linux/drivers/infiniband/hw/hfi1/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <rdma/ib_mad.h>
  49#include <rdma/ib_user_verbs.h>
  50#include <linux/io.h>
  51#include <linux/module.h>
  52#include <linux/utsname.h>
  53#include <linux/rculist.h>
  54#include <linux/mm.h>
  55#include <linux/vmalloc.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "device.h"
  60#include "trace.h"
  61#include "qp.h"
  62#include "verbs_txreq.h"
  63
  64static unsigned int hfi1_lkey_table_size = 16;
  65module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  66                   S_IRUGO);
  67MODULE_PARM_DESC(lkey_table_size,
  68                 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  69
  70static unsigned int hfi1_max_pds = 0xFFFF;
  71module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  72MODULE_PARM_DESC(max_pds,
  73                 "Maximum number of protection domains to support");
  74
  75static unsigned int hfi1_max_ahs = 0xFFFF;
  76module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  77MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  78
  79unsigned int hfi1_max_cqes = 0x2FFFFF;
  80module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  81MODULE_PARM_DESC(max_cqes,
  82                 "Maximum number of completion queue entries to support");
  83
  84unsigned int hfi1_max_cqs = 0x1FFFF;
  85module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  86MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  87
  88unsigned int hfi1_max_qp_wrs = 0x3FFF;
  89module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  90MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  91
  92unsigned int hfi1_max_qps = 32768;
  93module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
  94MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  95
  96unsigned int hfi1_max_sges = 0x60;
  97module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
  98MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
  99
 100unsigned int hfi1_max_mcast_grps = 16384;
 101module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 102MODULE_PARM_DESC(max_mcast_grps,
 103                 "Maximum number of multicast groups to support");
 104
 105unsigned int hfi1_max_mcast_qp_attached = 16;
 106module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 107                   uint, S_IRUGO);
 108MODULE_PARM_DESC(max_mcast_qp_attached,
 109                 "Maximum number of attached QPs to support");
 110
 111unsigned int hfi1_max_srqs = 1024;
 112module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 113MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 114
 115unsigned int hfi1_max_srq_sges = 128;
 116module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 117MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 118
 119unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 120module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 121MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 122
 123unsigned short piothreshold = 256;
 124module_param(piothreshold, ushort, S_IRUGO);
 125MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 126
 127#define COPY_CACHELESS 1
 128#define COPY_ADAPTIVE  2
 129static unsigned int sge_copy_mode;
 130module_param(sge_copy_mode, uint, S_IRUGO);
 131MODULE_PARM_DESC(sge_copy_mode,
 132                 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 133
 134static void verbs_sdma_complete(
 135        struct sdma_txreq *cookie,
 136        int status);
 137
 138static int pio_wait(struct rvt_qp *qp,
 139                    struct send_context *sc,
 140                    struct hfi1_pkt_state *ps,
 141                    u32 flag);
 142
 143/* Length of buffer to create verbs txreq cache name */
 144#define TXREQ_NAME_LEN 24
 145
 146static uint wss_threshold;
 147module_param(wss_threshold, uint, S_IRUGO);
 148MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 149static uint wss_clean_period = 256;
 150module_param(wss_clean_period, uint, S_IRUGO);
 151MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 152
 153/* memory working set size */
 154struct hfi1_wss {
 155        unsigned long *entries;
 156        atomic_t total_count;
 157        atomic_t clean_counter;
 158        atomic_t clean_entry;
 159
 160        int threshold;
 161        int num_entries;
 162        long pages_mask;
 163};
 164
 165static struct hfi1_wss wss;
 166
 167int hfi1_wss_init(void)
 168{
 169        long llc_size;
 170        long llc_bits;
 171        long table_size;
 172        long table_bits;
 173
 174        /* check for a valid percent range - default to 80 if none or invalid */
 175        if (wss_threshold < 1 || wss_threshold > 100)
 176                wss_threshold = 80;
 177        /* reject a wildly large period */
 178        if (wss_clean_period > 1000000)
 179                wss_clean_period = 256;
 180        /* reject a zero period */
 181        if (wss_clean_period == 0)
 182                wss_clean_period = 1;
 183
 184        /*
 185         * Calculate the table size - the next power of 2 larger than the
 186         * LLC size.  LLC size is in KiB.
 187         */
 188        llc_size = wss_llc_size() * 1024;
 189        table_size = roundup_pow_of_two(llc_size);
 190
 191        /* one bit per page in rounded up table */
 192        llc_bits = llc_size / PAGE_SIZE;
 193        table_bits = table_size / PAGE_SIZE;
 194        wss.pages_mask = table_bits - 1;
 195        wss.num_entries = table_bits / BITS_PER_LONG;
 196
 197        wss.threshold = (llc_bits * wss_threshold) / 100;
 198        if (wss.threshold == 0)
 199                wss.threshold = 1;
 200
 201        atomic_set(&wss.clean_counter, wss_clean_period);
 202
 203        wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
 204                              GFP_KERNEL);
 205        if (!wss.entries) {
 206                hfi1_wss_exit();
 207                return -ENOMEM;
 208        }
 209
 210        return 0;
 211}
 212
 213void hfi1_wss_exit(void)
 214{
 215        /* coded to handle partially initialized and repeat callers */
 216        kfree(wss.entries);
 217        wss.entries = NULL;
 218}
 219
 220/*
 221 * Advance the clean counter.  When the clean period has expired,
 222 * clean an entry.
 223 *
 224 * This is implemented in atomics to avoid locking.  Because multiple
 225 * variables are involved, it can be racy which can lead to slightly
 226 * inaccurate information.  Since this is only a heuristic, this is
 227 * OK.  Any innaccuracies will clean themselves out as the counter
 228 * advances.  That said, it is unlikely the entry clean operation will
 229 * race - the next possible racer will not start until the next clean
 230 * period.
 231 *
 232 * The clean counter is implemented as a decrement to zero.  When zero
 233 * is reached an entry is cleaned.
 234 */
 235static void wss_advance_clean_counter(void)
 236{
 237        int entry;
 238        int weight;
 239        unsigned long bits;
 240
 241        /* become the cleaner if we decrement the counter to zero */
 242        if (atomic_dec_and_test(&wss.clean_counter)) {
 243                /*
 244                 * Set, not add, the clean period.  This avoids an issue
 245                 * where the counter could decrement below the clean period.
 246                 * Doing a set can result in lost decrements, slowing the
 247                 * clean advance.  Since this a heuristic, this possible
 248                 * slowdown is OK.
 249                 *
 250                 * An alternative is to loop, advancing the counter by a
 251                 * clean period until the result is > 0. However, this could
 252                 * lead to several threads keeping another in the clean loop.
 253                 * This could be mitigated by limiting the number of times
 254                 * we stay in the loop.
 255                 */
 256                atomic_set(&wss.clean_counter, wss_clean_period);
 257
 258                /*
 259                 * Uniquely grab the entry to clean and move to next.
 260                 * The current entry is always the lower bits of
 261                 * wss.clean_entry.  The table size, wss.num_entries,
 262                 * is always a power-of-2.
