linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <keys/user-type.h>
  35
  36#include <linux/device-mapper.h>
  37
  38#define DM_MSG_PREFIX "crypt"
  39
  40/*
  41 * context holding the current state of a multi-part conversion
  42 */
  43struct convert_context {
  44        struct completion restart;
  45        struct bio *bio_in;
  46        struct bio *bio_out;
  47        struct bvec_iter iter_in;
  48        struct bvec_iter iter_out;
  49        sector_t cc_sector;
  50        atomic_t cc_pending;
  51        struct skcipher_request *req;
  52};
  53
  54/*
  55 * per bio private data
  56 */
  57struct dm_crypt_io {
  58        struct crypt_config *cc;
  59        struct bio *base_bio;
  60        struct work_struct work;
  61
  62        struct convert_context ctx;
  63
  64        atomic_t io_pending;
  65        int error;
  66        sector_t sector;
  67
  68        struct rb_node rb_node;
  69} CRYPTO_MINALIGN_ATTR;
  70
  71struct dm_crypt_request {
  72        struct convert_context *ctx;
  73        struct scatterlist sg_in;
  74        struct scatterlist sg_out;
  75        sector_t iv_sector;
  76};
  77
  78struct crypt_config;
  79
  80struct crypt_iv_operations {
  81        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  82                   const char *opts);
  83        void (*dtr)(struct crypt_config *cc);
  84        int (*init)(struct crypt_config *cc);
  85        int (*wipe)(struct crypt_config *cc);
  86        int (*generator)(struct crypt_config *cc, u8 *iv,
  87                         struct dm_crypt_request *dmreq);
  88        int (*post)(struct crypt_config *cc, u8 *iv,
  89                    struct dm_crypt_request *dmreq);
  90};
  91
  92struct iv_essiv_private {
  93        struct crypto_ahash *hash_tfm;
  94        u8 *salt;
  95};
  96
  97struct iv_benbi_private {
  98        int shift;
  99};
 100
 101#define LMK_SEED_SIZE 64 /* hash + 0 */
 102struct iv_lmk_private {
 103        struct crypto_shash *hash_tfm;
 104        u8 *seed;
 105};
 106
 107#define TCW_WHITENING_SIZE 16
 108struct iv_tcw_private {
 109        struct crypto_shash *crc32_tfm;
 110        u8 *iv_seed;
 111        u8 *whitening;
 112};
 113
 114/*
 115 * Crypt: maps a linear range of a block device
 116 * and encrypts / decrypts at the same time.
 117 */
 118enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 119             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 120
 121/*
 122 * The fields in here must be read only after initialization.
 123 */
 124struct crypt_config {
 125        struct dm_dev *dev;
 126        sector_t start;
 127
 128        /*
 129         * pool for per bio private data, crypto requests and
 130         * encryption requeusts/buffer pages
 131         */
 132        mempool_t *req_pool;
 133        mempool_t *page_pool;
 134        struct bio_set *bs;
 135        struct mutex bio_alloc_lock;
 136
 137        struct workqueue_struct *io_queue;
 138        struct workqueue_struct *crypt_queue;
 139
 140        struct task_struct *write_thread;
 141        wait_queue_head_t write_thread_wait;
 142        struct rb_root write_tree;
 143
 144        char *cipher;
 145        char *cipher_string;
 146        char *key_string;
 147
 148        const struct crypt_iv_operations *iv_gen_ops;
 149        union {
 150                struct iv_essiv_private essiv;
 151                struct iv_benbi_private benbi;
 152                struct iv_lmk_private lmk;
 153                struct iv_tcw_private tcw;
 154        } iv_gen_private;
 155        sector_t iv_offset;
 156        unsigned int iv_size;
 157
 158        /* ESSIV: struct crypto_cipher *essiv_tfm */
 159        void *iv_private;
 160        struct crypto_skcipher **tfms;
 161        unsigned tfms_count;
 162
 163        /*
 164         * Layout of each crypto request:
 165         *
 166         *   struct skcipher_request
 167         *      context
 168         *      padding
 169         *   struct dm_crypt_request
 170         *      padding
 171         *   IV
 172         *
 173         * The padding is added so that dm_crypt_request and the IV are
 174         * correctly aligned.
 175         */
 176        unsigned int dmreq_start;
 177
 178        unsigned int per_bio_data_size;
 179
 180        unsigned long flags;
 181        unsigned int key_size;
 182        unsigned int key_parts;      /* independent parts in key buffer */
 183        unsigned int key_extra_size; /* additional keys length */
 184        u8 key[0];
 185};
 186
 187#define MIN_IOS        64
 188
 189static void clone_init(struct dm_crypt_io *, struct bio *);
 190static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 191static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 192
 193/*
 194 * Use this to access cipher attributes that are the same for each CPU.
 195 */
 196static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 197{
 198        return cc->tfms[0];
 199}
 200
 201/*
 202 * Different IV generation algorithms:
 203 *
 204 * plain: the initial vector is the 32-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 207 * plain64: the initial vector is the 64-bit little-endian version of the sector
 208 *        number, padded with zeros if necessary.
 209 *
 210 * essiv: "encrypted sector|salt initial vector", the sector number is
 211 *        encrypted with the bulk cipher using a salt as key. The salt
 212 *        should be derived from the bulk cipher's key via hashing.
 213 *
 214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 215 *        (needed for LRW-32-AES and possible other narrow block modes)
 216 *
 217 * null: the initial vector is always zero.  Provides compatibility with
 218 *       obsolete loop_fish2 devices.  Do not use for new devices.
 219 *
 220 * lmk:  Compatible implementation of the block chaining mode used
 221 *       by the Loop-AES block device encryption system
 222 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 223 *       It operates on full 512 byte sectors and uses CBC
 224 *       with an IV derived from the sector number, the data and
 225 *       optionally extra IV seed.
 226 *       This means that after decryption the first block
 227 *       of sector must be tweaked according to decrypted data.
 228 *       Loop-AES can use three encryption schemes:
 229 *         version 1: is plain aes-cbc mode
 230 *         version 2: uses 64 multikey scheme with lmk IV generator
 231 *         version 3: the same as version 2 with additional IV seed
 232 *                   (it uses 65 keys, last key is used as IV seed)
 233 *
 234 * tcw:  Compatible implementation of the block chaining mode used
 235 *       by the TrueCrypt device encryption system (prior to version 4.1).
 236 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 237 *       It operates on full 512 byte sectors and uses CBC
 238 *       with an IV derived from initial key and the sector number.
 239 *       In addition, whitening value is applied on every sector, whitening
 240 *       is calculated from initial key, sector number and mixed using CRC32.
 241 *       Note that this encryption scheme is vulnerable to watermarking attacks
 242 *       and should be used for old compatible containers access only.
