linux/drivers/gpu/drm/rcar-du/rcar_du_group.c
<<
>>
Prefs
   1/*
   2 * rcar_du_group.c  --  R-Car Display Unit Channels Pair
   3 *
   4 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   5 *
   6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 */
  13
  14/*
  15 * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
  16 * unit, timings generator, ...) and device-global resources (start/stop
  17 * control, planes, ...) shared between the two CRTCs.
  18 *
  19 * The R8A7790 introduced a third CRTC with its own set of global resources.
  20 * This would be modeled as two separate DU device instances if it wasn't for
  21 * a handful or resources that are shared between the three CRTCs (mostly
  22 * related to input and output routing). For this reason the R8A7790 DU must be
  23 * modeled as a single device with three CRTCs, two sets of "semi-global"
  24 * resources, and a few device-global resources.
  25 *
  26 * The rcar_du_group object is a driver specific object, without any real
  27 * counterpart in the DU documentation, that models those semi-global resources.
  28 */
  29
  30#include <linux/clk.h>
  31#include <linux/io.h>
  32
  33#include "rcar_du_drv.h"
  34#include "rcar_du_group.h"
  35#include "rcar_du_regs.h"
  36
  37u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
  38{
  39        return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
  40}
  41
  42void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
  43{
  44        rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
  45}
  46
  47static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
  48{
  49        u32 defr6 = DEFR6_CODE | DEFR6_ODPM12_DISP;
  50
  51        if (rgrp->num_crtcs > 1)
  52                defr6 |= DEFR6_ODPM22_DISP;
  53
  54        rcar_du_group_write(rgrp, DEFR6, defr6);
  55}
  56
  57static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
  58{
  59        struct rcar_du_device *rcdu = rgrp->dev;
  60        unsigned int possible_crtcs =
  61                rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs;
  62        u32 defr8 = DEFR8_CODE;
  63
  64        if (rcdu->info->gen < 3) {
  65                defr8 |= DEFR8_DEFE8;
  66
  67                /* On Gen2 the DEFR8 register for the first group also controls
  68                 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
  69                 * DU instances that support it.
  70                 */
  71                if (rgrp->index == 0) {
  72                        if (possible_crtcs > 1)
  73                                defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
  74                        if (rgrp->dev->vspd1_sink == 2)
  75                                defr8 |= DEFR8_VSCS;
  76                }
  77        } else {
  78                /* On Gen3 VSPD routing can't be configured, but DPAD routing
  79                 * needs to be set despite having a single option available.
  80                 */
  81                u32 crtc = ffs(possible_crtcs) - 1;
  82
  83                if (crtc / 2 == rgrp->index)
  84                        defr8 |= DEFR8_DRGBS_DU(crtc);
  85        }
  86
  87        rcar_du_group_write(rgrp, DEFR8, defr8);
  88}
  89
  90static void rcar_du_group_setup(struct rcar_du_group *rgrp)
  91{
  92        struct rcar_du_device *rcdu = rgrp->dev;
  93
  94        /* Enable extended features */
  95        rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
  96        if (rcdu->info->gen < 3) {
  97                rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
  98                rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
  99                rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
 100        }
 101        rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
 102
 103        rcar_du_group_setup_pins(rgrp);
 104
 105        if (rcar_du_has(rgrp->dev, RCAR_DU_FEATURE_EXT_CTRL_REGS)) {
 106                rcar_du_group_setup_defr8(rgrp);
 107
 108                /*
 109                 * Configure input dot clock routing. We currently hardcode the
 110                 * configuration to routing DOTCLKINn to DUn. Register fields
 111                 * depend on the DU generation, but the resulting value is 0 in
 112                 * all cases.
 113                 *
 114                 * On Gen2 a single register in the first group controls dot
 115                 * clock selection for all channels, while on Gen3 dot clocks
 116                 * are setup through per-group registers, only available when
 117                 * the group has two channels.
