linux/drivers/infiniband/hw/hfi1/init.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/pci.h>
  49#include <linux/netdevice.h>
  50#include <linux/vmalloc.h>
  51#include <linux/delay.h>
  52#include <linux/idr.h>
  53#include <linux/module.h>
  54#include <linux/printk.h>
  55#include <linux/hrtimer.h>
  56#include <rdma/rdma_vt.h>
  57
  58#include "hfi.h"
  59#include "device.h"
  60#include "common.h"
  61#include "trace.h"
  62#include "mad.h"
  63#include "sdma.h"
  64#include "debugfs.h"
  65#include "verbs.h"
  66#include "aspm.h"
  67#include "affinity.h"
  68
  69#undef pr_fmt
  70#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  71
  72/*
  73 * min buffers we want to have per context, after driver
  74 */
  75#define HFI1_MIN_USER_CTXT_BUFCNT 7
  76
  77#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
  78#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
  79#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
  80#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
  81
  82/*
  83 * Number of user receive contexts we are configured to use (to allow for more
  84 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
  85 */
  86int num_user_contexts = -1;
  87module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
  88MODULE_PARM_DESC(
  89        num_user_contexts, "Set max number of user contexts to use");
  90
  91uint krcvqs[RXE_NUM_DATA_VL];
  92int krcvqsset;
  93module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
  94MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
  95
  96/* computed based on above array */
  97unsigned long n_krcvqs;
  98
  99static unsigned hfi1_rcvarr_split = 25;
 100module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
 101MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
 102
 103static uint eager_buffer_size = (2 << 20); /* 2MB */
 104module_param(eager_buffer_size, uint, S_IRUGO);
 105MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
 106
 107static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
 108module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
 109MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
 110
 111static uint hfi1_hdrq_entsize = 32;
 112module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
 113MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
 114
 115unsigned int user_credit_return_threshold = 33; /* default is 33% */
 116module_param(user_credit_return_threshold, uint, S_IRUGO);
 117MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
 118
 119static inline u64 encode_rcv_header_entry_size(u16);
 120
 121static struct idr hfi1_unit_table;
 122u32 hfi1_cpulist_count;
 123unsigned long *hfi1_cpulist;
 124
 125/*
 126 * Common code for creating the receive context array.
 127 */
 128int hfi1_create_ctxts(struct hfi1_devdata *dd)
 129{
 130        unsigned i;
 131        int ret;
 132
 133        /* Control context has to be always 0 */
 134        BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
 135
 136        dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
 137                               GFP_KERNEL, dd->node);
 138        if (!dd->rcd)
 139                goto nomem;
 140
 141        /* create one or more kernel contexts */
 142        for (i = 0; i < dd->first_user_ctxt; ++i) {
 143                struct hfi1_pportdata *ppd;
 144                struct hfi1_ctxtdata *rcd;
 145
 146                ppd = dd->pport + (i % dd->num_pports);
 147
 148                /* dd->rcd[i] gets assigned inside the callee */
 149                rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
 150                if (!rcd) {
 151                        dd_dev_err(dd,
 152                                   "Unable to allocate kernel receive context, failing\n");
 153                        goto nomem;
 154                }
 155                /*
 156                 * Set up the kernel context flags here and now because they
 157                 * use default values for all receive side memories.  User
 158                 * contexts will be handled as they are created.
 159                 */
 160                rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
 161                        HFI1_CAP_KGET(NODROP_RHQ_FULL) |
 162                        HFI1_CAP_KGET(NODROP_EGR_FULL) |
 163                        HFI1_CAP_KGET(DMA_RTAIL);
 164
 165                /* Control context must use DMA_RTAIL */
 166                if (rcd->ctxt == HFI1_CTRL_CTXT)
 167                        rcd->flags |= HFI1_CAP_DMA_RTAIL;
 168                rcd->seq_cnt = 1;
 169
 170                rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
 171                if (!rcd->sc) {
 172                        dd_dev_err(dd,
 173                                   "Unable to allocate kernel send context, failing\n");
 174                        goto nomem;
 175                }
 176
 177                ret = hfi1_init_ctxt(rcd->sc);
 178                if (ret < 0) {
 179                        dd_dev_err(dd,
 180                                   "Failed to setup kernel receive context, failing\n");
 181                        ret = -EFAULT;
 182                        goto bail;
 183                }
 184        }
 185
 186        /*
 187         * Initialize aspm, to be done after gen3 transition and setting up
 188         * contexts and before enabling interrupts
 189         */
 190        aspm_init(dd);
 191
 192        return 0;
 193nomem:
 194        ret = -ENOMEM;
 195bail:
 196        if (dd->rcd) {
 197                for (i = 0; i < dd->num_rcv_contexts; ++i)
 198                        hfi1_free_ctxtdata(dd, dd->rcd[i]);
 199        }
 200        kfree(dd->rcd);
 201        dd->rcd = NULL;
 202        return ret;
 203}
 204
 205/*
 206 * Common code for user and kernel context setup.
 207 */
 208struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
 209                                           int numa)
 210{
 211        struct hfi1_devdata *dd = ppd->dd;
 212        struct hfi1_ctxtdata *rcd;
 213        unsigned kctxt_ngroups = 0;
 214        u32 base;
 215
 216        if (dd->rcv_entries.nctxt_extra >
 217            dd->num_rcv_contexts - dd->first_user_ctxt)
 218                kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
 219                                 (dd->num_rcv_contexts - dd->first_user_ctxt));
 220        rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
 221        if (rcd) {
 222                u32 rcvtids, max_entries;
 223
 224                hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
 225
 226                INIT_LIST_HEAD(&rcd->qp_wait_list);
 227                rcd->ppd = ppd;
 228                rcd->dd = dd;
 229                rcd->cnt = 1;
 230                rcd->ctxt = ctxt;
 231                dd->rcd[ctxt] = rcd;
 232                rcd->numa_id = numa;
 233                rcd->rcv_array_groups = dd->rcv_entries.ngroups;
 234
 235                mutex_init(&rcd->exp_lock);
 236
 237                /*
 238                 * Calculate the context's RcvArray entry starting point.
 239                 * We do this here because we have to take into account all
 240                 * the RcvArray entries that previous context would have
 241                 * taken and we have to account for any extra groups
 242                 * assigned to the kernel or user contexts.
 243                 */
 244                if (ctxt < dd->first_user_ctxt) {
 245                        if (ctxt < kctxt_ngroups) {
 246                                base = ctxt * (dd->rcv_entries.ngroups + 1);
 247                                rcd->rcv_array_groups++;
 248                        } else
 249                                base = kctxt_ngroups +
 250                                        (ctxt * dd->rcv_entries.ngroups);
 251                } else {
 252                        u16 ct = ctxt - dd->first_user_ctxt;
 253
 254                        base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
 255                                kctxt_ngroups);
 256                        if (ct < dd->rcv_entries.nctxt_extra) {
 257                                base += ct * (dd->rcv_entries.ngroups + 1);
 258                                rcd->rcv_array_groups++;
 259                        } else
 260                                base += dd->rcv_entries.nctxt_extra +
 261                                        (ct * dd->rcv_entries.ngroups);
 262                }
 263                rcd->eager_base = base * dd->rcv_entries.group_size;
 264
 265                rcd->rcvhdrq_cnt = rcvhdrcnt;
 266                rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
 267                /*
 268                 * Simple Eager buffer allocation: we have already pre-allocated
 269                 * the number of RcvArray entry groups. Each ctxtdata structure
 270                 * holds the number of groups for that context.
