void)
 249{
 250        struct req_progress *p = &cpg->p;
 251        int data_in_sram =
 252            min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 253        copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 254                        data_in_sram - p->crypt_len);
 255        p->crypt_len = data_in_sram;
 256}
 257
 258static void mv_process_current_q(int first_block)
 259{
 260        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 261        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 262        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 263        struct sec_accel_config op;
 264
 265        switch (req_ctx->op) {
 266        case COP_AES_ECB:
 267                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 268                break;
 269        case COP_AES_CBC:
 270        default:
 271                op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 272                op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 273                        ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 274                if (first_block)
 275                        memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 276                break;
 277        }
 278        if (req_ctx->decrypt) {
 279                op.config |= CFG_DIR_DEC;
 280                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 281                                AES_KEY_LEN);
 282        } else {
 283                op.config |= CFG_DIR_ENC;
 284                memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 285                                AES_KEY_LEN);
 286        }
 287
 288        switch (ctx->key_len) {
 289        case AES_KEYSIZE_128:
 290                op.config |= CFG_AES_LEN_128;
 291                break;
 292        case AES_KEYSIZE_192:
 293                op.config |= CFG_AES_LEN_192;
 294                break;
 295        case AES_KEYSIZE_256:
 296                op.config |= CFG_AES_LEN_256;
 297                break;
 298        }
 299        op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 300                ENC_P_DST(SRAM_DATA_OUT_START);
 301        op.enc_key_p = SRAM_DATA_KEY_P;
 302
 303        setup_data_in();
 304        op.enc_len = cpg->p.crypt_len;
 305        memcpy(cpg->sram + SRAM_CONFIG, &op,
 306                        sizeof(struct sec_accel_config));
 307
 308        /* GO */
 309        mv_setup_timer();
 310        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 311}
 312
 313static void mv_crypto_algo_completion(void)
 314{
 315        struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 316        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 317
 318        sg_miter_stop(&cpg->p.src_sg_it);
 319        sg_miter_stop(&cpg->p.dst_sg_it);
 320
 321        if (req_ctx->op != COP_AES_CBC)
 322                return ;
 323
 324        memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 325}
 326
 327static void mv_process_hash_current(int first_block)
 328{
 329        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 330        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 331        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 332        struct req_progress *p = &cpg->p;
 333        struct sec_accel_config op = { 0 };
 334        int is_last;
 335
 336        switch (req_ctx->op) {
 337        case COP_SHA1:
 338        default:
 339                op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 340                break;
 341        case COP_HMAC_SHA1:
 342                op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 343                memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 344                                tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 345                break;
 346        }
 347
 348        op.mac_src_p =
 349                MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 350                req_ctx->
 351                count);
 352
 353        setup_data_in();
 354
 355        op.mac_digest =
 356                MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 357        op.mac_iv =
 358                MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 359                MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 360
 361        is_last = req_ctx->last_chunk
 362                && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 363                && (req_ctx->count <= MAX_HW_HASH_SIZE);
 364        if (req_ctx->first_hash) {
 365                if (is_last)
 366                        op.config |= CFG_NOT_FRAG;
 367                else
 368                        op.config |= CFG_FIRST_FRAG;
 369
 370                req_ctx->first_hash = 0;
 371        } else {
 372                if (is_last)
 373                        op.config |= CFG_LAST_FRAG;
 374                else
 375                        op.config |= CFG_MID_FRAG;
 376
 377                if (first_block) {
 378                        writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 379                        writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 380                        writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 381                        writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 382                        writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 383                }
 384        }
 385
 386        memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 387
 388        /* GO */
 389        mv_setup_timer();
 390        writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 391}
 392
 393static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 394                                          struct shash_desc *desc)
 395{
 396        int i;
 397        struct sha1_state shash_state;
 398
 399        shash_state.count = ctx->count + ctx->count_add;
 400        for (i = 0; i < 5; i++)
 401                shash_state.state[i] = ctx->state[i];
 402        memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 403        return crypto_shash_import(desc, &shash_state);
 404}
 405
 406static int mv_hash_final_fallback(struct ahash_request *req)
 407{
 408        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 409        struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 410        SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
 411        int rc;
 412
 413        shash->tfm = tfm_ctx->fallback;
 414        shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 415        if (unlikely(req_ctx->first_hash)) {
 416                crypto_shash_init(shash);
 417                crypto_shash_update(shash, req_ctx->buffer,
 418                                    req_ctx->extra_bytes);
 419        } else {
 420                /* only SHA1 for now....