 263                 */
 264                entry = (atomic_inc_return(&wss.clean_entry) - 1)
 265                        & (wss.num_entries - 1);
 266
 267                /* clear the entry and count the bits */
 268                bits = xchg(&wss.entries[entry], 0);
 269                weight = hweight64((u64)bits);
 270                /* only adjust the contended total count if needed */
 271                if (weight)
 272                        atomic_sub(weight, &wss.total_count);
 273        }
 274}
 275
 276/*
 277 * Insert the given address into the working set array.
 278 */
 279static void wss_insert(void *address)
 280{
 281        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
 282        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 283        u32 nr = page & (BITS_PER_LONG - 1);
 284
 285        if (!test_and_set_bit(nr, &wss.entries[entry]))
 286                atomic_inc(&wss.total_count);
 287
 288        wss_advance_clean_counter();
 289}
 290
 291/*
 292 * Is the working set larger than the threshold?
 293 */
 294static inline bool wss_exceeds_threshold(void)
 295{
 296        return atomic_read(&wss.total_count) >= wss.threshold;
 297}
 298
 299/*
 300 * Length of header by opcode, 0 --> not supported
 301 */
 302const u8 hdr_len_by_opcode[256] = {
 303        /* RC */
 304        [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 305        [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 306        [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 307        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 308        [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 309        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 310        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 311        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 312        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 313        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 314        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 315        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 316        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 317        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 318        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 319        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 320        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 321        [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 322        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 323        [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 324        [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 325        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 326        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 327        /* UC */
 328        [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 329        [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 330        [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 331        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 332        [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 333        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 334        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 335        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 336        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 337        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 338        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 339        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 340        /* UD */
 341        [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 342        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 343};
 344
 345static const opcode_handler opcode_handler_tbl[256] = {
 346        /* RC */
 347        [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 348        [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 349        [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 350        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 351        [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 352        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 353        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 354        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 355        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 356        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 357        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 358        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 359        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 360        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 361        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 362        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 363        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 364        [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 365        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 366        [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 367        [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 368        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 369        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 370        /* UC */
 371        [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 372        [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 373        [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 374        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 375        [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 376        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 377        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 378        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 379        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 380        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 381        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 382        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 383        /* UD */
 384        [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 385        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 386        /* CNP */
 387        [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
 388};
 389
 390#define OPMASK 0x1f
 391
 392static const u32 pio_opmask[BIT(3)] = {
 393        /* RC */
 394        [IB_OPCODE_RC >> 5] =
 395                BIT(RC_OP(SEND_ONLY) & OPMASK) |
 396                BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 397                BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 398                BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 399                BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 400                BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 401                BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 402                BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 403                BIT(RC_OP(FETCH_ADD) & OPMASK),
 404        /* UC */
 405        [IB_OPCODE_UC >> 5] =
 406                BIT(UC_OP(SEND_ONLY) & OPMASK) |
 407                BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 408                BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 409                BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 410};
 411
 412/*
 413 * System image GUID.
 414 */
 415__be64 ib_hfi1_sys_image_guid;
 416
 417/**
 418 * hfi1_copy_sge - copy data to SGE memory
 419 * @ss: the SGE state
 420 * @data: the data to copy
 421 * @length: the length of the data
 422 * @release: boolean to release MR
 423 * @copy_last: do a separate copy of the last 8 bytes
 424 */
 425void hfi1_copy_sge(
 426        struct rvt_sge_state *ss,
 427        void *data, u32 length,
 428        bool release,
 429        bool copy_last)
 430{
 431        struct rvt_sge *sge = &ss->sge;
 432        int i;
 433        bool in_last = false;
 434        bool cacheless_copy = false;
 435
 436        if (sge_copy_mode == COPY_CACHELESS) {
 437                cacheless_copy = length >= PAGE_SIZE;
 438        } else if (sge_copy_mode == COPY_ADAPTIVE) {
 439                if (length >= PAGE_SIZE) {
 440                        /*
 441                         * NOTE: this *assumes*:
 442                         * o The first vaddr is the dest.
 443                         * o If multiple pages, then vaddr is sequential.
 444                         */
 445                        wss_insert(sge->vaddr);
 446                        if (length >= (2 * PAGE_SIZE))
 447                                wss_insert(sge->vaddr + PAGE_SIZE);
 448
 449                        cacheless_copy = wss_exceeds_threshold();
 450                } else {
 451                        wss_advance_clean_counter();
 452                }
 453        }
 454        if (copy_last) {
 455                if (length > 8) {
 456                        length -= 8;
 457                } else {
 458                        copy_last = false;
 459                        in_last = true;
 460                }
 461        }
 462
 463again:
 464        while (length) {
 465                u32 len = rvt_get_sge_length(sge, length);
 466
 467                WARN_ON_ONCE(len == 0);
 468                if (unlikely(in_last)) {
 469                        /* enforce byte transfer ordering */
 470                        for (i = 0; i < len; i++)
 471                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
 472                } else if (cacheless_copy) {
 473                        cacheless_memcpy(sge->vaddr, data, len);
 474                } else {
 475                        memcpy(sge->vaddr, data, len);
 476                }
 477                rvt_update_sge(ss, len, release);
 478                data += len;
 479                length -= len;
 480        }
 481
 482        if (copy_last) {
 483                copy_last = false;
 484                in_last = true;
 485                length = 8;
 486                goto again;
 487        }
 488}
 489
 490/*
 491 * Make sure the QP is ready and able to accept the given opcode.
 492 */
 493static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
 494{
 495        if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 496                return NULL;
 497        if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
 498            (opcode == IB_OPCODE_CNP))
 499                return opcode_handler_tbl[opcode];
 500
 501        return NULL;
 502}
 503
 504/**
 505 * hfi1_ib_rcv - process an incoming packet
 506 * @packet: data packet information
 507 *
 508 * This is called to process an incoming packet at interrupt level.
 509 *
 510 * Tlen is the length of the header + data + CRC in bytes.
 511 */
 512void hfi1_ib_rcv(struct hfi1_packet *packet)
 513{
 514        struct hfi1_ctxtdata *rcd = packet->rcd;
 515        struct ib_header *hdr = packet->hdr;
 516        u32 tlen = packet->tlen;
 517        struct hfi1_pportdata *ppd = rcd->ppd;
 518        struct hfi1_ibport *ibp = rcd_to_iport(rcd);
 519        struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 520        opcode_handler packet_handler;
 521        unsigned long flags;
 522        u32 qp_num;
 523        int lnh;
 524        u8 opcode;
 525        u16 lid;
 526
 527        /* Check for GRH */
 528        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 529        if (lnh == HFI1_LRH_BTH) {
 530                packet->ohdr = &hdr->u.oth;
 531        } else if (lnh == HFI1_LRH_GRH) {
 532                u32 vtf;
 533
 534                packet->ohdr = &hdr->u.l.oth;
 535                if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
 536                        goto drop;
 537                vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
 538                if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 539                        goto drop;
 540                packet->rcv_flags |= HFI1_HAS_GRH;
 541        } else {
 542                goto drop;
 543        }
 544
 545        trace_input_ibhdr(rcd->dd, hdr);
 546
 547        opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 548        inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 549
 550        /* Get the destination QP number. */
 551        qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
 552        lid = be16_to_cpu(hdr->lrh[1]);
 553        if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 554                     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
 555                struct rvt_mcast *mcast;
 556                struct rvt_mcast_qp *p;
 557
 558                if (lnh != HFI1_LRH_GRH)
 559                        goto drop;
 560                mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
 561                if (!mcast)
 562                        goto drop;
 563                list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 564                        packet->qp = p->qp;
 565                        spin_lock_irqsave(&packet->qp->r_lock, flags);
 566                        packet_handler = qp_ok(opcode, packet);
 567                        if (likely(packet_handler))
 568                                packet_handler(packet);
 569                        else
 570                                ibp->rvp.n_pkt_drops++;
 571                        spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 572                }
 573                /*
 574                 * Notify rvt_multicast_detach() if it is waiting for us
 575                 * to finish.