 271                 *
 272                 * To follow CSR requirements and maintain cacheline alignment,
 273                 * make sure all sizes and bases are multiples of group_size.
 274                 *
 275                 * The expected entry count is what is left after assigning
 276                 * eager.
 277                 */
 278                max_entries = rcd->rcv_array_groups *
 279                        dd->rcv_entries.group_size;
 280                rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
 281                rcd->egrbufs.count = round_down(rcvtids,
 282                                                dd->rcv_entries.group_size);
 283                if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
 284                        dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
 285                                   rcd->ctxt);
 286                        rcd->egrbufs.count = MAX_EAGER_ENTRIES;
 287                }
 288                hfi1_cdbg(PROC,
 289                          "ctxt%u: max Eager buffer RcvArray entries: %u\n",
 290                          rcd->ctxt, rcd->egrbufs.count);
 291
 292                /*
 293                 * Allocate array that will hold the eager buffer accounting
 294                 * data.
 295                 * This will allocate the maximum possible buffer count based
 296                 * on the value of the RcvArray split parameter.
 297                 * The resulting value will be rounded down to the closest
 298                 * multiple of dd->rcv_entries.group_size.
 299                 */
 300                rcd->egrbufs.buffers = kzalloc_node(
 301                        rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
 302                        GFP_KERNEL, numa);
 303                if (!rcd->egrbufs.buffers)
 304                        goto bail;
 305                rcd->egrbufs.rcvtids = kzalloc_node(
 306                                rcd->egrbufs.count *
 307                                sizeof(*rcd->egrbufs.rcvtids),
 308                                GFP_KERNEL, numa);
 309                if (!rcd->egrbufs.rcvtids)
 310                        goto bail;
 311                rcd->egrbufs.size = eager_buffer_size;
 312                /*
 313                 * The size of the buffers programmed into the RcvArray
 314                 * entries needs to be big enough to handle the highest
 315                 * MTU supported.
 316                 */
 317                if (rcd->egrbufs.size < hfi1_max_mtu) {
 318                        rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
 319                        hfi1_cdbg(PROC,
 320                                  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
 321                                    rcd->ctxt, rcd->egrbufs.size);
 322                }
 323                rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
 324
 325                if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
 326                        rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
 327                                                    GFP_KERNEL, numa);
 328                        if (!rcd->opstats)
 329                                goto bail;
 330                }
 331        }
 332        return rcd;
 333bail:
 334        dd->rcd[ctxt] = NULL;
 335        kfree(rcd->egrbufs.rcvtids);
 336        kfree(rcd->egrbufs.buffers);
 337        kfree(rcd);
 338        return NULL;
 339}
 340
 341/*
 342 * Convert a receive header entry size that to the encoding used in the CSR.
 343 *
 344 * Return a zero if the given size is invalid.
 345 */
 346static inline u64 encode_rcv_header_entry_size(u16 size)
 347{
 348        /* there are only 3 valid receive header entry sizes */
 349        if (size == 2)
 350                return 1;
 351        if (size == 16)
 352                return 2;
 353        else if (size == 32)
 354                return 4;
 355        return 0; /* invalid */
 356}
 357
 358/*
 359 * Select the largest ccti value over all SLs to determine the intra-
 360 * packet gap for the link.
 361 *
 362 * called with cca_timer_lock held (to protect access to cca_timer
 363 * array), and rcu_read_lock() (to protect access to cc_state).
 364 */
 365void set_link_ipg(struct hfi1_pportdata *ppd)
 366{
 367        struct hfi1_devdata *dd = ppd->dd;
 368        struct cc_state *cc_state;
 369        int i;
 370        u16 cce, ccti_limit, max_ccti = 0;
 371        u16 shift, mult;
 372        u64 src;
 373        u32 current_egress_rate; /* Mbits /sec */
 374        u32 max_pkt_time;
 375        /*
 376         * max_pkt_time is the maximum packet egress time in units
 377         * of the fabric clock period 1/(805 MHz).
 378         */
 379
 380        cc_state = get_cc_state(ppd);
 381
 382        if (!cc_state)
 383                /*
 384                 * This should _never_ happen - rcu_read_lock() is held,
 385                 * and set_link_ipg() should not be called if cc_state
 386                 * is NULL.
 387                 */
 388                return;
 389
 390        for (i = 0; i < OPA_MAX_SLS; i++) {
 391                u16 ccti = ppd->cca_timer[i].ccti;
 392
 393                if (ccti > max_ccti)
 394                        max_ccti = ccti;
 395        }
 396
 397        ccti_limit = cc_state->cct.ccti_limit;
 398        if (max_ccti > ccti_limit)
 399                max_ccti = ccti_limit;
 400
 401        cce = cc_state->cct.entries[max_ccti].entry;
 402        shift = (cce & 0xc000) >> 14;
 403        mult = (cce & 0x3fff);
 404
 405        current_egress_rate = active_egress_rate(ppd);
 406
 407        max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
 408
 409        src = (max_pkt_time >> shift) * mult;
 410
 411        src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
 412        src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
 413
 414        write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
 415}
 416
 417static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
 418{
 419        struct cca_timer *cca_timer;
 420        struct hfi1_pportdata *ppd;
 421        int sl;
 422        u16 ccti_timer, ccti_min;
 423        struct cc_state *cc_state;
 424        unsigned long flags;
 425        enum hrtimer_restart ret = HRTIMER_NORESTART;
 426
 427        cca_timer = container_of(t, struct cca_timer, hrtimer);
 428        ppd = cca_timer->ppd;
 429        sl = cca_timer->sl;
 430
 431        rcu_read_lock();
 432
 433        cc_state = get_cc_state(ppd);
 434
 435        if (!cc_state) {
 436                rcu_read_unlock();
 437                return HRTIMER_NORESTART;
 438        }
 439
 440        /*
 441         * 1) decrement ccti for SL
 442         * 2) calculate IPG for link (set_link_ipg())
 443         * 3) restart timer, unless ccti is at min value
 444         */
 445
 446        ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
 447        ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
 448
 449        spin_lock_irqsave(&ppd->cca_timer_lock, flags);
 450
 451        if (cca_timer->ccti > ccti_min) {
 452                cca_timer->ccti--;
 453                set_link_ipg(ppd);
 454        }
 455
 456        if (cca_timer->ccti > ccti_min) {
 457                unsigned long nsec = 1024 * ccti_timer;
 458                /* ccti_timer is in units of 1.024 usec */
 459                hrtimer_forward_now(t, ns_to_ktime(nsec));
 460                ret = HRTIMER_RESTART;
 461        }
 462
 463        spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
 464        rcu_read_unlock();
 465        return ret;
 466}
 467
 468/*
 469 * Common code for initializing the physical port structure.
