linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include <linux/sched/signal.h>
  41
  42#include <trace/events/block.h>
  43
  44#include "md.h"
  45#include "raid1.h"
  46#include "bitmap.h"
  47
  48#define UNSUPPORTED_MDDEV_FLAGS         \
  49        ((1L << MD_HAS_JOURNAL) |       \
  50         (1L << MD_JOURNAL_CLEAN))
  51
  52/*
  53 * Number of guaranteed r1bios in case of extreme VM load:
  54 */
  55#define NR_RAID1_BIOS 256
  56
  57/* when we get a read error on a read-only array, we redirect to another
  58 * device without failing the first device, or trying to over-write to
  59 * correct the read error.  To keep track of bad blocks on a per-bio
  60 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  61 */
  62#define IO_BLOCKED ((struct bio *)1)
  63/* When we successfully write to a known bad-block, we need to remove the
  64 * bad-block marking which must be done from process context.  So we record
  65 * the success by setting devs[n].bio to IO_MADE_GOOD
  66 */
  67#define IO_MADE_GOOD ((struct bio *)2)
  68
  69#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  70
  71/* When there are this many requests queue to be written by
  72 * the raid1 thread, we become 'congested' to provide back-pressure
  73 * for writeback.
  74 */
  75static int max_queued_requests = 1024;
  76
  77static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  78static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  79
  80#define raid1_log(md, fmt, args...)                             \
  81        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  82
  83static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  84{
  85        struct pool_info *pi = data;
  86        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  87
  88        /* allocate a r1bio with room for raid_disks entries in the bios array */
  89        return kzalloc(size, gfp_flags);
  90}
  91
  92static void r1bio_pool_free(void *r1_bio, void *data)
  93{
  94        kfree(r1_bio);
  95}
  96
  97#define RESYNC_BLOCK_SIZE (64*1024)
  98#define RESYNC_DEPTH 32
  99#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 100#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 101#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 102#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 103#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 104#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 105
 106static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 107{
 108        struct pool_info *pi = data;
 109        struct r1bio *r1_bio;
 110        struct bio *bio;
 111        int need_pages;
 112        int i, j;
 113
 114        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 115        if (!r1_bio)
 116                return NULL;
 117
 118        /*
 119         * Allocate bios : 1 for reading, n-1 for writing
 120         */
 121        for (j = pi->raid_disks ; j-- ; ) {
 122                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 123                if (!bio)
 124                        goto out_free_bio;
 125                r1_bio->bios[j] = bio;
 126        }
 127        /*
 128         * Allocate RESYNC_PAGES data pages and attach them to
 129         * the first bio.
 130         * If this is a user-requested check/repair, allocate
 131         * RESYNC_PAGES for each bio.
 132         */
 133        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 134                need_pages = pi->raid_disks;
 135        else
 136                need_pages = 1;
 137        for (j = 0; j < need_pages; j++) {
 138                bio = r1_bio->bios[j];
 139                bio->bi_vcnt = RESYNC_PAGES;
 140
 141                if (bio_alloc_pages(bio, gfp_flags))
 142                        goto out_free_pages;
 143        }
 144        /* If not user-requests, copy the page pointers to all bios */
 145        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 146                for (i=0; i<RESYNC_PAGES ; i++)
 147                        for (j=1; j<pi->raid_disks; j++)
 148                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 149                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 150        }
 151
 152        r1_bio->master_bio = NULL;
 153
 154        return r1_bio;
 155
 156out_free_pages:
 157        while (--j >= 0)
 158                bio_free_pages(r1_bio->bios[j]);
 159
 160out_free_bio:
 161        while (++j < pi->raid_disks)
 162                bio_put(r1_bio->bios[j]);
 163        r1bio_pool_free(r1_bio, data);
 164        return NULL;