 421                 */
 422                rc = mv_hash_import_sha1_ctx(req_ctx, shash);
 423                if (rc)
 424                        goto out;
 425        }
 426        rc = crypto_shash_final(shash, req->result);
 427out:
 428        return rc;
 429}
 430
 431static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
 432{
 433        ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 434        ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 435        ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 436        ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 437        ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 438}
 439
 440static void mv_hash_algo_completion(void)
 441{
 442        struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 443        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 444
 445        if (ctx->extra_bytes)
 446                copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 447        sg_miter_stop(&cpg->p.src_sg_it);
 448
 449        if (likely(ctx->last_chunk)) {
 450                if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 451                        memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 452                               crypto_ahash_digestsize(crypto_ahash_reqtfm
 453                                                       (req)));
 454                } else {
 455                        mv_save_digest_state(ctx);
 456                        mv_hash_final_fallback(req);
 457                }
 458        } else {
 459                mv_save_digest_state(ctx);
 460        }
 461}
 462
 463static void dequeue_complete_req(void)
 464{
 465        struct crypto_async_request *req = cpg->cur_req;
 466        void *buf;
 467        int ret;
 468        cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 469        if (cpg->p.copy_back) {
 470                int need_copy_len = cpg->p.crypt_len;
 471                int sram_offset = 0;
 472                do {
 473                        int dst_copy;
 474
 475                        if (!cpg->p.sg_dst_left) {
 476                                ret = sg_miter_next(&cpg->p.dst_sg_it);
 477                                BUG_ON(!ret);
 478                                cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 479                                cpg->p.dst_start = 0;
 480                        }
 481
 482                        buf = cpg->p.dst_sg_it.addr;
 483                        buf += cpg->p.dst_start;
 484
 485                        dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 486
 487                        memcpy(buf,
 488                               cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 489                               dst_copy);
 490                        sram_offset += dst_copy;
 491                        cpg->p.sg_dst_left -= dst_copy;
 492                        need_copy_len -= dst_copy;
 493                        cpg->p.dst_start += dst_copy;
 494                } while (need_copy_len > 0);
 495        }
 496
 497        cpg->p.crypt_len = 0;
 498
 499        BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 500        if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 501                /* process next scatter list entry */
 502                cpg->eng_st = ENGINE_BUSY;
 503                cpg->p.process(0);
 504        } else {
 505                cpg->p.complete();
 506                cpg->eng_st = ENGINE_IDLE;
 507                local_bh_disable();
 508                req->complete(req, 0);
 509                local_bh_enable();
 510        }
 511}
 512
 513static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 514{
 515        int i = 0;
 516        size_t cur_len;
 517
 518        while (sl) {
 519                cur_len = sl[i].length;
 520                ++i;
 521                if (total_bytes > cur_len)
 522                        total_bytes -= cur_len;
 523                else
 524                        break;
 525        }
 526
 527        return i;
 528}
 529
 530static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 531{
 532        struct req_progress *p = &cpg->p;
 533        int num_sgs;
 534
 535        cpg->cur_req = &req->base;
 536        memset(p, 0, sizeof(struct req_progress));
 537        p->hw_nbytes = req->nbytes;
 538        p->complete = mv_crypto_algo_completion;
 539        p->process = mv_process_current_q;
 540        p->copy_back = 1;
 541
 542        num_sgs = count_sgs(req->src, req->nbytes);
 543        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 544
 545        num_sgs = count_sgs(req->dst, req->nbytes);
 546        sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 547
 548        mv_process_current_q(1);
 549}
 550
 551static void mv_start_new_hash_req(struct ahash_request *req)
 552{
 553        struct req_progress *p = &cpg->p;