 470 */
 471void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
 472                         struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
 473{
 474        int i;
 475        uint default_pkey_idx;
 476        struct cc_state *cc_state;
 477
 478        ppd->dd = dd;
 479        ppd->hw_pidx = hw_pidx;
 480        ppd->port = port; /* IB port number, not index */
 481
 482        default_pkey_idx = 1;
 483
 484        ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
 485        if (loopback) {
 486                hfi1_early_err(&pdev->dev,
 487                               "Faking data partition 0x8001 in idx %u\n",
 488                               !default_pkey_idx);
 489                ppd->pkeys[!default_pkey_idx] = 0x8001;
 490        }
 491
 492        INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
 493        INIT_WORK(&ppd->link_up_work, handle_link_up);
 494        INIT_WORK(&ppd->link_down_work, handle_link_down);
 495        INIT_WORK(&ppd->freeze_work, handle_freeze);
 496        INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
 497        INIT_WORK(&ppd->sma_message_work, handle_sma_message);
 498        INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
 499        INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
 500        INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
 501        INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
 502
 503        mutex_init(&ppd->hls_lock);
 504        spin_lock_init(&ppd->qsfp_info.qsfp_lock);
 505
 506        ppd->qsfp_info.ppd = ppd;
 507        ppd->sm_trap_qp = 0x0;
 508        ppd->sa_qp = 0x1;
 509
 510        ppd->hfi1_wq = NULL;
 511
 512        spin_lock_init(&ppd->cca_timer_lock);
 513
 514        for (i = 0; i < OPA_MAX_SLS; i++) {
 515                hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
 516                             HRTIMER_MODE_REL);
 517                ppd->cca_timer[i].ppd = ppd;
 518                ppd->cca_timer[i].sl = i;
 519                ppd->cca_timer[i].ccti = 0;
 520                ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
 521        }
 522
 523        ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
 524
 525        spin_lock_init(&ppd->cc_state_lock);
 526        spin_lock_init(&ppd->cc_log_lock);
 527        cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
 528        RCU_INIT_POINTER(ppd->cc_state, cc_state);
 529        if (!cc_state)
 530                goto bail;
 531        return;
 532
 533bail:
 534
 535        hfi1_early_err(&pdev->dev,
 536                       "Congestion Control Agent disabled for port %d\n", port);
 537}
 538
 539/*
 540 * Do initialization for device that is only needed on
 541 * first detect, not on resets.
 542 */
 543static int loadtime_init(struct hfi1_devdata *dd)
 544{
 545        return 0;
 546}
 547
 548/**
 549 * init_after_reset - re-initialize after a reset
 550 * @dd: the hfi1_ib device
 551 *
 552 * sanity check at least some of the values after reset, and
 553 * ensure no receive or transmit (explicitly, in case reset
 554 * failed
 555 */
 556static int init_after_reset(struct hfi1_devdata *dd)
 557{
 558        int i;
 559
 560        /*
 561         * Ensure chip does no sends or receives, tail updates, or
 562         * pioavail updates while we re-initialize.  This is mostly
 563         * for the driver data structures, not chip registers.
 564         */
 565        for (i = 0; i < dd->num_rcv_contexts; i++)
 566                hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 567                                  HFI1_RCVCTRL_INTRAVAIL_DIS |
 568                                  HFI1_RCVCTRL_TAILUPD_DIS, i);
 569        pio_send_control(dd, PSC_GLOBAL_DISABLE);
 570        for (i = 0; i < dd->num_send_contexts; i++)
 571                sc_disable(dd->send_contexts[i].sc);
 572
 573        return 0;
 574}
 575
 576static void enable_chip(struct hfi1_devdata *dd)
 577{
 578        u32 rcvmask;
 579        u32 i;
 580
 581        /* enable PIO send */
 582        pio_send_control(dd, PSC_GLOBAL_ENABLE);
 583
 584        /*
 585         * Enable kernel ctxts' receive and receive interrupt.
 586         * Other ctxts done as user opens and initializes them.
 587         */
 588        for (i = 0; i < dd->first_user_ctxt; ++i) {
 589                rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
 590                rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
 591                        HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
 592                if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
 593                        rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
 594                if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
 595                        rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
 596                if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
 597                        rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
 598                hfi1_rcvctrl(dd, rcvmask, i);
 599                sc_enable(dd->rcd[i]->sc);
 600        }
 601}
 602
 603/**
 604 * create_workqueues - create per port workqueues
 605 * @dd: the hfi1_ib device
 606 */
 607static int create_workqueues(struct hfi1_devdata *dd)
 608{
 609        int pidx;
 610        struct hfi1_pportdata *ppd;
 611
 612        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 613                ppd = dd->pport + pidx;
 614                if (!ppd->hfi1_wq) {
 615                        ppd->hfi1_wq =
 616                                alloc_workqueue(
 617                                    "hfi%d_%d",
 618                                    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
 619                                    dd->num_sdma,
 620                                    dd->unit, pidx);
 621                        if (!ppd->hfi1_wq)
 622                                goto wq_error;
 623                }
 624        }
 625        return 0;
 626wq_error:
 627        pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
 628        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 629                ppd = dd->pport + pidx;
 630                if (ppd->hfi1_wq) {
 631                        destroy_workqueue(ppd->hfi1_wq);
 632                        ppd->hfi1_wq = NULL;
 633                }
 634        }
 635        return -ENOMEM;
 636}
 637
 638/**
 639 * hfi1_init - do the actual initialization sequence on the chip
 640 * @dd: the hfi1_ib device
 641 * @reinit: re-initializing, so don't allocate new memory
 642 *
 643 * Do the actual initialization sequence on the chip.  This is done
 644 * both from the init routine called from the PCI infrastructure, and
 645 * when we reset the chip, or detect that it was reset internally,
 646 * or it's administratively re-enabled.
 647 *
 648 * Memory allocation here and in called routines is only done in
 649 * the first case (reinit == 0).  We have to be careful, because even
 650 * without memory allocation, we need to re-write all the chip registers
 651 * TIDs, etc. after the reset or enable has completed.
 652 */
 653int hfi1_init(struct hfi1_devdata *dd, int reinit)
 654{
 655        int ret = 0, pidx, lastfail = 0;
 656        unsigned i, len;
 657        struct hfi1_ctxtdata *rcd;
 658        struct hfi1_pportdata *ppd;
 659
 660        /* Set up recv low level handlers */
 661        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
 662                                                kdeth_process_expected;
 663        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
 664                                                kdeth_process_eager;
 665        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
 666        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
 667                                                process_receive_error;
 668        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
 669                                                process_receive_bypass;
 670        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
 671                                                process_receive_invalid;
 672        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
 673                                                process_receive_invalid;
 674        dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
 675                                                process_receive_invalid;
 676        dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
 677
 678        /* Set up send low level handlers */
 679        dd->process_pio_send = hfi1_verbs_send_pio;
 680        dd->process_dma_send = hfi1_verbs_send_dma;
 681        dd->pio_inline_send = pio_copy;
 682
 683        if (is_ax(dd)) {
 684                atomic_set(&dd->drop_packet, DROP_PACKET_ON);
 685                dd->do_drop = 1;
 686        } else {
 687                atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
 688                dd->do_drop = 0;
 689        }
 690
 691        /* make sure the link is not "up" */
 692        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 693                ppd = dd->pport + pidx;
 694                ppd->linkup = 0;
 695        }
 696
 697        if (reinit)
 698                ret = init_after_reset(dd);
 699        else
 700                ret = loadtime_init(dd);
 701        if (ret)
 702                goto done;
 703
 704        /* allocate dummy tail memory for all receive contexts */
 705        dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
 706                &dd->pcidev->dev, sizeof(u64),
 707                &dd->rcvhdrtail_dummy_dma,
 708                GFP_KERNEL);
 709
 710        if (!dd->rcvhdrtail_dummy_kvaddr) {
 711                dd_dev_err(dd, "cannot allocate dummy tail memory\n");
 712                ret = -ENOMEM;
 713                goto done;
 714        }
 715
 716        /* dd->rcd can be NULL if early initialization failed */
 717        for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
 718                /*
 719                 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
 720                 * re-init, the simplest way to handle this is to free
 721                 * existing, and re-allocate.
 722                 * Need to re-create rest of ctxt 0 ctxtdata as well.
