linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203        PM_READ_ONLY,           /* metadata may not be changed */
 204        PM_FAIL,                /* all I/O fails */
 205};
 206
 207struct pool_features {
 208        enum pool_mode mode;
 209
 210        bool zero_new_blocks:1;
 211        bool discard_enabled:1;
 212        bool discard_passdown:1;
 213        bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224        struct list_head list;
 225        struct dm_target *ti;   /* Only set if a pool target is bound */
 226
 227        struct mapped_device *pool_md;
 228        struct block_device *md_dev;
 229        struct dm_pool_metadata *pmd;
 230
 231        dm_block_t low_water_blocks;
 232        uint32_t sectors_per_block;
 233        int sectors_per_block_shift;
 234
 235        struct pool_features pf;
 236        bool low_water_triggered:1;     /* A dm event has been sent */
 237        bool suspended:1;
 238        bool out_of_data_space:1;
 239
 240        struct dm_bio_prison *prison;
 241        struct dm_kcopyd_client *copier;
 242
 243        struct workqueue_struct *wq;
 244        struct throttle throttle;
 245        struct work_struct worker;
 246        struct delayed_work waker;
 247        struct delayed_work no_space_timeout;
 248
 249        unsigned long last_commit_jiffies;
 250        unsigned ref_count;
 251
 252        spinlock_t lock;
 253        struct bio_list deferred_flush_bios;
 254        struct list_head prepared_mappings;
 255        struct list_head prepared_discards;
 256        struct list_head prepared_discards_pt2;
 257        struct list_head active_thins;
 258
 259        struct dm_deferred_set *shared_read_ds;
 260        struct dm_deferred_set *all_io_ds;
 261
 262        struct dm_thin_new_mapping *next_mapping;
 263        mempool_t *mapping_pool;
 264
 265        process_bio_fn process_bio;
 266        process_bio_fn process_discard;
 267
 268        process_cell_fn process_cell;
 269        process_cell_fn process_discard_cell;
 270
 271        process_mapping_fn process_prepared_mapping;
 272        process_mapping_fn process_prepared_discard;
 273        process_mapping_fn process_prepared_discard_pt2;
 274
 275        struct dm_bio_prison_cell **cell_sort_array;
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285        struct dm_target *ti;
 286        struct pool *pool;
 287        struct dm_dev *data_dev;
 288        struct dm_dev *metadata_dev;
 289        struct dm_target_callbacks callbacks;
 290
 291        dm_block_t low_water_blocks;
 292        struct pool_features requested_pf; /* Features requested during table load */
 293        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300        struct list_head list;
 301        struct dm_dev *pool_dev;
 302        struct dm_dev *origin_dev;
 303        sector_t origin_size;
 304        dm_thin_id dev_id;
 305
 306        struct pool *pool;
 307        struct dm_thin_device *td;
 308        struct mapped_device *thin_md;
 309
 310        bool requeue_mode:1;
 311        spinlock_t lock;
 312        struct list_head deferred_cells;
 313        struct bio_list deferred_bio_list;
 314        struct bio_list retry_on_resume_list;
 315        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317        /*
 318         * Ensures the thin is not destroyed until the worker has finished
 319         * iterating the active_thins list.
 320         */
 321        atomic_t refcount;
 322        struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329        return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334        return block_size_is_power_of_two(pool) ?
 335                (b << pool->sectors_per_block_shift) :
 336                (b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342        struct thin_c *tc;
 343        struct blk_plug plug;
 344        struct bio *parent_bio;
 345        struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350        BUG_ON(!parent);
 351
 352        op->tc = tc;
 353        blk_start_plug(&op->plug);
 354        op->parent_bio = parent;
 355        op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360        struct thin_c *tc = op->tc;
 361        sector_t s = block_to_sectors(tc->pool, data_b);
 362        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365                                      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370        if (op->bio) {
 371                /*
 372                 * Even if one of the calls to issue_discard failed, we
 373                 * need to wait for the chain to complete.
 374                 */
 375                bio_chain(op->bio, op->parent_bio);
 376                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377                submit_bio(op->bio);
 378        }
 379
 380        blk_finish_plug(&op->plug);
 381
 382        /*
 383         * Even if r is set, there could be sub discards in flight that we
 384         * need to wait for.
 385         */
 386        if (r && !op->parent_bio->bi_error)
 387                op->parent_bio->bi_error = r;
 388        bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399        queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405                      struct dm_bio_prison_cell **cell_result)
 406{
 407        int r;
 408        struct dm_bio_prison_cell *cell_prealloc;
 409
 410        /*
 411         * Allocate a cell from the prison's mempool.
 412         * This might block but it can't fail.
 413         */
 414        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417        if (r)
 418                /*
 419                 * We reused an old cell; we can get rid of
 420                 * the new one.
 421                 */
 422                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424        return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428                         struct dm_bio_prison_cell *cell,
 429                         struct bio_list *bios)
 430{
 431        dm_cell_release(pool->prison, cell, bios);
 432        dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436                               void (*fn)(void *, struct dm_bio_prison_cell *),
 437                               void *context,
 438                               struct dm_bio_prison_cell *cell)
 439{
 440        dm_cell_visit_release(pool->prison, fn, context, cell);
 441        dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445                                   struct dm_bio_prison_cell *cell,
 446                                   struct bio_list *bios)
 447{
 448        dm_cell_release_no_holder(pool->prison, cell, bios);
 449        dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453                                 struct dm_bio_prison_cell *cell, int error_code)
 454{
 455        dm_cell_error(pool->prison, cell, error_code);
 456        dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static int get_pool_io_error_code(struct pool *pool)
 460{
 461        return pool->out_of_data_space ? -ENOSPC : -EIO;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466        int error = get_pool_io_error_code(pool);
 467
 468        cell_error_with_code(pool, cell, error);
 469}
 470
 471static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 472{
 473        cell_error_with_code(pool, cell, 0);
 474}
 475
 476static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 477{
 478        cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 479}
 480
 481/*----------------------------------------------------------------*/
 482
 483/*
 484 * A global list of pools that uses a struct mapped_device as a key.
 485 */
 486static struct dm_thin_pool_table {
 487        struct mutex mutex;
 488        struct list_head pools;
 489} dm_thin_pool_table;
 490
 491static void pool_table_init(void)
 492{
 493        mutex_init(&dm_thin_pool_table.mutex);
 494        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 495}
 496
 497static void __pool_table_insert(struct pool *pool)
 498{
 499        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 500        list_add(&pool->list, &dm_thin_pool_table.pools);
 501}
 502
 503static void __pool_table_remove(struct pool *pool)
 504{
 505        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506        list_del(&pool->list);
 507}
 508
 509static struct pool *__pool_table_lookup(struct mapped_device *md)
 510{
 511        struct pool *pool = NULL, *tmp;
 512
 513        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 514
 515        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 516                if (tmp->pool_md == md) {
 517                        pool = tmp;
 518                        break;
 519                }
 520        }
 521
 522        return pool;
 523}
 524
 525static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 526{
 527        struct pool *pool = NULL, *tmp;
 528
 529        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 530
 531        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 532                if (tmp->md_dev == md_dev) {
 533                        pool = tmp;
 534                        break;
 535                }
 536        }
 537
 538        return pool;
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543struct dm_thin_endio_hook {
 544        struct thin_c *tc;
 545        struct dm_deferred_entry *shared_read_entry;
 546        struct dm_deferred_entry *all_io_entry;
 547        struct dm_thin_new_mapping *overwrite_mapping;
 548        struct rb_node rb_node;
 549        struct dm_bio_prison_cell *cell;
 550};
 551
 552static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 553{
 554        bio_list_merge(bios, master);
 555        bio_list_init(master);
 556}
 557
 558static void error_bio_list(struct bio_list *bios, int error)
 559{
 560        struct bio *bio;
 561
 562        while ((bio = bio_list_pop(bios))) {
 563                bio->bi_error = error;
 564                bio_endio(bio);
 565        }
 566}
 567
 568static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 569{
 570        struct bio_list bios;
 571        unsigned long flags;
 572
 573        bio_list_init(&bios);
 574
 575        spin_lock_irqsave(&tc->lock, flags);
 576        __merge_bio_list(&bios, master);
 577        spin_unlock_irqrestore(&tc->lock, flags);
 578
 579        error_bio_list(&bios, error);
 580}
 581
 582static void requeue_deferred_cells(struct thin_c *tc)
 583{
 584        struct pool *pool = tc->pool;
 585        unsigned long flags;
 586        struct list_head cells;
 587        struct dm_bio_prison_cell *cell, *tmp;
 588
 589        INIT_LIST_HEAD(&cells);
 590
 591        spin_lock_irqsave(&tc->lock, flags);
 592        list_splice_init(&tc->deferred_cells, &cells);
 593        spin_unlock_irqrestore(&tc->lock, flags);
 594
 595        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 596                cell_requeue(pool, cell);
 597}
 598
 599static void requeue_io(struct thin_c *tc)
 600{
 601        struct bio_list bios;
 602        unsigned long flags;
 603
 604        bio_list_init(&bios);
 605
 606        spin_lock_irqsave(&tc->lock, flags);
 607        __merge_bio_list(&bios, &tc->deferred_bio_list);
 608        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 609        spin_unlock_irqrestore(&tc->lock, flags);
 610
 611        error_bio_list(&bios, DM_ENDIO_REQUEUE);
 612        requeue_deferred_cells(tc);
 613}
 614
 615static void error_retry_list_with_code(struct pool *pool, int error)
 616{
 617        struct thin_c *tc;
 618
 619        rcu_read_lock();
 620        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 621                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 622        rcu_read_unlock();
 623}
 624
 625static void error_retry_list(struct pool *pool)
 626{
 627        int error = get_pool_io_error_code(pool);
 628
 629        error_retry_list_with_code(pool, error);
 630}
 631
 632/*
 633 * This section of code contains the logic for processing a thin device's IO.
 634 * Much of the code depends on pool object resources (lists, workqueues, etc)
 635 * but most is exclusively called from the thin target rather than the thin-pool
 636 * target.
 637 */
 638
 639static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 640{
 641        struct pool *pool = tc->pool;
 642        sector_t block_nr = bio->bi_iter.bi_sector;
 643
 644        if (block_size_is_power_of_two(pool))
 645                block_nr >>= pool->sectors_per_block_shift;
 646        else
 647                (void) sector_div(block_nr, pool->sectors_per_block);
 648
 649        return block_nr;
 650}
 651
 652/*
 653 * Returns the _complete_ blocks that this bio covers.
 654 */
 655static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 656                                dm_block_t *begin, dm_block_t *end)
 657{
 658        struct pool *pool = tc->pool;
 659        sector_t b = bio->bi_iter.bi_sector;
 660        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 661
 662        b += pool->sectors_per_block - 1ull; /* so we round up */
 663
 664        if (block_size_is_power_of_two(pool)) {
 665                b >>= pool->sectors_per_block_shift;
 666                e >>= pool->sectors_per_block_shift;
 667        } else {
 668                (void) sector_div(b, pool->sectors_per_block);
 669                (void) sector_div(e, pool->sectors_per_block);
 670        }
 671
 672        if (e < b)
 673                /* Can happen if the bio is within a single block. */
 674                e = b;
 675
 676        *begin = b;
 677        *end = e;
 678}
 679
 680static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 681{
 682        struct pool *pool = tc->pool;
 683        sector_t bi_sector = bio->bi_iter.bi_sector;
 684
 685        bio->bi_bdev = tc->pool_dev->bdev;
 686        if (block_size_is_power_of_two(pool))
 687                bio->bi_iter.bi_sector =
 688                        (block << pool->sectors_per_block_shift) |
 689                        (bi_sector & (pool->sectors_per_block - 1));
 690        else
 691                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 692                                 sector_div(bi_sector, pool->sectors_per_block);
 693}
 694
 695static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 696{
 697        bio->bi_bdev = tc->origin_dev->bdev;
 698}
 699
 700static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 701{
 702        return op_is_flush(bio->bi_opf) &&
 703                dm_thin_changed_this_transaction(tc->td);
 704}
 705
 706static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 707{
 708        struct dm_thin_endio_hook *h;
 709
 710        if (bio_op(bio) == REQ_OP_DISCARD)
 711                return;
 712
 713        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 714        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 715}
 716
 717static void issue(struct thin_c *tc, struct bio *bio)
 718{
 719        struct pool *pool = tc->pool;
 720        unsigned long flags;
 721
 722        if (!bio_triggers_commit(tc, bio)) {
 723                generic_make_request(bio);
 724                return;
 725        }
 726
 727        /*
 728         * Complete bio with an error if earlier I/O caused changes to
 729         * the metadata that can't be committed e.g, due to I/O errors
 730         * on the metadata device.
 731         */
 732        if (dm_thin_aborted_changes(tc->td)) {
 733                bio_io_error(bio);
 734                return;
 735        }
 736
 737        /*
 738         * Batch together any bios that trigger commits and then issue a
 739         * single commit for them in process_deferred_bios().
 740         */
 741        spin_lock_irqsave(&pool->lock, flags);
 742        bio_list_add(&pool->deferred_flush_bios, bio);
 743        spin_unlock_irqrestore(&pool->lock, flags);
 744}
 745
 746static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 747{
 748        remap_to_origin(tc, bio);
 749        issue(tc, bio);
 750}
 751
 752static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 753                            dm_block_t block)
 754{
 755        remap(tc, bio, block);
 756        issue(tc, bio);
 757}
 758
 759/*----------------------------------------------------------------*/
 760
 761/*
 762 * Bio endio functions.
 763 */
 764struct dm_thin_new_mapping {
 765        struct list_head list;
 766
 767        bool pass_discard:1;
 768        bool maybe_shared:1;
 769
 770        /*
 771         * Track quiescing, copying and zeroing preparation actions.  When this
 772         * counter hits zero the block is prepared and can be inserted into the
 773         * btree.
 774         */
 775        atomic_t prepare_actions;
 776
 777        int err;
 778        struct thin_c *tc;
 779        dm_block_t virt_begin, virt_end;
 780        dm_block_t data_block;
 781        struct dm_bio_prison_cell *cell;
 782
 783        /*
 784         * If the bio covers the whole area of a block then we can avoid
 785         * zeroing or copying.  Instead this bio is hooked.  The bio will
 786         * still be in the cell, so care has to be taken to avoid issuing
 787         * the bio twice.