 165}
 166
 167static void r1buf_pool_free(void *__r1_bio, void *data)
 168{
 169        struct pool_info *pi = data;
 170        int i,j;
 171        struct r1bio *r1bio = __r1_bio;
 172
 173        for (i = 0; i < RESYNC_PAGES; i++)
 174                for (j = pi->raid_disks; j-- ;) {
 175                        if (j == 0 ||
 176                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 177                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 178                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 179                }
 180        for (i=0 ; i < pi->raid_disks; i++)
 181                bio_put(r1bio->bios[i]);
 182
 183        r1bio_pool_free(r1bio, data);
 184}
 185
 186static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 187{
 188        int i;
 189
 190        for (i = 0; i < conf->raid_disks * 2; i++) {
 191                struct bio **bio = r1_bio->bios + i;
 192                if (!BIO_SPECIAL(*bio))
 193                        bio_put(*bio);
 194                *bio = NULL;
 195        }
 196}
 197
 198static void free_r1bio(struct r1bio *r1_bio)
 199{
 200        struct r1conf *conf = r1_bio->mddev->private;
 201
 202        put_all_bios(conf, r1_bio);
 203        mempool_free(r1_bio, conf->r1bio_pool);
 204}
 205
 206static void put_buf(struct r1bio *r1_bio)
 207{
 208        struct r1conf *conf = r1_bio->mddev->private;
 209        sector_t sect = r1_bio->sector;
 210        int i;
 211
 212        for (i = 0; i < conf->raid_disks * 2; i++) {
 213                struct bio *bio = r1_bio->bios[i];
 214                if (bio->bi_end_io)
 215                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 216        }
 217
 218        mempool_free(r1_bio, conf->r1buf_pool);
 219
 220        lower_barrier(conf, sect);
 221}
 222
 223static void reschedule_retry(struct r1bio *r1_bio)
 224{
 225        unsigned long flags;
 226        struct mddev *mddev = r1_bio->mddev;
 227        struct r1conf *conf = mddev->private;
 228        int idx;
 229
 230        idx = sector_to_idx(r1_bio->sector);
 231        spin_lock_irqsave(&conf->device_lock, flags);
 232        list_add(&r1_bio->retry_list, &conf->retry_list);
 233        atomic_inc(&conf->nr_queued[idx]);
 234        spin_unlock_irqrestore(&conf->device_lock, flags);
 235
 236        wake_up(&conf->wait_barrier);
 237        md_wakeup_thread(mddev->thread);
 238}
 239
 240/*
 241 * raid_end_bio_io() is called when we have finished servicing a mirrored
 242 * operation and are ready to return a success/failure code to the buffer
 243 * cache layer.
 244 */
 245static void call_bio_endio(struct r1bio *r1_bio)
 246{
 247        struct bio *bio = r1_bio->master_bio;
 248        int done;
 249        struct r1conf *conf = r1_bio->mddev->private;
 250        sector_t bi_sector = bio->bi_iter.bi_sector;
 251
 252        if (bio->bi_phys_segments) {
 253                unsigned long flags;
 254                spin_lock_irqsave(&conf->device_lock, flags);
 255                bio->bi_phys_segments--;
 256                done = (bio->bi_phys_segments == 0);
 257                spin_unlock_irqrestore(&conf->device_lock, flags);
 258                /*
 259                 * make_request() might be waiting for
 260                 * bi_phys_segments to decrease
 261                 */
 262                wake_up(&conf->wait_barrier);
 263        } else
 264                done = 1;
 265
 266        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 267                bio->bi_error = -EIO;
 268
 269        if (done) {
 270                bio_endio(bio);
 271                /*
 272                 * Wake up any possible resync thread that waits for the device
 273                 * to go idle.
 274                 */
 275                allow_barrier(conf, bi_sector);
 276        }
 277}
 278
 279static void raid_end_bio_io(struct r1bio *r1_bio)
 280{
 281        struct bio *bio = r1_bio->master_bio;
 282
 283        /* if nobody has done the final endio yet, do it now */
 284        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 285                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 286                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 287                         (unsigned long long) bio->bi_iter.bi_sector,
 288                         (unsigned long long) bio_end_sector(bio) - 1);
 289
 290                call_bio_endio(r1_bio);
 291        }
 292        free_r1bio(r1_bio);
 293}
 294
 295/*
 296 * Update disk head position estimator based on IRQ completion info.