 243 *
 244 * plumb: unimplemented, see:
 245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 246 */
 247
 248static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 249                              struct dm_crypt_request *dmreq)
 250{
 251        memset(iv, 0, cc->iv_size);
 252        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 253
 254        return 0;
 255}
 256
 257static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 258                                struct dm_crypt_request *dmreq)
 259{
 260        memset(iv, 0, cc->iv_size);
 261        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 262
 263        return 0;
 264}
 265
 266/* Initialise ESSIV - compute salt but no local memory allocations */
 267static int crypt_iv_essiv_init(struct crypt_config *cc)
 268{
 269        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 270        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 271        struct scatterlist sg;
 272        struct crypto_cipher *essiv_tfm;
 273        int err;
 274
 275        sg_init_one(&sg, cc->key, cc->key_size);
 276        ahash_request_set_tfm(req, essiv->hash_tfm);
 277        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 278        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 279
 280        err = crypto_ahash_digest(req);
 281        ahash_request_zero(req);
 282        if (err)
 283                return err;
 284
 285        essiv_tfm = cc->iv_private;
 286
 287        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 288                            crypto_ahash_digestsize(essiv->hash_tfm));
 289        if (err)
 290                return err;
 291
 292        return 0;
 293}
 294
 295/* Wipe salt and reset key derived from volume key */
 296static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 297{
 298        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 299        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 300        struct crypto_cipher *essiv_tfm;
 301        int r, err = 0;
 302
 303        memset(essiv->salt, 0, salt_size);
 304
 305        essiv_tfm = cc->iv_private;
 306        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 307        if (r)
 308                err = r;
 309
 310        return err;
 311}
 312
 313/* Set up per cpu cipher state */
 314static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 315                                             struct dm_target *ti,
 316                                             u8 *salt, unsigned saltsize)
 317{
 318        struct crypto_cipher *essiv_tfm;
 319        int err;
 320
 321        /* Setup the essiv_tfm with the given salt */
 322        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 323        if (IS_ERR(essiv_tfm)) {
 324                ti->error = "Error allocating crypto tfm for ESSIV";
 325                return essiv_tfm;
 326        }
 327
 328        if (crypto_cipher_blocksize(essiv_tfm) !=
 329            crypto_skcipher_ivsize(any_tfm(cc))) {
 330                ti->error = "Block size of ESSIV cipher does "
 331                            "not match IV size of block cipher";
 332                crypto_free_cipher(essiv_tfm);
 333                return ERR_PTR(-EINVAL);
 334        }
 335
 336        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 337        if (err) {
 338                ti->error = "Failed to set key for ESSIV cipher";
 339                crypto_free_cipher(essiv_tfm);
 340                return ERR_PTR(err);
 341        }
 342
 343        return essiv_tfm;
 344}
 345
 346static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 347{
 348        struct crypto_cipher *essiv_tfm;
 349        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 350
 351        crypto_free_ahash(essiv->hash_tfm);
 352        essiv->hash_tfm = NULL;
 353
 354        kzfree(essiv->salt);
 355        essiv->salt = NULL;
 356
 357        essiv_tfm = cc->iv_private;
 358
 359        if (essiv_tfm)
 360                crypto_free_cipher(essiv_tfm);
 361
 362        cc->iv_private = NULL;
 363}
 364
 365static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 366                              const char *opts)
 367{
 368        struct crypto_cipher *essiv_tfm = NULL;
 369        struct crypto_ahash *hash_tfm = NULL;
 370        u8 *salt = NULL;
 371        int err;
 372
 373        if (!opts) {
 374                ti->error = "Digest algorithm missing for ESSIV mode";
 375                return -EINVAL;
 376        }
 377
 378        /* Allocate hash algorithm */
 379        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 380        if (IS_ERR(hash_tfm)) {
 381                ti->error = "Error initializing ESSIV hash";
 382                err = PTR_ERR(hash_tfm);
 383                goto bad;
 384        }
 385
 386        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 387        if (!salt) {
 388                ti->error = "Error kmallocing salt storage in ESSIV";
 389                err = -ENOMEM;
 390                goto bad;
 391        }
 392
 393        cc->iv_gen_private.essiv.salt = salt;
 394        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 395
 396        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 397                                crypto_ahash_digestsize(hash_tfm));
 398        if (IS_ERR(essiv_tfm)) {
 399                crypt_iv_essiv_dtr(cc);
 400                return PTR_ERR(essiv_tfm);
 401        }
 402        cc->iv_private = essiv_tfm;
 403
 404        return 0;
 405
 406bad:
 407        if (hash_tfm && !IS_ERR(hash_tfm))
 408                crypto_free_ahash(hash_tfm);
 409        kfree(salt);
 410        return err;
 411}
 412
 413static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 414                              struct dm_crypt_request *dmreq)
 415{
 416        struct crypto_cipher *essiv_tfm = cc->iv_private;
 417
 418        memset(iv, 0, cc->iv_size);
 419        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 420        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 421
 422        return 0;
 423}
 424
 425static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 426                              const char *opts)
 427{
 428        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 429        int log = ilog2(bs);
 430
 431        /* we need to calculate how far we must shift the sector count
 432         * to get the cipher block count, we use this shift in _gen */
 433
 434        if (1 << log != bs) {
 435                ti->error = "cypher blocksize is not a power of 2";
 436                return -EINVAL;
 437        }
 438
 439        if (log > 9) {
 440                ti->error = "cypher blocksize is > 512";
 441                return -EINVAL;
 442        }
 443
 444        cc->iv_gen_private.benbi.shift = 9 - log;
 445
 446        return 0;
 447}
 448
 449static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 450{
 451}
 452
 453static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 454                              struct dm_crypt_request *dmreq)
 455{
 456        __be64 val;
 457
 458        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 459
 460        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 461        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 462
 463        return 0;
 464}
 465
 466static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 467                             struct dm_crypt_request *dmreq)
 468{
 469        memset(iv, 0, cc->iv_size);
 470
 471        return 0;
 472}
 473
 474static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 475{
 476        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 477
 478        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 479                crypto_free_shash(lmk->hash_tfm);
 480        lmk->hash_tfm = NULL;
 481
 482        kzfree(lmk->seed);
 483        lmk->seed = NULL;
 484}
 485
 486static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 487                            const char *opts)
 488{
 489        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 490
 491        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 492        if (IS_ERR(lmk->hash_tfm)) {
 493                ti->error = "Error initializing LMK hash";
 494                return PTR_ERR(lmk->hash_tfm);
 495        }
 496
 497        /* No seed in LMK version 2 */
 498        if (cc->key_parts == cc->tfms_count) {
 499                lmk->seed = NULL;
 500                return 0;
 501        }
 502
 503        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 504        if (!lmk->seed) {
 505                crypt_iv_lmk_dtr(cc);
 506                ti->error = "Error kmallocing seed storage in LMK";
 507                return -ENOMEM;
 508        }
 509
 510        return 0;
 511}
 512
 513static int crypt_iv_lmk_init(struct crypt_config *cc)
 514{
 515        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 516        int subkey_size = cc->key_size / cc->key_parts;
 517
 518        /* LMK seed is on the position of LMK_KEYS + 1 key */
 519        if (lmk->seed)
 520                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 521                       crypto_shash_digestsize(lmk->hash_tfm));
 522
 523        return 0;
 524}
 525
 526static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 527{
 528        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 529
 530        if (lmk->seed)
 531                memset(lmk->seed, 0, LMK_SEED_SIZE);
 532
 533        return 0;
 534}
 535
 536static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 537                            struct dm_crypt_request *dmreq,
 538                            u8 *data)
 539{
 540        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 541        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 542        struct md5_state md5state;
 543        __le32 buf[4];
 544        int i, r;
 545
 546        desc->tfm = lmk->hash_tfm;
 547        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 548
 549        r = crypto_shash_init(desc);
 550        if (r)
 551                return r;
 552
 553        if (lmk->seed) {
 554                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 555                if (r)
 556                        return r;
 557        }
 558
 559        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 560        r = crypto_shash_update(desc, data + 16, 16 * 31);
 561        if (r)
 562                return r;
 563
 564        /* Sector is cropped to 56 bits here */
 565        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 566        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 567        buf[2] = cpu_to_le32(4024);
 568        buf[3] = 0;
 569        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 570        if (r)
 571                return r;
 572
 573        /* No MD5 padding here */
 574        r = crypto_shash_export(desc, &md5state);
 575        if (r)
 576                return r;
 577
 578        for (i = 0; i < MD5_HASH_WORDS; i++)
 579                __cpu_to_le32s(&md5state.hash[i]);
 580        memcpy(iv, &md5state.hash, cc->iv_size);
 581
 582        return 0;
 583}
 584
 585static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 586                            struct dm_crypt_request *dmreq)
 587{
 588        u8 *src;