 788         */
 789        struct bio *bio;
 790        bio_end_io_t *saved_bi_end_io;
 791};
 792
 793static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 794{
 795        struct pool *pool = m->tc->pool;
 796
 797        if (atomic_dec_and_test(&m->prepare_actions)) {
 798                list_add_tail(&m->list, &pool->prepared_mappings);
 799                wake_worker(pool);
 800        }
 801}
 802
 803static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 804{
 805        unsigned long flags;
 806        struct pool *pool = m->tc->pool;
 807
 808        spin_lock_irqsave(&pool->lock, flags);
 809        __complete_mapping_preparation(m);
 810        spin_unlock_irqrestore(&pool->lock, flags);
 811}
 812
 813static void copy_complete(int read_err, unsigned long write_err, void *context)
 814{
 815        struct dm_thin_new_mapping *m = context;
 816
 817        m->err = read_err || write_err ? -EIO : 0;
 818        complete_mapping_preparation(m);
 819}
 820
 821static void overwrite_endio(struct bio *bio)
 822{
 823        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 824        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 825
 826        bio->bi_end_io = m->saved_bi_end_io;
 827
 828        m->err = bio->bi_error;
 829        complete_mapping_preparation(m);
 830}
 831
 832/*----------------------------------------------------------------*/
 833
 834/*
 835 * Workqueue.
 836 */
 837
 838/*
 839 * Prepared mapping jobs.
 840 */
 841
 842/*
 843 * This sends the bios in the cell, except the original holder, back
 844 * to the deferred_bios list.
 845 */
 846static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 847{
 848        struct pool *pool = tc->pool;
 849        unsigned long flags;
 850
 851        spin_lock_irqsave(&tc->lock, flags);
 852        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 853        spin_unlock_irqrestore(&tc->lock, flags);
 854
 855        wake_worker(pool);
 856}
 857
 858static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 859
 860struct remap_info {
 861        struct thin_c *tc;
 862        struct bio_list defer_bios;
 863        struct bio_list issue_bios;
 864};
 865
 866static void __inc_remap_and_issue_cell(void *context,
 867                                       struct dm_bio_prison_cell *cell)
 868{
 869        struct remap_info *info = context;
 870        struct bio *bio;
 871
 872        while ((bio = bio_list_pop(&cell->bios))) {
 873                if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 874                        bio_list_add(&info->defer_bios, bio);
 875                else {
 876                        inc_all_io_entry(info->tc->pool, bio);
 877
 878                        /*
 879                         * We can't issue the bios with the bio prison lock
 880                         * held, so we add them to a list to issue on
 881                         * return from this function.
 882                         */
 883                        bio_list_add(&info->issue_bios, bio);
 884                }
 885        }
 886}
 887
 888static void inc_remap_and_issue_cell(struct thin_c *tc,
 889                                     struct dm_bio_prison_cell *cell,
 890                                     dm_block_t block)
 891{
 892        struct bio *bio;
 893        struct remap_info info;
 894
 895        info.tc = tc;
 896        bio_list_init(&info.defer_bios);
 897        bio_list_init(&info.issue_bios);
 898
 899        /*
 900         * We have to be careful to inc any bios we're about to issue
 901         * before the cell is released, and avoid a race with new bios
 902         * being added to the cell.
 903         */
 904        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 905                           &info, cell);
 906
 907        while ((bio = bio_list_pop(&info.defer_bios)))
 908                thin_defer_bio(tc, bio);
 909
 910        while ((bio = bio_list_pop(&info.issue_bios)))
 911                remap_and_issue(info.tc, bio, block);
 912}
 913
 914static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 915{
 916        cell_error(m->tc->pool, m->cell);
 917        list_del(&m->list);
 918        mempool_free(m, m->tc->pool->mapping_pool);
 919}
 920
 921static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 922{
 923        struct thin_c *tc = m->tc;
 924        struct pool *pool = tc->pool;
 925        struct bio *bio = m->bio;
 926        int r;
 927
 928        if (m->err) {
 929                cell_error(pool, m->cell);
 930                goto out;
 931        }
 932
 933        /*
 934         * Commit the prepared block into the mapping btree.
 935         * Any I/O for this block arriving after this point will get
 936         * remapped to it directly.
 937         */
 938        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 939        if (r) {
 940                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 941                cell_error(pool, m->cell);
 942                goto out;
 943        }
 944
 945        /*
 946         * Release any bios held while the block was being provisioned.
 947         * If we are processing a write bio that completely covers the block,
 948         * we already processed it so can ignore it now when processing
 949         * the bios in the cell.
 950         */
 951        if (bio) {
 952                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 953                bio_endio(bio);
 954        } else {
 955                inc_all_io_entry(tc->pool, m->cell->holder);
 956                remap_and_issue(tc, m->cell->holder, m->data_block);
 957                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 958        }
 959
 960out:
 961        list_del(&m->list);
 962        mempool_free(m, pool->mapping_pool);
 963}
 964
 965/*----------------------------------------------------------------*/
 966
 967static void free_discard_mapping(struct dm_thin_new_mapping *m)
 968{
 969        struct thin_c *tc = m->tc;
 970        if (m->cell)
 971                cell_defer_no_holder(tc, m->cell);
 972        mempool_free(m, tc->pool->mapping_pool);
 973}
 974
 975static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 976{
 977        bio_io_error(m->bio);
 978        free_discard_mapping(m);
 979}
 980
 981static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 982{
 983        bio_endio(m->bio);
 984        free_discard_mapping(m);
 985}
 986
 987static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 988{
 989        int r;
 990        struct thin_c *tc = m->tc;
 991
 992        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 993        if (r) {
 994                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 995                bio_io_error(m->bio);
 996        } else
 997                bio_endio(m->bio);
 998
 999        cell_defer_no_holder(tc, m->cell);
1000        mempool_free(m, tc->pool->mapping_pool);
1001}
1002
1003/*----------------------------------------------------------------*/
1004
1005static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006                                                   struct bio *discard_parent)
1007{
1008        /*
1009         * We've already unmapped this range of blocks, but before we
1010         * passdown we have to check that these blocks are now unused.
1011         */
1012        int r = 0;
1013        bool used = true;
1014        struct thin_c *tc = m->tc;
1015        struct pool *pool = tc->pool;
1016        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017        struct discard_op op;
1018
1019        begin_discard(&op, tc, discard_parent);
1020        while (b != end) {
1021                /* find start of unmapped run */
1022                for (; b < end; b++) {
1023                        r = dm_pool_block_is_used(pool->pmd, b, &used);
1024                        if (r)
1025                                goto out;
1026
1027                        if (!used)
1028                                break;
1029                }
1030
1031                if (b == end)
1032                        break;
1033
1034                /* find end of run */
1035                for (e = b + 1; e != end; e++) {
1036                        r = dm_pool_block_is_used(pool->pmd, e, &used);
1037                        if (r)
1038                                goto out;
1039
1040                        if (used)
1041                                break;
1042                }
1043
1044                r = issue_discard(&op, b, e);
1045                if (r)
1046                        goto out;
1047
1048                b = e;
1049        }
1050out:
1051        end_discard(&op, r);
1052}
1053
1054static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055{
1056        unsigned long flags;
1057        struct pool *pool = m->tc->pool;
1058
1059        spin_lock_irqsave(&pool->lock, flags);
1060        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061        spin_unlock_irqrestore(&pool->lock, flags);
1062        wake_worker(pool);
1063}
1064
1065static void passdown_endio(struct bio *bio)
1066{
1067        /*
1068         * It doesn't matter if the passdown discard failed, we still want
1069         * to unmap (we ignore err).
1070         */
1071        queue_passdown_pt2(bio->bi_private);
1072}
1073
1074static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1075{
1076        int r;
1077        struct thin_c *tc = m->tc;
1078        struct pool *pool = tc->pool;
1079        struct bio *discard_parent;
1080        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1081
1082        /*
1083         * Only this thread allocates blocks, so we can be sure that the
1084         * newly unmapped blocks will not be allocated before the end of
1085         * the function.
1086         */
1087        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1088        if (r) {
1089                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1090                bio_io_error(m->bio);
1091                cell_defer_no_holder(tc, m->cell);
1092                mempool_free(m, pool->mapping_pool);
1093                return;
1094        }
1095
1096        discard_parent = bio_alloc(GFP_NOIO, 1);
1097        if (!discard_parent) {
1098                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1099                       dm_device_name(tc->pool->pool_md));
1100                queue_passdown_pt2(m);
1101
1102        } else {
1103                discard_parent->bi_end_io = passdown_endio;
1104                discard_parent->bi_private = m;
1105
1106                if (m->maybe_shared)
1107                        passdown_double_checking_shared_status(m, discard_parent);
1108                else {
1109                        struct discard_op op;
1110
1111                        begin_discard(&op, tc, discard_parent);
1112                        r = issue_discard(&op, m->data_block, data_end);
1113                        end_discard(&op, r);
1114                }
1115        }
1116
1117        /*
1118         * Increment the unmapped blocks.  This prevents a race between the
1119         * passdown io and reallocation of freed blocks.
1120         */
1121        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1122        if (r) {
1123                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1124                bio_io_error(m->bio);
1125                cell_defer_no_holder(tc, m->cell);
1126                mempool_free(m, pool->mapping_pool);
1127                return;
1128        }
1129}
1130
1131static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1132{
1133        int r;
1134        struct thin_c *tc = m->tc;
1135        struct pool *pool = tc->pool;
1136
1137        /*
1138         * The passdown has completed, so now we can decrement all those
1139         * unmapped blocks.
1140         */
1141        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1142                                   m->data_block + (m->virt_end - m->virt_begin));
1143        if (r) {
1144                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1145                bio_io_error(m->bio);
1146        } else
1147                bio_endio(m->bio);
1148
1149        cell_defer_no_holder(tc, m->cell);
1150        mempool_free(m, pool->mapping_pool);
1151}
1152
1153static void process_prepared(struct pool *pool, struct list_head *head,
1154                             process_mapping_fn *fn)
1155{
1156        unsigned long flags;
1157        struct list_head maps;
1158        struct dm_thin_new_mapping *m, *tmp;
1159
1160        INIT_LIST_HEAD(&maps);
1161        spin_lock_irqsave(&pool->lock, flags);
1162        list_splice_init(head, &maps);
1163        spin_unlock_irqrestore(&pool->lock, flags);
1164
1165        list_for_each_entry_safe(m, tmp, &maps, list)
1166                (*fn)(m);
1167}
1168
1169/*
1170 * Deferred bio jobs.
1171 */
1172static int io_overlaps_block(struct pool *pool, struct bio *bio)
1173{
1174        return bio->bi_iter.bi_size ==
1175                (pool->sectors_per_block << SECTOR_SHIFT);
1176}
1177
1178static int io_overwrites_block(struct pool *pool, struct bio *bio)
1179{
1180        return (bio_data_dir(bio) == WRITE) &&
1181                io_overlaps_block(pool, bio);
1182}
1183
1184static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1185                               bio_end_io_t *fn)
1186{
1187        *save = bio->bi_end_io;
1188        bio->bi_end_io = fn;
1189}
1190
1191static int ensure_next_mapping(struct pool *pool)
1192{
1193        if (pool->next_mapping)
1194                return 0;
1195
1196        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1197
1198        return pool->next_mapping ? 0 : -ENOMEM;
1199}
1200
1201static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1202{
1203        struct dm_thin_new_mapping *m = pool->next_mapping;
1204
1205        BUG_ON(!pool->next_mapping);
1206
1207        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1208        INIT_LIST_HEAD(&m->list);
1209        m->bio = NULL;
1210
1211        pool->next_mapping = NULL;
1212
1213        return m;
1214}
1215
1216static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1217                    sector_t begin, sector_t end)
1218{
1219        int r;
1220        struct dm_io_region to;
1221
1222        to.bdev = tc->pool_dev->bdev;
1223        to.sector = begin;
1224        to.count = end - begin;
1225
1226        r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1227        if (r < 0) {
1228                DMERR_LIMIT("dm_kcopyd_zero() failed");
1229                copy_complete(1, 1, m);
1230        }
1231}
1232
1233static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1234                                      dm_block_t data_begin,
1235                                      struct dm_thin_new_mapping *m)
1236{
1237        struct pool *pool = tc->pool;
1238        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1239
1240        h->overwrite_mapping = m;
1241        m->bio = bio;
1242        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1243        inc_all_io_entry(pool, bio);
1244        remap_and_issue(tc, bio, data_begin);
1245}
1246
1247/*
1248 * A partial copy also needs to zero the uncopied region.
1249 */
1250static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1251                          struct dm_dev *origin, dm_block_t data_origin,
1252                          dm_block_t data_dest,
1253                          struct dm_bio_prison_cell *cell, struct bio *bio,
1254                          sector_t len)
1255{
1256        int r;
1257        struct pool *pool = tc->pool;
1258        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1259
1260        m->tc = tc;
1261        m->virt_begin = virt_block;
1262        m->virt_end = virt_block + 1u;
1263        m->data_block = data_dest;
1264        m->cell = cell;
1265
1266        /*
1267         * quiesce action + copy action + an extra reference held for the
1268         * duration of this function (we may need to inc later for a
1269         * partial zero).
1270         */
1271        atomic_set(&m->prepare_actions, 3);
1272
1273        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1274                complete_mapping_preparation(m); /* already quiesced */
1275
1276        /*
1277         * IO to pool_dev remaps to the pool target's data_dev.
1278         *
1279         * If the whole block of data is being overwritten, we can issue the
1280         * bio immediately. Otherwise we use kcopyd to clone the data first.
1281         */
1282        if (io_overwrites_block(pool, bio))
1283                remap_and_issue_overwrite(tc, bio, data_dest, m);
1284        else {
1285                struct dm_io_region from, to;
1286
1287                from.bdev = origin->bdev;
1288                from.sector = data_origin * pool->sectors_per_block;
1289                from.count = len;
1290
1291                to.bdev = tc->pool_dev->bdev;
1292                to.sector = data_dest * pool->sectors_per_block;
1293                to.count = len;
1294
1295                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1296                                   0, copy_complete, m);
1297                if (r < 0) {
1298                        DMERR_LIMIT("dm_kcopyd_copy() failed");
1299                        copy_complete(1, 1, m);
1300
1301                        /*
1302                         * We allow the zero to be issued, to simplify the
1303                         * error path.  Otherwise we'd need to start
1304                         * worrying about decrementing the prepare_actions
1305                         * counter.
1306                         */
1307                }
1308
1309                /*
1310                 * Do we need to zero a tail region?
1311                 */
1312                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1313                        atomic_inc(&m->prepare_actions);
1314                        ll_zero(tc, m,
1315                                data_dest * pool->sectors_per_block + len,
1316                                (data_dest + 1) * pool->sectors_per_block);
1317                }
1318        }
1319
1320        complete_mapping_preparation(m); /* drop our ref */
1321}
1322
1323static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1324                                   dm_block_t data_origin, dm_block_t data_dest,
1325                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1326{
1327        schedule_copy(tc, virt_block, tc->pool_dev,
1328                      data_origin, data_dest, cell, bio,
1329                      tc->pool->sectors_per_block);
1330}
1331
1332static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1333                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1334                          struct bio *bio)
1335{
1336        struct pool *pool = tc->pool;
1337        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1338
1339        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1340        m->tc = tc;
1341        m->virt_begin = virt_block;
1342        m->virt_end = virt_block + 1u;
1343        m->data_block = data_block;
1344        m->cell = cell;
1345
1346        /*
1347         * If the whole block of data is being overwritten or we are not
1348         * zeroing pre-existing data, we can issue the bio immediately.