 297 */
 298static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 299{
 300        struct r1conf *conf = r1_bio->mddev->private;
 301
 302        conf->mirrors[disk].head_position =
 303                r1_bio->sector + (r1_bio->sectors);
 304}
 305
 306/*
 307 * Find the disk number which triggered given bio
 308 */
 309static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 310{
 311        int mirror;
 312        struct r1conf *conf = r1_bio->mddev->private;
 313        int raid_disks = conf->raid_disks;
 314
 315        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 316                if (r1_bio->bios[mirror] == bio)
 317                        break;
 318
 319        BUG_ON(mirror == raid_disks * 2);
 320        update_head_pos(mirror, r1_bio);
 321
 322        return mirror;
 323}
 324
 325static void raid1_end_read_request(struct bio *bio)
 326{
 327        int uptodate = !bio->bi_error;
 328        struct r1bio *r1_bio = bio->bi_private;
 329        struct r1conf *conf = r1_bio->mddev->private;
 330        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 331
 332        /*
 333         * this branch is our 'one mirror IO has finished' event handler:
 334         */
 335        update_head_pos(r1_bio->read_disk, r1_bio);
 336
 337        if (uptodate)
 338                set_bit(R1BIO_Uptodate, &r1_bio->state);
 339        else if (test_bit(FailFast, &rdev->flags) &&
 340                 test_bit(R1BIO_FailFast, &r1_bio->state))
 341                /* This was a fail-fast read so we definitely
 342                 * want to retry */
 343                ;
 344        else {
 345                /* If all other devices have failed, we want to return
 346                 * the error upwards rather than fail the last device.
 347                 * Here we redefine "uptodate" to mean "Don't want to retry"
 348                 */
 349                unsigned long flags;
 350                spin_lock_irqsave(&conf->device_lock, flags);
 351                if (r1_bio->mddev->degraded == conf->raid_disks ||
 352                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 353                     test_bit(In_sync, &rdev->flags)))
 354                        uptodate = 1;
 355                spin_unlock_irqrestore(&conf->device_lock, flags);
 356        }
 357
 358        if (uptodate) {
 359                raid_end_bio_io(r1_bio);
 360                rdev_dec_pending(rdev, conf->mddev);
 361        } else {
 362                /*
 363                 * oops, read error:
 364                 */
 365                char b[BDEVNAME_SIZE];
 366                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 367                                   mdname(conf->mddev),
 368                                   bdevname(rdev->bdev, b),
 369                                   (unsigned long long)r1_bio->sector);
 370                set_bit(R1BIO_ReadError, &r1_bio->state);
 371                reschedule_retry(r1_bio);
 372                /* don't drop the reference on read_disk yet */
 373        }
 374}
 375
 376static void close_write(struct r1bio *r1_bio)
 377{
 378        /* it really is the end of this request */
 379        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 380                /* free extra copy of the data pages */
 381                int i = r1_bio->behind_page_count;
 382                while (i--)
 383                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 384                kfree(r1_bio->behind_bvecs);
 385                r1_bio->behind_bvecs = NULL;
 386        }
 387        /* clear the bitmap if all writes complete successfully */
 388        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 389                        r1_bio->sectors,
 390                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 391                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 392        md_write_end(r1_bio->mddev);
 393}
 394
 395static void r1_bio_write_done(struct r1bio *r1_bio)
 396{
 397        if (!atomic_dec_and_test(&r1_bio->remaining))
 398                return;
 399
 400        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 401                reschedule_retry(r1_bio);
 402        else {
 403                close_write(r1_bio);
 404                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 405                        reschedule_retry(r1_bio);
 406                else
 407                        raid_end_bio_io(r1_bio);
 408        }
 409}
 410
 411static void raid1_end_write_request(struct bio *bio)
 412{
 413        struct r1bio *r1_bio = bio->bi_private;
 414        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 415        struct r1conf *conf = r1_bio->mddev->private;
 416        struct bio *to_put = NULL;
 417        int mirror = find_bio_disk(r1_bio, bio);
 418        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 419        bool discard_error;
 420
 421        discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
 422
 423        /*
 424         * 'one mirror IO has finished' event handler:
 425         */
 426        if (bio->bi_error && !discard_error) {
 427                set_bit(WriteErrorSeen, &rdev->flags);
 428                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 429                        set_bit(MD_RECOVERY_NEEDED, &
 430                                conf->mddev->recovery);
 431
 432                if (test_bit(FailFast, &rdev->flags) &&
 433                    (bio->bi_opf & MD_FAILFAST) &&
 434                    /* We never try FailFast to WriteMostly devices */
 435                    !test_bit(WriteMostly, &rdev->flags)) {
 436                        md_error(r1_bio->mddev, rdev);
 437                        if (!test_bit(Faulty, &rdev->flags))
 438                                /* This is the only remaining device,
 439                                 * We need to retry the write without
 440                                 * FailFast
 441                                 */
 442                                set_bit(R1BIO_WriteError, &r1_bio->state);
 443                        else {
 444                                /* Finished with this branch */
 445                                r1_bio->bios[mirror] = NULL;
 446                                to_put = bio;
 447                        }
 448                } else
 449                        set_bit(R1BIO_WriteError, &r1_bio->state);
 450        } else {
 451                /*
 452                 * Set R1BIO_Uptodate in our master bio, so that we
 453                 * will return a good error code for to the higher
 454                 * levels even if IO on some other mirrored buffer
 455                 * fails.