 589        int r = 0;
 590
 591        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 592                src = kmap_atomic(sg_page(&dmreq->sg_in));
 593                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 594                kunmap_atomic(src);
 595        } else
 596                memset(iv, 0, cc->iv_size);
 597
 598        return r;
 599}
 600
 601static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 602                             struct dm_crypt_request *dmreq)
 603{
 604        u8 *dst;
 605        int r;
 606
 607        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 608                return 0;
 609
 610        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 611        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 612
 613        /* Tweak the first block of plaintext sector */
 614        if (!r)
 615                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 616
 617        kunmap_atomic(dst);
 618        return r;
 619}
 620
 621static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 622{
 623        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 624
 625        kzfree(tcw->iv_seed);
 626        tcw->iv_seed = NULL;
 627        kzfree(tcw->whitening);
 628        tcw->whitening = NULL;
 629
 630        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 631                crypto_free_shash(tcw->crc32_tfm);
 632        tcw->crc32_tfm = NULL;
 633}
 634
 635static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 636                            const char *opts)
 637{
 638        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 639
 640        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 641                ti->error = "Wrong key size for TCW";
 642                return -EINVAL;
 643        }
 644
 645        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 646        if (IS_ERR(tcw->crc32_tfm)) {
 647                ti->error = "Error initializing CRC32 in TCW";
 648                return PTR_ERR(tcw->crc32_tfm);
 649        }
 650
 651        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 652        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 653        if (!tcw->iv_seed || !tcw->whitening) {
 654                crypt_iv_tcw_dtr(cc);
 655                ti->error = "Error allocating seed storage in TCW";
 656                return -ENOMEM;
 657        }
 658
 659        return 0;
 660}
 661
 662static int crypt_iv_tcw_init(struct crypt_config *cc)
 663{
 664        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 665        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 666
 667        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 668        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 669               TCW_WHITENING_SIZE);
 670
 671        return 0;
 672}
 673
 674static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 675{
 676        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677
 678        memset(tcw->iv_seed, 0, cc->iv_size);
 679        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 680
 681        return 0;
 682}
 683
 684static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 685                                  struct dm_crypt_request *dmreq,
 686                                  u8 *data)
 687{
 688        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 689        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 690        u8 buf[TCW_WHITENING_SIZE];
 691        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 692        int i, r;
 693
 694        /* xor whitening with sector number */
 695        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 696        crypto_xor(buf, (u8 *)&sector, 8);
 697        crypto_xor(&buf[8], (u8 *)&sector, 8);
 698
 699        /* calculate crc32 for every 32bit part and xor it */
 700        desc->tfm = tcw->crc32_tfm;
 701        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 702        for (i = 0; i < 4; i++) {
 703                r = crypto_shash_init(desc);
 704                if (r)
 705                        goto out;
 706                r = crypto_shash_update(desc, &buf[i * 4], 4);
 707                if (r)
 708                        goto out;
 709                r = crypto_shash_final(desc, &buf[i * 4]);
 710                if (r)
 711                        goto out;
 712        }
 713        crypto_xor(&buf[0], &buf[12], 4);
 714        crypto_xor(&buf[4], &buf[8], 4);
 715
 716        /* apply whitening (8 bytes) to whole sector */
 717        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 718                crypto_xor(data + i * 8, buf, 8);
 719out:
 720        memzero_explicit(buf, sizeof(buf));
 721        return r;
 722}
 723
 724static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 725                            struct dm_crypt_request *dmreq)
 726{
 727        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 728        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 729        u8 *src;
 730        int r = 0;
 731
 732        /* Remove whitening from ciphertext */
 733        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 734                src = kmap_atomic(sg_page(&dmreq->sg_in));
 735                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 736                kunmap_atomic(src);
 737        }
 738
 739        /* Calculate IV */
 740        memcpy(iv, tcw->iv_seed, cc->iv_size);
 741        crypto_xor(iv, (u8 *)&sector, 8);
 742        if (cc->iv_size > 8)
 743                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 744
 745        return r;
 746}
 747
 748static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 749                             struct dm_crypt_request *dmreq)
 750{
 751        u8 *dst;
 752        int r;
 753
 754        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 755                return 0;
 756
 757        /* Apply whitening on ciphertext */
 758        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 759        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 760        kunmap_atomic(dst);
 761
 762        return r;
 763}
 764
 765static const struct crypt_iv_operations crypt_iv_plain_ops = {
 766        .generator = crypt_iv_plain_gen
 767};
 768
 769static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 770        .generator = crypt_iv_plain64_gen
 771};
 772
 773static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 774        .ctr       = crypt_iv_essiv_ctr,
 775        .dtr       = crypt_iv_essiv_dtr,
 776        .init      = crypt_iv_essiv_init,
 777        .wipe      = crypt_iv_essiv_wipe,
 778        .generator = crypt_iv_essiv_gen
 779};
 780
 781static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 782        .ctr       = crypt_iv_benbi_ctr,
 783        .dtr       = crypt_iv_benbi_dtr,
 784        .generator = crypt_iv_benbi_gen
 785};
 786
 787static const struct crypt_iv_operations crypt_iv_null_ops = {
 788        .generator = crypt_iv_null_gen
 789};
 790
 791static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 792        .ctr       = crypt_iv_lmk_ctr,
 793        .dtr       = crypt_iv_lmk_dtr,
 794        .init      = crypt_iv_lmk_init,
 795        .wipe      = crypt_iv_lmk_wipe,
 796        .generator = crypt_iv_lmk_gen,
 797        .post      = crypt_iv_lmk_post
 798};
 799
 800static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 801        .ctr       = crypt_iv_tcw_ctr,
 802        .dtr       = crypt_iv_tcw_dtr,
 803        .init      = crypt_iv_tcw_init,
 804        .wipe      = crypt_iv_tcw_wipe,
 805        .generator = crypt_iv_tcw_gen,
 806        .post      = crypt_iv_tcw_post
 807};
 808
 809static void crypt_convert_init(struct crypt_config *cc,
 810                               struct convert_context *ctx,
 811                               struct bio *bio_out, struct bio *bio_in,
 812                               sector_t sector)
 813{
 814        ctx->bio_in = bio_in;
 815        ctx->bio_out = bio_out;
 816        if (bio_in)
 817                ctx->iter_in = bio_in->bi_iter;
 818        if (bio_out)
 819                ctx->iter_out = bio_out->bi_iter;
 820        ctx->cc_sector = sector + cc->iv_offset;
 821        init_completion(&ctx->restart);
 822}
 823
 824static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 825                                             struct skcipher_request *req)
 826{
 827        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 828}
 829
 830static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 831                                               struct dm_crypt_request *dmreq)
 832{
 833        return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 834}
 835
 836static u8 *iv_of_dmreq(struct crypt_config *cc,
 837                       struct dm_crypt_request *dmreq)
 838{
 839        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 840                crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 841}
 842
 843static int crypt_convert_block(struct crypt_config *cc,
 844                               struct convert_context *ctx,
 845                               struct skcipher_request *req)
 846{
 847        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 848        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 849        struct dm_crypt_request *dmreq;
 850        u8 *iv;
 851        int r;
 852
 853        dmreq = dmreq_of_req(cc, req);
 854        iv = iv_of_dmreq(cc, dmreq);
 855
 856        dmreq->iv_sector = ctx->cc_sector;
 857        dmreq->ctx = ctx;
 858        sg_init_table(&dmreq->sg_in, 1);
 859        sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 860                    bv_in.bv_offset);
 861
 862        sg_init_table(&dmreq->sg_out, 1);
 863        sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 864                    bv_out.bv_offset);
 865
 866        bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 867        bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 868
 869        if (cc->iv_gen_ops) {
 870                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 871                if (r < 0)
 872                        return r;
 873        }
 874
 875        skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 876                                   1 << SECTOR_SHIFT, iv);
 877
 878        if (bio_data_dir(ctx->bio_in) == WRITE)
 879                r = crypto_skcipher_encrypt(req);
 880        else
 881                r = crypto_skcipher_decrypt(req);
 882
 883        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 884                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 885
 886        return r;
 887}
 888
 889static void kcryptd_async_done(struct crypto_async_request *async_req,
 890                               int error);
 891
 892static void crypt_alloc_req(struct crypt_config *cc,
 893                            struct convert_context *ctx)
 894{
 895        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 896
 897        if (!ctx->req)
 898                ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 899
 900        skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 901
 902        /*
 903         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 904         * requests if driver request queue is full.