1349         * Otherwise we use kcopyd to zero the data first.
1350         */
1351        if (pool->pf.zero_new_blocks) {
1352                if (io_overwrites_block(pool, bio))
1353                        remap_and_issue_overwrite(tc, bio, data_block, m);
1354                else
1355                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1356                                (data_block + 1) * pool->sectors_per_block);
1357        } else
1358                process_prepared_mapping(m);
1359}
1360
1361static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1362                                   dm_block_t data_dest,
1363                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1364{
1365        struct pool *pool = tc->pool;
1366        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1367        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1368
1369        if (virt_block_end <= tc->origin_size)
1370                schedule_copy(tc, virt_block, tc->origin_dev,
1371                              virt_block, data_dest, cell, bio,
1372                              pool->sectors_per_block);
1373
1374        else if (virt_block_begin < tc->origin_size)
1375                schedule_copy(tc, virt_block, tc->origin_dev,
1376                              virt_block, data_dest, cell, bio,
1377                              tc->origin_size - virt_block_begin);
1378
1379        else
1380                schedule_zero(tc, virt_block, data_dest, cell, bio);
1381}
1382
1383static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1384
1385static void check_for_space(struct pool *pool)
1386{
1387        int r;
1388        dm_block_t nr_free;
1389
1390        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1391                return;
1392
1393        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1394        if (r)
1395                return;
1396
1397        if (nr_free)
1398                set_pool_mode(pool, PM_WRITE);
1399}
1400
1401/*
1402 * A non-zero return indicates read_only or fail_io mode.
1403 * Many callers don't care about the return value.
1404 */
1405static int commit(struct pool *pool)
1406{
1407        int r;
1408
1409        if (get_pool_mode(pool) >= PM_READ_ONLY)
1410                return -EINVAL;
1411
1412        r = dm_pool_commit_metadata(pool->pmd);
1413        if (r)
1414                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1415        else
1416                check_for_space(pool);
1417
1418        return r;
1419}
1420
1421static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1422{
1423        unsigned long flags;
1424
1425        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1426                DMWARN("%s: reached low water mark for data device: sending event.",
1427                       dm_device_name(pool->pool_md));
1428                spin_lock_irqsave(&pool->lock, flags);
1429                pool->low_water_triggered = true;
1430                spin_unlock_irqrestore(&pool->lock, flags);
1431                dm_table_event(pool->ti->table);
1432        }
1433}
1434
1435static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1436{
1437        int r;
1438        dm_block_t free_blocks;
1439        struct pool *pool = tc->pool;
1440
1441        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1442                return -EINVAL;
1443
1444        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1445        if (r) {
1446                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1447                return r;
1448        }
1449
1450        check_low_water_mark(pool, free_blocks);
1451
1452        if (!free_blocks) {
1453                /*
1454                 * Try to commit to see if that will free up some
1455                 * more space.
1456                 */
1457                r = commit(pool);
1458                if (r)
1459                        return r;
1460
1461                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1462                if (r) {
1463                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1464                        return r;
1465                }
1466
1467                if (!free_blocks) {
1468                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1469                        return -ENOSPC;
1470                }
1471        }
1472
1473        r = dm_pool_alloc_data_block(pool->pmd, result);
1474        if (r) {
1475                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1476                return r;
1477        }
1478
1479        return 0;
1480}
1481
1482/*
1483 * If we have run out of space, queue bios until the device is
1484 * resumed, presumably after having been reloaded with more space.
1485 */
1486static void retry_on_resume(struct bio *bio)
1487{
1488        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1489        struct thin_c *tc = h->tc;
1490        unsigned long flags;
1491
1492        spin_lock_irqsave(&tc->lock, flags);
1493        bio_list_add(&tc->retry_on_resume_list, bio);
1494        spin_unlock_irqrestore(&tc->lock, flags);
1495}
1496
1497static int should_error_unserviceable_bio(struct pool *pool)
1498{
1499        enum pool_mode m = get_pool_mode(pool);
1500
1501        switch (m) {
1502        case PM_WRITE:
1503                /* Shouldn't get here */
1504                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1505                return -EIO;
1506
1507        case PM_OUT_OF_DATA_SPACE:
1508                return pool->pf.error_if_no_space ? -ENOSPC : 0;
1509
1510        case PM_READ_ONLY:
1511        case PM_FAIL:
1512                return -EIO;
1513        default:
1514                /* Shouldn't get here */
1515                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1516                return -EIO;
1517        }
1518}
1519
1520static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1521{
1522        int error = should_error_unserviceable_bio(pool);
1523
1524        if (error) {
1525                bio->bi_error = error;
1526                bio_endio(bio);
1527        } else
1528                retry_on_resume(bio);
1529}
1530
1531static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1532{
1533        struct bio *bio;
1534        struct bio_list bios;
1535        int error;
1536
1537        error = should_error_unserviceable_bio(pool);
1538        if (error) {
1539                cell_error_with_code(pool, cell, error);
1540                return;
1541        }
1542
1543        bio_list_init(&bios);
1544        cell_release(pool, cell, &bios);
1545
1546        while ((bio = bio_list_pop(&bios)))
1547                retry_on_resume(bio);
1548}
1549
1550static void process_discard_cell_no_passdown(struct thin_c *tc,
1551                                             struct dm_bio_prison_cell *virt_cell)
1552{
1553        struct pool *pool = tc->pool;
1554        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1555
1556        /*
1557         * We don't need to lock the data blocks, since there's no
1558         * passdown.  We only lock data blocks for allocation and breaking sharing.
1559         */
1560        m->tc = tc;
1561        m->virt_begin = virt_cell->key.block_begin;
1562        m->virt_end = virt_cell->key.block_end;
1563        m->cell = virt_cell;
1564        m->bio = virt_cell->holder;
1565
1566        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1567                pool->process_prepared_discard(m);
1568}
1569
1570static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1571                                 struct bio *bio)
1572{
1573        struct pool *pool = tc->pool;
1574
1575        int r;
1576        bool maybe_shared;
1577        struct dm_cell_key data_key;
1578        struct dm_bio_prison_cell *data_cell;
1579        struct dm_thin_new_mapping *m;
1580        dm_block_t virt_begin, virt_end, data_begin;
1581
1582        while (begin != end) {
1583                r = ensure_next_mapping(pool);
1584                if (r)
1585                        /* we did our best */
1586                        return;
1587
1588                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1589                                              &data_begin, &maybe_shared);
1590                if (r)
1591                        /*
1592                         * Silently fail, letting any mappings we've
1593                         * created complete.
1594                         */
1595                        break;
1596
1597                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1598                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1599                        /* contention, we'll give up with this range */
1600                        begin = virt_end;
1601                        continue;
1602                }
1603
1604                /*
1605                 * IO may still be going to the destination block.  We must
1606                 * quiesce before we can do the removal.
1607                 */
1608                m = get_next_mapping(pool);
1609                m->tc = tc;
1610                m->maybe_shared = maybe_shared;
1611                m->virt_begin = virt_begin;
1612                m->virt_end = virt_end;
1613                m->data_block = data_begin;
1614                m->cell = data_cell;
1615                m->bio = bio;
1616
1617                /*
1618                 * The parent bio must not complete before sub discard bios are
1619                 * chained to it (see end_discard's bio_chain)!
1620                 *
1621                 * This per-mapping bi_remaining increment is paired with
1622                 * the implicit decrement that occurs via bio_endio() in
1623                 * end_discard().
1624                 */
1625                bio_inc_remaining(bio);
1626                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1627                        pool->process_prepared_discard(m);
1628
1629                begin = virt_end;
1630        }
1631}
1632
1633static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1634{
1635        struct bio *bio = virt_cell->holder;
1636        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1637
1638        /*
1639         * The virt_cell will only get freed once the origin bio completes.
1640         * This means it will remain locked while all the individual
1641         * passdown bios are in flight.
1642         */
1643        h->cell = virt_cell;
1644        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1645
1646        /*
1647         * We complete the bio now, knowing that the bi_remaining field
1648         * will prevent completion until the sub range discards have
1649         * completed.
1650         */
1651        bio_endio(bio);
1652}
1653
1654static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1655{
1656        dm_block_t begin, end;
1657        struct dm_cell_key virt_key;
1658        struct dm_bio_prison_cell *virt_cell;
1659
1660        get_bio_block_range(tc, bio, &begin, &end);
1661        if (begin == end) {
1662                /*
1663                 * The discard covers less than a block.
1664                 */
1665                bio_endio(bio);
1666                return;
1667        }
1668
1669        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1670        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1671                /*
1672                 * Potential starvation issue: We're relying on the
1673                 * fs/application being well behaved, and not trying to
1674                 * send IO to a region at the same time as discarding it.
1675                 * If they do this persistently then it's possible this
1676                 * cell will never be granted.
1677                 */
1678                return;
1679
1680        tc->pool->process_discard_cell(tc, virt_cell);
1681}
1682
1683static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1684                          struct dm_cell_key *key,
1685                          struct dm_thin_lookup_result *lookup_result,
1686                          struct dm_bio_prison_cell *cell)
1687{
1688        int r;
1689        dm_block_t data_block;
1690        struct pool *pool = tc->pool;
1691
1692        r = alloc_data_block(tc, &data_block);
1693        switch (r) {
1694        case 0:
1695                schedule_internal_copy(tc, block, lookup_result->block,
1696                                       data_block, cell, bio);
1697                break;
1698
1699        case -ENOSPC:
1700                retry_bios_on_resume(pool, cell);
1701                break;
1702
1703        default:
1704                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1705                            __func__, r);
1706                cell_error(pool, cell);
1707                break;
1708        }
1709}
1710
1711static void __remap_and_issue_shared_cell(void *context,
1712                                          struct dm_bio_prison_cell *cell)
1713{
1714        struct remap_info *info = context;
1715        struct bio *bio;
1716
1717        while ((bio = bio_list_pop(&cell->bios))) {
1718                if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1719                    bio_op(bio) == REQ_OP_DISCARD)
1720                        bio_list_add(&info->defer_bios, bio);
1721                else {
1722                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1723
1724                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1725                        inc_all_io_entry(info->tc->pool, bio);
1726                        bio_list_add(&info->issue_bios, bio);
1727                }
1728        }
1729}
1730
1731static void remap_and_issue_shared_cell(struct thin_c *tc,
1732                                        struct dm_bio_prison_cell *cell,
1733                                        dm_block_t block)
1734{
1735        struct bio *bio;
1736        struct remap_info info;
1737
1738        info.tc = tc;
1739        bio_list_init(&info.defer_bios);
1740        bio_list_init(&info.issue_bios);
1741
1742        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1743                           &info, cell);
1744
1745        while ((bio = bio_list_pop(&info.defer_bios)))
1746                thin_defer_bio(tc, bio);
1747
1748        while ((bio = bio_list_pop(&info.issue_bios)))
1749                remap_and_issue(tc, bio, block);
1750}
1751
1752static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1753                               dm_block_t block,
1754                               struct dm_thin_lookup_result *lookup_result,
1755                               struct dm_bio_prison_cell *virt_cell)
1756{
1757        struct dm_bio_prison_cell *data_cell;
1758        struct pool *pool = tc->pool;
1759        struct dm_cell_key key;
1760
1761        /*
1762         * If cell is already occupied, then sharing is already in the process
1763         * of being broken so we have nothing further to do here.
1764         */
1765        build_data_key(tc->td, lookup_result->block, &key);
1766        if (bio_detain(pool, &key, bio, &data_cell)) {
1767                cell_defer_no_holder(tc, virt_cell);
1768                return;
1769        }
1770
1771        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1772                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1773                cell_defer_no_holder(tc, virt_cell);
1774        } else {
1775                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1776
1777                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1778                inc_all_io_entry(pool, bio);
1779                remap_and_issue(tc, bio, lookup_result->block);
1780
1781                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1782                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1783        }
1784}
1785
1786static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787                            struct dm_bio_prison_cell *cell)
1788{
1789        int r;
1790        dm_block_t data_block;
1791        struct pool *pool = tc->pool;
1792
1793        /*
1794         * Remap empty bios (flushes) immediately, without provisioning.
1795         */
1796        if (!bio->bi_iter.bi_size) {
1797                inc_all_io_entry(pool, bio);
1798                cell_defer_no_holder(tc, cell);
1799
1800                remap_and_issue(tc, bio, 0);
1801                return;
1802        }
1803
1804        /*
1805         * Fill read bios with zeroes and complete them immediately.
1806         */
1807        if (bio_data_dir(bio) == READ) {
1808                zero_fill_bio(bio);
1809                cell_defer_no_holder(tc, cell);
1810                bio_endio(bio);
1811                return;
1812        }
1813
1814        r = alloc_data_block(tc, &data_block);
1815        switch (r) {
1816        case 0:
1817                if (tc->origin_dev)
1818                        schedule_external_copy(tc, block, data_block, cell, bio);
1819                else
1820                        schedule_zero(tc, block, data_block, cell, bio);
1821                break;
1822
1823        case -ENOSPC:
1824                retry_bios_on_resume(pool, cell);
1825                break;
1826
1827        default:
1828                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829                            __func__, r);
1830                cell_error(pool, cell);
1831                break;
1832        }
1833}
1834
1835static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1836{
1837        int r;
1838        struct pool *pool = tc->pool;
1839        struct bio *bio = cell->holder;
1840        dm_block_t block = get_bio_block(tc, bio);
1841        struct dm_thin_lookup_result lookup_result;
1842
1843        if (tc->requeue_mode) {
1844                cell_requeue(pool, cell);
1845                return;
1846        }
1847
1848        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1849        switch (r) {
1850        case 0:
1851                if (lookup_result.shared)
1852                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1853                else {
1854                        inc_all_io_entry(pool, bio);
1855                        remap_and_issue(tc, bio, lookup_result.block);
1856                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1857                }
1858                break;
1859
1860        case -ENODATA:
1861                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1862                        inc_all_io_entry(pool, bio);
1863                        cell_defer_no_holder(tc, cell);
1864
1865                        if (bio_end_sector(bio) <= tc->origin_size)
1866                                remap_to_origin_and_issue(tc, bio);
1867
1868                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1869                                zero_fill_bio(bio);
1870                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1871                                remap_to_origin_and_issue(tc, bio);
1872
1873                        } else {
1874                                zero_fill_bio(bio);
1875                                bio_endio(bio);
1876                        }
1877                } else
1878                        provision_block(tc, bio, block, cell);
1879                break;
1880
1881        default:
1882                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1883                            __func__, r);
1884                cell_defer_no_holder(tc, cell);
1885                bio_io_error(bio);
1886                break;
1887        }
1888}
1889
1890static void process_bio(struct thin_c *tc, struct bio *bio)
1891{
1892        struct pool *pool = tc->pool;
1893        dm_block_t block = get_bio_block(tc, bio);
1894        struct dm_bio_prison_cell *cell;
1895        struct dm_cell_key key;
1896
1897        /*
1898         * If cell is already occupied, then the block is already
1899         * being provisioned so we have nothing further to do here.