 554        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 555        int num_sgs, hw_bytes, old_extra_bytes, rc;
 556        cpg->cur_req = &req->base;
 557        memset(p, 0, sizeof(struct req_progress));
 558        hw_bytes = req->nbytes + ctx->extra_bytes;
 559        old_extra_bytes = ctx->extra_bytes;
 560
 561        ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 562        if (ctx->extra_bytes != 0
 563            && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 564                hw_bytes -= ctx->extra_bytes;
 565        else
 566                ctx->extra_bytes = 0;
 567
 568        num_sgs = count_sgs(req->src, req->nbytes);
 569        sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 570
 571        if (hw_bytes) {
 572                p->hw_nbytes = hw_bytes;
 573                p->complete = mv_hash_algo_completion;
 574                p->process = mv_process_hash_current;
 575
 576                if (unlikely(old_extra_bytes)) {
 577                        memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 578                               old_extra_bytes);
 579                        p->crypt_len = old_extra_bytes;
 580                }
 581
 582                mv_process_hash_current(1);
 583        } else {
 584                copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 585                                ctx->extra_bytes - old_extra_bytes);
 586                sg_miter_stop(&p->src_sg_it);
 587                if (ctx->last_chunk)
 588                        rc = mv_hash_final_fallback(req);
 589                else
 590                        rc = 0;
 591                cpg->eng_st = ENGINE_IDLE;
 592                local_bh_disable();
 593                req->base.complete(&req->base, rc);
 594                local_bh_enable();
 595        }
 596}
 597
 598static int queue_manag(void *data)
 599{
 600        cpg->eng_st = ENGINE_IDLE;
 601        do {
 602                struct crypto_async_request *async_req = NULL;
 603                struct crypto_async_request *backlog = NULL;
 604
 605                __set_current_state(TASK_INTERRUPTIBLE);
 606
 607                if (cpg->eng_st == ENGINE_W_DEQUEUE)
 608                        dequeue_complete_req();
 609
 610                spin_lock_irq(&cpg->lock);
 611                if (cpg->eng_st == ENGINE_IDLE) {
 612                        backlog = crypto_get_backlog(&cpg->queue);
 613                        async_req = crypto_dequeue_request(&cpg->queue);
 614                        if (async_req) {
 615                                BUG_ON(cpg->eng_st != ENGINE_IDLE);
 616                                cpg->eng_st = ENGINE_BUSY;
 617                        }
 618                }
 619                spin_unlock_irq(&cpg->lock);
 620
 621                if (backlog) {
 622                        backlog->complete(backlog, -EINPROGRESS);
 623                        backlog = NULL;
 624                }
 625
 626                if (async_req) {
 627                        if (crypto_tfm_alg_type(async_req->tfm) !=
 628                            CRYPTO_ALG_TYPE_AHASH) {
 629                                struct ablkcipher_request *req =
 630                                    ablkcipher_request_cast(async_req);
 631                                mv_start_new_crypt_req(req);
 632                        } else {
 633                                struct ahash_request *req =
 634                                    ahash_request_cast(async_req);
 635                                mv_start_new_hash_req(req);
 636                        }
 637                        async_req = NULL;
 638                }
 639
 640                schedule();
 641
 642        } while (!kthread_should_stop());
 643        return 0;
 644}
 645
 646static int mv_handle_req(struct crypto_async_request *req)
 647{
 648        unsigned long flags;
 649        int ret;
 650
 651        spin_lock_irqsave(&cpg->lock, flags);
 652        ret = crypto_enqueue_request(&cpg->queue, req);
 653        spin_unlock_irqrestore(&cpg->lock, flags);
 654        wake_up_process(cpg->queue_th);
 655        return ret;
 656}
 657
 658static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 659{
 660        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 661
 662        req_ctx->op = COP_AES_ECB;
 663        req_ctx->decrypt = 0;
 664
 665        return mv_handle_req(&req->base);
 666}
 667
 668static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 669{
 670        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 671        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 672
 673        req_ctx->op = COP_AES_ECB;
 674        req_ctx->decrypt = 1;
 675
 676        compute_aes_dec_key(ctx);
 677        return mv_handle_req(&req->base);
 678}
 679
 680static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 681{