 905         */
 906        skcipher_request_set_callback(ctx->req,
 907            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 908            kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 909}
 910
 911static void crypt_free_req(struct crypt_config *cc,
 912                           struct skcipher_request *req, struct bio *base_bio)
 913{
 914        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 915
 916        if ((struct skcipher_request *)(io + 1) != req)
 917                mempool_free(req, cc->req_pool);
 918}
 919
 920/*
 921 * Encrypt / decrypt data from one bio to another one (can be the same one)
 922 */
 923static int crypt_convert(struct crypt_config *cc,
 924                         struct convert_context *ctx)
 925{
 926        int r;
 927
 928        atomic_set(&ctx->cc_pending, 1);
 929
 930        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 931
 932                crypt_alloc_req(cc, ctx);
 933
 934                atomic_inc(&ctx->cc_pending);
 935
 936                r = crypt_convert_block(cc, ctx, ctx->req);
 937
 938                switch (r) {
 939                /*
 940                 * The request was queued by a crypto driver
 941                 * but the driver request queue is full, let's wait.
 942                 */
 943                case -EBUSY:
 944                        wait_for_completion(&ctx->restart);
 945                        reinit_completion(&ctx->restart);
 946                        /* fall through */
 947                /*
 948                 * The request is queued and processed asynchronously,
 949                 * completion function kcryptd_async_done() will be called.
 950                 */
 951                case -EINPROGRESS:
 952                        ctx->req = NULL;
 953                        ctx->cc_sector++;
 954                        continue;
 955                /*
 956                 * The request was already processed (synchronously).
 957                 */
 958                case 0:
 959                        atomic_dec(&ctx->cc_pending);
 960                        ctx->cc_sector++;
 961                        cond_resched();
 962                        continue;
 963
 964                /* There was an error while processing the request. */
 965                default:
 966                        atomic_dec(&ctx->cc_pending);
 967                        return r;
 968                }
 969        }
 970
 971        return 0;
 972}
 973
 974static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 975
 976/*
 977 * Generate a new unfragmented bio with the given size
 978 * This should never violate the device limitations (but only because
 979 * max_segment_size is being constrained to PAGE_SIZE).
 980 *
 981 * This function may be called concurrently. If we allocate from the mempool
 982 * concurrently, there is a possibility of deadlock. For example, if we have
 983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 984 * the mempool concurrently, it may deadlock in a situation where both processes
 985 * have allocated 128 pages and the mempool is exhausted.
 986 *
 987 * In order to avoid this scenario we allocate the pages under a mutex.
 988 *
 989 * In order to not degrade performance with excessive locking, we try
 990 * non-blocking allocations without a mutex first but on failure we fallback
 991 * to blocking allocations with a mutex.
 992 */
 993static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 994{
 995        struct crypt_config *cc = io->cc;
 996        struct bio *clone;
 997        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 998        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 999        unsigned i, len, remaining_size;
1000        struct page *page;
1001
1002retry:
1003        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1004                mutex_lock(&cc->bio_alloc_lock);
1005
1006        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1007        if (!clone)
1008                goto return_clone;
1009
1010        clone_init(io, clone);
1011
1012        remaining_size = size;
1013
1014        for (i = 0; i < nr_iovecs; i++) {
1015                page = mempool_alloc(cc->page_pool, gfp_mask);
1016                if (!page) {
1017                        crypt_free_buffer_pages(cc, clone);
1018                        bio_put(clone);
1019                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1020                        goto retry;
1021                }
1022
1023                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1024
1025                bio_add_page(clone, page, len, 0);
1026
1027                remaining_size -= len;
1028        }
1029
1030return_clone:
1031        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032                mutex_unlock(&cc->bio_alloc_lock);
1033
1034        return clone;
1035}
1036
1037static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038{
1039        unsigned int i;
1040        struct bio_vec *bv;
1041
1042        bio_for_each_segment_all(bv, clone, i) {
1043                BUG_ON(!bv->bv_page);
1044                mempool_free(bv->bv_page, cc->page_pool);
1045                bv->bv_page = NULL;
1046        }
1047}
1048
1049static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050                          struct bio *bio, sector_t sector)
1051{
1052        io->cc = cc;
1053        io->base_bio = bio;
1054        io->sector = sector;
1055        io->error = 0;
1056        io->ctx.req = NULL;
1057        atomic_set(&io->io_pending, 0);
1058}
1059
1060static void crypt_inc_pending(struct dm_crypt_io *io)
1061{
1062        atomic_inc(&io->io_pending);
1063}
1064
1065/*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 */
1069static void crypt_dec_pending(struct dm_crypt_io *io)
1070{
1071        struct crypt_config *cc = io->cc;
1072        struct bio *base_bio = io->base_bio;
1073        int error = io->error;
1074
1075        if (!atomic_dec_and_test(&io->io_pending))
1076                return;
1077
1078        if (io->ctx.req)
1079                crypt_free_req(cc, io->ctx.req, base_bio);
1080
1081        base_bio->bi_error = error;
1082        bio_endio(base_bio);
1083}
1084
1085/*
1086 * kcryptd/kcryptd_io:
1087 *
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1090 *
1091 * kcryptd performs the actual encryption or decryption.
1092 *
1093 * kcryptd_io performs the IO submission.
1094 *
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1098 *
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1101 */
1102static void crypt_endio(struct bio *clone)
1103{
1104        struct dm_crypt_io *io = clone->bi_private;
1105        struct crypt_config *cc = io->cc;
1106        unsigned rw = bio_data_dir(clone);
1107        int error;
1108
1109        /*
1110         * free the processed pages
1111         */
1112        if (rw == WRITE)
1113                crypt_free_buffer_pages(cc, clone);
1114
1115        error = clone->bi_error;
1116        bio_put(clone);
1117
1118        if (rw == READ && !error) {
1119                kcryptd_queue_crypt(io);
1120                return;
1121        }
1122
1123        if (unlikely(error))
1124                io->error = error;
1125
1126        crypt_dec_pending(io);
1127}
1128
1129static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130{
1131        struct crypt_config *cc = io->cc;
1132
1133        clone->bi_private = io;
1134        clone->bi_end_io  = crypt_endio;
1135        clone->bi_bdev    = cc->dev->bdev;
1136        clone->bi_opf     = io->base_bio->bi_opf;
1137}
1138
1139static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140{
1141        struct crypt_config *cc = io->cc;
1142        struct bio *clone;
1143
1144        /*
1145         * We need the original biovec array in order to decrypt
1146         * the whole bio data *afterwards* -- thanks to immutable
1147         * biovecs we don't need to worry about the block layer
1148         * modifying the biovec array; so leverage bio_clone_fast().