1900         */
1901        build_virtual_key(tc->td, block, &key);
1902        if (bio_detain(pool, &key, bio, &cell))
1903                return;
1904
1905        process_cell(tc, cell);
1906}
1907
1908static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1909                                    struct dm_bio_prison_cell *cell)
1910{
1911        int r;
1912        int rw = bio_data_dir(bio);
1913        dm_block_t block = get_bio_block(tc, bio);
1914        struct dm_thin_lookup_result lookup_result;
1915
1916        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1917        switch (r) {
1918        case 0:
1919                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1920                        handle_unserviceable_bio(tc->pool, bio);
1921                        if (cell)
1922                                cell_defer_no_holder(tc, cell);
1923                } else {
1924                        inc_all_io_entry(tc->pool, bio);
1925                        remap_and_issue(tc, bio, lookup_result.block);
1926                        if (cell)
1927                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1928                }
1929                break;
1930
1931        case -ENODATA:
1932                if (cell)
1933                        cell_defer_no_holder(tc, cell);
1934                if (rw != READ) {
1935                        handle_unserviceable_bio(tc->pool, bio);
1936                        break;
1937                }
1938
1939                if (tc->origin_dev) {
1940                        inc_all_io_entry(tc->pool, bio);
1941                        remap_to_origin_and_issue(tc, bio);
1942                        break;
1943                }
1944
1945                zero_fill_bio(bio);
1946                bio_endio(bio);
1947                break;
1948
1949        default:
1950                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1951                            __func__, r);
1952                if (cell)
1953                        cell_defer_no_holder(tc, cell);
1954                bio_io_error(bio);
1955                break;
1956        }
1957}
1958
1959static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1960{
1961        __process_bio_read_only(tc, bio, NULL);
1962}
1963
1964static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1965{
1966        __process_bio_read_only(tc, cell->holder, cell);
1967}
1968
1969static void process_bio_success(struct thin_c *tc, struct bio *bio)
1970{
1971        bio_endio(bio);
1972}
1973
1974static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1975{
1976        bio_io_error(bio);
1977}
1978
1979static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1980{
1981        cell_success(tc->pool, cell);
1982}
1983
1984static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1985{
1986        cell_error(tc->pool, cell);
1987}
1988
1989/*
1990 * FIXME: should we also commit due to size of transaction, measured in
1991 * metadata blocks?
1992 */
1993static int need_commit_due_to_time(struct pool *pool)
1994{
1995        return !time_in_range(jiffies, pool->last_commit_jiffies,
1996                              pool->last_commit_jiffies + COMMIT_PERIOD);
1997}
1998
1999#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2000#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2001
2002static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2003{
2004        struct rb_node **rbp, *parent;
2005        struct dm_thin_endio_hook *pbd;
2006        sector_t bi_sector = bio->bi_iter.bi_sector;
2007
2008        rbp = &tc->sort_bio_list.rb_node;
2009        parent = NULL;
2010        while (*rbp) {
2011                parent = *rbp;
2012                pbd = thin_pbd(parent);
2013
2014                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2015                        rbp = &(*rbp)->rb_left;
2016                else
2017                        rbp = &(*rbp)->rb_right;
2018        }
2019
2020        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2021        rb_link_node(&pbd->rb_node, parent, rbp);
2022        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2023}
2024
2025static void __extract_sorted_bios(struct thin_c *tc)
2026{
2027        struct rb_node *node;
2028        struct dm_thin_endio_hook *pbd;
2029        struct bio *bio;
2030
2031        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2032                pbd = thin_pbd(node);
2033                bio = thin_bio(pbd);
2034
2035                bio_list_add(&tc->deferred_bio_list, bio);
2036                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2037        }
2038
2039        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2040}
2041
2042static void __sort_thin_deferred_bios(struct thin_c *tc)
2043{
2044        struct bio *bio;
2045        struct bio_list bios;
2046
2047        bio_list_init(&bios);
2048        bio_list_merge(&bios, &tc->deferred_bio_list);
2049        bio_list_init(&tc->deferred_bio_list);
2050
2051        /* Sort deferred_bio_list using rb-tree */
2052        while ((bio = bio_list_pop(&bios)))
2053                __thin_bio_rb_add(tc, bio);
2054
2055        /*
2056         * Transfer the sorted bios in sort_bio_list back to
2057         * deferred_bio_list to allow lockless submission of
2058         * all bios.
2059         */
2060        __extract_sorted_bios(tc);
2061}
2062
2063static void process_thin_deferred_bios(struct thin_c *tc)
2064{
2065        struct pool *pool = tc->pool;
2066        unsigned long flags;
2067        struct bio *bio;
2068        struct bio_list bios;
2069        struct blk_plug plug;
2070        unsigned count = 0;
2071
2072        if (tc->requeue_mode) {
2073                error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2074                return;
2075        }
2076
2077        bio_list_init(&bios);
2078
2079        spin_lock_irqsave(&tc->lock, flags);
2080
2081        if (bio_list_empty(&tc->deferred_bio_list)) {
2082                spin_unlock_irqrestore(&tc->lock, flags);
2083                return;
2084        }
2085
2086        __sort_thin_deferred_bios(tc);
2087
2088        bio_list_merge(&bios, &tc->deferred_bio_list);
2089        bio_list_init(&tc->deferred_bio_list);
2090
2091        spin_unlock_irqrestore(&tc->lock, flags);
2092
2093        blk_start_plug(&plug);
2094        while ((bio = bio_list_pop(&bios))) {
2095                /*
2096                 * If we've got no free new_mapping structs, and processing
2097                 * this bio might require one, we pause until there are some
2098                 * prepared mappings to process.
2099                 */
2100                if (ensure_next_mapping(pool)) {
2101                        spin_lock_irqsave(&tc->lock, flags);
2102                        bio_list_add(&tc->deferred_bio_list, bio);
2103                        bio_list_merge(&tc->deferred_bio_list, &bios);
2104                        spin_unlock_irqrestore(&tc->lock, flags);
2105                        break;
2106                }
2107
2108                if (bio_op(bio) == REQ_OP_DISCARD)
2109                        pool->process_discard(tc, bio);
2110                else
2111                        pool->process_bio(tc, bio);
2112
2113                if ((count++ & 127) == 0) {
2114                        throttle_work_update(&pool->throttle);
2115                        dm_pool_issue_prefetches(pool->pmd);
2116                }
2117        }
2118        blk_finish_plug(&plug);
2119}
2120
2121static int cmp_cells(const void *lhs, const void *rhs)
2122{
2123        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2124        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2125
2126        BUG_ON(!lhs_cell->holder);
2127        BUG_ON(!rhs_cell->holder);
2128
2129        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2130                return -1;
2131
2132        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2133                return 1;
2134
2135        return 0;
2136}
2137
2138static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2139{
2140        unsigned count = 0;
2141        struct dm_bio_prison_cell *cell, *tmp;
2142
2143        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2144                if (count >= CELL_SORT_ARRAY_SIZE)
2145                        break;
2146
2147                pool->cell_sort_array[count++] = cell;
2148                list_del(&cell->user_list);
2149        }
2150
2151        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2152
2153        return count;
2154}
2155
2156static void process_thin_deferred_cells(struct thin_c *tc)
2157{
2158        struct pool *pool = tc->pool;
2159        unsigned long flags;
2160        struct list_head cells;
2161        struct dm_bio_prison_cell *cell;
2162        unsigned i, j, count;
2163
2164        INIT_LIST_HEAD(&cells);
2165
2166        spin_lock_irqsave(&tc->lock, flags);
2167        list_splice_init(&tc->deferred_cells, &cells);
2168        spin_unlock_irqrestore(&tc->lock, flags);
2169
2170        if (list_empty(&cells))
2171                return;
2172
2173        do {
2174                count = sort_cells(tc->pool, &cells);
2175
2176                for (i = 0; i < count; i++) {
2177                        cell = pool->cell_sort_array[i];
2178                        BUG_ON(!cell->holder);
2179
2180                        /*
2181                         * If we've got no free new_mapping structs, and processing
2182                         * this bio might require one, we pause until there are some
2183                         * prepared mappings to process.
2184                         */
2185                        if (ensure_next_mapping(pool)) {
2186                                for (j = i; j < count; j++)
2187                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2188
2189                                spin_lock_irqsave(&tc->lock, flags);
2190                                list_splice(&cells, &tc->deferred_cells);
2191                                spin_unlock_irqrestore(&tc->lock, flags);
2192                                return;
2193                        }
2194
2195                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2196                                pool->process_discard_cell(tc, cell);
2197                        else
2198                                pool->process_cell(tc, cell);
2199                }
2200        } while (!list_empty(&cells));
2201}
2202
2203static void thin_get(struct thin_c *tc);
2204static void thin_put(struct thin_c *tc);
2205
2206/*
2207 * We can't hold rcu_read_lock() around code that can block.  So we
2208 * find a thin with the rcu lock held; bump a refcount; then drop
2209 * the lock.
2210 */
2211static struct thin_c *get_first_thin(struct pool *pool)
2212{
2213        struct thin_c *tc = NULL;
2214
2215        rcu_read_lock();
2216        if (!list_empty(&pool->active_thins)) {
2217                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2218                thin_get(tc);
2219        }
2220        rcu_read_unlock();
2221
2222        return tc;
2223}
2224
2225static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2226{
2227        struct thin_c *old_tc = tc;
2228
2229        rcu_read_lock();
2230        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2231                thin_get(tc);
2232                thin_put(old_tc);
2233                rcu_read_unlock();
2234                return tc;
2235        }
2236        thin_put(old_tc);
2237        rcu_read_unlock();
2238
2239        return NULL;
2240}
2241
2242static void process_deferred_bios(struct pool *pool)
2243{
2244        unsigned long flags;
2245        struct bio *bio;
2246        struct bio_list bios;
2247        struct thin_c *tc;
2248
2249        tc = get_first_thin(pool);
2250        while (tc) {
2251                process_thin_deferred_cells(tc);
2252                process_thin_deferred_bios(tc);
2253                tc = get_next_thin(pool, tc);
2254        }
2255
2256        /*
2257         * If there are any deferred flush bios, we must commit
2258         * the metadata before issuing them.
2259         */
2260        bio_list_init(&bios);
2261        spin_lock_irqsave(&pool->lock, flags);
2262        bio_list_merge(&bios, &pool->deferred_flush_bios);
2263        bio_list_init(&pool->deferred_flush_bios);
2264        spin_unlock_irqrestore(&pool->lock, flags);
2265
2266        if (bio_list_empty(&bios) &&
2267            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2268                return;
2269
2270        if (commit(pool)) {
2271                while ((bio = bio_list_pop(&bios)))
2272                        bio_io_error(bio);
2273                return;
2274        }
2275        pool->last_commit_jiffies = jiffies;
2276
2277        while ((bio = bio_list_pop(&bios)))
2278                generic_make_request(bio);
2279}
2280
2281static void do_worker(struct work_struct *ws)
2282{
2283        struct pool *pool = container_of(ws, struct pool, worker);
2284
2285        throttle_work_start(&pool->throttle);
2286        dm_pool_issue_prefetches(pool->pmd);
2287        throttle_work_update(&pool->throttle);
2288        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2289        throttle_work_update(&pool->throttle);
2290        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2291        throttle_work_update(&pool->throttle);
2292        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2293        throttle_work_update(&pool->throttle);
2294        process_deferred_bios(pool);
2295        throttle_work_complete(&pool->throttle);
2296}
2297
2298/*
2299 * We want to commit periodically so that not too much
2300 * unwritten data builds up.
2301 */
2302static void do_waker(struct work_struct *ws)
2303{
2304        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2305        wake_worker(pool);
2306        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2307}
2308
2309static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2310
2311/*
2312 * We're holding onto IO to allow userland time to react.  After the
2313 * timeout either the pool will have been resized (and thus back in
2314 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2315 */
2316static void do_no_space_timeout(struct work_struct *ws)
2317{
2318        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2319                                         no_space_timeout);
2320
2321        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2322                pool->pf.error_if_no_space = true;
2323                notify_of_pool_mode_change_to_oods(pool);
2324                error_retry_list_with_code(pool, -ENOSPC);
2325        }
2326}
2327
2328/*----------------------------------------------------------------*/
2329
2330struct pool_work {
2331        struct work_struct worker;
2332        struct completion complete;
2333};
2334
2335static struct pool_work *to_pool_work(struct work_struct *ws)
2336{
2337        return container_of(ws, struct pool_work, worker);
2338}
2339
2340static void pool_work_complete(struct pool_work *pw)
2341{
2342        complete(&pw->complete);
2343}
2344
2345static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2346                           void (*fn)(struct work_struct *))
2347{
2348        INIT_WORK_ONSTACK(&pw->worker, fn);
2349        init_completion(&pw->complete);
2350        queue_work(pool->wq, &pw->worker);
2351        wait_for_completion(&pw->complete);
2352}
2353
2354/*----------------------------------------------------------------*/
2355
2356struct noflush_work {
2357        struct pool_work pw;
2358        struct thin_c *tc;
2359};
2360
2361static struct noflush_work *to_noflush(struct work_struct *ws)
2362{
2363        return container_of(to_pool_work(ws), struct noflush_work, pw);
2364}
2365
2366static void do_noflush_start(struct work_struct *ws)
2367{
2368        struct noflush_work *w = to_noflush(ws);
2369        w->tc->requeue_mode = true;
2370        requeue_io(w->tc);
2371        pool_work_complete(&w->pw);
2372}
2373
2374static void do_noflush_stop(struct work_struct *ws)
2375{
2376        struct noflush_work *w = to_noflush(ws);
2377        w->tc->requeue_mode = false;
2378        pool_work_complete(&w->pw);
2379}
2380
2381static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2382{
2383        struct noflush_work w;
2384
2385        w.tc = tc;
2386        pool_work_wait(&w.pw, tc->pool, fn);
2387}
2388
2389/*----------------------------------------------------------------*/
2390
2391static enum pool_mode get_pool_mode(struct pool *pool)
2392{
2393        return pool->pf.mode;
2394}
2395
2396static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2397{
2398        dm_table_event(pool->ti->table);
2399        DMINFO("%s: switching pool to %s mode",
2400               dm_device_name(pool->pool_md), new_mode);
2401}
2402
2403static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2404{
2405        if (!pool->pf.error_if_no_space)
2406                notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2407        else
2408                notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2409}
2410
2411static bool passdown_enabled(struct pool_c *pt)
2412{
2413        return pt->adjusted_pf.discard_passdown;
2414}
2415
2416static void set_discard_callbacks(struct pool *pool)
2417{
2418        struct pool_c *pt = pool->ti->private;
2419
2420        if (passdown_enabled(pt)) {
2421                pool->process_discard_cell = process_discard_cell_passdown;
2422                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2423                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2424        } else {
2425                pool->process_discard_cell = process_discard_cell_no_passdown;
2426                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2427        }
2428}
2429
2430static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2431{
2432        struct pool_c *pt = pool->ti->private;
2433        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2434        enum pool_mode old_mode = get_pool_mode(pool);
2435        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2436
2437        /*
2438         * Never allow the pool to transition to PM_WRITE mode if user
2439         * intervention is required to verify metadata and data consistency.