 576                 */
 577                if (atomic_dec_return(&mcast->refcount) <= 1)
 578                        wake_up(&mcast->wait);
 579        } else {
 580                rcu_read_lock();
 581                packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 582                if (!packet->qp) {
 583                        rcu_read_unlock();
 584                        goto drop;
 585                }
 586                spin_lock_irqsave(&packet->qp->r_lock, flags);
 587                packet_handler = qp_ok(opcode, packet);
 588                if (likely(packet_handler))
 589                        packet_handler(packet);
 590                else
 591                        ibp->rvp.n_pkt_drops++;
 592                spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 593                rcu_read_unlock();
 594        }
 595        return;
 596
 597drop:
 598        ibp->rvp.n_pkt_drops++;
 599}
 600
 601/*
 602 * This is called from a timer to check for QPs
 603 * which need kernel memory in order to send a packet.
 604 */
 605static void mem_timer(unsigned long data)
 606{
 607        struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
 608        struct list_head *list = &dev->memwait;
 609        struct rvt_qp *qp = NULL;
 610        struct iowait *wait;
 611        unsigned long flags;
 612        struct hfi1_qp_priv *priv;
 613
 614        write_seqlock_irqsave(&dev->iowait_lock, flags);
 615        if (!list_empty(list)) {
 616                wait = list_first_entry(list, struct iowait, list);
 617                qp = iowait_to_qp(wait);
 618                priv = qp->priv;
 619                list_del_init(&priv->s_iowait.list);
 620                priv->s_iowait.lock = NULL;
 621                /* refcount held until actual wake up */
 622                if (!list_empty(list))
 623                        mod_timer(&dev->mem_timer, jiffies + 1);
 624        }
 625        write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 626
 627        if (qp)
 628                hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 629}
 630
 631/*
 632 * This is called with progress side lock held.
 633 */
 634/* New API */
 635static void verbs_sdma_complete(
 636        struct sdma_txreq *cookie,
 637        int status)
 638{
 639        struct verbs_txreq *tx =
 640                container_of(cookie, struct verbs_txreq, txreq);
 641        struct rvt_qp *qp = tx->qp;
 642
 643        spin_lock(&qp->s_lock);
 644        if (tx->wqe) {
 645                hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 646        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
 647                struct ib_header *hdr;
 648
 649                hdr = &tx->phdr.hdr;
 650                hfi1_rc_send_complete(qp, hdr);
 651        }
 652        spin_unlock(&qp->s_lock);
 653
 654        hfi1_put_txreq(tx);
 655}
 656
 657static int wait_kmem(struct hfi1_ibdev *dev,
 658                     struct rvt_qp *qp,
 659                     struct hfi1_pkt_state *ps)
 660{
 661        struct hfi1_qp_priv *priv = qp->priv;
 662        unsigned long flags;
 663        int ret = 0;
 664
 665        spin_lock_irqsave(&qp->s_lock, flags);
 666        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 667                write_seqlock(&dev->iowait_lock);
 668                list_add_tail(&ps->s_txreq->txreq.list,
 669                              &priv->s_iowait.tx_head);
 670                if (list_empty(&priv->s_iowait.list)) {
 671                        if (list_empty(&dev->memwait))
 672                                mod_timer(&dev->mem_timer, jiffies + 1);
 673                        qp->s_flags |= RVT_S_WAIT_KMEM;
 674                        list_add_tail(&priv->s_iowait.list, &dev->memwait);
 675                        priv->s_iowait.lock = &dev->iowait_lock;
 676                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 677                        rvt_get_qp(qp);
 678                }
 679                write_sequnlock(&dev->iowait_lock);
 680                qp->s_flags &= ~RVT_S_BUSY;
 681                ret = -EBUSY;
 682        }
 683        spin_unlock_irqrestore(&qp->s_lock, flags);
 684
 685        return ret;
 686}
 687
 688/*
 689 * This routine calls txadds for each sg entry.
 690 *
 691 * Add failures will revert the sge cursor
 692 */
 693static noinline int build_verbs_ulp_payload(
 694        struct sdma_engine *sde,
 695        u32 length,
 696        struct verbs_txreq *tx)
 697{
 698        struct rvt_sge_state *ss = tx->ss;
 699        struct rvt_sge *sg_list = ss->sg_list;
 700        struct rvt_sge sge = ss->sge;
 701        u8 num_sge = ss->num_sge;
 702        u32 len;
 703        int ret = 0;
 704
 705        while (length) {
 706                len = ss->sge.length;
 707                if (len > length)
 708                        len = length;
 709                if (len > ss->sge.sge_length)
 710                        len = ss->sge.sge_length;
 711                WARN_ON_ONCE(len == 0);
 712                ret = sdma_txadd_kvaddr(
 713                        sde->dd,
 714                        &tx->txreq,
 715                        ss->sge.vaddr,
 716                        len);
 717                if (ret)
 718                        goto bail_txadd;
 719                rvt_update_sge(ss, len, false);
 720                length -= len;
 721        }
 722        return ret;
 723bail_txadd:
 724        /* unwind cursor */
 725        ss->sge = sge;
 726        ss->num_sge = num_sge;
 727        ss->sg_list = sg_list;
 728        return ret;
 729}
 730
 731/*
 732 * Build the number of DMA descriptors needed to send length bytes of data.
 733 *
 734 * NOTE: DMA mapping is held in the tx until completed in the ring or
 735 *       the tx desc is freed without having been submitted to the ring
 736 *
 737 * This routine ensures all the helper routine calls succeed.