1149         */
1150        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151        if (!clone)
1152                return 1;
1153
1154        crypt_inc_pending(io);
1155
1156        clone_init(io, clone);
1157        clone->bi_iter.bi_sector = cc->start + io->sector;
1158
1159        generic_make_request(clone);
1160        return 0;
1161}
1162
1163static void kcryptd_io_read_work(struct work_struct *work)
1164{
1165        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166
1167        crypt_inc_pending(io);
1168        if (kcryptd_io_read(io, GFP_NOIO))
1169                io->error = -ENOMEM;
1170        crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_queue_read(struct dm_crypt_io *io)
1174{
1175        struct crypt_config *cc = io->cc;
1176
1177        INIT_WORK(&io->work, kcryptd_io_read_work);
1178        queue_work(cc->io_queue, &io->work);
1179}
1180
1181static void kcryptd_io_write(struct dm_crypt_io *io)
1182{
1183        struct bio *clone = io->ctx.bio_out;
1184
1185        generic_make_request(clone);
1186}
1187
1188#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189
1190static int dmcrypt_write(void *data)
1191{
1192        struct crypt_config *cc = data;
1193        struct dm_crypt_io *io;
1194
1195        while (1) {
1196                struct rb_root write_tree;
1197                struct blk_plug plug;
1198
1199                DECLARE_WAITQUEUE(wait, current);
1200
1201                spin_lock_irq(&cc->write_thread_wait.lock);
1202continue_locked:
1203
1204                if (!RB_EMPTY_ROOT(&cc->write_tree))
1205                        goto pop_from_list;
1206
1207                set_current_state(TASK_INTERRUPTIBLE);
1208                __add_wait_queue(&cc->write_thread_wait, &wait);
1209
1210                spin_unlock_irq(&cc->write_thread_wait.lock);
1211
1212                if (unlikely(kthread_should_stop())) {
1213                        set_current_state(TASK_RUNNING);
1214                        remove_wait_queue(&cc->write_thread_wait, &wait);
1215                        break;
1216                }
1217
1218                schedule();
1219
1220                set_current_state(TASK_RUNNING);
1221                spin_lock_irq(&cc->write_thread_wait.lock);
1222                __remove_wait_queue(&cc->write_thread_wait, &wait);
1223                goto continue_locked;
1224
1225pop_from_list:
1226                write_tree = cc->write_tree;
1227                cc->write_tree = RB_ROOT;
1228                spin_unlock_irq(&cc->write_thread_wait.lock);
1229
1230                BUG_ON(rb_parent(write_tree.rb_node));
1231
1232                /*
1233                 * Note: we cannot walk the tree here with rb_next because
1234                 * the structures may be freed when kcryptd_io_write is called.
1235                 */
1236                blk_start_plug(&plug);
1237                do {
1238                        io = crypt_io_from_node(rb_first(&write_tree));
1239                        rb_erase(&io->rb_node, &write_tree);
1240                        kcryptd_io_write(io);
1241                } while (!RB_EMPTY_ROOT(&write_tree));
1242                blk_finish_plug(&plug);
1243        }
1244        return 0;
1245}
1246
1247static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1248{
1249        struct bio *clone = io->ctx.bio_out;
1250        struct crypt_config *cc = io->cc;
1251        unsigned long flags;
1252        sector_t sector;
1253        struct rb_node **rbp, *parent;
1254
1255        if (unlikely(io->error < 0)) {
1256                crypt_free_buffer_pages(cc, clone);
1257                bio_put(clone);
1258                crypt_dec_pending(io);
1259                return;
1260        }
1261
1262        /* crypt_convert should have filled the clone bio */
1263        BUG_ON(io->ctx.iter_out.bi_size);
1264
1265        clone->bi_iter.bi_sector = cc->start + io->sector;
1266
1267        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1268                generic_make_request(clone);
1269                return;
1270        }
1271
1272        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1273        rbp = &cc->write_tree.rb_node;
1274        parent = NULL;
1275        sector = io->sector;
1276        while (*rbp) {
1277                parent = *rbp;
1278                if (sector < crypt_io_from_node(parent)->sector)
1279                        rbp = &(*rbp)->rb_left;
1280                else
1281                        rbp = &(*rbp)->rb_right;
1282        }
1283        rb_link_node(&io->rb_node, parent, rbp);
1284        rb_insert_color(&io->rb_node, &cc->write_tree);
1285
1286        wake_up_locked(&cc->write_thread_wait);
1287        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1288}
1289
1290static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1291{
1292        struct crypt_config *cc = io->cc;
1293        struct bio *clone;
1294        int crypt_finished;
1295        sector_t sector = io->sector;
1296        int r;
1297
1298        /*
1299         * Prevent io from disappearing until this function completes.
1300         */
1301        crypt_inc_pending(io);
1302        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1303
1304        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1305        if (unlikely(!clone)) {
1306                io->error = -EIO;
1307                goto dec;
1308        }
1309
1310        io->ctx.bio_out = clone;
1311        io->ctx.iter_out = clone->bi_iter;
1312
1313        sector += bio_sectors(clone);
1314
1315        crypt_inc_pending(io);
1316        r = crypt_convert(cc, &io->ctx);
1317        if (r)
1318                io->error = -EIO;
1319        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1320
1321        /* Encryption was already finished, submit io now */
1322        if (crypt_finished) {
1323                kcryptd_crypt_write_io_submit(io, 0);
1324                io->sector = sector;
1325        }
1326
1327dec:
1328        crypt_dec_pending(io);
1329}
1330
1331static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1332{
1333        crypt_dec_pending(io);
1334}
1335
1336static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1337{
1338        struct crypt_config *cc = io->cc;
1339        int r = 0;
1340
1341        crypt_inc_pending(io);
1342
1343        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1344                           io->sector);
1345
1346        r = crypt_convert(cc, &io->ctx);
1347        if (r < 0)
1348                io->error = -EIO;
1349
1350        if (atomic_dec_and_test(&io->ctx.cc_pending))
1351                kcryptd_crypt_read_done(io);
1352
1353        crypt_dec_pending(io);
1354}
1355
1356static void kcryptd_async_done(struct crypto_async_request *async_req,
1357                               int error)
1358{
1359        struct dm_crypt_request *dmreq = async_req->data;
1360        struct convert_context *ctx = dmreq->ctx;
1361        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1362        struct crypt_config *cc = io->cc;
1363
1364        /*
1365         * A request from crypto driver backlog is going to be processed now,
1366         * finish the completion and continue in crypt_convert().
1367         * (Callback will be called for the second time for this request.)