 118                 */
 119                if ((rcdu->info->gen < 3 && rgrp->index == 0) ||
 120                    (rcdu->info->gen == 3 &&  rgrp->num_crtcs > 1))
 121                        rcar_du_group_write(rgrp, DIDSR, DIDSR_CODE);
 122        }
 123
 124        if (rcdu->info->gen >= 3)
 125                rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
 126
 127        /* Use DS1PR and DS2PR to configure planes priorities and connects the
 128         * superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
 129         */
 130        rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
 131
 132        /* Apply planes to CRTCs association. */
 133        mutex_lock(&rgrp->lock);
 134        rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
 135                            rgrp->dptsr_planes);
 136        mutex_unlock(&rgrp->lock);
 137}
 138
 139/*
 140 * rcar_du_group_get - Acquire a reference to the DU channels group
 141 *
 142 * Acquiring the first reference setups core registers. A reference must be held
 143 * before accessing any hardware registers.
 144 *
 145 * This function must be called with the DRM mode_config lock held.
 146 *
 147 * Return 0 in case of success or a negative error code otherwise.
 148 */
 149int rcar_du_group_get(struct rcar_du_group *rgrp)
 150{
 151        if (rgrp->use_count)
 152                goto done;
 153
 154        rcar_du_group_setup(rgrp);
 155
 156done:
 157        rgrp->use_count++;
 158        return 0;
 159}
 160
 161/*
 162 * rcar_du_group_put - Release a reference to the DU
 163 *
 164 * This function must be called with the DRM mode_config lock held.
 165 */
 166void rcar_du_group_put(struct rcar_du_group *rgrp)
 167{
 168        --rgrp->use_count;
 169}
 170
 171static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
 172{
 173        rcar_du_group_write(rgrp, DSYSR,
 174                (rcar_du_group_read(rgrp, DSYSR) & ~(DSYSR_DRES | DSYSR_DEN)) |
 175                (start ? DSYSR_DEN : DSYSR_DRES));
 176}
 177
 178void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
 179{
 180        /* Many of the configuration bits are only updated when the display
 181         * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
 182         * of those bits could be pre-configured, but others (especially the
 183         * bits related to plane assignment to display timing controllers) need
 184         * to be modified at runtime.
 185         *
 186         * Restart the display controller if a start is requested. Sorry for the
 187         * flicker. It should be possible to move most of the "DRES-update" bits
 188         * setup to driver initialization time and minimize the number of cases
 189         * when the display controller will have to be restarted.
 190         */
 191        if (start) {
 192                if (rgrp->used_crtcs++ != 0)
 193                        __rcar_du_group_start_stop(rgrp, false);
 194                __rcar_du_group_start_stop(rgrp, true);
 195        } else {
 196                if (--rgrp->used_crtcs == 0)
 197                        __rcar_du_group_start_stop(rgrp, false);
 198        }
 199}
 200
 201void rcar_du_group_restart(struct rcar_du_group *rgrp)
 202{
 203        rgrp->need_restart = false;
 204
 205        __rcar_du_group_start_stop(rgrp, false);
 206        __rcar_du_group_start_stop(rgrp, true);
 207}
 208
 209int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
 210{
 211        int ret;
 212
 213        if (!rcar_du_has(rcdu, RCAR_DU_FEATURE_EXT_CTRL_REGS))
 214                return 0;
 215
 216        /* RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
 217         * configured in the DEFR8 register of the first group. As this function
 218         * can be called with the DU0 and DU1 CRTCs disabled, we need to enable
 219         * the first group clock before accessing the register.
 220         */
 221        ret = clk_prepare_enable(rcdu->crtcs[0].clock);
 222        if (ret < 0)
 223                return ret;
 224
 225        rcar_du_group_setup_defr8(&rcdu->groups[0]);
 226
 227        clk_disable_unprepare(rcdu->crtcs[0].clock);
 228
 229        return 0;
 230}
 231
 232int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
 233{
 234        struct rcar_du_crtc *crtc0 = &rgrp->dev->crtcs[rgrp->index * 2];
 235        u32 dorcr = rcar_du_group_read(rgrp, DORCR);
 236
 237        dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);
 238
 239        /* Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
 240         * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
 241         * by default.
 242         */
 243        if (crtc0->outputs & BIT(RCAR_DU_OUTPUT_DPAD1))
 244                dorcr |= DORCR_PG2D_DS1;
 245        else
 246                dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;
 247
 248        rcar_du_group_write(rgrp, DORCR, dorcr);
 249
 250        return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
 251}
 252