 738 */
 739/* New API */
 740static int build_verbs_tx_desc(
 741        struct sdma_engine *sde,
 742        u32 length,
 743        struct verbs_txreq *tx,
 744        struct hfi1_ahg_info *ahg_info,
 745        u64 pbc)
 746{
 747        int ret = 0;
 748        struct hfi1_sdma_header *phdr = &tx->phdr;
 749        u16 hdrbytes = tx->hdr_dwords << 2;
 750
 751        if (!ahg_info->ahgcount) {
 752                ret = sdma_txinit_ahg(
 753                        &tx->txreq,
 754                        ahg_info->tx_flags,
 755                        hdrbytes + length,
 756                        ahg_info->ahgidx,
 757                        0,
 758                        NULL,
 759                        0,
 760                        verbs_sdma_complete);
 761                if (ret)
 762                        goto bail_txadd;
 763                phdr->pbc = cpu_to_le64(pbc);
 764                ret = sdma_txadd_kvaddr(
 765                        sde->dd,
 766                        &tx->txreq,
 767                        phdr,
 768                        hdrbytes);
 769                if (ret)
 770                        goto bail_txadd;
 771        } else {
 772                ret = sdma_txinit_ahg(
 773                        &tx->txreq,
 774                        ahg_info->tx_flags,
 775                        length,
 776                        ahg_info->ahgidx,
 777                        ahg_info->ahgcount,
 778                        ahg_info->ahgdesc,
 779                        hdrbytes,
 780                        verbs_sdma_complete);
 781                if (ret)
 782                        goto bail_txadd;
 783        }
 784
 785        /* add the ulp payload - if any. tx->ss can be NULL for acks */
 786        if (tx->ss)
 787                ret = build_verbs_ulp_payload(sde, length, tx);
 788bail_txadd:
 789        return ret;
 790}
 791
 792int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 793                        u64 pbc)
 794{
 795        struct hfi1_qp_priv *priv = qp->priv;
 796        struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 797        u32 hdrwords = qp->s_hdrwords;
 798        u32 len = ps->s_txreq->s_cur_size;
 799        u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
 800        struct hfi1_ibdev *dev = ps->dev;
 801        struct hfi1_pportdata *ppd = ps->ppd;
 802        struct verbs_txreq *tx;
 803        u64 pbc_flags = 0;
 804        u8 sc5 = priv->s_sc;
 805
 806        int ret;
 807
 808        tx = ps->s_txreq;
 809        if (!sdma_txreq_built(&tx->txreq)) {
 810                if (likely(pbc == 0)) {
 811                        u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 812                        /* No vl15 here */
 813                        /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
 814                        pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
 815
 816                        pbc = create_pbc(ppd,
 817                                         pbc_flags,
 818                                         qp->srate_mbps,
 819                                         vl,
 820                                         plen);
 821                }
 822                tx->wqe = qp->s_wqe;
 823                ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
 824                if (unlikely(ret))
 825                        goto bail_build;
 826        }
 827        ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
 828        if (unlikely(ret < 0)) {
 829                if (ret == -ECOMM)
 830                        goto bail_ecomm;
 831                return ret;
 832        }
 833        trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 834                                &ps->s_txreq->phdr.hdr);
 835        return ret;
 836
 837bail_ecomm:
 838        /* The current one got "sent" */
 839        return 0;
 840bail_build:
 841        ret = wait_kmem(dev, qp, ps);
 842        if (!ret) {
 843                /* free txreq - bad state */
 844                hfi1_put_txreq(ps->s_txreq);
 845                ps->s_txreq = NULL;
 846        }
 847        return ret;
 848}
 849
 850/*
 851 * If we are now in the error state, return zero to flush the
 852 * send work request.
 853 */
 854static int pio_wait(struct rvt_qp *qp,
 855                    struct send_context *sc,
 856                    struct hfi1_pkt_state *ps,
 857                    u32 flag)
 858{
 859        struct hfi1_qp_priv *priv = qp->priv;
 860        struct hfi1_devdata *dd = sc->dd;
 861        struct hfi1_ibdev *dev = &dd->verbs_dev;
 862        unsigned long flags;
 863        int ret = 0;
 864
 865        /*
 866         * Note that as soon as want_buffer() is called and
 867         * possibly before it returns, sc_piobufavail()
 868         * could be called. Therefore, put QP on the I/O wait list before
 869         * enabling the PIO avail interrupt.
 870         */
 871        spin_lock_irqsave(&qp->s_lock, flags);
 872        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 873                write_seqlock(&dev->iowait_lock);
 874                list_add_tail(&ps->s_txreq->txreq.list,
 875                              &priv->s_iowait.tx_head);
 876                if (list_empty(&priv->s_iowait.list)) {
 877                        struct hfi1_ibdev *dev = &dd->verbs_dev;
 878                        int was_empty;
 879
 880                        dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 881                        dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
 882                        qp->s_flags |= flag;
 883                        was_empty = list_empty(&sc->piowait);
 884                        list_add_tail(&priv->s_iowait.list, &sc->piowait);
 885                        priv->s_iowait.lock = &dev->iowait_lock;
 886                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 887                        rvt_get_qp(qp);
 888                        /* counting: only call wantpiobuf_intr if first user */
 889                        if (was_empty)
 890                                hfi1_sc_wantpiobuf_intr(sc, 1);
 891                }
 892                write_sequnlock(&dev->iowait_lock);
 893                qp->s_flags &= ~RVT_S_BUSY;
 894                ret = -EBUSY;
 895        }
 896        spin_unlock_irqrestore(&qp->s_lock, flags);
 897        return ret;
 898}
 899
 900static void verbs_pio_complete(void *arg, int code)
 901{
 902        struct rvt_qp *qp = (struct rvt_qp *)arg;
 903        struct hfi1_qp_priv *priv = qp->priv;
 904
 905        if (iowait_pio_dec(&priv->s_iowait))
 906                iowait_drain_wakeup(&priv->s_iowait);
 907}
 908
 909int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 910                        u64 pbc)
 911{
 912        struct hfi1_qp_priv *priv = qp->priv;
 913        u32 hdrwords = qp->s_hdrwords;
 914        struct rvt_sge_state *ss = ps->s_txreq->ss;
 915        u32 len = ps->s_txreq->s_cur_size;
 916        u32 dwords = (len + 3) >> 2;
 917        u32 plen = hdrwords + dwords + 2; /* includes pbc */
 918        struct hfi1_pportdata *ppd = ps->ppd;
 919        u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
 920        u64 pbc_flags = 0;
 921        u8 sc5;
 922        unsigned long flags = 0;
 923        struct send_context *sc;
 924        struct pio_buf *pbuf;
 925        int wc_status = IB_WC_SUCCESS;
 926        int ret = 0;
 927        pio_release_cb cb = NULL;
 928
 929        /* only RC/UC use complete */
 930        switch (qp->ibqp.qp_type) {
 931        case IB_QPT_RC:
 932        case IB_QPT_UC:
 933                cb = verbs_pio_complete;
 934                break;
 935        default:
 936                break;
 937        }
 938
 939        /* vl15 special case taken care of in ud.c */
 940        sc5 = priv->s_sc;
 941        sc = ps->s_txreq->psc;
 942
 943        if (likely(pbc == 0)) {
 944                u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 945                /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
 946                pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
 947                pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
 948        }
 949        if (cb)
 950                iowait_pio_inc(&priv->s_iowait);
 951        pbuf = sc_buffer_alloc(sc, plen, cb, qp);
 952        if (unlikely(!pbuf)) {
 953                if (cb)
 954                        verbs_pio_complete(qp, 0);
 955                if (ppd->host_link_state != HLS_UP_ACTIVE) {
 956                        /*
 957                         * If we have filled the PIO buffers to capacity and are
 958                         * not in an active state this request is not going to
 959                         * go out to so just complete it with an error or else a
 960                         * ULP or the core may be stuck waiting.