 456                 *
 457                 * The 'master' represents the composite IO operation
 458                 * to user-side. So if something waits for IO, then it
 459                 * will wait for the 'master' bio.
 460                 */
 461                sector_t first_bad;
 462                int bad_sectors;
 463
 464                r1_bio->bios[mirror] = NULL;
 465                to_put = bio;
 466                /*
 467                 * Do not set R1BIO_Uptodate if the current device is
 468                 * rebuilding or Faulty. This is because we cannot use
 469                 * such device for properly reading the data back (we could
 470                 * potentially use it, if the current write would have felt
 471                 * before rdev->recovery_offset, but for simplicity we don't
 472                 * check this here.
 473                 */
 474                if (test_bit(In_sync, &rdev->flags) &&
 475                    !test_bit(Faulty, &rdev->flags))
 476                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 477
 478                /* Maybe we can clear some bad blocks. */
 479                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 480                                &first_bad, &bad_sectors) && !discard_error) {
 481                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 482                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 483                }
 484        }
 485
 486        if (behind) {
 487                if (test_bit(WriteMostly, &rdev->flags))
 488                        atomic_dec(&r1_bio->behind_remaining);
 489
 490                /*
 491                 * In behind mode, we ACK the master bio once the I/O
 492                 * has safely reached all non-writemostly
 493                 * disks. Setting the Returned bit ensures that this
 494                 * gets done only once -- we don't ever want to return
 495                 * -EIO here, instead we'll wait
 496                 */
 497                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 498                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 499                        /* Maybe we can return now */
 500                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 501                                struct bio *mbio = r1_bio->master_bio;
 502                                pr_debug("raid1: behind end write sectors"
 503                                         " %llu-%llu\n",
 504                                         (unsigned long long) mbio->bi_iter.bi_sector,
 505                                         (unsigned long long) bio_end_sector(mbio) - 1);
 506                                call_bio_endio(r1_bio);
 507                        }
 508                }
 509        }
 510        if (r1_bio->bios[mirror] == NULL)
 511                rdev_dec_pending(rdev, conf->mddev);
 512
 513        /*
 514         * Let's see if all mirrored write operations have finished
 515         * already.
 516         */
 517        r1_bio_write_done(r1_bio);
 518
 519        if (to_put)
 520                bio_put(to_put);
 521}
 522
 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
 524                                          sector_t sectors)
 525{
 526        sector_t len;
 527
 528        WARN_ON(sectors == 0);
 529        /*
 530         * len is the number of sectors from start_sector to end of the
 531         * barrier unit which start_sector belongs to.
 532         */
 533        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 534              start_sector;
 535
 536        if (len > sectors)
 537                len = sectors;
 538
 539        return len;
 540}
 541
 542/*
 543 * This routine returns the disk from which the requested read should
 544 * be done. There is a per-array 'next expected sequential IO' sector
 545 * number - if this matches on the next IO then we use the last disk.
 546 * There is also a per-disk 'last know head position' sector that is
 547 * maintained from IRQ contexts, both the normal and the resync IO
 548 * completion handlers update this position correctly. If there is no
 549 * perfect sequential match then we pick the disk whose head is closest.
 550 *
 551 * If there are 2 mirrors in the same 2 devices, performance degrades
 552 * because position is mirror, not device based.
 553 *
 554 * The rdev for the device selected will have nr_pending incremented.