 723                 */
 724                rcd = dd->rcd[i];
 725                if (!rcd)
 726                        continue;
 727
 728                rcd->do_interrupt = &handle_receive_interrupt;
 729
 730                lastfail = hfi1_create_rcvhdrq(dd, rcd);
 731                if (!lastfail)
 732                        lastfail = hfi1_setup_eagerbufs(rcd);
 733                if (lastfail) {
 734                        dd_dev_err(dd,
 735                                   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
 736                        ret = lastfail;
 737                }
 738        }
 739
 740        /* Allocate enough memory for user event notification. */
 741        len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
 742                         sizeof(*dd->events));
 743        dd->events = vmalloc_user(len);
 744        if (!dd->events)
 745                dd_dev_err(dd, "Failed to allocate user events page\n");
 746        /*
 747         * Allocate a page for device and port status.
 748         * Page will be shared amongst all user processes.
 749         */
 750        dd->status = vmalloc_user(PAGE_SIZE);
 751        if (!dd->status)
 752                dd_dev_err(dd, "Failed to allocate dev status page\n");
 753        else
 754                dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
 755                                             sizeof(dd->status->freezemsg));
 756        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 757                ppd = dd->pport + pidx;
 758                if (dd->status)
 759                        /* Currently, we only have one port */
 760                        ppd->statusp = &dd->status->port;
 761
 762                set_mtu(ppd);
 763        }
 764
 765        /* enable chip even if we have an error, so we can debug cause */
 766        enable_chip(dd);
 767
 768done:
 769        /*
 770         * Set status even if port serdes is not initialized
 771         * so that diags will work.
 772         */
 773        if (dd->status)
 774                dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
 775                        HFI1_STATUS_INITTED;
 776        if (!ret) {
 777                /* enable all interrupts from the chip */
 778                set_intr_state(dd, 1);
 779
 780                /* chip is OK for user apps; mark it as initialized */
 781                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 782                        ppd = dd->pport + pidx;
 783
 784                        /*
 785                         * start the serdes - must be after interrupts are
 786                         * enabled so we are notified when the link goes up
 787                         */
 788                        lastfail = bringup_serdes(ppd);
 789                        if (lastfail)
 790                                dd_dev_info(dd,
 791                                            "Failed to bring up port %u\n",
 792                                            ppd->port);
 793
 794                        /*
 795                         * Set status even if port serdes is not initialized
 796                         * so that diags will work.
 797                         */
 798                        if (ppd->statusp)
 799                                *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
 800                                                        HFI1_STATUS_INITTED;
 801                        if (!ppd->link_speed_enabled)
 802                                continue;
 803                }
 804        }
 805
 806        /* if ret is non-zero, we probably should do some cleanup here... */
 807        return ret;
 808}
 809
 810static inline struct hfi1_devdata *__hfi1_lookup(int unit)
 811{
 812        return idr_find(&hfi1_unit_table, unit);
 813}
 814
 815struct hfi1_devdata *hfi1_lookup(int unit)
 816{
 817        struct hfi1_devdata *dd;
 818        unsigned long flags;
 819
 820        spin_lock_irqsave(&hfi1_devs_lock, flags);
 821        dd = __hfi1_lookup(unit);
 822        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
 823
 824        return dd;
 825}
 826
 827/*
 828 * Stop the timers during unit shutdown, or after an error late
 829 * in initialization.
 830 */
 831static void stop_timers(struct hfi1_devdata *dd)
 832{
 833        struct hfi1_pportdata *ppd;
 834        int pidx;
 835
 836        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 837                ppd = dd->pport + pidx;
 838                if (ppd->led_override_timer.data) {
 839                        del_timer_sync(&ppd->led_override_timer);
 840                        atomic_set(&ppd->led_override_timer_active, 0);
 841                }
 842        }
 843}
 844
 845/**
 846 * shutdown_device - shut down a device
 847 * @dd: the hfi1_ib device
 848 *
 849 * This is called to make the device quiet when we are about to
 850 * unload the driver, and also when the device is administratively
 851 * disabled.   It does not free any data structures.
 852 * Everything it does has to be setup again by hfi1_init(dd, 1)
 853 */
 854static void shutdown_device(struct hfi1_devdata *dd)
 855{
 856        struct hfi1_pportdata *ppd;
 857        unsigned pidx;
 858        int i;
 859
 860        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 861                ppd = dd->pport + pidx;
 862
 863                ppd->linkup = 0;
 864                if (ppd->statusp)
 865                        *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
 866                                           HFI1_STATUS_IB_READY);
 867        }
 868        dd->flags &= ~HFI1_INITTED;
 869
 870        /* mask interrupts, but not errors */
 871        set_intr_state(dd, 0);
 872
 873        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 874                ppd = dd->pport + pidx;
 875                for (i = 0; i < dd->num_rcv_contexts; i++)
 876                        hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
 877                                          HFI1_RCVCTRL_CTXT_DIS |
 878                                          HFI1_RCVCTRL_INTRAVAIL_DIS |
 879                                          HFI1_RCVCTRL_PKEY_DIS |
 880                                          HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
 881                /*
 882                 * Gracefully stop all sends allowing any in progress to
 883                 * trickle out first.
 884                 */
 885                for (i = 0; i < dd->num_send_contexts; i++)
 886                        sc_flush(dd->send_contexts[i].sc);
 887        }
 888
 889        /*
 890         * Enough for anything that's going to trickle out to have actually
 891         * done so.
 892         */
 893        udelay(20);
 894
 895        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 896                ppd = dd->pport + pidx;
 897
 898                /* disable all contexts */
 899                for (i = 0; i < dd->num_send_contexts; i++)
 900                        sc_disable(dd->send_contexts[i].sc);
 901                /* disable the send device */
 902                pio_send_control(dd, PSC_GLOBAL_DISABLE);
 903
 904                shutdown_led_override(ppd);
 905
 906                /*
 907                 * Clear SerdesEnable.
 908                 * We can't count on interrupts since we are stopping.
 909                 */
 910                hfi1_quiet_serdes(ppd);
 911
 912                if (ppd->hfi1_wq) {
 913                        destroy_workqueue(ppd->hfi1_wq);
 914                        ppd->hfi1_wq = NULL;
 915                }
 916        }
 917        sdma_exit(dd);
 918}
 919
 920/**
 921 * hfi1_free_ctxtdata - free a context's allocated data
 922 * @dd: the hfi1_ib device
 923 * @rcd: the ctxtdata structure
 924 *
 925 * free up any allocated data for a context
 926 * This should not touch anything that would affect a simultaneous
 927 * re-allocation of context data, because it is called after hfi1_mutex
 928 * is released (and can be called from reinit as well).
 929 * It should never change any chip state, or global driver state.