 961                         */
 962                        hfi1_cdbg(
 963                                PIO,
 964                                "alloc failed. state not active, completing");
 965                        wc_status = IB_WC_GENERAL_ERR;
 966                        goto pio_bail;
 967                } else {
 968                        /*
 969                         * This is a normal occurrence. The PIO buffs are full
 970                         * up but we are still happily sending, well we could be
 971                         * so lets continue to queue the request.
 972                         */
 973                        hfi1_cdbg(PIO, "alloc failed. state active, queuing");
 974                        ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
 975                        if (!ret)
 976                                /* txreq not queued - free */
 977                                goto bail;
 978                        /* tx consumed in wait */
 979                        return ret;
 980                }
 981        }
 982
 983        if (len == 0) {
 984                pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
 985        } else {
 986                if (ss) {
 987                        seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
 988                        while (len) {
 989                                void *addr = ss->sge.vaddr;
 990                                u32 slen = ss->sge.length;
 991
 992                                if (slen > len)
 993                                        slen = len;
 994                                rvt_update_sge(ss, slen, false);
 995                                seg_pio_copy_mid(pbuf, addr, slen);
 996                                len -= slen;
 997                        }
 998                        seg_pio_copy_end(pbuf);
 999                }
1000        }
1001
1002        trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1003                               &ps->s_txreq->phdr.hdr);
1004
1005pio_bail:
1006        if (qp->s_wqe) {
1007                spin_lock_irqsave(&qp->s_lock, flags);
1008                hfi1_send_complete(qp, qp->s_wqe, wc_status);
1009                spin_unlock_irqrestore(&qp->s_lock, flags);
1010        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1011                spin_lock_irqsave(&qp->s_lock, flags);
1012                hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1013                spin_unlock_irqrestore(&qp->s_lock, flags);
1014        }
1015
1016        ret = 0;
1017
1018bail:
1019        hfi1_put_txreq(ps->s_txreq);
1020        return ret;
1021}
1022
1023/*
1024 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1025 * being an entry from the partition key table), return 0
1026 * otherwise. Use the matching criteria for egress partition keys
1027 * specified in the OPAv1 spec., section 9.1l.7.
1028 */
1029static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1030{
1031        u16 mkey = pkey & PKEY_LOW_15_MASK;
1032        u16 mentry = ent & PKEY_LOW_15_MASK;
1033
1034        if (mkey == mentry) {
1035                /*
1036                 * If pkey[15] is set (full partition member),
1037                 * is bit 15 in the corresponding table element
1038                 * clear (limited member)?
1039                 */
1040                if (pkey & PKEY_MEMBER_MASK)
1041                        return !!(ent & PKEY_MEMBER_MASK);
1042                return 1;
1043        }
1044        return 0;
1045}
1046
1047/**
1048 * egress_pkey_check - check P_KEY of a packet
1049 * @ppd:    Physical IB port data
1050 * @lrh: Local route header
1051 * @bth: Base transport header
1052 * @sc5:    SC for packet
1053 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1054 * only. If it is negative value, then it means user contexts is calling this
1055 * function.
1056 *
1057 * It checks if hdr's pkey is valid.
1058 *
1059 * Return: 0 on success, otherwise, 1
1060 */
1061int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1062                      u8 sc5, int8_t s_pkey_index)
1063{
1064        struct hfi1_devdata *dd;
1065        int i;
1066        u16 pkey;
1067        int is_user_ctxt_mechanism = (s_pkey_index < 0);
1068
1069        if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1070                return 0;
1071
1072        pkey = (u16)be32_to_cpu(bth[0]);
1073
1074        /* If SC15, pkey[0:14] must be 0x7fff */
1075        if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1076                goto bad;
1077
1078        /* Is the pkey = 0x0, or 0x8000? */
1079        if ((pkey & PKEY_LOW_15_MASK) == 0)
1080                goto bad;
1081
1082        /*
1083         * For the kernel contexts only, if a qp is passed into the function,
1084         * the most likely matching pkey has index qp->s_pkey_index
1085         */
1086        if (!is_user_ctxt_mechanism &&
1087            egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1088                return 0;
1089        }
1090
1091        for (i = 0; i < MAX_PKEY_VALUES; i++) {
1092                if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1093                        return 0;
1094        }
1095bad:
1096        /*
1097         * For the user-context mechanism, the P_KEY check would only happen
1098         * once per SDMA request, not once per packet.  Therefore, there's no
1099         * need to increment the counter for the user-context mechanism.
1100         */
1101        if (!is_user_ctxt_mechanism) {
1102                incr_cntr64(&ppd->port_xmit_constraint_errors);
1103                dd = ppd->dd;
1104                if (!(dd->err_info_xmit_constraint.status &
1105                      OPA_EI_STATUS_SMASK)) {
1106                        u16 slid = be16_to_cpu(lrh[3]);
1107
1108                        dd->err_info_xmit_constraint.status |=
1109                                OPA_EI_STATUS_SMASK;
1110                        dd->err_info_xmit_constraint.slid = slid;
1111                        dd->err_info_xmit_constraint.pkey = pkey;
1112                }
1113        }
1114        return 1;
1115}
1116
1117/**
1118 * get_send_routine - choose an egress routine
1119 *
1120 * Choose an egress routine based on QP type
1121 * and size
1122 */
1123static inline send_routine get_send_routine(struct rvt_qp *qp,
1124                                            struct verbs_txreq *tx)
1125{
1126        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1127        struct hfi1_qp_priv *priv = qp->priv;
1128        struct ib_header *h = &tx->phdr.hdr;
1129
1130        if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1131                return dd->process_pio_send;
1132        switch (qp->ibqp.qp_type) {
1133        case IB_QPT_SMI:
1134                return dd->process_pio_send;
1135        case IB_QPT_GSI:
1136        case IB_QPT_UD:
1137                break;
1138        case IB_QPT_UC:
1139        case IB_QPT_RC: {
1140                u8 op = get_opcode(h);
1141
1142                if (piothreshold &&
1143                    tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1144                    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1145                    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1146                    !sdma_txreq_built(&tx->txreq))
1147                        return dd->process_pio_send;
1148                break;
1149        }
1150        default:
1151                break;
1152        }
1153        return dd->process_dma_send;
1154}
1155
1156/**
1157 * hfi1_verbs_send - send a packet
1158 * @qp: the QP to send on
1159 * @ps: the state of the packet to send
1160 *
1161 * Return zero if packet is sent or queued OK.
1162 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1163 */
1164int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1165{
1166        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1167        struct hfi1_qp_priv *priv = qp->priv;
1168        struct ib_other_headers *ohdr;
1169        struct ib_header *hdr;
1170        send_routine sr;
1171        int ret;
1172        u8 lnh;
1173
1174        hdr = &ps->s_txreq->phdr.hdr;
1175        /* locate the pkey within the headers */
1176        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1177        if (lnh == HFI1_LRH_GRH)
1178                ohdr = &hdr->u.l.oth;
1179        else
1180                ohdr = &hdr->u.oth;
1181
1182        sr = get_send_routine(qp, ps->s_txreq);
1183        ret = egress_pkey_check(dd->pport,
1184                                hdr->lrh,
1185                                ohdr->bth,
1186                                priv->s_sc,
1187                                qp->s_pkey_index);
1188        if (unlikely(ret)) {
1189                /*
1190                 * The value we are returning here does not get propagated to
1191                 * the verbs caller. Thus we need to complete the request with
1192                 * error otherwise the caller could be sitting waiting on the
1193                 * completion event. Only do this for PIO. SDMA has its own
1194                 * mechanism for handling the errors. So for SDMA we can just
1195                 * return.