 682        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 683
 684        req_ctx->op = COP_AES_CBC;
 685        req_ctx->decrypt = 0;
 686
 687        return mv_handle_req(&req->base);
 688}
 689
 690static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 691{
 692        struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 693        struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 694
 695        req_ctx->op = COP_AES_CBC;
 696        req_ctx->decrypt = 1;
 697
 698        compute_aes_dec_key(ctx);
 699        return mv_handle_req(&req->base);
 700}
 701
 702static int mv_cra_init(struct crypto_tfm *tfm)
 703{
 704        tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 705        return 0;
 706}
 707
 708static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 709                                 int is_last, unsigned int req_len,
 710                                 int count_add)
 711{
 712        memset(ctx, 0, sizeof(*ctx));
 713        ctx->op = op;
 714        ctx->count = req_len;
 715        ctx->first_hash = 1;
 716        ctx->last_chunk = is_last;
 717        ctx->count_add = count_add;
 718}
 719
 720static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 721                                   unsigned req_len)
 722{
 723        ctx->last_chunk = is_last;
 724        ctx->count += req_len;
 725}
 726
 727static int mv_hash_init(struct ahash_request *req)
 728{
 729        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 730        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 731                             tfm_ctx->count_add);
 732        return 0;
 733}
 734
 735static int mv_hash_update(struct ahash_request *req)
 736{
 737        if (!req->nbytes)
 738                return 0;
 739
 740        mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 741        return mv_handle_req(&req->base);
 742}
 743
 744static int mv_hash_final(struct ahash_request *req)
 745{
 746        struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 747
 748        ahash_request_set_crypt(req, NULL, req->result, 0);
 749        mv_update_hash_req_ctx(ctx, 1, 0);
 750        return mv_handle_req(&req->base);
 751}
 752
 753static int mv_hash_finup(struct ahash_request *req)
 754{
 755        mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 756        return mv_handle_req(&req->base);
 757}
 758
 759static int mv_hash_digest(struct ahash_request *req)
 760{
 761        const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 762        mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 763                             req->nbytes, tfm_ctx->count_add);
 764        return mv_handle_req(&req->base);
 765}
 766
 767static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 768                             const void *ostate)
 769{
 770        const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 771        int i;
 772        for (i = 0; i < 5; i++) {
 773                ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 774                ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 775        }
 776}
 777
 778static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 779                          unsigned int keylen)
 780{
 781        int rc;
 782        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 783        int bs, ds, ss;
 784
 785        if (!ctx->base_hash)
 786                return 0;
 787
 788        rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 789        if (rc)
 790                return rc;
 791
 792        /* Can't see a way to extract the ipad/opad from the fallback tfm
 793           so I'm basically copying code from the hmac module */
 794        bs = crypto_shash_blocksize(ctx->base_hash);
 795        ds = crypto_shash_digestsize(ctx->base_hash);
 796        ss = crypto_shash_statesize(ctx->base_hash);
 797
 798        {
 799                SHASH_DESC_ON_STACK(shash, ctx->base_hash);
 800
 801                unsigned int i;
 802                char ipad[ss];
 803                char opad[ss];
 804
 805                shash->tfm = ctx->base_hash;
 806                shash->flags = crypto_shash_get_flags(ctx->base_hash) &
 807                    CRYPTO_TFM_REQ_MAY_SLEEP;
 808
 809                if (keylen > bs) {
 810                        int err;
 811
 812                        err =
 813                            crypto_shash_digest(shash, key, keylen, ipad);
 814                        if (err)
 815                                return err;
 816
 817                        keylen = ds;
 818                } else
 819                        memcpy(ipad, key, keylen);
 820
 821                memset(ipad + keylen, 0, bs - keylen);
 822                memcpy(opad, ipad, bs);
 823
 824                for (i = 0; i < bs; i++) {
 825                        ipad[i] ^= 0x36;
 826                        opad[i] ^= 0x5c;