 930 */
 931void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
 932{
 933        unsigned e;
 934
 935        if (!rcd)
 936                return;
 937
 938        if (rcd->rcvhdrq) {
 939                dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
 940                                  rcd->rcvhdrq, rcd->rcvhdrq_dma);
 941                rcd->rcvhdrq = NULL;
 942                if (rcd->rcvhdrtail_kvaddr) {
 943                        dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
 944                                          (void *)rcd->rcvhdrtail_kvaddr,
 945                                          rcd->rcvhdrqtailaddr_dma);
 946                        rcd->rcvhdrtail_kvaddr = NULL;
 947                }
 948        }
 949
 950        /* all the RcvArray entries should have been cleared by now */
 951        kfree(rcd->egrbufs.rcvtids);
 952
 953        for (e = 0; e < rcd->egrbufs.alloced; e++) {
 954                if (rcd->egrbufs.buffers[e].dma)
 955                        dma_free_coherent(&dd->pcidev->dev,
 956                                          rcd->egrbufs.buffers[e].len,
 957                                          rcd->egrbufs.buffers[e].addr,
 958                                          rcd->egrbufs.buffers[e].dma);
 959        }
 960        kfree(rcd->egrbufs.buffers);
 961
 962        sc_free(rcd->sc);
 963        vfree(rcd->user_event_mask);
 964        vfree(rcd->subctxt_uregbase);
 965        vfree(rcd->subctxt_rcvegrbuf);
 966        vfree(rcd->subctxt_rcvhdr_base);
 967        kfree(rcd->opstats);
 968        kfree(rcd);
 969}
 970
 971/*
 972 * Release our hold on the shared asic data.  If we are the last one,
 973 * return the structure to be finalized outside the lock.  Must be
 974 * holding hfi1_devs_lock.
 975 */
 976static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
 977{
 978        struct hfi1_asic_data *ad;
 979        int other;
 980
 981        if (!dd->asic_data)
 982                return NULL;
 983        dd->asic_data->dds[dd->hfi1_id] = NULL;
 984        other = dd->hfi1_id ? 0 : 1;
 985        ad = dd->asic_data;
 986        dd->asic_data = NULL;
 987        /* return NULL if the other dd still has a link */
 988        return ad->dds[other] ? NULL : ad;
 989}
 990
 991static void finalize_asic_data(struct hfi1_devdata *dd,
 992                               struct hfi1_asic_data *ad)
 993{
 994        clean_up_i2c(dd, ad);
 995        kfree(ad);
 996}
 997
 998static void __hfi1_free_devdata(struct kobject *kobj)
 999{
1000        struct hfi1_devdata *dd =
1001                container_of(kobj, struct hfi1_devdata, kobj);
1002        struct hfi1_asic_data *ad;
1003        unsigned long flags;
1004
1005        spin_lock_irqsave(&hfi1_devs_lock, flags);
1006        idr_remove(&hfi1_unit_table, dd->unit);
1007        list_del(&dd->list);
1008        ad = release_asic_data(dd);
1009        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1010        if (ad)
1011                finalize_asic_data(dd, ad);
1012        free_platform_config(dd);
1013        rcu_barrier(); /* wait for rcu callbacks to complete */
1014        free_percpu(dd->int_counter);
1015        free_percpu(dd->rcv_limit);
1016        free_percpu(dd->send_schedule);
1017        rvt_dealloc_device(&dd->verbs_dev.rdi);
1018}
1019
1020static struct kobj_type hfi1_devdata_type = {
1021        .release = __hfi1_free_devdata,
1022};
1023
1024void hfi1_free_devdata(struct hfi1_devdata *dd)
1025{
1026        kobject_put(&dd->kobj);
1027}
1028
1029/*
1030 * Allocate our primary per-unit data structure.  Must be done via verbs
1031 * allocator, because the verbs cleanup process both does cleanup and
1032 * free of the data structure.
1033 * "extra" is for chip-specific data.
1034 *
1035 * Use the idr mechanism to get a unit number for this unit.
1036 */
1037struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1038{
1039        unsigned long flags;
1040        struct hfi1_devdata *dd;
1041        int ret, nports;
1042
1043        /* extra is * number of ports */
1044        nports = extra / sizeof(struct hfi1_pportdata);
1045
1046        dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1047                                                     nports);
1048        if (!dd)
1049                return ERR_PTR(-ENOMEM);
1050        dd->num_pports = nports;
1051        dd->pport = (struct hfi1_pportdata *)(dd + 1);
1052
1053        INIT_LIST_HEAD(&dd->list);
1054        idr_preload(GFP_KERNEL);
1055        spin_lock_irqsave(&hfi1_devs_lock, flags);
1056
1057        ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1058        if (ret >= 0) {
1059                dd->unit = ret;
1060                list_add(&dd->list, &hfi1_dev_list);
1061        }
1062
1063        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1064        idr_preload_end();
1065
1066        if (ret < 0) {
1067                hfi1_early_err(&pdev->dev,
1068                               "Could not allocate unit ID: error %d\n", -ret);
1069                goto bail;
1070        }
1071        /*
1072         * Initialize all locks for the device. This needs to be as early as
1073         * possible so locks are usable.
1074         */
1075        spin_lock_init(&dd->sc_lock);
1076        spin_lock_init(&dd->sendctrl_lock);
1077        spin_lock_init(&dd->rcvctrl_lock);
1078        spin_lock_init(&dd->uctxt_lock);
1079        spin_lock_init(&dd->hfi1_diag_trans_lock);
1080        spin_lock_init(&dd->sc_init_lock);
1081        spin_lock_init(&dd->dc8051_lock);
1082        spin_lock_init(&dd->dc8051_memlock);
1083        seqlock_init(&dd->sc2vl_lock);
1084        spin_lock_init(&dd->sde_map_lock);
1085        spin_lock_init(&dd->pio_map_lock);
1086        init_waitqueue_head(&dd->event_queue);
1087
1088        dd->int_counter = alloc_percpu(u64);
1089        if (!dd->int_counter) {
1090                ret = -ENOMEM;
1091                hfi1_early_err(&pdev->dev,
1092                               "Could not allocate per-cpu int_counter\n");
1093                goto bail;
1094        }
1095
1096        dd->rcv_limit = alloc_percpu(u64);
1097        if (!dd->rcv_limit) {
1098                ret = -ENOMEM;
1099                hfi1_early_err(&pdev->dev,
1100                               "Could not allocate per-cpu rcv_limit\n");
1101                goto bail;
1102        }
1103
1104        dd->send_schedule = alloc_percpu(u64);
1105        if (!dd->send_schedule) {
1106                ret = -ENOMEM;
1107                hfi1_early_err(&pdev->dev,
1108                               "Could not allocate per-cpu int_counter\n");
1109                goto bail;
1110        }
1111
1112        if (!hfi1_cpulist_count) {
1113                u32 count = num_online_cpus();
1114
1115                hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1116                                       GFP_KERNEL);
1117                if (hfi1_cpulist)
1118                        hfi1_cpulist_count = count;
1119                else
1120                        hfi1_early_err(
1121                        &pdev->dev,
1122                        "Could not alloc cpulist info, cpu affinity might be wrong\n");
1123        }
1124        kobject_init(&dd->kobj, &hfi1_devdata_type);
1125        return dd;
1126
1127bail:
1128        if (!list_empty(&dd->list))
1129                list_del_init(&dd->list);
1130        rvt_dealloc_device(&dd->verbs_dev.rdi);
1131        return ERR_PTR(ret);
1132}
1133
1134/*
1135 * Called from freeze mode handlers, and from PCI error
1136 * reporting code.  Should be paranoid about state of
1137 * system and data structures.
1138 */
1139void hfi1_disable_after_error(struct hfi1_devdata *dd)
1140{
1141        if (dd->flags & HFI1_INITTED) {
1142                u32 pidx;
1143
1144                dd->flags &= ~HFI1_INITTED;
1145                if (dd->pport)
1146                        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1147                                struct hfi1_pportdata *ppd;
1148
1149                                ppd = dd->pport + pidx;
1150                                if (dd->flags & HFI1_PRESENT)
1151                                        set_link_state(ppd, HLS_DN_DISABLE);
1152
1153                                if (ppd->statusp)
1154                                        *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1155                        }
1156        }
1157
1158        /*
1159         * Mark as having had an error for driver, and also
1160         * for /sys and status word mapped to user programs.