1368         */
1369        if (error == -EINPROGRESS) {
1370                complete(&ctx->restart);
1371                return;
1372        }
1373
1374        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1375                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1376
1377        if (error < 0)
1378                io->error = -EIO;
1379
1380        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1381
1382        if (!atomic_dec_and_test(&ctx->cc_pending))
1383                return;
1384
1385        if (bio_data_dir(io->base_bio) == READ)
1386                kcryptd_crypt_read_done(io);
1387        else
1388                kcryptd_crypt_write_io_submit(io, 1);
1389}
1390
1391static void kcryptd_crypt(struct work_struct *work)
1392{
1393        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1394
1395        if (bio_data_dir(io->base_bio) == READ)
1396                kcryptd_crypt_read_convert(io);
1397        else
1398                kcryptd_crypt_write_convert(io);
1399}
1400
1401static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1402{
1403        struct crypt_config *cc = io->cc;
1404
1405        INIT_WORK(&io->work, kcryptd_crypt);
1406        queue_work(cc->crypt_queue, &io->work);
1407}
1408
1409/*
1410 * Decode key from its hex representation
1411 */
1412static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1413{
1414        char buffer[3];
1415        unsigned int i;
1416
1417        buffer[2] = '\0';
1418
1419        for (i = 0; i < size; i++) {
1420                buffer[0] = *hex++;
1421                buffer[1] = *hex++;
1422
1423                if (kstrtou8(buffer, 16, &key[i]))
1424                        return -EINVAL;
1425        }
1426
1427        if (*hex != '\0')
1428                return -EINVAL;
1429
1430        return 0;
1431}
1432
1433static void crypt_free_tfms(struct crypt_config *cc)
1434{
1435        unsigned i;
1436
1437        if (!cc->tfms)
1438                return;
1439
1440        for (i = 0; i < cc->tfms_count; i++)
1441                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1442                        crypto_free_skcipher(cc->tfms[i]);
1443                        cc->tfms[i] = NULL;
1444                }
1445
1446        kfree(cc->tfms);
1447        cc->tfms = NULL;
1448}
1449
1450static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1451{
1452        unsigned i;
1453        int err;
1454
1455        cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1456                           GFP_KERNEL);
1457        if (!cc->tfms)
1458                return -ENOMEM;
1459
1460        for (i = 0; i < cc->tfms_count; i++) {
1461                cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1462                if (IS_ERR(cc->tfms[i])) {
1463                        err = PTR_ERR(cc->tfms[i]);
1464                        crypt_free_tfms(cc);
1465                        return err;
1466                }
1467        }
1468
1469        return 0;
1470}
1471
1472static int crypt_setkey(struct crypt_config *cc)
1473{
1474        unsigned subkey_size;
1475        int err = 0, i, r;
1476
1477        /* Ignore extra keys (which are used for IV etc) */
1478        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1479
1480        for (i = 0; i < cc->tfms_count; i++) {
1481                r = crypto_skcipher_setkey(cc->tfms[i],
1482                                           cc->key + (i * subkey_size),
1483                                           subkey_size);
1484                if (r)
1485                        err = r;
1486        }
1487
1488        return err;
1489}
1490
1491#ifdef CONFIG_KEYS
1492
1493static bool contains_whitespace(const char *str)
1494{
1495        while (*str)
1496                if (isspace(*str++))
1497                        return true;
1498        return false;
1499}
1500
1501static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1502{
1503        char *new_key_string, *key_desc;
1504        int ret;
1505        struct key *key;
1506        const struct user_key_payload *ukp;
1507
1508        /*
1509         * Reject key_string with whitespace. dm core currently lacks code for
1510         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1511         */
1512        if (contains_whitespace(key_string)) {
1513                DMERR("whitespace chars not allowed in key string");
1514                return -EINVAL;
1515        }
1516
1517        /* look for next ':' separating key_type from key_description */
1518        key_desc = strpbrk(key_string, ":");
1519        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1520                return -EINVAL;
1521
1522        if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1523            strncmp(key_string, "user:", key_desc - key_string + 1))
1524                return -EINVAL;
1525
1526        new_key_string = kstrdup(key_string, GFP_KERNEL);
1527        if (!new_key_string)
1528                return -ENOMEM;
1529
1530        key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1531                          key_desc + 1, NULL);
1532        if (IS_ERR(key)) {
1533                kzfree(new_key_string);
1534                return PTR_ERR(key);
1535        }
1536
1537        down_read(&key->sem);
1538
1539        ukp = user_key_payload_locked(key);
1540        if (!ukp) {
1541                up_read(&key->sem);
1542                key_put(key);
1543                kzfree(new_key_string);
1544                return -EKEYREVOKED;
1545        }
1546
1547        if (cc->key_size != ukp->datalen) {
1548                up_read(&key->sem);
1549                key_put(key);
1550                kzfree(new_key_string);
1551                return -EINVAL;
1552        }
1553
1554        memcpy(cc->key, ukp->data, cc->key_size);
1555
1556        up_read(&key->sem);
1557        key_put(key);
1558
1559        /* clear the flag since following operations may invalidate previously valid key */
1560        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1561
1562        ret = crypt_setkey(cc);
1563
1564        /* wipe the kernel key payload copy in each case */
1565        memset(cc->key, 0, cc->key_size * sizeof(u8));
1566
1567        if (!ret) {
1568                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1569                kzfree(cc->key_string);
1570                cc->key_string = new_key_string;
1571        } else
1572                kzfree(new_key_string);
1573
1574        return ret;
1575}
1576
1577static int get_key_size(char **key_string)
1578{
1579        char *colon, dummy;
1580        int ret;
1581
1582        if (*key_string[0] != ':')
1583                return strlen(*key_string) >> 1;
1584
1585        /* look for next ':' in key string */
1586        colon = strpbrk(*key_string + 1, ":");
1587        if (!colon)
1588                return -EINVAL;
1589
1590        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1591                return -EINVAL;
1592
1593        *key_string = colon;
1594
1595        /* remaining key string should be :<logon|user>:<key_desc> */
1596
1597        return ret;
1598}
1599
1600#else
1601
1602static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1603{
1604        return -EINVAL;
1605}
1606
1607static int get_key_size(char **key_string)
1608{
1609        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
1610}
1611
1612#endif
1613
1614static int crypt_set_key(struct crypt_config *cc, char *key)
1615{
1616        int r = -EINVAL;
1617        int key_string_len = strlen(key);
1618
1619        /* Hyphen (which gives a key_size of zero) means there is no key. */
1620        if (!cc->key_size && strcmp(key, "-"))
1621                goto out;
1622
1623        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624        if (key[0] == ':') {
1625                r = crypt_set_keyring_key(cc, key + 1);
1626                goto out;
1627        }
1628
1629        /* clear the flag since following operations may invalidate previously valid key */
1630        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1631
1632        /* wipe references to any kernel keyring key */
1633        kzfree(cc->key_string);
1634        cc->key_string = NULL;
1635
1636        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1637                goto out;
1638
1639        r = crypt_setkey(cc);
1640        if (!r)
1641                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1642
1643out:
1644        /* Hex key string not needed after here, so wipe it. */
1645        memset(key, '0', key_string_len);
1646
1647        return r;
1648}
1649
1650static int crypt_wipe_key(struct crypt_config *cc)
1651{
1652        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1653        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1654        kzfree(cc->key_string);
1655        cc->key_string = NULL;
1656
1657        return crypt_setkey(cc);
1658}
1659
1660static void crypt_dtr(struct dm_target *ti)
1661{
1662        struct crypt_config *cc = ti->private;
1663
1664        ti->private = NULL;
1665
1666        if (!cc)
1667                return;
1668
1669        if (cc->write_thread)
1670                kthread_stop(cc->write_thread);
1671
1672        if (cc->io_queue)
1673                destroy_workqueue(cc->io_queue);
1674        if (cc->crypt_queue)
1675                destroy_workqueue(cc->crypt_queue);
1676
1677        crypt_free_tfms(cc);
1678
1679        if (cc->bs)
1680                bioset_free(cc->bs);
1681
1682        mempool_destroy(cc->page_pool);
1683        mempool_destroy(cc->req_pool);
1684
1685        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1686                cc->iv_gen_ops->dtr(cc);
1687
1688        if (cc->dev)
1689                dm_put_device(ti, cc->dev);
1690
1691        kzfree(cc->cipher);
1692        kzfree(cc->cipher_string);
1693        kzfree(cc->key_string);
1694
1695        /* Must zero key material before freeing */
1696        kzfree(cc);
1697}
1698
1699static int crypt_ctr_cipher(struct dm_target *ti,
1700                            char *cipher_in, char *key)
1701{
1702        struct crypt_config *cc = ti->private;
1703        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1704        char *cipher_api = NULL;
1705        int ret = -EINVAL;
1706        char dummy;
1707
1708        /* Convert to crypto api definition? */
1709        if (strchr(cipher_in, '(')) {
1710                ti->error = "Bad cipher specification";
1711                return -EINVAL;
1712        }
1713
1714        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1715        if (!cc->cipher_string)
1716                goto bad_mem;
1717
1718        /*
1719         * Legacy dm-crypt cipher specification
1720         * cipher[:keycount]-mode-iv:ivopts
1721         */
1722        tmp = cipher_in;
1723        keycount = strsep(&tmp, "-");
1724        cipher = strsep(&keycount, ":");
1725
1726        if (!keycount)
1727                cc->tfms_count = 1;
1728        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1729                 !is_power_of_2(cc->tfms_count)) {
1730                ti->error = "Bad cipher key count specification";
1731                return -EINVAL;
1732        }
1733        cc->key_parts = cc->tfms_count;
1734        cc->key_extra_size = 0;
1735
1736        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1737        if (!cc->cipher)
1738                goto bad_mem;
1739
1740        chainmode = strsep(&tmp, "-");
1741        ivopts = strsep(&tmp, "-");
1742        ivmode = strsep(&ivopts, ":");
1743
1744        if (tmp)
1745                DMWARN("Ignoring unexpected additional cipher options");
1746
1747        /*
1748         * For compatibility with the original dm-crypt mapping format, if
1749         * only the cipher name is supplied, use cbc-plain.