1196                 */
1197                if (sr == dd->process_pio_send) {
1198                        unsigned long flags;
1199
1200                        hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1201                                  __func__);
1202                        spin_lock_irqsave(&qp->s_lock, flags);
1203                        hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1204                        spin_unlock_irqrestore(&qp->s_lock, flags);
1205                }
1206                return -EINVAL;
1207        }
1208        if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1209                return pio_wait(qp,
1210                                ps->s_txreq->psc,
1211                                ps,
1212                                RVT_S_WAIT_PIO_DRAIN);
1213        return sr(qp, ps, 0);
1214}
1215
1216/**
1217 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1218 * @dd: the device data structure
1219 */
1220static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1221{
1222        struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1223        u16 ver = dd->dc8051_ver;
1224
1225        memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1226
1227        rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1228                                    (u64)dc8051_ver_min(ver);
1229        rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1230                        IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1231                        IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1232                        IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1233                        IB_DEVICE_MEM_MGT_EXTENSIONS;
1234        rdi->dparms.props.page_size_cap = PAGE_SIZE;
1235        rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1236        rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1237        rdi->dparms.props.hw_ver = dd->minrev;
1238        rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1239        rdi->dparms.props.max_mr_size = U64_MAX;
1240        rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1241        rdi->dparms.props.max_qp = hfi1_max_qps;
1242        rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1243        rdi->dparms.props.max_sge = hfi1_max_sges;
1244        rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1245        rdi->dparms.props.max_cq = hfi1_max_cqs;
1246        rdi->dparms.props.max_ah = hfi1_max_ahs;
1247        rdi->dparms.props.max_cqe = hfi1_max_cqes;
1248        rdi->dparms.props.max_mr = rdi->lkey_table.max;
1249        rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1250        rdi->dparms.props.max_map_per_fmr = 32767;
1251        rdi->dparms.props.max_pd = hfi1_max_pds;
1252        rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1253        rdi->dparms.props.max_qp_init_rd_atom = 255;
1254        rdi->dparms.props.max_srq = hfi1_max_srqs;
1255        rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1256        rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1257        rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1258        rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1259        rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1260        rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1261        rdi->dparms.props.max_total_mcast_qp_attach =
1262                                        rdi->dparms.props.max_mcast_qp_attach *
1263                                        rdi->dparms.props.max_mcast_grp;
1264}
1265
1266static inline u16 opa_speed_to_ib(u16 in)
1267{
1268        u16 out = 0;
1269
1270        if (in & OPA_LINK_SPEED_25G)
1271                out |= IB_SPEED_EDR;
1272        if (in & OPA_LINK_SPEED_12_5G)
1273                out |= IB_SPEED_FDR;
1274
1275        return out;
1276}
1277
1278/*
1279 * Convert a single OPA link width (no multiple flags) to an IB value.
1280 * A zero OPA link width means link down, which means the IB width value
1281 * is a don't care.
1282 */
1283static inline u16 opa_width_to_ib(u16 in)
1284{
1285        switch (in) {
1286        case OPA_LINK_WIDTH_1X:
1287        /* map 2x and 3x to 1x as they don't exist in IB */
1288        case OPA_LINK_WIDTH_2X:
1289        case OPA_LINK_WIDTH_3X:
1290                return IB_WIDTH_1X;
1291        default: /* link down or unknown, return our largest width */
1292        case OPA_LINK_WIDTH_4X:
1293                return IB_WIDTH_4X;
1294        }
1295}
1296
1297static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1298                      struct ib_port_attr *props)
1299{
1300        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1301        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1302        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1303        u16 lid = ppd->lid;
1304
1305        /* props being zeroed by the caller, avoid zeroing it here */
1306        props->lid = lid ? lid : 0;
1307        props->lmc = ppd->lmc;
1308        /* OPA logical states match IB logical states */
1309        props->state = driver_lstate(ppd);
1310        props->phys_state = hfi1_ibphys_portstate(ppd);
1311        props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1312        props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1313        /* see rate_show() in ib core/sysfs.c */
1314        props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1315        props->max_vl_num = ppd->vls_supported;
1316
1317        /* Once we are a "first class" citizen and have added the OPA MTUs to
1318         * the core we can advertise the larger MTU enum to the ULPs, for now
1319         * advertise only 4K.
1320         *
1321         * Those applications which are either OPA aware or pass the MTU enum
1322         * from the Path Records to us will get the new 8k MTU.  Those that
1323         * attempt to process the MTU enum may fail in various ways.
1324         */
1325        props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1326                                      4096 : hfi1_max_mtu), IB_MTU_4096);
1327        props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1328                mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1329
1330        return 0;
1331}
1332
1333static int modify_device(struct ib_device *device,
1334                         int device_modify_mask,
1335                         struct ib_device_modify *device_modify)
1336{
1337        struct hfi1_devdata *dd = dd_from_ibdev(device);
1338        unsigned i;
1339        int ret;
1340
1341        if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1342                                   IB_DEVICE_MODIFY_NODE_DESC)) {
1343                ret = -EOPNOTSUPP;
1344                goto bail;
1345        }
1346
1347        if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1348                memcpy(device->node_desc, device_modify->node_desc,
1349                       IB_DEVICE_NODE_DESC_MAX);
1350                for (i = 0; i < dd->num_pports; i++) {
1351                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1352
1353                        hfi1_node_desc_chg(ibp);
1354                }
1355        }
1356
1357        if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1358                ib_hfi1_sys_image_guid =
1359                        cpu_to_be64(device_modify->sys_image_guid);
1360                for (i = 0; i < dd->num_pports; i++) {
1361                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1362
1363                        hfi1_sys_guid_chg(ibp);
1364                }
1365        }
1366
1367        ret = 0;
1368
1369bail:
1370        return ret;
1371}
1372
1373static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1374{
1375        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1376        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1377        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1378        int ret;
1379
1380        set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1381                             OPA_LINKDOWN_REASON_UNKNOWN);
1382        ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1383        return ret;
1384}
1385
1386static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1387                            int guid_index, __be64 *guid)
1388{
1389        struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1390
1391        if (guid_index >= HFI1_GUIDS_PER_PORT)
1392                return -EINVAL;
1393
1394        *guid = get_sguid(ibp, guid_index);
1395        return 0;
1396}
1397
1398/*
1399 * convert ah port,sl to sc
1400 */
1401u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1402{
1403        struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1404
1405        return ibp->sl_to_sc[ah->sl];
1406}
1407
1408static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1409{
1410        struct hfi1_ibport *ibp;
1411        struct hfi1_pportdata *ppd;
1412        struct hfi1_devdata *dd;
1413        u8 sc5;
1414
1415        /* test the mapping for validity */
1416        ibp = to_iport(ibdev, ah_attr->port_num);
1417        ppd = ppd_from_ibp(ibp);
1418        sc5 = ibp->sl_to_sc[ah_attr->sl];
1419        dd = dd_from_ppd(ppd);
1420        if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1421                return -EINVAL;
1422        return 0;
1423}
1424
1425static void hfi1_notify_new_ah(struct ib_device *ibdev,
1426                               struct ib_ah_attr *ah_attr,
1427                               struct rvt_ah *ah)
1428{
1429        struct hfi1_ibport *ibp;
1430        struct hfi1_pportdata *ppd;
1431        struct hfi1_devdata *dd;
1432        u8 sc5;
1433
1434        /*
1435         * Do not trust reading anything from rvt_ah at this point as it is not
1436         * done being setup. We can however modify things which we need to set.