1161         * This marks unit as not usable, until reset.
1162         */
1163        if (dd->status)
1164                dd->status->dev |= HFI1_STATUS_HWERROR;
1165}
1166
1167static void remove_one(struct pci_dev *);
1168static int init_one(struct pci_dev *, const struct pci_device_id *);
1169
1170#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1171#define PFX DRIVER_NAME ": "
1172
1173const struct pci_device_id hfi1_pci_tbl[] = {
1174        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1175        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1176        { 0, }
1177};
1178
1179MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1180
1181static struct pci_driver hfi1_pci_driver = {
1182        .name = DRIVER_NAME,
1183        .probe = init_one,
1184        .remove = remove_one,
1185        .id_table = hfi1_pci_tbl,
1186        .err_handler = &hfi1_pci_err_handler,
1187};
1188
1189static void __init compute_krcvqs(void)
1190{
1191        int i;
1192
1193        for (i = 0; i < krcvqsset; i++)
1194                n_krcvqs += krcvqs[i];
1195}
1196
1197/*
1198 * Do all the generic driver unit- and chip-independent memory
1199 * allocation and initialization.
1200 */
1201static int __init hfi1_mod_init(void)
1202{
1203        int ret;
1204
1205        ret = dev_init();
1206        if (ret)
1207                goto bail;
1208
1209        ret = node_affinity_init();
1210        if (ret)
1211                goto bail;
1212
1213        /* validate max MTU before any devices start */
1214        if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1215                pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1216                       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1217                hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1218        }
1219        /* valid CUs run from 1-128 in powers of 2 */
1220        if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1221                hfi1_cu = 1;
1222        /* valid credit return threshold is 0-100, variable is unsigned */
1223        if (user_credit_return_threshold > 100)
1224                user_credit_return_threshold = 100;
1225
1226        compute_krcvqs();
1227        /*
1228         * sanitize receive interrupt count, time must wait until after
1229         * the hardware type is known
1230         */
1231        if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1232                rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1233        /* reject invalid combinations */
1234        if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1235                pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1236                rcv_intr_count = 1;
1237        }
1238        if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1239                /*
1240                 * Avoid indefinite packet delivery by requiring a timeout
1241                 * if count is > 1.
1242                 */
1243                pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1244                rcv_intr_timeout = 1;
1245        }
1246        if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1247                /*
1248                 * The dynamic algorithm expects a non-zero timeout
1249                 * and a count > 1.
1250                 */
1251                pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1252                rcv_intr_dynamic = 0;
1253        }
1254
1255        /* sanitize link CRC options */
1256        link_crc_mask &= SUPPORTED_CRCS;
1257
1258        /*
1259         * These must be called before the driver is registered with
1260         * the PCI subsystem.
1261         */
1262        idr_init(&hfi1_unit_table);
1263
1264        hfi1_dbg_init();
1265        ret = hfi1_wss_init();
1266        if (ret < 0)
1267                goto bail_wss;
1268        ret = pci_register_driver(&hfi1_pci_driver);
1269        if (ret < 0) {
1270                pr_err("Unable to register driver: error %d\n", -ret);
1271                goto bail_dev;
1272        }
1273        goto bail; /* all OK */
1274
1275bail_dev:
1276        hfi1_wss_exit();
1277bail_wss:
1278        hfi1_dbg_exit();
1279        idr_destroy(&hfi1_unit_table);
1280        dev_cleanup();
1281bail:
1282        return ret;
1283}
1284
1285module_init(hfi1_mod_init);
1286
1287/*
1288 * Do the non-unit driver cleanup, memory free, etc. at unload.
1289 */
1290static void __exit hfi1_mod_cleanup(void)
1291{
1292        pci_unregister_driver(&hfi1_pci_driver);
1293        node_affinity_destroy();
1294        hfi1_wss_exit();
1295        hfi1_dbg_exit();
1296        hfi1_cpulist_count = 0;
1297        kfree(hfi1_cpulist);
1298
1299        idr_destroy(&hfi1_unit_table);
1300        dispose_firmware();     /* asymmetric with obtain_firmware() */
1301        dev_cleanup();
1302}
1303
1304module_exit(hfi1_mod_cleanup);
1305
1306/* this can only be called after a successful initialization */
1307static void cleanup_device_data(struct hfi1_devdata *dd)
1308{
1309        int ctxt;
1310        int pidx;
1311        struct hfi1_ctxtdata **tmp;
1312        unsigned long flags;
1313
1314        /* users can't do anything more with chip */
1315        for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1316                struct hfi1_pportdata *ppd = &dd->pport[pidx];
1317                struct cc_state *cc_state;
1318                int i;
1319
1320                if (ppd->statusp)
1321                        *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1322
1323                for (i = 0; i < OPA_MAX_SLS; i++)
1324                        hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1325
1326                spin_lock(&ppd->cc_state_lock);
1327                cc_state = get_cc_state_protected(ppd);
1328                RCU_INIT_POINTER(ppd->cc_state, NULL);
1329                spin_unlock(&ppd->cc_state_lock);
1330
1331                if (cc_state)
1332                        kfree_rcu(cc_state, rcu);
1333        }
1334
1335        free_credit_return(dd);
1336
1337        /*
1338         * Free any resources still in use (usually just kernel contexts)
1339         * at unload; we do for ctxtcnt, because that's what we allocate.
1340         * We acquire lock to be really paranoid that rcd isn't being
1341         * accessed from some interrupt-related code (that should not happen,
1342         * but best to be sure).
1343         */
1344        spin_lock_irqsave(&dd->uctxt_lock, flags);
1345        tmp = dd->rcd;
1346        dd->rcd = NULL;
1347        spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1348
1349        if (dd->rcvhdrtail_dummy_kvaddr) {
1350                dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1351                                  (void *)dd->rcvhdrtail_dummy_kvaddr,
1352                                  dd->rcvhdrtail_dummy_dma);
1353                dd->rcvhdrtail_dummy_kvaddr = NULL;
1354        }
1355
1356        for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1357                struct hfi1_ctxtdata *rcd = tmp[ctxt];
1358
1359                tmp[ctxt] = NULL; /* debugging paranoia */
1360                if (rcd) {
1361                        hfi1_clear_tids(rcd);
1362                        hfi1_free_ctxtdata(dd, rcd);
1363                }
1364        }
1365        kfree(tmp);
1366        free_pio_map(dd);
1367        /* must follow rcv context free - need to remove rcv's hooks */
1368        for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1369                sc_free(dd->send_contexts[ctxt].sc);
1370        dd->num_send_contexts = 0;
1371        kfree(dd->send_contexts);
1372        dd->send_contexts = NULL;
1373        kfree(dd->hw_to_sw);
1374        dd->hw_to_sw = NULL;
1375        kfree(dd->boardname);
1376        vfree(dd->events);
1377        vfree(dd->status);
1378}
1379
1380/*
1381 * Clean up on unit shutdown, or error during unit load after
1382 * successful initialization.