2440         */
2441        if (new_mode == PM_WRITE && needs_check) {
2442                DMERR("%s: unable to switch pool to write mode until repaired.",
2443                      dm_device_name(pool->pool_md));
2444                if (old_mode != new_mode)
2445                        new_mode = old_mode;
2446                else
2447                        new_mode = PM_READ_ONLY;
2448        }
2449        /*
2450         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2451         * not going to recover without a thin_repair.  So we never let the
2452         * pool move out of the old mode.
2453         */
2454        if (old_mode == PM_FAIL)
2455                new_mode = old_mode;
2456
2457        switch (new_mode) {
2458        case PM_FAIL:
2459                if (old_mode != new_mode)
2460                        notify_of_pool_mode_change(pool, "failure");
2461                dm_pool_metadata_read_only(pool->pmd);
2462                pool->process_bio = process_bio_fail;
2463                pool->process_discard = process_bio_fail;
2464                pool->process_cell = process_cell_fail;
2465                pool->process_discard_cell = process_cell_fail;
2466                pool->process_prepared_mapping = process_prepared_mapping_fail;
2467                pool->process_prepared_discard = process_prepared_discard_fail;
2468
2469                error_retry_list(pool);
2470                break;
2471
2472        case PM_READ_ONLY:
2473                if (old_mode != new_mode)
2474                        notify_of_pool_mode_change(pool, "read-only");
2475                dm_pool_metadata_read_only(pool->pmd);
2476                pool->process_bio = process_bio_read_only;
2477                pool->process_discard = process_bio_success;
2478                pool->process_cell = process_cell_read_only;
2479                pool->process_discard_cell = process_cell_success;
2480                pool->process_prepared_mapping = process_prepared_mapping_fail;
2481                pool->process_prepared_discard = process_prepared_discard_success;
2482
2483                error_retry_list(pool);
2484                break;
2485
2486        case PM_OUT_OF_DATA_SPACE:
2487                /*
2488                 * Ideally we'd never hit this state; the low water mark
2489                 * would trigger userland to extend the pool before we
2490                 * completely run out of data space.  However, many small
2491                 * IOs to unprovisioned space can consume data space at an
2492                 * alarming rate.  Adjust your low water mark if you're
2493                 * frequently seeing this mode.
2494                 */
2495                if (old_mode != new_mode)
2496                        notify_of_pool_mode_change_to_oods(pool);
2497                pool->out_of_data_space = true;
2498                pool->process_bio = process_bio_read_only;
2499                pool->process_discard = process_discard_bio;
2500                pool->process_cell = process_cell_read_only;
2501                pool->process_prepared_mapping = process_prepared_mapping;
2502                set_discard_callbacks(pool);
2503
2504                if (!pool->pf.error_if_no_space && no_space_timeout)
2505                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2506                break;
2507
2508        case PM_WRITE:
2509                if (old_mode != new_mode)
2510                        notify_of_pool_mode_change(pool, "write");
2511                pool->out_of_data_space = false;
2512                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2513                dm_pool_metadata_read_write(pool->pmd);
2514                pool->process_bio = process_bio;
2515                pool->process_discard = process_discard_bio;
2516                pool->process_cell = process_cell;
2517                pool->process_prepared_mapping = process_prepared_mapping;
2518                set_discard_callbacks(pool);
2519                break;
2520        }
2521
2522        pool->pf.mode = new_mode;
2523        /*
2524         * The pool mode may have changed, sync it so bind_control_target()
2525         * doesn't cause an unexpected mode transition on resume.
2526         */
2527        pt->adjusted_pf.mode = new_mode;
2528}
2529
2530static void abort_transaction(struct pool *pool)
2531{
2532        const char *dev_name = dm_device_name(pool->pool_md);
2533
2534        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2535        if (dm_pool_abort_metadata(pool->pmd)) {
2536                DMERR("%s: failed to abort metadata transaction", dev_name);
2537                set_pool_mode(pool, PM_FAIL);
2538        }
2539
2540        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2541                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2542                set_pool_mode(pool, PM_FAIL);
2543        }
2544}
2545
2546static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2547{
2548        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2549                    dm_device_name(pool->pool_md), op, r);
2550
2551        abort_transaction(pool);
2552        set_pool_mode(pool, PM_READ_ONLY);
2553}
2554
2555/*----------------------------------------------------------------*/
2556
2557/*
2558 * Mapping functions.
2559 */
2560
2561/*
2562 * Called only while mapping a thin bio to hand it over to the workqueue.
2563 */
2564static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2565{
2566        unsigned long flags;
2567        struct pool *pool = tc->pool;
2568
2569        spin_lock_irqsave(&tc->lock, flags);
2570        bio_list_add(&tc->deferred_bio_list, bio);
2571        spin_unlock_irqrestore(&tc->lock, flags);
2572
2573        wake_worker(pool);
2574}
2575
2576static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2577{
2578        struct pool *pool = tc->pool;
2579
2580        throttle_lock(&pool->throttle);
2581        thin_defer_bio(tc, bio);
2582        throttle_unlock(&pool->throttle);
2583}
2584
2585static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2586{
2587        unsigned long flags;
2588        struct pool *pool = tc->pool;
2589
2590        throttle_lock(&pool->throttle);
2591        spin_lock_irqsave(&tc->lock, flags);
2592        list_add_tail(&cell->user_list, &tc->deferred_cells);
2593        spin_unlock_irqrestore(&tc->lock, flags);
2594        throttle_unlock(&pool->throttle);
2595
2596        wake_worker(pool);
2597}
2598
2599static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2600{
2601        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2602
2603        h->tc = tc;
2604        h->shared_read_entry = NULL;
2605        h->all_io_entry = NULL;
2606        h->overwrite_mapping = NULL;
2607        h->cell = NULL;
2608}
2609
2610/*
2611 * Non-blocking function called from the thin target's map function.
2612 */
2613static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2614{
2615        int r;
2616        struct thin_c *tc = ti->private;
2617        dm_block_t block = get_bio_block(tc, bio);
2618        struct dm_thin_device *td = tc->td;
2619        struct dm_thin_lookup_result result;
2620        struct dm_bio_prison_cell *virt_cell, *data_cell;
2621        struct dm_cell_key key;
2622
2623        thin_hook_bio(tc, bio);
2624
2625        if (tc->requeue_mode) {
2626                bio->bi_error = DM_ENDIO_REQUEUE;
2627                bio_endio(bio);
2628                return DM_MAPIO_SUBMITTED;
2629        }
2630
2631        if (get_pool_mode(tc->pool) == PM_FAIL) {
2632                bio_io_error(bio);
2633                return DM_MAPIO_SUBMITTED;
2634        }
2635
2636        if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2637                thin_defer_bio_with_throttle(tc, bio);
2638                return DM_MAPIO_SUBMITTED;
2639        }
2640
2641        /*
2642         * We must hold the virtual cell before doing the lookup, otherwise
2643         * there's a race with discard.
2644         */
2645        build_virtual_key(tc->td, block, &key);
2646        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2647                return DM_MAPIO_SUBMITTED;
2648
2649        r = dm_thin_find_block(td, block, 0, &result);
2650
2651        /*
2652         * Note that we defer readahead too.
2653         */
2654        switch (r) {
2655        case 0:
2656                if (unlikely(result.shared)) {
2657                        /*
2658                         * We have a race condition here between the
2659                         * result.shared value returned by the lookup and
2660                         * snapshot creation, which may cause new
2661                         * sharing.
2662                         *
2663                         * To avoid this always quiesce the origin before
2664                         * taking the snap.  You want to do this anyway to
2665                         * ensure a consistent application view
2666                         * (i.e. lockfs).
2667                         *
2668                         * More distant ancestors are irrelevant. The
2669                         * shared flag will be set in their case.
2670                         */
2671                        thin_defer_cell(tc, virt_cell);
2672                        return DM_MAPIO_SUBMITTED;
2673                }
2674
2675                build_data_key(tc->td, result.block, &key);
2676                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2677                        cell_defer_no_holder(tc, virt_cell);
2678                        return DM_MAPIO_SUBMITTED;
2679                }
2680
2681                inc_all_io_entry(tc->pool, bio);
2682                cell_defer_no_holder(tc, data_cell);
2683                cell_defer_no_holder(tc, virt_cell);
2684
2685                remap(tc, bio, result.block);
2686                return DM_MAPIO_REMAPPED;
2687
2688        case -ENODATA:
2689        case -EWOULDBLOCK:
2690                thin_defer_cell(tc, virt_cell);
2691                return DM_MAPIO_SUBMITTED;
2692
2693        default:
2694                /*
2695                 * Must always call bio_io_error on failure.
2696                 * dm_thin_find_block can fail with -EINVAL if the
2697                 * pool is switched to fail-io mode.
2698                 */
2699                bio_io_error(bio);
2700                cell_defer_no_holder(tc, virt_cell);
2701                return DM_MAPIO_SUBMITTED;
2702        }
2703}
2704
2705static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2706{
2707        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2708        struct request_queue *q;
2709
2710        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2711                return 1;
2712
2713        q = bdev_get_queue(pt->data_dev->bdev);
2714        return bdi_congested(q->backing_dev_info, bdi_bits);
2715}
2716
2717static void requeue_bios(struct pool *pool)
2718{
2719        unsigned long flags;
2720        struct thin_c *tc;
2721
2722        rcu_read_lock();
2723        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2724                spin_lock_irqsave(&tc->lock, flags);
2725                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2726                bio_list_init(&tc->retry_on_resume_list);
2727                spin_unlock_irqrestore(&tc->lock, flags);
2728        }
2729        rcu_read_unlock();
2730}
2731
2732/*----------------------------------------------------------------
2733 * Binding of control targets to a pool object
2734 *--------------------------------------------------------------*/
2735static bool data_dev_supports_discard(struct pool_c *pt)
2736{
2737        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2738
2739        return q && blk_queue_discard(q);
2740}
2741
2742static bool is_factor(sector_t block_size, uint32_t n)
2743{
2744        return !sector_div(block_size, n);
2745}
2746
2747/*
2748 * If discard_passdown was enabled verify that the data device
2749 * supports discards.  Disable discard_passdown if not.
2750 */
2751static void disable_passdown_if_not_supported(struct pool_c *pt)
2752{
2753        struct pool *pool = pt->pool;
2754        struct block_device *data_bdev = pt->data_dev->bdev;
2755        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2756        const char *reason = NULL;
2757        char buf[BDEVNAME_SIZE];
2758
2759        if (!pt->adjusted_pf.discard_passdown)
2760                return;
2761
2762        if (!data_dev_supports_discard(pt))
2763                reason = "discard unsupported";
2764
2765        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2766                reason = "max discard sectors smaller than a block";
2767
2768        if (reason) {
2769                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2770                pt->adjusted_pf.discard_passdown = false;
2771        }
2772}
2773
2774static int bind_control_target(struct pool *pool, struct dm_target *ti)
2775{
2776        struct pool_c *pt = ti->private;
2777
2778        /*
2779         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2780         */
2781        enum pool_mode old_mode = get_pool_mode(pool);
2782        enum pool_mode new_mode = pt->adjusted_pf.mode;
2783
2784        /*
2785         * Don't change the pool's mode until set_pool_mode() below.
2786         * Otherwise the pool's process_* function pointers may
2787         * not match the desired pool mode.
2788         */
2789        pt->adjusted_pf.mode = old_mode;
2790
2791        pool->ti = ti;
2792        pool->pf = pt->adjusted_pf;
2793        pool->low_water_blocks = pt->low_water_blocks;
2794
2795        set_pool_mode(pool, new_mode);
2796
2797        return 0;
2798}
2799
2800static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2801{
2802        if (pool->ti == ti)
2803                pool->ti = NULL;
2804}
2805
2806/*----------------------------------------------------------------
2807 * Pool creation
2808 *--------------------------------------------------------------*/
2809/* Initialize pool features. */
2810static void pool_features_init(struct pool_features *pf)
2811{
2812        pf->mode = PM_WRITE;
2813        pf->zero_new_blocks = true;
2814        pf->discard_enabled = true;
2815        pf->discard_passdown = true;
2816        pf->error_if_no_space = false;
2817}
2818
2819static void __pool_destroy(struct pool *pool)
2820{
2821        __pool_table_remove(pool);
2822
2823        vfree(pool->cell_sort_array);
2824        if (dm_pool_metadata_close(pool->pmd) < 0)
2825                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2826
2827        dm_bio_prison_destroy(pool->prison);
2828        dm_kcopyd_client_destroy(pool->copier);
2829
2830        if (pool->wq)
2831                destroy_workqueue(pool->wq);
2832
2833        if (pool->next_mapping)
2834                mempool_free(pool->next_mapping, pool->mapping_pool);
2835        mempool_destroy(pool->mapping_pool);
2836        dm_deferred_set_destroy(pool->shared_read_ds);
2837        dm_deferred_set_destroy(pool->all_io_ds);
2838        kfree(pool);
2839}
2840
2841static struct kmem_cache *_new_mapping_cache;
2842
2843static struct pool *pool_create(struct mapped_device *pool_md,
2844                                struct block_device *metadata_dev,
2845                                unsigned long block_size,
2846                                int read_only, char **error)
2847{
2848        int r;
2849        void *err_p;
2850        struct pool *pool;
2851        struct dm_pool_metadata *pmd;
2852        bool format_device = read_only ? false : true;
2853
2854        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2855        if (IS_ERR(pmd)) {
2856                *error = "Error creating metadata object";
2857                return (struct pool *)pmd;
2858        }
2859
2860        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2861        if (!pool) {
2862                *error = "Error allocating memory for pool";
2863                err_p = ERR_PTR(-ENOMEM);
2864                goto bad_pool;
2865        }
2866
2867        pool->pmd = pmd;
2868        pool->sectors_per_block = block_size;
2869        if (block_size & (block_size - 1))
2870                pool->sectors_per_block_shift = -1;
2871        else
2872                pool->sectors_per_block_shift = __ffs(block_size);
2873        pool->low_water_blocks = 0;
2874        pool_features_init(&pool->pf);
2875        pool->prison = dm_bio_prison_create();
2876        if (!pool->prison) {
2877                *error = "Error creating pool's bio prison";
2878                err_p = ERR_PTR(-ENOMEM);
2879                goto bad_prison;
2880        }
2881
2882        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2883        if (IS_ERR(pool->copier)) {
2884                r = PTR_ERR(pool->copier);
2885                *error = "Error creating pool's kcopyd client";
2886                err_p = ERR_PTR(r);
2887                goto bad_kcopyd_client;
2888        }
2889
2890        /*
2891         * Create singlethreaded workqueue that will service all devices
2892         * that use this metadata.