 555 */
 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 557{
 558        const sector_t this_sector = r1_bio->sector;
 559        int sectors;
 560        int best_good_sectors;
 561        int best_disk, best_dist_disk, best_pending_disk;
 562        int has_nonrot_disk;
 563        int disk;
 564        sector_t best_dist;
 565        unsigned int min_pending;
 566        struct md_rdev *rdev;
 567        int choose_first;
 568        int choose_next_idle;
 569
 570        rcu_read_lock();
 571        /*
 572         * Check if we can balance. We can balance on the whole
 573         * device if no resync is going on, or below the resync window.
 574         * We take the first readable disk when above the resync window.
 575         */
 576 retry:
 577        sectors = r1_bio->sectors;
 578        best_disk = -1;
 579        best_dist_disk = -1;
 580        best_dist = MaxSector;
 581        best_pending_disk = -1;
 582        min_pending = UINT_MAX;
 583        best_good_sectors = 0;
 584        has_nonrot_disk = 0;
 585        choose_next_idle = 0;
 586        clear_bit(R1BIO_FailFast, &r1_bio->state);
 587
 588        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 589            (mddev_is_clustered(conf->mddev) &&
 590            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 591                    this_sector + sectors)))
 592                choose_first = 1;
 593        else
 594                choose_first = 0;
 595
 596        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 597                sector_t dist;
 598                sector_t first_bad;
 599                int bad_sectors;
 600                unsigned int pending;
 601                bool nonrot;
 602
 603                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 604                if (r1_bio->bios[disk] == IO_BLOCKED
 605                    || rdev == NULL
 606                    || test_bit(Faulty, &rdev->flags))
 607                        continue;
 608                if (!test_bit(In_sync, &rdev->flags) &&
 609                    rdev->recovery_offset < this_sector + sectors)
 610                        continue;
 611                if (test_bit(WriteMostly, &rdev->flags)) {
 612                        /* Don't balance among write-mostly, just
 613                         * use the first as a last resort */
 614                        if (best_dist_disk < 0) {
 615                                if (is_badblock(rdev, this_sector, sectors,
 616                                                &first_bad, &bad_sectors)) {
 617                                        if (first_bad <= this_sector)
 618                                                /* Cannot use this */
 619                                                continue;
 620                                        best_good_sectors = first_bad - this_sector;
 621                                } else
 622                                        best_good_sectors = sectors;
 623                                best_dist_disk = disk;
 624                                best_pending_disk = disk;
 625                        }
 626                        continue;
 627                }
 628                /* This is a reasonable device to use.  It might
 629                 * even be best.
 630                 */
 631                if (is_badblock(rdev, this_sector, sectors,
 632                                &first_bad, &bad_sectors)) {
 633                        if (best_dist < MaxSector)
 634                                /* already have a better device */
 635                                continue;
 636                        if (first_bad <= this_sector) {
 637                                /* cannot read here. If this is the 'primary'
 638                                 * device, then we must not read beyond
 639                                 * bad_sectors from another device..
 640                                 */
 641                                bad_sectors -= (this_sector - first_bad);
 642                                if (choose_first && sectors > bad_sectors)
 643                                        sectors = bad_sectors;
 644                                if (best_good_sectors > sectors)
 645                                        best_good_sectors = sectors;
 646
 647                        } else {
 648                                sector_t good_sectors = first_bad - this_sector;
 649                                if (good_sectors > best_good_sectors) {
 650                                        best_good_sectors = good_sectors;
 651                                        best_disk = disk;
 652                                }
 653                                if (choose_first)
 654                                        break;
 655                        }
 656                        continue;
 657                } else
 658                        best_good_sectors = sectors;
 659
 660                if (best_disk >= 0)
 661                        /* At least two disks to choose from so failfast is OK */
 662                        set_bit(R1BIO_FailFast, &r1_bio->state);
 663
 664                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 665                has_nonrot_disk |= nonrot;
 666                pending = atomic_read(&rdev->nr_pending);
 667                dist = abs(this_sector - conf->mirrors[disk].head_position);
 668                if (choose_first) {
 669                        best_disk = disk;
 670                        break;
 671                }
 672                /* Don't change to another disk for sequential reads */
 673                if (conf->mirrors[disk].next_seq_sect == this_sector
 674                    || dist == 0) {
 675                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 676                        struct raid1_info *mirror = &conf->mirrors[disk];
 677
 678                        best_disk = disk;
 679                        /*
 680                         * If buffered sequential IO size exceeds optimal
 681                         * iosize, check if there is idle disk. If yes, choose
 682                         * the idle disk. read_balance could already choose an
 683                         * idle disk before noticing it's a sequential IO in
 684                         * this disk. This doesn't matter because this disk
 685                         * will idle, next time it will be utilized after the
 686                         * first disk has IO size exceeds optimal iosize. In
 687                         * this way, iosize of the first disk will be optimal
 688                         * iosize at least. iosize of the second disk might be
 689                         * small, but not a big deal since when the second disk
 690                         * starts IO, the first disk is likely still busy.