1383 */
1384static void postinit_cleanup(struct hfi1_devdata *dd)
1385{
1386        hfi1_start_cleanup(dd);
1387
1388        hfi1_pcie_ddcleanup(dd);
1389        hfi1_pcie_cleanup(dd->pcidev);
1390
1391        cleanup_device_data(dd);
1392
1393        hfi1_free_devdata(dd);
1394}
1395
1396static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1397{
1398        if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1399                hfi1_early_err(dev, "Receive header queue count too small\n");
1400                return -EINVAL;
1401        }
1402
1403        if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1404                hfi1_early_err(dev,
1405                               "Receive header queue count cannot be greater than %u\n",
1406                               HFI1_MAX_HDRQ_EGRBUF_CNT);
1407                return -EINVAL;
1408        }
1409
1410        if (thecnt % HDRQ_INCREMENT) {
1411                hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1412                               thecnt, HDRQ_INCREMENT);
1413                return -EINVAL;
1414        }
1415
1416        return 0;
1417}
1418
1419static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1420{
1421        int ret = 0, j, pidx, initfail;
1422        struct hfi1_devdata *dd;
1423        struct hfi1_pportdata *ppd;
1424
1425        /* First, lock the non-writable module parameters */
1426        HFI1_CAP_LOCK();
1427
1428        /* Validate some global module parameters */
1429        ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1430        if (ret)
1431                goto bail;
1432
1433        /* use the encoding function as a sanitization check */
1434        if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1435                hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1436                               hfi1_hdrq_entsize);
1437                ret = -EINVAL;
1438                goto bail;
1439        }
1440
1441        /* The receive eager buffer size must be set before the receive
1442         * contexts are created.
1443         *
1444         * Set the eager buffer size.  Validate that it falls in a range
1445         * allowed by the hardware - all powers of 2 between the min and
1446         * max.  The maximum valid MTU is within the eager buffer range
1447         * so we do not need to cap the max_mtu by an eager buffer size
1448         * setting.
1449         */
1450        if (eager_buffer_size) {
1451                if (!is_power_of_2(eager_buffer_size))
1452                        eager_buffer_size =
1453                                roundup_pow_of_two(eager_buffer_size);
1454                eager_buffer_size =
1455                        clamp_val(eager_buffer_size,
1456                                  MIN_EAGER_BUFFER * 8,
1457                                  MAX_EAGER_BUFFER_TOTAL);
1458                hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1459                                eager_buffer_size);
1460        } else {
1461                hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1462                ret = -EINVAL;
1463                goto bail;
1464        }
1465
1466        /* restrict value of hfi1_rcvarr_split */
1467        hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1468
1469        ret = hfi1_pcie_init(pdev, ent);
1470        if (ret)
1471                goto bail;
1472
1473        if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1474              ent->device == PCI_DEVICE_ID_INTEL1)) {
1475                hfi1_early_err(&pdev->dev,
1476                               "Failing on unknown Intel deviceid 0x%x\n",
1477                               ent->device);
1478                ret = -ENODEV;
1479                goto clean_bail;
1480        }
1481
1482        /*
1483         * Do device-specific initialization, function table setup, dd
1484         * allocation, etc.
1485         */
1486        dd = hfi1_init_dd(pdev, ent);
1487
1488        if (IS_ERR(dd)) {
1489                ret = PTR_ERR(dd);
1490                goto clean_bail; /* error already printed */
1491        }
1492
1493        ret = create_workqueues(dd);
1494        if (ret)
1495                goto clean_bail;
1496
1497        /* do the generic initialization */
1498        initfail = hfi1_init(dd, 0);
1499
1500        ret = hfi1_register_ib_device(dd);
1501
1502        /*
1503         * Now ready for use.  this should be cleared whenever we
1504         * detect a reset, or initiate one.  If earlier failure,
1505         * we still create devices, so diags, etc. can be used
1506         * to determine cause of problem.
1507         */
1508        if (!initfail && !ret) {
1509                dd->flags |= HFI1_INITTED;
1510                /* create debufs files after init and ib register */
1511                hfi1_dbg_ibdev_init(&dd->verbs_dev);
1512        }
1513
1514        j = hfi1_device_create(dd);
1515        if (j)
1516                dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1517
1518        if (initfail || ret) {
1519                stop_timers(dd);
1520                flush_workqueue(ib_wq);
1521                for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1522                        hfi1_quiet_serdes(dd->pport + pidx);
1523                        ppd = dd->pport + pidx;
1524                        if (ppd->hfi1_wq) {
1525                                destroy_workqueue(ppd->hfi1_wq);
1526                                ppd->hfi1_wq = NULL;
1527                        }
1528                }
1529                if (!j)
1530                        hfi1_device_remove(dd);
1531                if (!ret)
1532                        hfi1_unregister_ib_device(dd);
1533                postinit_cleanup(dd);
1534                if (initfail)
1535                        ret = initfail;
1536                goto bail;      /* everything already cleaned */
1537        }
1538
1539        sdma_start(dd);
1540
1541        return 0;
1542
1543clean_bail:
1544        hfi1_pcie_cleanup(pdev);
1545bail:
1546        return ret;
1547}
1548
1549static void wait_for_clients(struct hfi1_devdata *dd)
1550{
1551        /*
1552         * Remove the device init value and complete the device if there is
1553         * no clients or wait for active clients to finish.
1554         */
1555        if (atomic_dec_and_test(&dd->user_refcount))
1556                complete(&dd->user_comp);
1557
1558        wait_for_completion(&dd->user_comp);
1559}
1560
1561static void remove_one(struct pci_dev *pdev)
1562{
1563        struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1564
1565        /* close debugfs files before ib unregister */
1566        hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1567
1568        /* remove the /dev hfi1 interface */
1569        hfi1_device_remove(dd);
1570
1571        /* wait for existing user space clients to finish */
1572        wait_for_clients(dd);
1573
1574        /* unregister from IB core */
1575        hfi1_unregister_ib_device(dd);
1576
1577        /*
1578         * Disable the IB link, disable interrupts on the device,
1579         * clear dma engines, etc.
1580         */
1581        shutdown_device(dd);
1582
1583        stop_timers(dd);
1584
1585        /* wait until all of our (qsfp) queue_work() calls complete */
1586        flush_workqueue(ib_wq);
1587
1588        postinit_cleanup(dd);
1589}
1590
1591/**
1592 * hfi1_create_rcvhdrq - create a receive header queue
1593 * @dd: the hfi1_ib device
1594 * @rcd: the context data
1595 *
1596 * This must be contiguous memory (from an i/o perspective), and must be
1597 * DMA'able (which means for some systems, it will go through an IOMMU,
1598 * or be forced into a low address range).
1599 */
1600int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1601{
1602        unsigned amt;
1603        u64 reg;
1604
1605        if (!rcd->rcvhdrq) {
1606                dma_addr_t dma_hdrqtail;
1607                gfp_t gfp_flags;
1608
1609                /*
1610                 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1611                 * (* sizeof(u32)).
1612                 */
1613                amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1614                                 sizeof(u32));
1615
1616                gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1617                        GFP_USER : GFP_KERNEL;
1618                rcd->rcvhdrq = dma_zalloc_coherent(
1619                        &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1620                        gfp_flags | __GFP_COMP);
1621
1622                if (!rcd->rcvhdrq) {
1623                        dd_dev_err(dd,
1624                                   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1625                                   amt, rcd->ctxt);
1626                        goto bail;
1627                }
1628
1629                if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1630                        rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1631                                &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1632                                gfp_flags);
1633                        if (!rcd->rcvhdrtail_kvaddr)
1634                                goto bail_free;
1635                        rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1636                }
1637
1638                rcd->rcvhdrq_size = amt;
1639        }
1640        /*
1641         * These values are per-context:
1642         *      RcvHdrCnt
1643         *      RcvHdrEntSize
1644         *      RcvHdrSize
1645         */
1646        reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1647                        & RCV_HDR_CNT_CNT_MASK)
1648                << RCV_HDR_CNT_CNT_SHIFT;
1649        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1650        reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1651                        & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1652                << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1653        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1654        reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1655                << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1656        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1657
1658        /*
1659         * Program dummy tail address for every receive context
1660         * before enabling any receive context
1661         */
1662        write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1663                        dd->rcvhdrtail_dummy_dma);
1664
1665        return 0;
1666
1667bail_free:
1668        dd_dev_err(dd,
1669                   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1670                   rcd->ctxt);
1671        vfree(rcd->user_event_mask);
1672        rcd->user_event_mask = NULL;
1673        dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1674                          rcd->rcvhdrq_dma);
1675        rcd->rcvhdrq = NULL;
1676bail:
1677        return -ENOMEM;
1678}
1679
1680/**
1681 * allocate eager buffers, both kernel and user contexts.