1437         */
1438
1439        ibp = to_iport(ibdev, ah_attr->port_num);
1440        ppd = ppd_from_ibp(ibp);
1441        sc5 = ibp->sl_to_sc[ah->attr.sl];
1442        dd = dd_from_ppd(ppd);
1443        ah->vl = sc_to_vlt(dd, sc5);
1444        if (ah->vl < num_vls || ah->vl == 15)
1445                ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1446}
1447
1448struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1449{
1450        struct ib_ah_attr attr;
1451        struct ib_ah *ah = ERR_PTR(-EINVAL);
1452        struct rvt_qp *qp0;
1453
1454        memset(&attr, 0, sizeof(attr));
1455        attr.dlid = dlid;
1456        attr.port_num = ppd_from_ibp(ibp)->port;
1457        rcu_read_lock();
1458        qp0 = rcu_dereference(ibp->rvp.qp[0]);
1459        if (qp0)
1460                ah = ib_create_ah(qp0->ibqp.pd, &attr);
1461        rcu_read_unlock();
1462        return ah;
1463}
1464
1465/**
1466 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1467 * @dd: the hfi1_ib device
1468 */
1469unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1470{
1471        return ARRAY_SIZE(dd->pport[0].pkeys);
1472}
1473
1474static void init_ibport(struct hfi1_pportdata *ppd)
1475{
1476        struct hfi1_ibport *ibp = &ppd->ibport_data;
1477        size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1478        int i;
1479
1480        for (i = 0; i < sz; i++) {
1481                ibp->sl_to_sc[i] = i;
1482                ibp->sc_to_sl[i] = i;
1483        }
1484
1485        spin_lock_init(&ibp->rvp.lock);
1486        /* Set the prefix to the default value (see ch. 4.1.1) */
1487        ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1488        ibp->rvp.sm_lid = 0;
1489        /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1490        ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1491                IB_PORT_CAP_MASK_NOTICE_SUP;
1492        ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1493        ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1494        ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1495        ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1496        ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1497
1498        RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1499        RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1500}
1501
1502static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1503                                size_t str_len)
1504{
1505        struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1506        struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1507        u16 ver = dd_from_dev(dev)->dc8051_ver;
1508
1509        snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1510                 dc8051_ver_min(ver));
1511}
1512
1513static const char * const driver_cntr_names[] = {
1514        /* must be element 0*/
1515        "DRIVER_KernIntr",
1516        "DRIVER_ErrorIntr",
1517        "DRIVER_Tx_Errs",
1518        "DRIVER_Rcv_Errs",
1519        "DRIVER_HW_Errs",
1520        "DRIVER_NoPIOBufs",
1521        "DRIVER_CtxtsOpen",
1522        "DRIVER_RcvLen_Errs",
1523        "DRIVER_EgrBufFull",
1524        "DRIVER_EgrHdrFull"
1525};
1526
1527static const char **dev_cntr_names;
1528static const char **port_cntr_names;
1529static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1530static int num_dev_cntrs;
1531static int num_port_cntrs;
1532static int cntr_names_initialized;
1533
1534/*
1535 * Convert a list of names separated by '\n' into an array of NULL terminated
1536 * strings. Optionally some entries can be reserved in the array to hold extra
1537 * external strings.
1538 */
1539static int init_cntr_names(const char *names_in,
1540                           const size_t names_len,
1541                           int num_extra_names,
1542                           int *num_cntrs,
1543                           const char ***cntr_names)
1544{
1545        char *names_out, *p, **q;
1546        int i, n;
1547
1548        n = 0;
1549        for (i = 0; i < names_len; i++)
1550                if (names_in[i] == '\n')
1551                        n++;
1552
1553        names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1554                            GFP_KERNEL);
1555        if (!names_out) {
1556                *num_cntrs = 0;
1557                *cntr_names = NULL;
1558                return -ENOMEM;
1559        }
1560
1561        p = names_out + (n + num_extra_names) * sizeof(char *);
1562        memcpy(p, names_in, names_len);
1563
1564        q = (char **)names_out;
1565        for (i = 0; i < n; i++) {
1566                q[i] = p;
1567                p = strchr(p, '\n');
1568                *p++ = '\0';
1569        }
1570
1571        *num_cntrs = n;
1572        *cntr_names = (const char **)names_out;
1573        return 0;
1574}
1575
1576static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1577                                            u8 port_num)
1578{
1579        int i, err;
1580
1581        if (!cntr_names_initialized) {
1582                struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1583
1584                err = init_cntr_names(dd->cntrnames,
1585                                      dd->cntrnameslen,
1586                                      num_driver_cntrs,
1587                                      &num_dev_cntrs,
1588                                      &dev_cntr_names);
1589                if (err)
1590                        return NULL;
1591
1592                for (i = 0; i < num_driver_cntrs; i++)
1593                        dev_cntr_names[num_dev_cntrs + i] =
1594                                driver_cntr_names[i];
1595
1596                err = init_cntr_names(dd->portcntrnames,
1597                                      dd->portcntrnameslen,
1598                                      0,
1599                                      &num_port_cntrs,
1600                                      &port_cntr_names);
1601                if (err) {
1602                        kfree(dev_cntr_names);
1603                        dev_cntr_names = NULL;
1604                        return NULL;
1605                }
1606                cntr_names_initialized = 1;
1607        }
1608
1609        if (!port_num)
1610                return rdma_alloc_hw_stats_struct(
1611                                dev_cntr_names,
1612                                num_dev_cntrs + num_driver_cntrs,
1613                                RDMA_HW_STATS_DEFAULT_LIFESPAN);
1614        else
1615                return rdma_alloc_hw_stats_struct(
1616                                port_cntr_names,
1617                                num_port_cntrs,
1618                                RDMA_HW_STATS_DEFAULT_LIFESPAN);
1619}
1620
1621static u64 hfi1_sps_ints(void)
1622{
1623        unsigned long flags;
1624        struct hfi1_devdata *dd;
1625        u64 sps_ints = 0;
1626
1627        spin_lock_irqsave(&hfi1_devs_lock, flags);
1628        list_for_each_entry(dd, &hfi1_dev_list, list) {
1629                sps_ints += get_all_cpu_total(dd->int_counter);
1630        }
1631        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1632        return sps_ints;
1633}
1634
1635static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1636                        u8 port, int index)
1637{
1638        u64 *values;
1639        int count;
1640
1641        if (!port) {
1642                u64 *stats = (u64 *)&hfi1_stats;
1643                int i;
1644
1645                hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1646                values[num_dev_cntrs] = hfi1_sps_ints();
1647                for (i = 1; i < num_driver_cntrs; i++)
1648                        values[num_dev_cntrs + i] = stats[i];
1649                count = num_dev_cntrs + num_driver_cntrs;
1650        } else {
1651                struct hfi1_ibport *ibp = to_iport(ibdev, port);
1652
1653                hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1654                count = num_port_cntrs;
1655        }
1656
1657        memcpy(stats->value, values, count * sizeof(u64));
1658        return count;
1659}
1660
1661/**
1662 * hfi1_register_ib_device - register our device with the infiniband core
1663 * @dd: the device data structure
1664 * Return 0 if successful, errno if unsuccessful.