 691                         */
 692                        if (nonrot && opt_iosize > 0 &&
 693                            mirror->seq_start != MaxSector &&
 694                            mirror->next_seq_sect > opt_iosize &&
 695                            mirror->next_seq_sect - opt_iosize >=
 696                            mirror->seq_start) {
 697                                choose_next_idle = 1;
 698                                continue;
 699                        }
 700                        break;
 701                }
 702
 703                if (choose_next_idle)
 704                        continue;
 705
 706                if (min_pending > pending) {
 707                        min_pending = pending;
 708                        best_pending_disk = disk;
 709                }
 710
 711                if (dist < best_dist) {
 712                        best_dist = dist;
 713                        best_dist_disk = disk;
 714                }
 715        }
 716
 717        /*
 718         * If all disks are rotational, choose the closest disk. If any disk is
 719         * non-rotational, choose the disk with less pending request even the
 720         * disk is rotational, which might/might not be optimal for raids with
 721         * mixed ratation/non-rotational disks depending on workload.
 722         */
 723        if (best_disk == -1) {
 724                if (has_nonrot_disk || min_pending == 0)
 725                        best_disk = best_pending_disk;
 726                else
 727                        best_disk = best_dist_disk;
 728        }
 729
 730        if (best_disk >= 0) {
 731                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 732                if (!rdev)
 733                        goto retry;
 734                atomic_inc(&rdev->nr_pending);
 735                sectors = best_good_sectors;
 736
 737                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 738                        conf->mirrors[best_disk].seq_start = this_sector;
 739
 740                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 741        }
 742        rcu_read_unlock();
 743        *max_sectors = sectors;
 744
 745        return best_disk;
 746}
 747
 748static int raid1_congested(struct mddev *mddev, int bits)
 749{
 750        struct r1conf *conf = mddev->private;
 751        int i, ret = 0;
 752
 753        if ((bits & (1 << WB_async_congested)) &&
 754            conf->pending_count >= max_queued_requests)
 755                return 1;
 756
 757        rcu_read_lock();
 758        for (i = 0; i < conf->raid_disks * 2; i++) {
 759                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 760                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 761                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 762
 763                        BUG_ON(!q);
 764
 765                        /* Note the '|| 1' - when read_balance prefers
 766                         * non-congested targets, it can be removed
 767                         */
 768                        if ((bits & (1 << WB_async_congested)) || 1)
 769                                ret |= bdi_congested(q->backing_dev_info, bits);
 770                        else
 771                                ret &= bdi_congested(q->backing_dev_info, bits);
 772                }
 773        }
 774        rcu_read_unlock();
 775        return ret;
 776}
 777
 778static void flush_pending_writes(struct r1conf *conf)
 779{
 780        /* Any writes that have been queued but are awaiting
 781         * bitmap updates get flushed here.
 782         */
 783        spin_lock_irq(&conf->device_lock);
 784
 785        if (conf->pending_bio_list.head) {
 786                struct bio *bio;
 787                bio = bio_list_get(&conf->pending_bio_list);
 788                conf->pending_count = 0;
 789                spin_unlock_irq(&conf->device_lock);
 790                /* flush any pending bitmap writes to
 791                 * disk before proceeding w/ I/O */
 792                bitmap_unplug(conf->mddev->bitmap);
 793                wake_up(&conf->wait_barrier);
 794
 795                while (bio) { /* submit pending writes */
 796                        struct bio *next = bio->bi_next;
 797                        struct md_rdev *rdev = (void*)bio->bi_bdev;
 798                        bio->bi_next = NULL;
 799                        bio->bi_bdev = rdev->bdev;
 800                        if (test_bit(Faulty, &rdev->flags)) {
 801                                bio->bi_error = -EIO;
 802                                bio_endio(bio);
 803                        } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 804                                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 805                                /* Just ignore it */
 806                                bio_endio(bio);
 807                        else
 808                                generic_make_request(bio);
 809                        bio = next;
 810                }
 811        } else
 812                spin_unlock_irq(&conf->device_lock);
 813}
 814
 815/* Barriers....