1682 * @rcd: the context we are setting up.
1683 *
1684 * Allocate the eager TID buffers and program them into hip.
1685 * They are no longer completely contiguous, we do multiple allocation
1686 * calls.  Otherwise we get the OOM code involved, by asking for too
1687 * much per call, with disastrous results on some kernels.
1688 */
1689int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1690{
1691        struct hfi1_devdata *dd = rcd->dd;
1692        u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1693        gfp_t gfp_flags;
1694        u16 order;
1695        int ret = 0;
1696        u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1697
1698        /*
1699         * GFP_USER, but without GFP_FS, so buffer cache can be
1700         * coalesced (we hope); otherwise, even at order 4,
1701         * heavy filesystem activity makes these fail, and we can
1702         * use compound pages.
1703         */
1704        gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1705
1706        /*
1707         * The minimum size of the eager buffers is a groups of MTU-sized
1708         * buffers.
1709         * The global eager_buffer_size parameter is checked against the
1710         * theoretical lower limit of the value. Here, we check against the
1711         * MTU.
1712         */
1713        if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1714                rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1715        /*
1716         * If using one-pkt-per-egr-buffer, lower the eager buffer
1717         * size to the max MTU (page-aligned).
1718         */
1719        if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1720                rcd->egrbufs.rcvtid_size = round_mtu;
1721
1722        /*
1723         * Eager buffers sizes of 1MB or less require smaller TID sizes
1724         * to satisfy the "multiple of 8 RcvArray entries" requirement.
1725         */
1726        if (rcd->egrbufs.size <= (1 << 20))
1727                rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1728                        rounddown_pow_of_two(rcd->egrbufs.size / 8));
1729
1730        while (alloced_bytes < rcd->egrbufs.size &&
1731               rcd->egrbufs.alloced < rcd->egrbufs.count) {
1732                rcd->egrbufs.buffers[idx].addr =
1733                        dma_zalloc_coherent(&dd->pcidev->dev,
1734                                            rcd->egrbufs.rcvtid_size,
1735                                            &rcd->egrbufs.buffers[idx].dma,
1736                                            gfp_flags);
1737                if (rcd->egrbufs.buffers[idx].addr) {
1738                        rcd->egrbufs.buffers[idx].len =
1739                                rcd->egrbufs.rcvtid_size;
1740                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1741                                rcd->egrbufs.buffers[idx].addr;
1742                        rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1743                                rcd->egrbufs.buffers[idx].dma;
1744                        rcd->egrbufs.alloced++;
1745                        alloced_bytes += rcd->egrbufs.rcvtid_size;
1746                        idx++;
1747                } else {
1748                        u32 new_size, i, j;
1749                        u64 offset = 0;
1750
1751                        /*
1752                         * Fail the eager buffer allocation if:
1753                         *   - we are already using the lowest acceptable size
1754                         *   - we are using one-pkt-per-egr-buffer (this implies
1755                         *     that we are accepting only one size)
1756                         */
1757                        if (rcd->egrbufs.rcvtid_size == round_mtu ||
1758                            !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1759                                dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1760                                           rcd->ctxt);
1761                                goto bail_rcvegrbuf_phys;
1762                        }
1763
1764                        new_size = rcd->egrbufs.rcvtid_size / 2;
1765
1766                        /*
1767                         * If the first attempt to allocate memory failed, don't
1768                         * fail everything but continue with the next lower
1769                         * size.
1770                         */
1771                        if (idx == 0) {
1772                                rcd->egrbufs.rcvtid_size = new_size;
1773                                continue;
1774                        }
1775
1776                        /*
1777                         * Re-partition already allocated buffers to a smaller
1778                         * size.
1779                         */
1780                        rcd->egrbufs.alloced = 0;
1781                        for (i = 0, j = 0, offset = 0; j < idx; i++) {
1782                                if (i >= rcd->egrbufs.count)
1783                                        break;
1784                                rcd->egrbufs.rcvtids[i].dma =
1785                                        rcd->egrbufs.buffers[j].dma + offset;
1786                                rcd->egrbufs.rcvtids[i].addr =
1787                                        rcd->egrbufs.buffers[j].addr + offset;
1788                                rcd->egrbufs.alloced++;
1789                                if ((rcd->egrbufs.buffers[j].dma + offset +
1790                                     new_size) ==
1791                                    (rcd->egrbufs.buffers[j].dma +
1792                                     rcd->egrbufs.buffers[j].len)) {
1793                                        j++;
1794                                        offset = 0;
1795                                } else {
1796                                        offset += new_size;
1797                                }
1798                        }
1799                        rcd->egrbufs.rcvtid_size = new_size;
1800                }
1801        }
1802        rcd->egrbufs.numbufs = idx;
1803        rcd->egrbufs.size = alloced_bytes;
1804
1805        hfi1_cdbg(PROC,
1806                  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1807                  rcd->ctxt, rcd->egrbufs.alloced,
1808                  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1809
1810        /*
1811         * Set the contexts rcv array head update threshold to the closest
1812         * power of 2 (so we can use a mask instead of modulo) below half
1813         * the allocated entries.
1814         */
1815        rcd->egrbufs.threshold =
1816                rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1817        /*
1818         * Compute the expected RcvArray entry base. This is done after
1819         * allocating the eager buffers in order to maximize the
1820         * expected RcvArray entries for the context.
1821         */
1822        max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1823        egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1824        rcd->expected_count = max_entries - egrtop;
1825        if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1826                rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1827
1828        rcd->expected_base = rcd->eager_base + egrtop;
1829        hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1830                  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1831                  rcd->eager_base, rcd->expected_base);
1832
1833        if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1834                hfi1_cdbg(PROC,
1835                          "ctxt%u: current Eager buffer size is invalid %u\n",
1836                          rcd->ctxt, rcd->egrbufs.rcvtid_size);
1837                ret = -EINVAL;
1838                goto bail;
1839        }
1840
1841        for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1842                hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1843                             rcd->egrbufs.rcvtids[idx].dma, order);
1844                cond_resched();
1845        }
1846        goto bail;
1847
1848bail_rcvegrbuf_phys:
1849        for (idx = 0; idx < rcd->egrbufs.alloced &&
1850             rcd->egrbufs.buffers[idx].addr;
1851             idx++) {
1852                dma_free_coherent(&dd->pcidev->dev,
1853                                  rcd->egrbufs.buffers[idx].len,
1854                                  rcd->egrbufs.buffers[idx].addr,
1855                                  rcd->egrbufs.buffers[idx].dma);
1856                rcd->egrbufs.buffers[idx].addr = NULL;
1857                rcd->egrbufs.buffers[idx].dma = 0;
1858                rcd->egrbufs.buffers[idx].len = 0;
1859        }
1860bail:
1861        return ret;
1862}
1863