 827                }
 828
 829                rc = crypto_shash_init(shash) ? :
 830                    crypto_shash_update(shash, ipad, bs) ? :
 831                    crypto_shash_export(shash, ipad) ? :
 832                    crypto_shash_init(shash) ? :
 833                    crypto_shash_update(shash, opad, bs) ? :
 834                    crypto_shash_export(shash, opad);
 835
 836                if (rc == 0)
 837                        mv_hash_init_ivs(ctx, ipad, opad);
 838
 839                return rc;
 840        }
 841}
 842
 843static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 844                            enum hash_op op, int count_add)
 845{
 846        const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 847        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 848        struct crypto_shash *fallback_tfm = NULL;
 849        struct crypto_shash *base_hash = NULL;
 850        int err = -ENOMEM;
 851
 852        ctx->op = op;
 853        ctx->count_add = count_add;
 854
 855        /* Allocate a fallback and abort if it failed. */
 856        fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 857                                          CRYPTO_ALG_NEED_FALLBACK);
 858        if (IS_ERR(fallback_tfm)) {
 859                printk(KERN_WARNING MV_CESA
 860                       "Fallback driver '%s' could not be loaded!\n",
 861                       fallback_driver_name);
 862                err = PTR_ERR(fallback_tfm);
 863                goto out;
 864        }
 865        ctx->fallback = fallback_tfm;
 866
 867        if (base_hash_name) {
 868                /* Allocate a hash to compute the ipad/opad of hmac. */
 869                base_hash = crypto_alloc_shash(base_hash_name, 0,
 870                                               CRYPTO_ALG_NEED_FALLBACK);
 871                if (IS_ERR(base_hash)) {
 872                        printk(KERN_WARNING MV_CESA
 873                               "Base driver '%s' could not be loaded!\n",
 874                               base_hash_name);
 875                        err = PTR_ERR(base_hash);
 876                        goto err_bad_base;
 877                }
 878        }
 879        ctx->base_hash = base_hash;
 880
 881        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 882                                 sizeof(struct mv_req_hash_ctx) +
 883                                 crypto_shash_descsize(ctx->fallback));
 884        return 0;
 885err_bad_base:
 886        crypto_free_shash(fallback_tfm);
 887out:
 888        return err;
 889}
 890
 891static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 892{
 893        struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 894
 895        crypto_free_shash(ctx->fallback);
 896        if (ctx->base_hash)
 897                crypto_free_shash(ctx->base_hash);
 898}
 899
 900static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 901{
 902        return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 903}
 904
 905static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 906{
 907        return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 908}
 909
 910static irqreturn_t crypto_int(int irq, void *priv)
 911{
 912        u32 val;
 913
 914        val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 915        if (!(val & SEC_INT_ACCEL0_DONE))
 916                return IRQ_NONE;
 917
 918        if (!del_timer(&cpg->completion_timer)) {
 919                printk(KERN_WARNING MV_CESA
 920                       "got an interrupt but no pending timer?\n");
 921        }
 922        val &= ~SEC_INT_ACCEL0_DONE;
 923        writel(val, cpg->reg + FPGA_INT_STATUS);
 924        writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 925        BUG_ON(cpg->eng_st != ENGINE_BUSY);
 926        cpg->eng_st = ENGINE_W_DEQUEUE;
 927        wake_up_process(cpg->queue_th);
 928        return IRQ_HANDLED;
 929}
 930
 931static struct crypto_alg mv_aes_alg_ecb = {
 932        .cra_name               = "ecb(aes)",
 933        .cra_driver_name        = "mv-ecb-aes",
 934        .cra_priority   = 300,
 935        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
 936                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 937        .cra_blocksize  = 16,
 938        .cra_ctxsize    = sizeof(struct mv_ctx),
 939        .cra_alignmask  = 0,
 940        .cra_type       = &crypto_ablkcipher_type,
 941        .cra_module     = THIS_MODULE,
 942        .cra_init       = mv_cra_init,
 943        .cra_u          = {
 944                .ablkcipher = {
 945                        .min_keysize    =       AES_MIN_KEY_SIZE,
 946                        .max_keysize    =       AES_MAX_KEY_SIZE,
 947                        .setkey         =       mv_setkey_aes,
 948                        .encrypt        =       mv_enc_aes_ecb,
 949                        .decrypt        =       mv_dec_aes_ecb,