1750         */
1751        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1752                chainmode = "cbc";
1753                ivmode = "plain";
1754        }
1755
1756        if (strcmp(chainmode, "ecb") && !ivmode) {
1757                ti->error = "IV mechanism required";
1758                return -EINVAL;
1759        }
1760
1761        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1762        if (!cipher_api)
1763                goto bad_mem;
1764
1765        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1766                       "%s(%s)", chainmode, cipher);
1767        if (ret < 0) {
1768                kfree(cipher_api);
1769                goto bad_mem;
1770        }
1771
1772        /* Allocate cipher */
1773        ret = crypt_alloc_tfms(cc, cipher_api);
1774        if (ret < 0) {
1775                ti->error = "Error allocating crypto tfm";
1776                goto bad;
1777        }
1778
1779        /* Initialize IV */
1780        cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1781        if (cc->iv_size)
1782                /* at least a 64 bit sector number should fit in our buffer */
1783                cc->iv_size = max(cc->iv_size,
1784                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1785        else if (ivmode) {
1786                DMWARN("Selected cipher does not support IVs");
1787                ivmode = NULL;
1788        }
1789
1790        /* Choose ivmode, see comments at iv code. */
1791        if (ivmode == NULL)
1792                cc->iv_gen_ops = NULL;
1793        else if (strcmp(ivmode, "plain") == 0)
1794                cc->iv_gen_ops = &crypt_iv_plain_ops;
1795        else if (strcmp(ivmode, "plain64") == 0)
1796                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1797        else if (strcmp(ivmode, "essiv") == 0)
1798                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1799        else if (strcmp(ivmode, "benbi") == 0)
1800                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1801        else if (strcmp(ivmode, "null") == 0)
1802                cc->iv_gen_ops = &crypt_iv_null_ops;
1803        else if (strcmp(ivmode, "lmk") == 0) {
1804                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1805                /*
1806                 * Version 2 and 3 is recognised according
1807                 * to length of provided multi-key string.
1808                 * If present (version 3), last key is used as IV seed.
1809                 * All keys (including IV seed) are always the same size.
1810                 */
1811                if (cc->key_size % cc->key_parts) {
1812                        cc->key_parts++;
1813                        cc->key_extra_size = cc->key_size / cc->key_parts;
1814                }
1815        } else if (strcmp(ivmode, "tcw") == 0) {
1816                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1817                cc->key_parts += 2; /* IV + whitening */
1818                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1819        } else {
1820                ret = -EINVAL;
1821                ti->error = "Invalid IV mode";
1822                goto bad;
1823        }
1824
1825        /* Initialize and set key */
1826        ret = crypt_set_key(cc, key);
1827        if (ret < 0) {
1828                ti->error = "Error decoding and setting key";
1829                goto bad;
1830        }
1831
1832        /* Allocate IV */
1833        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1834                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1835                if (ret < 0) {
1836                        ti->error = "Error creating IV";
1837                        goto bad;
1838                }
1839        }
1840
1841        /* Initialize IV (set keys for ESSIV etc) */
1842        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1843                ret = cc->iv_gen_ops->init(cc);
1844                if (ret < 0) {
1845                        ti->error = "Error initialising IV";
1846                        goto bad;
1847                }
1848        }
1849
1850        ret = 0;
1851bad:
1852        kfree(cipher_api);
1853        return ret;
1854
1855bad_mem:
1856        ti->error = "Cannot allocate cipher strings";
1857        return -ENOMEM;
1858}
1859
1860/*
1861 * Construct an encryption mapping:
1862 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1863 */
1864static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1865{
1866        struct crypt_config *cc;
1867        int key_size;
1868        unsigned int opt_params;
1869        unsigned long long tmpll;
1870        int ret;
1871        size_t iv_size_padding;
1872        struct dm_arg_set as;
1873        const char *opt_string;
1874        char dummy;
1875
1876        static struct dm_arg _args[] = {
1877                {0, 3, "Invalid number of feature args"},
1878        };
1879
1880        if (argc < 5) {
1881                ti->error = "Not enough arguments";
1882                return -EINVAL;
1883        }
1884
1885        key_size = get_key_size(&argv[1]);
1886        if (key_size < 0) {
1887                ti->error = "Cannot parse key size";
1888                return -EINVAL;
1889        }
1890
1891        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1892        if (!cc) {
1893                ti->error = "Cannot allocate encryption context";
1894                return -ENOMEM;
1895        }
1896        cc->key_size = key_size;
1897
1898        ti->private = cc;
1899        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1900        if (ret < 0)
1901                goto bad;
1902
1903        cc->dmreq_start = sizeof(struct skcipher_request);
1904        cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1905        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1906
1907        if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1908                /* Allocate the padding exactly */
1909                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1910                                & crypto_skcipher_alignmask(any_tfm(cc));
1911        } else {
1912                /*
1913                 * If the cipher requires greater alignment than kmalloc
1914                 * alignment, we don't know the exact position of the
1915                 * initialization vector. We must assume worst case.