2893         */
2894        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2895        if (!pool->wq) {
2896                *error = "Error creating pool's workqueue";
2897                err_p = ERR_PTR(-ENOMEM);
2898                goto bad_wq;
2899        }
2900
2901        throttle_init(&pool->throttle);
2902        INIT_WORK(&pool->worker, do_worker);
2903        INIT_DELAYED_WORK(&pool->waker, do_waker);
2904        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2905        spin_lock_init(&pool->lock);
2906        bio_list_init(&pool->deferred_flush_bios);
2907        INIT_LIST_HEAD(&pool->prepared_mappings);
2908        INIT_LIST_HEAD(&pool->prepared_discards);
2909        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2910        INIT_LIST_HEAD(&pool->active_thins);
2911        pool->low_water_triggered = false;
2912        pool->suspended = true;
2913        pool->out_of_data_space = false;
2914
2915        pool->shared_read_ds = dm_deferred_set_create();
2916        if (!pool->shared_read_ds) {
2917                *error = "Error creating pool's shared read deferred set";
2918                err_p = ERR_PTR(-ENOMEM);
2919                goto bad_shared_read_ds;
2920        }
2921
2922        pool->all_io_ds = dm_deferred_set_create();
2923        if (!pool->all_io_ds) {
2924                *error = "Error creating pool's all io deferred set";
2925                err_p = ERR_PTR(-ENOMEM);
2926                goto bad_all_io_ds;
2927        }
2928
2929        pool->next_mapping = NULL;
2930        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2931                                                      _new_mapping_cache);
2932        if (!pool->mapping_pool) {
2933                *error = "Error creating pool's mapping mempool";
2934                err_p = ERR_PTR(-ENOMEM);
2935                goto bad_mapping_pool;
2936        }
2937
2938        pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2939        if (!pool->cell_sort_array) {
2940                *error = "Error allocating cell sort array";
2941                err_p = ERR_PTR(-ENOMEM);
2942                goto bad_sort_array;
2943        }
2944
2945        pool->ref_count = 1;
2946        pool->last_commit_jiffies = jiffies;
2947        pool->pool_md = pool_md;
2948        pool->md_dev = metadata_dev;
2949        __pool_table_insert(pool);
2950
2951        return pool;
2952
2953bad_sort_array:
2954        mempool_destroy(pool->mapping_pool);
2955bad_mapping_pool:
2956        dm_deferred_set_destroy(pool->all_io_ds);
2957bad_all_io_ds:
2958        dm_deferred_set_destroy(pool->shared_read_ds);
2959bad_shared_read_ds:
2960        destroy_workqueue(pool->wq);
2961bad_wq:
2962        dm_kcopyd_client_destroy(pool->copier);
2963bad_kcopyd_client:
2964        dm_bio_prison_destroy(pool->prison);
2965bad_prison:
2966        kfree(pool);
2967bad_pool:
2968        if (dm_pool_metadata_close(pmd))
2969                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2970
2971        return err_p;
2972}
2973
2974static void __pool_inc(struct pool *pool)
2975{
2976        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2977        pool->ref_count++;
2978}
2979
2980static void __pool_dec(struct pool *pool)
2981{
2982        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2983        BUG_ON(!pool->ref_count);
2984        if (!--pool->ref_count)
2985                __pool_destroy(pool);
2986}
2987
2988static struct pool *__pool_find(struct mapped_device *pool_md,
2989                                struct block_device *metadata_dev,
2990                                unsigned long block_size, int read_only,
2991                                char **error, int *created)
2992{
2993        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2994
2995        if (pool) {
2996                if (pool->pool_md != pool_md) {
2997                        *error = "metadata device already in use by a pool";
2998                        return ERR_PTR(-EBUSY);
2999                }
3000                __pool_inc(pool);
3001
3002        } else {
3003                pool = __pool_table_lookup(pool_md);
3004                if (pool) {
3005                        if (pool->md_dev != metadata_dev) {
3006                                *error = "different pool cannot replace a pool";
3007                                return ERR_PTR(-EINVAL);
3008                        }
3009                        __pool_inc(pool);
3010
3011                } else {
3012                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3013                        *created = 1;
3014                }
3015        }
3016
3017        return pool;
3018}
3019
3020/*----------------------------------------------------------------
3021 * Pool target methods
3022 *--------------------------------------------------------------*/
3023static void pool_dtr(struct dm_target *ti)
3024{
3025        struct pool_c *pt = ti->private;
3026
3027        mutex_lock(&dm_thin_pool_table.mutex);
3028
3029        unbind_control_target(pt->pool, ti);
3030        __pool_dec(pt->pool);
3031        dm_put_device(ti, pt->metadata_dev);
3032        dm_put_device(ti, pt->data_dev);
3033        kfree(pt);
3034
3035        mutex_unlock(&dm_thin_pool_table.mutex);
3036}
3037
3038static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3039                               struct dm_target *ti)
3040{
3041        int r;
3042        unsigned argc;
3043        const char *arg_name;
3044
3045        static struct dm_arg _args[] = {
3046                {0, 4, "Invalid number of pool feature arguments"},
3047        };
3048
3049        /*
3050         * No feature arguments supplied.
3051         */
3052        if (!as->argc)
3053                return 0;
3054
3055        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3056        if (r)
3057                return -EINVAL;
3058
3059        while (argc && !r) {
3060                arg_name = dm_shift_arg(as);
3061                argc--;
3062
3063                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3064                        pf->zero_new_blocks = false;
3065
3066                else if (!strcasecmp(arg_name, "ignore_discard"))
3067                        pf->discard_enabled = false;
3068
3069                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3070                        pf->discard_passdown = false;
3071
3072                else if (!strcasecmp(arg_name, "read_only"))
3073                        pf->mode = PM_READ_ONLY;
3074
3075                else if (!strcasecmp(arg_name, "error_if_no_space"))
3076                        pf->error_if_no_space = true;
3077
3078                else {
3079                        ti->error = "Unrecognised pool feature requested";
3080                        r = -EINVAL;
3081                        break;
3082                }
3083        }
3084
3085        return r;
3086}
3087
3088static void metadata_low_callback(void *context)
3089{
3090        struct pool *pool = context;
3091
3092        DMWARN("%s: reached low water mark for metadata device: sending event.",
3093               dm_device_name(pool->pool_md));
3094
3095        dm_table_event(pool->ti->table);
3096}
3097
3098static sector_t get_dev_size(struct block_device *bdev)
3099{
3100        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3101}
3102
3103static void warn_if_metadata_device_too_big(struct block_device *bdev)
3104{
3105        sector_t metadata_dev_size = get_dev_size(bdev);
3106        char buffer[BDEVNAME_SIZE];
3107
3108        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3109                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3110                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3111}
3112
3113static sector_t get_metadata_dev_size(struct block_device *bdev)
3114{
3115        sector_t metadata_dev_size = get_dev_size(bdev);
3116
3117        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3118                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3119
3120        return metadata_dev_size;
3121}
3122
3123static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3124{
3125        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3126
3127        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3128
3129        return metadata_dev_size;
3130}
3131
3132/*
3133 * When a metadata threshold is crossed a dm event is triggered, and
3134 * userland should respond by growing the metadata device.  We could let
3135 * userland set the threshold, like we do with the data threshold, but I'm
3136 * not sure they know enough to do this well.
3137 */
3138static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3139{
3140        /*
3141         * 4M is ample for all ops with the possible exception of thin
3142         * device deletion which is harmless if it fails (just retry the
3143         * delete after you've grown the device).
3144         */
3145        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3146        return min((dm_block_t)1024ULL /* 4M */, quarter);
3147}
3148
3149/*
3150 * thin-pool <metadata dev> <data dev>
3151 *           <data block size (sectors)>
3152 *           <low water mark (blocks)>
3153 *           [<#feature args> [<arg>]*]
3154 *
3155 * Optional feature arguments are:
3156 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3157 *           ignore_discard: disable discard
3158 *           no_discard_passdown: don't pass discards down to the data device
3159 *           read_only: Don't allow any changes to be made to the pool metadata.
3160 *           error_if_no_space: error IOs, instead of queueing, if no space.
3161 */
3162static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3163{
3164        int r, pool_created = 0;
3165        struct pool_c *pt;
3166        struct pool *pool;
3167        struct pool_features pf;
3168        struct dm_arg_set as;
3169        struct dm_dev *data_dev;
3170        unsigned long block_size;
3171        dm_block_t low_water_blocks;
3172        struct dm_dev *metadata_dev;
3173        fmode_t metadata_mode;
3174
3175        /*
3176         * FIXME Remove validation from scope of lock.
3177         */
3178        mutex_lock(&dm_thin_pool_table.mutex);
3179
3180        if (argc < 4) {
3181                ti->error = "Invalid argument count";
3182                r = -EINVAL;
3183                goto out_unlock;
3184        }
3185
3186        as.argc = argc;
3187        as.argv = argv;
3188
3189        /*
3190         * Set default pool features.
3191         */
3192        pool_features_init(&pf);
3193
3194        dm_consume_args(&as, 4);
3195        r = parse_pool_features(&as, &pf, ti);
3196        if (r)
3197                goto out_unlock;
3198
3199        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3200        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3201        if (r) {
3202                ti->error = "Error opening metadata block device";
3203                goto out_unlock;
3204        }
3205        warn_if_metadata_device_too_big(metadata_dev->bdev);
3206
3207        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3208        if (r) {
3209                ti->error = "Error getting data device";
3210                goto out_metadata;
3211        }
3212
3213        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3214            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3215            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3216            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3217                ti->error = "Invalid block size";
3218                r = -EINVAL;
3219                goto out;
3220        }
3221
3222        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3223                ti->error = "Invalid low water mark";
3224                r = -EINVAL;
3225                goto out;
3226        }
3227
3228        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3229        if (!pt) {
3230                r = -ENOMEM;
3231                goto out;
3232        }
3233
3234        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3235                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3236        if (IS_ERR(pool)) {
3237                r = PTR_ERR(pool);
3238                goto out_free_pt;
3239        }
3240
3241        /*
3242         * 'pool_created' reflects whether this is the first table load.
3243         * Top level discard support is not allowed to be changed after
3244         * initial load.  This would require a pool reload to trigger thin
3245         * device changes.
3246         */
3247        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3248                ti->error = "Discard support cannot be disabled once enabled";
3249                r = -EINVAL;
3250                goto out_flags_changed;
3251        }
3252
3253        pt->pool = pool;
3254        pt->ti = ti;
3255        pt->metadata_dev = metadata_dev;
3256        pt->data_dev = data_dev;
3257        pt->low_water_blocks = low_water_blocks;
3258        pt->adjusted_pf = pt->requested_pf = pf;
3259        ti->num_flush_bios = 1;
3260
3261        /*
3262         * Only need to enable discards if the pool should pass
3263         * them down to the data device.  The thin device's discard
3264         * processing will cause mappings to be removed from the btree.
3265         */
3266        ti->discard_zeroes_data_unsupported = true;
3267        if (pf.discard_enabled && pf.discard_passdown) {
3268                ti->num_discard_bios = 1;
3269
3270                /*
3271                 * Setting 'discards_supported' circumvents the normal
3272                 * stacking of discard limits (this keeps the pool and
3273                 * thin devices' discard limits consistent).
3274                 */
3275                ti->discards_supported = true;
3276        }
3277        ti->private = pt;
3278
3279        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280                                                calc_metadata_threshold(pt),
3281                                                metadata_low_callback,
3282                                                pool);
3283        if (r)
3284                goto out_flags_changed;
3285
3286        pt->callbacks.congested_fn = pool_is_congested;
3287        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288
3289        mutex_unlock(&dm_thin_pool_table.mutex);
3290
3291        return 0;
3292
3293out_flags_changed:
3294        __pool_dec(pool);
3295out_free_pt:
3296        kfree(pt);
3297out:
3298        dm_put_device(ti, data_dev);
3299out_metadata:
3300        dm_put_device(ti, metadata_dev);
3301out_unlock:
3302        mutex_unlock(&dm_thin_pool_table.mutex);
3303
3304        return r;
3305}
3306
3307static int pool_map(struct dm_target *ti, struct bio *bio)
3308{
3309        int r;
3310        struct pool_c *pt = ti->private;
3311        struct pool *pool = pt->pool;
3312        unsigned long flags;
3313
3314        /*
3315         * As this is a singleton target, ti->begin is always zero.