 950                },
 951        },
 952};
 953
 954static struct crypto_alg mv_aes_alg_cbc = {
 955        .cra_name               = "cbc(aes)",
 956        .cra_driver_name        = "mv-cbc-aes",
 957        .cra_priority   = 300,
 958        .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER |
 959                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 960        .cra_blocksize  = AES_BLOCK_SIZE,
 961        .cra_ctxsize    = sizeof(struct mv_ctx),
 962        .cra_alignmask  = 0,
 963        .cra_type       = &crypto_ablkcipher_type,
 964        .cra_module     = THIS_MODULE,
 965        .cra_init       = mv_cra_init,
 966        .cra_u          = {
 967                .ablkcipher = {
 968                        .ivsize         =       AES_BLOCK_SIZE,
 969                        .min_keysize    =       AES_MIN_KEY_SIZE,
 970                        .max_keysize    =       AES_MAX_KEY_SIZE,
 971                        .setkey         =       mv_setkey_aes,
 972                        .encrypt        =       mv_enc_aes_cbc,
 973                        .decrypt        =       mv_dec_aes_cbc,
 974                },
 975        },
 976};
 977
 978static struct ahash_alg mv_sha1_alg = {
 979        .init = mv_hash_init,
 980        .update = mv_hash_update,
 981        .final = mv_hash_final,
 982        .finup = mv_hash_finup,
 983        .digest = mv_hash_digest,
 984        .halg = {
 985                 .digestsize = SHA1_DIGEST_SIZE,
 986                 .base = {
 987                          .cra_name = "sha1",
 988                          .cra_driver_name = "mv-sha1",
 989                          .cra_priority = 300,
 990                          .cra_flags =
 991                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 992                          CRYPTO_ALG_NEED_FALLBACK,
 993                          .cra_blocksize = SHA1_BLOCK_SIZE,
 994                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 995                          .cra_init = mv_cra_hash_sha1_init,
 996                          .cra_exit = mv_cra_hash_exit,
 997                          .cra_module = THIS_MODULE,
 998                          }
 999                 }
1000};
1001
1002static struct ahash_alg mv_hmac_sha1_alg = {
1003        .init = mv_hash_init,
1004        .update = mv_hash_update,
1005        .final = mv_hash_final,
1006        .finup = mv_hash_finup,
1007        .digest = mv_hash_digest,
1008        .setkey = mv_hash_setkey,
1009        .halg = {
1010                 .digestsize = SHA1_DIGEST_SIZE,
1011                 .base = {
1012                          .cra_name = "hmac(sha1)",
1013                          .cra_driver_name = "mv-hmac-sha1",
1014                          .cra_priority = 300,
1015                          .cra_flags =
1016                          CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1017                          CRYPTO_ALG_NEED_FALLBACK,
1018                          .cra_blocksize = SHA1_BLOCK_SIZE,
1019                          .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020                          .cra_init = mv_cra_hash_hmac_sha1_init,
1021                          .cra_exit = mv_cra_hash_exit,
1022                          .cra_module = THIS_MODULE,
1023                          }
1024                 }
1025};
1026
1027static int mv_cesa_get_sram(struct platform_device *pdev,
1028                            struct crypto_priv *cp)
1029{
1030        struct resource *res;
1031        u32 sram_size = MV_CESA_DEFAULT_SRAM_SIZE;
1032
1033        of_property_read_u32(pdev->dev.of_node, "marvell,crypto-sram-size",
1034                             &sram_size);
1035
1036        cp->sram_size = sram_size;
1037        cp->sram_pool = of_gen_pool_get(pdev->dev.of_node,
1038                                        "marvell,crypto-srams", 0);
1039        if (cp->sram_pool) {
1040                cp->sram = gen_pool_dma_alloc(cp->sram_pool, sram_size,
1041                                              &cp->sram_dma);
1042                if (cp->sram)
1043                        return 0;
1044
1045                return -ENOMEM;
1046        }
1047
1048        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1049                                           "sram");
1050        if (!res || resource_size(res) < cp->sram_size)
1051                return -EINVAL;
1052
1053        cp->sram = devm_ioremap_resource(&pdev->dev, res);
1054        if (IS_ERR(cp->sram))
1055                return PTR_ERR(cp->sram);
1056
1057        return 0;
1058}
1059
1060static int mv_probe(struct platform_device *pdev)
1061{
1062        struct crypto_priv *cp;
1063        struct resource *res;
1064        int irq;
1065        int ret;
1066
1067        if (cpg) {
1068                printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1069                return -EEXIST;