1916                 */
1917                iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1918        }
1919
1920        ret = -ENOMEM;
1921        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1922                        sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1923        if (!cc->req_pool) {
1924                ti->error = "Cannot allocate crypt request mempool";
1925                goto bad;
1926        }
1927
1928        cc->per_bio_data_size = ti->per_io_data_size =
1929                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1930                      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1931                      ARCH_KMALLOC_MINALIGN);
1932
1933        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1934        if (!cc->page_pool) {
1935                ti->error = "Cannot allocate page mempool";
1936                goto bad;
1937        }
1938
1939        cc->bs = bioset_create(MIN_IOS, 0);
1940        if (!cc->bs) {
1941                ti->error = "Cannot allocate crypt bioset";
1942                goto bad;
1943        }
1944
1945        mutex_init(&cc->bio_alloc_lock);
1946
1947        ret = -EINVAL;
1948        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1949                ti->error = "Invalid iv_offset sector";
1950                goto bad;
1951        }
1952        cc->iv_offset = tmpll;
1953
1954        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1955        if (ret) {
1956                ti->error = "Device lookup failed";
1957                goto bad;
1958        }
1959
1960        ret = -EINVAL;
1961        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1962                ti->error = "Invalid device sector";
1963                goto bad;
1964        }
1965        cc->start = tmpll;
1966
1967        argv += 5;
1968        argc -= 5;
1969
1970        /* Optional parameters */
1971        if (argc) {
1972                as.argc = argc;
1973                as.argv = argv;
1974
1975                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1976                if (ret)
1977                        goto bad;
1978
1979                ret = -EINVAL;
1980                while (opt_params--) {
1981                        opt_string = dm_shift_arg(&as);
1982                        if (!opt_string) {
1983                                ti->error = "Not enough feature arguments";
1984                                goto bad;
1985                        }
1986
1987                        if (!strcasecmp(opt_string, "allow_discards"))
1988                                ti->num_discard_bios = 1;
1989
1990                        else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1991                                set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1992
1993                        else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1994                                set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1995
1996                        else {
1997                                ti->error = "Invalid feature arguments";
1998                                goto bad;
1999                        }
2000                }
2001        }
2002
2003        ret = -ENOMEM;
2004        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2005        if (!cc->io_queue) {
2006                ti->error = "Couldn't create kcryptd io queue";
2007                goto bad;
2008        }
2009
2010        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2011                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2012        else
2013                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2014                                                  num_online_cpus());
2015        if (!cc->crypt_queue) {
2016                ti->error = "Couldn't create kcryptd queue";
2017                goto bad;
2018        }
2019
2020        init_waitqueue_head(&cc->write_thread_wait);
2021        cc->write_tree = RB_ROOT;
2022
2023        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2024        if (IS_ERR(cc->write_thread)) {
2025                ret = PTR_ERR(cc->write_thread);
2026                cc->write_thread = NULL;
2027                ti->error = "Couldn't spawn write thread";
2028                goto bad;
2029        }
2030        wake_up_process(cc->write_thread);
2031
2032        ti->num_flush_bios = 1;
2033        ti->discard_zeroes_data_unsupported = true;
2034
2035        return 0;
2036
2037bad:
2038        crypt_dtr(ti);
2039        return ret;
2040}
2041
2042static int crypt_map(struct dm_target *ti, struct bio *bio)
2043{
2044        struct dm_crypt_io *io;
2045        struct crypt_config *cc = ti->private;
2046
2047        /*
2048         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2049         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2050         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2051         */
2052        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2053            bio_op(bio) == REQ_OP_DISCARD)) {
2054                bio->bi_bdev = cc->dev->bdev;
2055                if (bio_sectors(bio))
2056                        bio->bi_iter.bi_sector = cc->start +
2057                                dm_target_offset(ti, bio->bi_iter.bi_sector);
2058                return DM_MAPIO_REMAPPED;
2059        }
2060
2061        /*
2062         * Check if bio is too large, split as needed.
2063         */
2064        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2065            bio_data_dir(bio) == WRITE)
2066                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2067
2068        io = dm_per_bio_data(bio, cc->per_bio_data_size);
2069        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2070        io->ctx.req = (struct skcipher_request *)(io + 1);
2071
2072        if (bio_data_dir(io->base_bio) == READ) {
2073                if (kcryptd_io_read(io, GFP_NOWAIT))
2074                        kcryptd_queue_read(io);
2075        } else
2076                kcryptd_queue_crypt(io);
2077
2078        return DM_MAPIO_SUBMITTED;
2079}
2080
2081static void crypt_status(struct dm_target *ti, status_type_t type,
2082                         unsigned status_flags, char *result, unsigned maxlen)
2083{
2084        struct crypt_config *cc = ti->private;
2085        unsigned i, sz = 0;
2086        int num_feature_args = 0;
2087
2088        switch (type) {
2089        case STATUSTYPE_INFO:
2090                result[0] = '\0';
2091                break;
2092
2093        case STATUSTYPE_TABLE:
2094                DMEMIT("%s ", cc->cipher_string);
2095
2096                if (cc->key_size > 0) {
2097                        if (cc->key_string)
2098                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2099                        else
2100                                for (i = 0; i < cc->key_size; i++)
2101                                        DMEMIT("%02x", cc->key[i]);
2102                } else
2103                        DMEMIT("-");
2104
2105                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2106                                cc->dev->name, (unsigned long long)cc->start);
2107
2108                num_feature_args += !!ti->num_discard_bios;
2109                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2110                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2111                if (num_feature_args) {
2112                        DMEMIT(" %d", num_feature_args);
2113                        if (ti->num_discard_bios)
2114                                DMEMIT(" allow_discards");
2115                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2116                                DMEMIT(" same_cpu_crypt");
2117                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2118                                DMEMIT(" submit_from_crypt_cpus");
2119                }
2120
2121                break;
2122        }
2123}
2124
2125static void crypt_postsuspend(struct dm_target *ti)
2126{
2127        struct crypt_config *cc = ti->private;
2128
2129        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2130}
2131
2132static int crypt_preresume(struct dm_target *ti)
2133{
2134        struct crypt_config *cc = ti->private;
2135
2136        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2137                DMERR("aborting resume - crypt key is not set.");
2138                return -EAGAIN;
2139        }
2140
2141        return 0;
2142}
2143
2144static void crypt_resume(struct dm_target *ti)
2145{
2146        struct crypt_config *cc = ti->private;
2147
2148        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2149}
2150
2151/* Message interface
2152 *      key set <key>
2153 *      key wipe
2154 */
2155static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2156{
2157        struct crypt_config *cc = ti->private;
2158        int key_size, ret = -EINVAL;
2159
2160        if (argc < 2)
2161                goto error;
2162
2163        if (!strcasecmp(argv[0], "key")) {
2164                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2165                        DMWARN("not suspended during key manipulation.");
2166                        return -EINVAL;
2167                }
2168                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2169                        /* The key size may not be changed. */
2170                        key_size = get_key_size(&argv[2]);
2171                        if (key_size < 0 || cc->key_size != key_size) {
2172                                memset(argv[2], '0', strlen(argv[2]));
2173                                return -EINVAL;
2174                        }
2175
2176                        ret = crypt_set_key(cc, argv[2]);
2177                        if (ret)
2178                                return ret;
2179                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2180                                ret = cc->iv_gen_ops->init(cc);
2181                        return ret;
2182                }
2183                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2184                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2185                                ret = cc->iv_gen_ops->wipe(cc);
2186                                if (ret)
2187                                        return ret;
2188                        }
2189                        return crypt_wipe_key(cc);
2190                }
2191        }
2192
2193error:
2194        DMWARN("unrecognised message received.");
2195        return -EINVAL;
2196}
2197
2198static int crypt_iterate_devices(struct dm_target *ti,
2199                                 iterate_devices_callout_fn fn, void *data)
2200{
2201        struct crypt_config *cc = ti->private;
2202
2203        return fn(ti, cc->dev, cc->start, ti->len, data);
2204}
2205
2206static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2207{
2208        /*
2209         * Unfortunate constraint that is required to avoid the potential
2210         * for exceeding underlying device's max_segments limits -- due to
2211         * crypt_alloc_buffer() possibly allocating pages for the encryption
2212         * bio that are not as physically contiguous as the original bio.
2213         */
2214        limits->max_segment_size = PAGE_SIZE;
2215}
2216
2217static struct target_type crypt_target = {
2218        .name   = "crypt",
2219        .version = {1, 15, 0},
2220        .module = THIS_MODULE,
2221        .ctr    = crypt_ctr,
2222        .dtr    = crypt_dtr,
2223        .map    = crypt_map,
2224        .status = crypt_status,
2225        .postsuspend = crypt_postsuspend,
2226        .preresume = crypt_preresume,
2227        .resume = crypt_resume,
2228        .message = crypt_message,
2229        .iterate_devices = crypt_iterate_devices,
2230        .io_hints = crypt_io_hints,
2231};
2232
2233static int __init dm_crypt_init(void)
2234{
2235        int r;
2236
2237        r = dm_register_target(&crypt_target);
2238        if (r < 0)
2239                DMERR("register failed %d", r);
2240
2241        return r;
2242}
2243
2244static void __exit dm_crypt_exit(void)
2245{
2246        dm_unregister_target(&crypt_target);
2247}
2248
2249module_init(dm_crypt_init);
2250module_exit(dm_crypt_exit);
2251
2252MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2253MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2254MODULE_LICENSE("GPL");
2255