3316         */
3317        spin_lock_irqsave(&pool->lock, flags);
3318        bio->bi_bdev = pt->data_dev->bdev;
3319        r = DM_MAPIO_REMAPPED;
3320        spin_unlock_irqrestore(&pool->lock, flags);
3321
3322        return r;
3323}
3324
3325static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326{
3327        int r;
3328        struct pool_c *pt = ti->private;
3329        struct pool *pool = pt->pool;
3330        sector_t data_size = ti->len;
3331        dm_block_t sb_data_size;
3332
3333        *need_commit = false;
3334
3335        (void) sector_div(data_size, pool->sectors_per_block);
3336
3337        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338        if (r) {
3339                DMERR("%s: failed to retrieve data device size",
3340                      dm_device_name(pool->pool_md));
3341                return r;
3342        }
3343
3344        if (data_size < sb_data_size) {
3345                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346                      dm_device_name(pool->pool_md),
3347                      (unsigned long long)data_size, sb_data_size);
3348                return -EINVAL;
3349
3350        } else if (data_size > sb_data_size) {
3351                if (dm_pool_metadata_needs_check(pool->pmd)) {
3352                        DMERR("%s: unable to grow the data device until repaired.",
3353                              dm_device_name(pool->pool_md));
3354                        return 0;
3355                }
3356
3357                if (sb_data_size)
3358                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3359                               dm_device_name(pool->pool_md),
3360                               sb_data_size, (unsigned long long)data_size);
3361                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362                if (r) {
3363                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364                        return r;
3365                }
3366
3367                *need_commit = true;
3368        }
3369
3370        return 0;
3371}
3372
3373static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374{
3375        int r;
3376        struct pool_c *pt = ti->private;
3377        struct pool *pool = pt->pool;
3378        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379
3380        *need_commit = false;
3381
3382        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383
3384        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385        if (r) {
3386                DMERR("%s: failed to retrieve metadata device size",
3387                      dm_device_name(pool->pool_md));
3388                return r;
3389        }
3390
3391        if (metadata_dev_size < sb_metadata_dev_size) {
3392                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393                      dm_device_name(pool->pool_md),
3394                      metadata_dev_size, sb_metadata_dev_size);
3395                return -EINVAL;
3396
3397        } else if (metadata_dev_size > sb_metadata_dev_size) {
3398                if (dm_pool_metadata_needs_check(pool->pmd)) {
3399                        DMERR("%s: unable to grow the metadata device until repaired.",
3400                              dm_device_name(pool->pool_md));
3401                        return 0;
3402                }
3403
3404                warn_if_metadata_device_too_big(pool->md_dev);
3405                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406                       dm_device_name(pool->pool_md),
3407                       sb_metadata_dev_size, metadata_dev_size);
3408                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409                if (r) {
3410                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411                        return r;
3412                }
3413
3414                *need_commit = true;
3415        }
3416
3417        return 0;
3418}
3419
3420/*
3421 * Retrieves the number of blocks of the data device from
3422 * the superblock and compares it to the actual device size,
3423 * thus resizing the data device in case it has grown.
3424 *
3425 * This both copes with opening preallocated data devices in the ctr
3426 * being followed by a resume
3427 * -and-
3428 * calling the resume method individually after userspace has
3429 * grown the data device in reaction to a table event.
3430 */
3431static int pool_preresume(struct dm_target *ti)
3432{
3433        int r;
3434        bool need_commit1, need_commit2;
3435        struct pool_c *pt = ti->private;
3436        struct pool *pool = pt->pool;
3437
3438        /*
3439         * Take control of the pool object.
3440         */
3441        r = bind_control_target(pool, ti);
3442        if (r)
3443                return r;
3444
3445        r = maybe_resize_data_dev(ti, &need_commit1);
3446        if (r)
3447                return r;
3448
3449        r = maybe_resize_metadata_dev(ti, &need_commit2);
3450        if (r)
3451                return r;
3452
3453        if (need_commit1 || need_commit2)
3454                (void) commit(pool);
3455
3456        return 0;
3457}
3458
3459static void pool_suspend_active_thins(struct pool *pool)
3460{
3461        struct thin_c *tc;
3462
3463        /* Suspend all active thin devices */
3464        tc = get_first_thin(pool);
3465        while (tc) {
3466                dm_internal_suspend_noflush(tc->thin_md);
3467                tc = get_next_thin(pool, tc);
3468        }
3469}
3470
3471static void pool_resume_active_thins(struct pool *pool)
3472{
3473        struct thin_c *tc;
3474
3475        /* Resume all active thin devices */
3476        tc = get_first_thin(pool);
3477        while (tc) {
3478                dm_internal_resume(tc->thin_md);
3479                tc = get_next_thin(pool, tc);
3480        }
3481}
3482
3483static void pool_resume(struct dm_target *ti)
3484{
3485        struct pool_c *pt = ti->private;
3486        struct pool *pool = pt->pool;
3487        unsigned long flags;
3488
3489        /*
3490         * Must requeue active_thins' bios and then resume
3491         * active_thins _before_ clearing 'suspend' flag.
3492         */
3493        requeue_bios(pool);
3494        pool_resume_active_thins(pool);
3495
3496        spin_lock_irqsave(&pool->lock, flags);
3497        pool->low_water_triggered = false;
3498        pool->suspended = false;
3499        spin_unlock_irqrestore(&pool->lock, flags);
3500
3501        do_waker(&pool->waker.work);
3502}
3503
3504static void pool_presuspend(struct dm_target *ti)
3505{
3506        struct pool_c *pt = ti->private;
3507        struct pool *pool = pt->pool;
3508        unsigned long flags;
3509
3510        spin_lock_irqsave(&pool->lock, flags);
3511        pool->suspended = true;
3512        spin_unlock_irqrestore(&pool->lock, flags);
3513
3514        pool_suspend_active_thins(pool);
3515}
3516
3517static void pool_presuspend_undo(struct dm_target *ti)
3518{
3519        struct pool_c *pt = ti->private;
3520        struct pool *pool = pt->pool;
3521        unsigned long flags;
3522
3523        pool_resume_active_thins(pool);
3524
3525        spin_lock_irqsave(&pool->lock, flags);
3526        pool->suspended = false;
3527        spin_unlock_irqrestore(&pool->lock, flags);
3528}
3529
3530static void pool_postsuspend(struct dm_target *ti)
3531{
3532        struct pool_c *pt = ti->private;
3533        struct pool *pool = pt->pool;
3534
3535        cancel_delayed_work_sync(&pool->waker);
3536        cancel_delayed_work_sync(&pool->no_space_timeout);
3537        flush_workqueue(pool->wq);
3538        (void) commit(pool);
3539}
3540
3541static int check_arg_count(unsigned argc, unsigned args_required)
3542{
3543        if (argc != args_required) {
3544                DMWARN("Message received with %u arguments instead of %u.",
3545                       argc, args_required);
3546                return -EINVAL;
3547        }
3548
3549        return 0;
3550}
3551
3552static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553{
3554        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555            *dev_id <= MAX_DEV_ID)
3556                return 0;
3557
3558        if (warning)
3559                DMWARN("Message received with invalid device id: %s", arg);
3560
3561        return -EINVAL;
3562}
3563
3564static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565{
3566        dm_thin_id dev_id;
3567        int r;
3568
3569        r = check_arg_count(argc, 2);
3570        if (r)
3571                return r;
3572
3573        r = read_dev_id(argv[1], &dev_id, 1);
3574        if (r)
3575                return r;
3576
3577        r = dm_pool_create_thin(pool->pmd, dev_id);
3578        if (r) {
3579                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580                       argv[1]);
3581                return r;
3582        }
3583
3584        return 0;
3585}
3586
3587static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588{
3589        dm_thin_id dev_id;
3590        dm_thin_id origin_dev_id;
3591        int r;
3592
3593        r = check_arg_count(argc, 3);
3594        if (r)
3595                return r;
3596
3597        r = read_dev_id(argv[1], &dev_id, 1);
3598        if (r)
3599                return r;
3600
3601        r = read_dev_id(argv[2], &origin_dev_id, 1);
3602        if (r)
3603                return r;
3604
3605        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606        if (r) {
3607                DMWARN("Creation of new snapshot %s of device %s failed.",
3608                       argv[1], argv[2]);
3609                return r;
3610        }
3611
3612        return 0;
3613}
3614
3615static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616{
3617        dm_thin_id dev_id;
3618        int r;
3619
3620        r = check_arg_count(argc, 2);
3621        if (r)
3622                return r;
3623
3624        r = read_dev_id(argv[1], &dev_id, 1);
3625        if (r)
3626                return r;
3627
3628        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629        if (r)
3630                DMWARN("Deletion of thin device %s failed.", argv[1]);
3631
3632        return r;
3633}
3634
3635static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636{
3637        dm_thin_id old_id, new_id;
3638        int r;
3639
3640        r = check_arg_count(argc, 3);
3641        if (r)
3642                return r;
3643
3644        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646                return -EINVAL;
3647        }
3648
3649        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651                return -EINVAL;
3652        }
3653
3654        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655        if (r) {
3656                DMWARN("Failed to change transaction id from %s to %s.",
3657                       argv[1], argv[2]);
3658                return r;
3659        }
3660
3661        return 0;
3662}
3663
3664static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665{
3666        int r;
3667
3668        r = check_arg_count(argc, 1);
3669        if (r)
3670                return r;
3671
3672        (void) commit(pool);
3673
3674        r = dm_pool_reserve_metadata_snap(pool->pmd);
3675        if (r)
3676                DMWARN("reserve_metadata_snap message failed.");
3677
3678        return r;
3679}
3680
3681static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682{
3683        int r;
3684
3685        r = check_arg_count(argc, 1);
3686        if (r)
3687                return r;
3688
3689        r = dm_pool_release_metadata_snap(pool->pmd);
3690        if (r)
3691                DMWARN("release_metadata_snap message failed.");
3692
3693        return r;
3694}
3695
3696/*
3697 * Messages supported:
3698 *   create_thin        <dev_id>
3699 *   create_snap        <dev_id> <origin_id>
3700 *   delete             <dev_id>
3701 *   set_transaction_id <current_trans_id> <new_trans_id>
3702 *   reserve_metadata_snap
3703 *   release_metadata_snap
3704 */
3705static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706{
3707        int r = -EINVAL;
3708        struct pool_c *pt = ti->private;
3709        struct pool *pool = pt->pool;
3710
3711        if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713                      dm_device_name(pool->pool_md));
3714                return -EOPNOTSUPP;
3715        }
3716
3717        if (!strcasecmp(argv[0], "create_thin"))
3718                r = process_create_thin_mesg(argc, argv, pool);
3719
3720        else if (!strcasecmp(argv[0], "create_snap"))
3721                r = process_create_snap_mesg(argc, argv, pool);
3722
3723        else if (!strcasecmp(argv[0], "delete"))
3724                r = process_delete_mesg(argc, argv, pool);
3725
3726        else if (!strcasecmp(argv[0], "set_transaction_id"))
3727                r = process_set_transaction_id_mesg(argc, argv, pool);
3728
3729        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731
3732        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733                r = process_release_metadata_snap_mesg(argc, argv, pool);
3734
3735        else
3736                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737
3738        if (!r)
3739                (void) commit(pool);
3740
3741        return r;
3742}
3743
3744static void emit_flags(struct pool_features *pf, char *result,
3745                       unsigned sz, unsigned maxlen)
3746{
3747        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749                pf->error_if_no_space;
3750        DMEMIT("%u ", count);
3751
3752        if (!pf->zero_new_blocks)
3753                DMEMIT("skip_block_zeroing ");
3754
3755        if (!pf->discard_enabled)
3756                DMEMIT("ignore_discard ");
3757
3758        if (!pf->discard_passdown)
3759                DMEMIT("no_discard_passdown ");
3760
3761        if (pf->mode == PM_READ_ONLY)
3762                DMEMIT("read_only ");
3763
3764        if (pf->error_if_no_space)
3765                DMEMIT("error_if_no_space ");
3766}
3767
3768/*
3769 * Status line is:
3770 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3771 *    <used data sectors>/<total data sectors> <held metadata root>
3772 *    <pool mode> <discard config> <no space config> <needs_check>
3773 */
3774static void pool_status(struct dm_target *ti, status_type_t type,
3775                        unsigned status_flags, char *result, unsigned maxlen)
3776{
3777        int r;
3778        unsigned sz = 0;
3779        uint64_t transaction_id;
3780        dm_block_t nr_free_blocks_data;
3781        dm_block_t nr_free_blocks_metadata;
3782        dm_block_t nr_blocks_data;
3783        dm_block_t nr_blocks_metadata;
3784        dm_block_t held_root;
3785        char buf[BDEVNAME_SIZE];
3786        char buf2[BDEVNAME_SIZE];
3787        struct pool_c *pt = ti->private;
3788        struct pool *pool = pt->pool;
3789
3790        switch (type) {
3791        case STATUSTYPE_INFO:
3792                if (get_pool_mode(pool) == PM_FAIL) {
3793                        DMEMIT("Fail");
3794                        break;
3795                }
3796
3797                /* Commit to ensure statistics aren't out-of-date */
3798                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799                        (void) commit(pool);
3800
3801                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802                if (r) {
3803                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804                              dm_device_name(pool->pool_md), r);
3805                        goto err;
3806                }
3807
3808                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809                if (r) {
3810                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811                              dm_device_name(pool->pool_md), r);
3812                        goto err;
3813                }
3814
3815                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816                if (r) {
3817                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818                              dm_device_name(pool->pool_md), r);
3819                        goto err;
3820                }
3821
3822                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823                if (r) {
3824                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3825                              dm_device_name(pool->pool_md), r);
3826                        goto err;
3827                }
3828
3829                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830                if (r) {
3831                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832                              dm_device_name(pool->pool_md), r);
3833                        goto err;
3834                }
3835
3836                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837                if (r) {
3838                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839                              dm_device_name(pool->pool_md), r);
3840                        goto err;
3841                }
3842
3843                DMEMIT("%llu %llu/%llu %llu/%llu ",
3844                       (unsigned long long)transaction_id,
3845                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846                       (unsigned long long)nr_blocks_metadata,
3847                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848                       (unsigned long long)nr_blocks_data);
3849
3850                if (held_root)
3851                        DMEMIT("%llu ", held_root);
3852                else
3853                        DMEMIT("- ");
3854
3855                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856                        DMEMIT("out_of_data_space ");
3857                else if (pool->pf.mode == PM_READ_ONLY)
3858                        DMEMIT("ro ");
3859                else
3860                        DMEMIT("rw ");
3861
3862                if (!pool->pf.discard_enabled)
3863                        DMEMIT("ignore_discard ");
3864                else if (pool->pf.discard_passdown)
3865                        DMEMIT("discard_passdown ");
3866                else
3867                        DMEMIT("no_discard_passdown ");
3868
3869                if (pool->pf.error_if_no_space)
3870                        DMEMIT("error_if_no_space ");
3871                else
3872                        DMEMIT("queue_if_no_space ");
3873
3874                if (dm_pool_metadata_needs_check(pool->pmd))
3875                        DMEMIT("needs_check ");
3876                else
3877                        DMEMIT("- ");
3878
3879                break;
3880
3881        case STATUSTYPE_TABLE:
3882                DMEMIT("%s %s %lu %llu ",
3883                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885                       (unsigned long)pool->sectors_per_block,
3886                       (unsigned long long)pt->low_water_blocks);
3887                emit_flags(&pt->requested_pf, result, sz, maxlen);
3888                break;
3889        }
3890        return;
3891
3892err:
3893        DMEMIT("Error");
3894}
3895
3896static int pool_iterate_devices(struct dm_target *ti,
3897                                iterate_devices_callout_fn fn, void *data)
3898{
3899        struct pool_c *pt = ti->private;
3900
3901        return fn(ti, pt->data_dev, 0, ti->len, data);
3902}
3903
3904static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905{
3906        struct pool_c *pt = ti->private;
3907        struct pool *pool = pt->pool;
3908        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909
3910        /*
3911         * If max_sectors is smaller than pool->sectors_per_block adjust it
3912         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913         * This is especially beneficial when the pool's data device is a RAID
3914         * device that has a full stripe width that matches pool->sectors_per_block
3915         * -- because even though partial RAID stripe-sized IOs will be issued to a
3916         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3917         *    boundary.. which avoids additional partial RAID stripe writes cascading
3918         */
3919        if (limits->max_sectors < pool->sectors_per_block) {
3920                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922                                limits->max_sectors--;
3923                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924                }
3925        }
3926
3927        /*
3928         * If the system-determined stacked limits are compatible with the
3929         * pool's blocksize (io_opt is a factor) do not override them.