1070        }
1071
1072        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1073        if (!res)
1074                return -ENXIO;
1075
1076        cp = devm_kzalloc(&pdev->dev, sizeof(*cp), GFP_KERNEL);
1077        if (!cp)
1078                return -ENOMEM;
1079
1080        spin_lock_init(&cp->lock);
1081        crypto_init_queue(&cp->queue, 50);
1082        cp->reg = devm_ioremap_resource(&pdev->dev, res);
1083        if (IS_ERR(cp->reg)) {
1084                ret = PTR_ERR(cp->reg);
1085                goto err;
1086        }
1087
1088        ret = mv_cesa_get_sram(pdev, cp);
1089        if (ret)
1090                goto err;
1091
1092        cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1093
1094        irq = platform_get_irq(pdev, 0);
1095        if (irq < 0) {
1096                ret = irq;
1097                goto err;
1098        }
1099        cp->irq = irq;
1100
1101        platform_set_drvdata(pdev, cp);
1102        cpg = cp;
1103
1104        cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1105        if (IS_ERR(cp->queue_th)) {
1106                ret = PTR_ERR(cp->queue_th);
1107                goto err;
1108        }
1109
1110        ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1111                        cp);
1112        if (ret)
1113                goto err_thread;
1114
1115        /* Not all platforms can gate the clock, so it is not
1116           an error if the clock does not exists. */
1117        cp->clk = clk_get(&pdev->dev, NULL);
1118        if (!IS_ERR(cp->clk))
1119                clk_prepare_enable(cp->clk);
1120
1121        writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1122        writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1123        writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1124        writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1125
1126        ret = crypto_register_alg(&mv_aes_alg_ecb);
1127        if (ret) {
1128                printk(KERN_WARNING MV_CESA
1129                       "Could not register aes-ecb driver\n");
1130                goto err_irq;
1131        }
1132
1133        ret = crypto_register_alg(&mv_aes_alg_cbc);
1134        if (ret) {
1135                printk(KERN_WARNING MV_CESA
1136                       "Could not register aes-cbc driver\n");
1137                goto err_unreg_ecb;
1138        }
1139
1140        ret = crypto_register_ahash(&mv_sha1_alg);
1141        if (ret == 0)
1142                cpg->has_sha1 = 1;
1143        else
1144                printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1145
1146        ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1147        if (ret == 0) {
1148                cpg->has_hmac_sha1 = 1;
1149        } else {
1150                printk(KERN_WARNING MV_CESA
1151                       "Could not register hmac-sha1 driver\n");
1152        }
1153
1154        return 0;
1155err_unreg_ecb:
1156        crypto_unregister_alg(&mv_aes_alg_ecb);
1157err_irq:
1158        free_irq(irq, cp);
1159        if (!IS_ERR(cp->clk)) {
1160                clk_disable_unprepare(cp->clk);
1161                clk_put(cp->clk);
1162        }
1163err_thread:
1164        kthread_stop(cp->queue_th);
1165err:
1166        cpg = NULL;
1167        return ret;
1168}
1169
1170static int mv_remove(struct platform_device *pdev)
1171{
1172        struct crypto_priv *cp = platform_get_drvdata(pdev);
1173
1174        crypto_unregister_alg(&mv_aes_alg_ecb);
1175        crypto_unregister_alg(&mv_aes_alg_cbc);
1176        if (cp->has_sha1)
1177                crypto_unregister_ahash(&mv_sha1_alg);
1178        if (cp->has_hmac_sha1)
1179                crypto_unregister_ahash(&mv_hmac_sha1_alg);
1180        kthread_stop(cp->queue_th);
1181        free_irq(cp->irq, cp);
1182        memset(cp->sram, 0, cp->sram_size);
1183
1184        if (!IS_ERR(cp->clk)) {
1185                clk_disable_unprepare(cp->clk);
1186                clk_put(cp->clk);
1187        }
1188
1189        cpg = NULL;
1190        return 0;
1191}
1192
1193static const struct of_device_id mv_cesa_of_match_table[] = {
1194        { .compatible = "marvell,orion-crypto", },
1195        { .compatible = "marvell,kirkwood-crypto", },
1196        { .compatible = "marvell,dove-crypto", },
1197        {}
1198};
1199MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1200
1201static struct platform_driver marvell_crypto = {
1202        .probe          = mv_probe,
1203        .remove         = mv_remove,
1204        .driver         = {
1205                .name   = "mv_crypto",
1206                .of_match_table = mv_cesa_of_match_table,
1207        },
1208};
1209MODULE_ALIAS("platform:mv_crypto");
1210
1211module_platform_driver(marvell_crypto);
1212
1213MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1214MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1215MODULE_LICENSE("GPL");
1216