1665 */
1666int hfi1_register_ib_device(struct hfi1_devdata *dd)
1667{
1668        struct hfi1_ibdev *dev = &dd->verbs_dev;
1669        struct ib_device *ibdev = &dev->rdi.ibdev;
1670        struct hfi1_pportdata *ppd = dd->pport;
1671        struct hfi1_ibport *ibp = &ppd->ibport_data;
1672        unsigned i;
1673        int ret;
1674        size_t lcpysz = IB_DEVICE_NAME_MAX;
1675
1676        for (i = 0; i < dd->num_pports; i++)
1677                init_ibport(ppd + i);
1678
1679        /* Only need to initialize non-zero fields. */
1680
1681        setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1682
1683        seqlock_init(&dev->iowait_lock);
1684        seqlock_init(&dev->txwait_lock);
1685        INIT_LIST_HEAD(&dev->txwait);
1686        INIT_LIST_HEAD(&dev->memwait);
1687
1688        ret = verbs_txreq_init(dev);
1689        if (ret)
1690                goto err_verbs_txreq;
1691
1692        /* Use first-port GUID as node guid */
1693        ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1694
1695        /*
1696         * The system image GUID is supposed to be the same for all
1697         * HFIs in a single system but since there can be other
1698         * device types in the system, we can't be sure this is unique.
1699         */
1700        if (!ib_hfi1_sys_image_guid)
1701                ib_hfi1_sys_image_guid = ibdev->node_guid;
1702        lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1703        strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1704        ibdev->owner = THIS_MODULE;
1705        ibdev->phys_port_cnt = dd->num_pports;
1706        ibdev->dev.parent = &dd->pcidev->dev;
1707        ibdev->modify_device = modify_device;
1708        ibdev->alloc_hw_stats = alloc_hw_stats;
1709        ibdev->get_hw_stats = get_hw_stats;
1710
1711        /* keep process mad in the driver */
1712        ibdev->process_mad = hfi1_process_mad;
1713        ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1714
1715        strncpy(ibdev->node_desc, init_utsname()->nodename,
1716                sizeof(ibdev->node_desc));
1717
1718        /*
1719         * Fill in rvt info object.
1720         */
1721        dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1722        dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1723        dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1724        dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1725        dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1726        dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1727        dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1728        dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1729        dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1730        /*
1731         * Fill in rvt info device attributes.
1732         */
1733        hfi1_fill_device_attr(dd);
1734
1735        /* queue pair */
1736        dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1737        dd->verbs_dev.rdi.dparms.qpn_start = 0;
1738        dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1739        dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1740        dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1741        dd->verbs_dev.rdi.dparms.qpn_res_end =
1742        dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1743        dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1744        dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1745        dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1746        dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1747        dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1748        dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1749
1750        dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1751        dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1752        dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1753        dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1754        dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1755        dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1756        dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1757        dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1758        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1759        dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1760        dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1761        dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1762        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1763        dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1764        dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1765        dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1766        dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1767        dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1768        dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1769
1770        /* completeion queue */
1771        snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1772                 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1773                 "hfi1_cq%d", dd->unit);
1774        dd->verbs_dev.rdi.dparms.node = dd->node;
1775
1776        /* misc settings */
1777        dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1778        dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1779        dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1780        dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1781
1782        /* post send table */
1783        dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1784
1785        ppd = dd->pport;
1786        for (i = 0; i < dd->num_pports; i++, ppd++)
1787                rvt_init_port(&dd->verbs_dev.rdi,
1788                              &ppd->ibport_data.rvp,
1789                              i,
1790                              ppd->pkeys);
1791
1792        ret = rvt_register_device(&dd->verbs_dev.rdi);
1793        if (ret)
1794                goto err_verbs_txreq;
1795
1796        ret = hfi1_verbs_register_sysfs(dd);
1797        if (ret)
1798                goto err_class;
1799
1800        return ret;
1801
1802err_class:
1803        rvt_unregister_device(&dd->verbs_dev.rdi);
1804err_verbs_txreq:
1805        verbs_txreq_exit(dev);
1806        dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1807        return ret;
1808}
1809
1810void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1811{
1812        struct hfi1_ibdev *dev = &dd->verbs_dev;
1813
1814        hfi1_verbs_unregister_sysfs(dd);
1815
1816        rvt_unregister_device(&dd->verbs_dev.rdi);
1817
1818        if (!list_empty(&dev->txwait))
1819                dd_dev_err(dd, "txwait list not empty!\n");
1820        if (!list_empty(&dev->memwait))
1821                dd_dev_err(dd, "memwait list not empty!\n");
1822
1823        del_timer_sync(&dev->mem_timer);
1824        verbs_txreq_exit(dev);
1825
1826        kfree(dev_cntr_names);
1827        kfree(port_cntr_names);
1828        cntr_names_initialized = 0;
1829}
1830
1831void hfi1_cnp_rcv(struct hfi1_packet *packet)
1832{
1833        struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1834        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1835        struct ib_header *hdr = packet->hdr;
1836        struct rvt_qp *qp = packet->qp;
1837        u32 lqpn, rqpn = 0;
1838        u16 rlid = 0;
1839        u8 sl, sc5, svc_type;
1840
1841        switch (packet->qp->ibqp.qp_type) {
1842        case IB_QPT_UC:
1843                rlid = qp->remote_ah_attr.dlid;
1844                rqpn = qp->remote_qpn;
1845                svc_type = IB_CC_SVCTYPE_UC;
1846                break;
1847        case IB_QPT_RC:
1848                rlid = qp->remote_ah_attr.dlid;
1849                rqpn = qp->remote_qpn;
1850                svc_type = IB_CC_SVCTYPE_RC;
1851                break;
1852        case IB_QPT_SMI:
1853        case IB_QPT_GSI:
1854        case IB_QPT_UD:
1855                svc_type = IB_CC_SVCTYPE_UD;
1856                break;
1857        default:
1858                ibp->rvp.n_pkt_drops++;
1859                return;
1860        }
1861
1862        sc5 = hdr2sc(hdr, packet->rhf);
1863        sl = ibp->sc_to_sl[sc5];
1864        lqpn = qp->ibqp.qp_num;
1865
1866        process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1867}
1868