3930         */
3931        if (io_opt_sectors < pool->sectors_per_block ||
3932            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935                else
3936                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938        }
3939
3940        /*
3941         * pt->adjusted_pf is a staging area for the actual features to use.
3942         * They get transferred to the live pool in bind_control_target()
3943         * called from pool_preresume().
3944         */
3945        if (!pt->adjusted_pf.discard_enabled) {
3946                /*
3947                 * Must explicitly disallow stacking discard limits otherwise the
3948                 * block layer will stack them if pool's data device has support.
3949                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950                 * user to see that, so make sure to set all discard limits to 0.
3951                 */
3952                limits->discard_granularity = 0;
3953                return;
3954        }
3955
3956        disable_passdown_if_not_supported(pt);
3957
3958        /*
3959         * The pool uses the same discard limits as the underlying data
3960         * device.  DM core has already set this up.
3961         */
3962}
3963
3964static struct target_type pool_target = {
3965        .name = "thin-pool",
3966        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967                    DM_TARGET_IMMUTABLE,
3968        .version = {1, 19, 0},
3969        .module = THIS_MODULE,
3970        .ctr = pool_ctr,
3971        .dtr = pool_dtr,
3972        .map = pool_map,
3973        .presuspend = pool_presuspend,
3974        .presuspend_undo = pool_presuspend_undo,
3975        .postsuspend = pool_postsuspend,
3976        .preresume = pool_preresume,
3977        .resume = pool_resume,
3978        .message = pool_message,
3979        .status = pool_status,
3980        .iterate_devices = pool_iterate_devices,
3981        .io_hints = pool_io_hints,
3982};
3983
3984/*----------------------------------------------------------------
3985 * Thin target methods
3986 *--------------------------------------------------------------*/
3987static void thin_get(struct thin_c *tc)
3988{
3989        atomic_inc(&tc->refcount);
3990}
3991
3992static void thin_put(struct thin_c *tc)
3993{
3994        if (atomic_dec_and_test(&tc->refcount))
3995                complete(&tc->can_destroy);
3996}
3997
3998static void thin_dtr(struct dm_target *ti)
3999{
4000        struct thin_c *tc = ti->private;
4001        unsigned long flags;
4002
4003        spin_lock_irqsave(&tc->pool->lock, flags);
4004        list_del_rcu(&tc->list);
4005        spin_unlock_irqrestore(&tc->pool->lock, flags);
4006        synchronize_rcu();
4007
4008        thin_put(tc);
4009        wait_for_completion(&tc->can_destroy);
4010
4011        mutex_lock(&dm_thin_pool_table.mutex);
4012
4013        __pool_dec(tc->pool);
4014        dm_pool_close_thin_device(tc->td);
4015        dm_put_device(ti, tc->pool_dev);
4016        if (tc->origin_dev)
4017                dm_put_device(ti, tc->origin_dev);
4018        kfree(tc);
4019
4020        mutex_unlock(&dm_thin_pool_table.mutex);
4021}
4022
4023/*
4024 * Thin target parameters:
4025 *
4026 * <pool_dev> <dev_id> [origin_dev]
4027 *
4028 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029 * dev_id: the internal device identifier
4030 * origin_dev: a device external to the pool that should act as the origin
4031 *
4032 * If the pool device has discards disabled, they get disabled for the thin
4033 * device as well.
4034 */
4035static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036{
4037        int r;
4038        struct thin_c *tc;
4039        struct dm_dev *pool_dev, *origin_dev;
4040        struct mapped_device *pool_md;
4041        unsigned long flags;
4042
4043        mutex_lock(&dm_thin_pool_table.mutex);
4044
4045        if (argc != 2 && argc != 3) {
4046                ti->error = "Invalid argument count";
4047                r = -EINVAL;
4048                goto out_unlock;
4049        }
4050
4051        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052        if (!tc) {
4053                ti->error = "Out of memory";
4054                r = -ENOMEM;
4055                goto out_unlock;
4056        }
4057        tc->thin_md = dm_table_get_md(ti->table);
4058        spin_lock_init(&tc->lock);
4059        INIT_LIST_HEAD(&tc->deferred_cells);
4060        bio_list_init(&tc->deferred_bio_list);
4061        bio_list_init(&tc->retry_on_resume_list);
4062        tc->sort_bio_list = RB_ROOT;
4063
4064        if (argc == 3) {
4065                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066                if (r) {
4067                        ti->error = "Error opening origin device";
4068                        goto bad_origin_dev;
4069                }
4070                tc->origin_dev = origin_dev;
4071        }
4072
4073        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074        if (r) {
4075                ti->error = "Error opening pool device";
4076                goto bad_pool_dev;
4077        }
4078        tc->pool_dev = pool_dev;
4079
4080        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081                ti->error = "Invalid device id";
4082                r = -EINVAL;
4083                goto bad_common;
4084        }
4085
4086        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087        if (!pool_md) {
4088                ti->error = "Couldn't get pool mapped device";
4089                r = -EINVAL;
4090                goto bad_common;
4091        }
4092
4093        tc->pool = __pool_table_lookup(pool_md);
4094        if (!tc->pool) {
4095                ti->error = "Couldn't find pool object";
4096                r = -EINVAL;
4097                goto bad_pool_lookup;
4098        }
4099        __pool_inc(tc->pool);
4100
4101        if (get_pool_mode(tc->pool) == PM_FAIL) {
4102                ti->error = "Couldn't open thin device, Pool is in fail mode";
4103                r = -EINVAL;
4104                goto bad_pool;
4105        }
4106
4107        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108        if (r) {
4109                ti->error = "Couldn't open thin internal device";
4110                goto bad_pool;
4111        }
4112
4113        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114        if (r)
4115                goto bad;
4116
4117        ti->num_flush_bios = 1;
4118        ti->flush_supported = true;
4119        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120
4121        /* In case the pool supports discards, pass them on. */
4122        ti->discard_zeroes_data_unsupported = true;
4123        if (tc->pool->pf.discard_enabled) {
4124                ti->discards_supported = true;
4125                ti->num_discard_bios = 1;
4126                ti->split_discard_bios = false;
4127        }
4128
4129        mutex_unlock(&dm_thin_pool_table.mutex);
4130
4131        spin_lock_irqsave(&tc->pool->lock, flags);
4132        if (tc->pool->suspended) {
4133                spin_unlock_irqrestore(&tc->pool->lock, flags);
4134                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135                ti->error = "Unable to activate thin device while pool is suspended";
4136                r = -EINVAL;
4137                goto bad;
4138        }
4139        atomic_set(&tc->refcount, 1);
4140        init_completion(&tc->can_destroy);
4141        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142        spin_unlock_irqrestore(&tc->pool->lock, flags);
4143        /*
4144         * This synchronize_rcu() call is needed here otherwise we risk a
4145         * wake_worker() call finding no bios to process (because the newly
4146         * added tc isn't yet visible).  So this reduces latency since we
4147         * aren't then dependent on the periodic commit to wake_worker().
4148         */
4149        synchronize_rcu();
4150
4151        dm_put(pool_md);
4152
4153        return 0;
4154
4155bad:
4156        dm_pool_close_thin_device(tc->td);
4157bad_pool:
4158        __pool_dec(tc->pool);
4159bad_pool_lookup:
4160        dm_put(pool_md);
4161bad_common:
4162        dm_put_device(ti, tc->pool_dev);
4163bad_pool_dev:
4164        if (tc->origin_dev)
4165                dm_put_device(ti, tc->origin_dev);
4166bad_origin_dev:
4167        kfree(tc);
4168out_unlock:
4169        mutex_unlock(&dm_thin_pool_table.mutex);
4170
4171        return r;
4172}
4173
4174static int thin_map(struct dm_target *ti, struct bio *bio)
4175{
4176        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4177
4178        return thin_bio_map(ti, bio);
4179}
4180
4181static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4182{
4183        unsigned long flags;
4184        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4185        struct list_head work;
4186        struct dm_thin_new_mapping *m, *tmp;
4187        struct pool *pool = h->tc->pool;
4188
4189        if (h->shared_read_entry) {
4190                INIT_LIST_HEAD(&work);
4191                dm_deferred_entry_dec(h->shared_read_entry, &work);
4192
4193                spin_lock_irqsave(&pool->lock, flags);
4194                list_for_each_entry_safe(m, tmp, &work, list) {
4195                        list_del(&m->list);
4196                        __complete_mapping_preparation(m);
4197                }
4198                spin_unlock_irqrestore(&pool->lock, flags);
4199        }
4200
4201        if (h->all_io_entry) {
4202                INIT_LIST_HEAD(&work);
4203                dm_deferred_entry_dec(h->all_io_entry, &work);
4204                if (!list_empty(&work)) {
4205                        spin_lock_irqsave(&pool->lock, flags);
4206                        list_for_each_entry_safe(m, tmp, &work, list)
4207                                list_add_tail(&m->list, &pool->prepared_discards);
4208                        spin_unlock_irqrestore(&pool->lock, flags);
4209                        wake_worker(pool);
4210                }
4211        }
4212
4213        if (h->cell)
4214                cell_defer_no_holder(h->tc, h->cell);
4215
4216        return 0;
4217}
4218
4219static void thin_presuspend(struct dm_target *ti)
4220{
4221        struct thin_c *tc = ti->private;
4222
4223        if (dm_noflush_suspending(ti))
4224                noflush_work(tc, do_noflush_start);
4225}
4226
4227static void thin_postsuspend(struct dm_target *ti)
4228{
4229        struct thin_c *tc = ti->private;
4230
4231        /*
4232         * The dm_noflush_suspending flag has been cleared by now, so
4233         * unfortunately we must always run this.
4234         */
4235        noflush_work(tc, do_noflush_stop);
4236}
4237
4238static int thin_preresume(struct dm_target *ti)
4239{
4240        struct thin_c *tc = ti->private;
4241
4242        if (tc->origin_dev)
4243                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4244
4245        return 0;
4246}
4247
4248/*
4249 * <nr mapped sectors> <highest mapped sector>
4250 */
4251static void thin_status(struct dm_target *ti, status_type_t type,
4252                        unsigned status_flags, char *result, unsigned maxlen)
4253{
4254        int r;
4255        ssize_t sz = 0;
4256        dm_block_t mapped, highest;
4257        char buf[BDEVNAME_SIZE];
4258        struct thin_c *tc = ti->private;
4259
4260        if (get_pool_mode(tc->pool) == PM_FAIL) {
4261                DMEMIT("Fail");
4262                return;
4263        }
4264
4265        if (!tc->td)
4266                DMEMIT("-");
4267        else {
4268                switch (type) {
4269                case STATUSTYPE_INFO:
4270                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4271                        if (r) {
4272                                DMERR("dm_thin_get_mapped_count returned %d", r);
4273                                goto err;
4274                        }
4275
4276                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4277                        if (r < 0) {
4278                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4279                                goto err;
4280                        }
4281
4282                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4283                        if (r)
4284                                DMEMIT("%llu", ((highest + 1) *
4285                                                tc->pool->sectors_per_block) - 1);
4286                        else
4287                                DMEMIT("-");
4288                        break;
4289
4290                case STATUSTYPE_TABLE:
4291                        DMEMIT("%s %lu",
4292                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4293                               (unsigned long) tc->dev_id);
4294                        if (tc->origin_dev)
4295                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4296                        break;
4297                }
4298        }
4299
4300        return;
4301
4302err:
4303        DMEMIT("Error");
4304}
4305
4306static int thin_iterate_devices(struct dm_target *ti,
4307                                iterate_devices_callout_fn fn, void *data)
4308{
4309        sector_t blocks;
4310        struct thin_c *tc = ti->private;
4311        struct pool *pool = tc->pool;
4312
4313        /*
4314         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4315         * we follow a more convoluted path through to the pool's target.
4316         */
4317        if (!pool->ti)
4318                return 0;       /* nothing is bound */
4319
4320        blocks = pool->ti->len;
4321        (void) sector_div(blocks, pool->sectors_per_block);
4322        if (blocks)
4323                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4324
4325        return 0;
4326}
4327
4328static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4329{
4330        struct thin_c *tc = ti->private;
4331        struct pool *pool = tc->pool;
4332
4333        if (!pool->pf.discard_enabled)
4334                return;
4335
4336        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4337        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4338}
4339
4340static struct target_type thin_target = {
4341        .name = "thin",
4342        .version = {1, 19, 0},
4343        .module = THIS_MODULE,
4344        .ctr = thin_ctr,
4345        .dtr = thin_dtr,
4346        .map = thin_map,
4347        .end_io = thin_endio,
4348        .preresume = thin_preresume,
4349        .presuspend = thin_presuspend,
4350        .postsuspend = thin_postsuspend,
4351        .status = thin_status,
4352        .iterate_devices = thin_iterate_devices,
4353        .io_hints = thin_io_hints,
4354};
4355
4356/*----------------------------------------------------------------*/
4357
4358static int __init dm_thin_init(void)
4359{
4360        int r;
4361
4362        pool_table_init();
4363
4364        r = dm_register_target(&thin_target);
4365        if (r)
4366                return r;
4367
4368        r = dm_register_target(&pool_target);
4369        if (r)
4370                goto bad_pool_target;
4371
4372        r = -ENOMEM;
4373
4374        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4375        if (!_new_mapping_cache)
4376                goto bad_new_mapping_cache;
4377
4378        return 0;
4379
4380bad_new_mapping_cache:
4381        dm_unregister_target(&pool_target);
4382bad_pool_target:
4383        dm_unregister_target(&thin_target);
4384
4385        return r;
4386}
4387
4388static void dm_thin_exit(void)
4389{
4390        dm_unregister_target(&thin_target);
4391        dm_unregister_target(&pool_target);
4392
4393        kmem_cache_destroy(_new_mapping_cache);
4394}
4395
4396module_init(dm_thin_init);
4397module_exit(dm_thin_exit);
4398
4399module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4400MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4401
4402MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4403MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4404MODULE_LICENSE("GPL");
4405