 816 * Sometimes we need to suspend IO while we do something else,
 817 * either some resync/recovery, or reconfigure the array.
 818 * To do this we raise a 'barrier'.
 819 * The 'barrier' is a counter that can be raised multiple times
 820 * to count how many activities are happening which preclude
 821 * normal IO.
 822 * We can only raise the barrier if there is no pending IO.
 823 * i.e. if nr_pending == 0.
 824 * We choose only to raise the barrier if no-one is waiting for the
 825 * barrier to go down.  This means that as soon as an IO request
 826 * is ready, no other operations which require a barrier will start
 827 * until the IO request has had a chance.
 828 *
 829 * So: regular IO calls 'wait_barrier'.  When that returns there
 830 *    is no backgroup IO happening,  It must arrange to call
 831 *    allow_barrier when it has finished its IO.
 832 * backgroup IO calls must call raise_barrier.  Once that returns
 833 *    there is no normal IO happeing.  It must arrange to call
 834 *    lower_barrier when the particular background IO completes.
 835 */
 836static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 837{
 838        int idx = sector_to_idx(sector_nr);
 839
 840        spin_lock_irq(&conf->resync_lock);
 841
 842        /* Wait until no block IO is waiting */
 843        wait_event_lock_irq(conf->wait_barrier,
 844                            !atomic_read(&conf->nr_waiting[idx]),
 845                            conf->resync_lock);
 846
 847        /* block any new IO from starting */
 848        atomic_inc(&conf->barrier[idx]);
 849        /*
 850         * In raise_barrier() we firstly increase conf->barrier[idx] then
 851         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 852         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 853         * A memory barrier here to make sure conf->nr_pending[idx] won't
 854         * be fetched before conf->barrier[idx] is increased. Otherwise
 855         * there will be a race between raise_barrier() and _wait_barrier().
 856         */
 857        smp_mb__after_atomic();
 858
 859        /* For these conditions we must wait:
 860         * A: while the array is in frozen state
 861         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 862         *    existing in corresponding I/O barrier bucket.
 863         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 864         *    max resync count which allowed on current I/O barrier bucket.
 865         */
 866        wait_event_lock_irq(conf->wait_barrier,
 867                            !conf->array_frozen &&
 868                             !atomic_read(&conf->nr_pending[idx]) &&
 869                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
 870                            conf->resync_lock);
 871
 872        atomic_inc(&conf->nr_pending[idx]);
 873        spin_unlock_irq(&conf->resync_lock);
 874}
 875
 876static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 877{
 878        int idx = sector_to_idx(sector_nr);
 879
 880        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 881
 882        atomic_dec(&conf->barrier[idx]);
 883        atomic_dec(&conf->nr_pending[idx]);
 884        wake_up(&conf->wait_barrier);
 885}
 886
 887static void _wait_barrier(struct r1conf *conf, int idx)
 888{
 889        /*
 890         * We need to increase conf->nr_pending[idx] very early here,
 891         * then raise_barrier() can be blocked when it waits for
 892         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 893         * conf->resync_lock when there is no barrier raised in same
 894         * barrier unit bucket. Also if the array is frozen, I/O
 895         * should be blocked until array is unfrozen.
 896         */
 897        atomic_inc(&conf->nr_pending[idx]);
 898        /*
 899         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 900         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 901         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 902         * barrier is necessary here to make sure conf->barrier[idx] won't be
 903         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 904         * will be a race between _wait_barrier() and raise_barrier().
 905         */
 906        smp_mb__after_atomic();
 907
 908        /*
 909         * Don't worry about checking two atomic_t variables at same time
 910         * here. If during we check conf->barrier[idx], the array is
 911         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 912         * 0, it is safe to return and make the I/O continue. Because the
 913         * array is frozen, all I/O returned here will eventually complete
 914         * or be queued, no race will happen. See code comment in
 915         * frozen_array().
 916         */
 917        if (!READ_ONCE(conf->array_frozen) &&
 918            !atomic_read(&conf->barrier[idx]))
 919                return;
 920
 921        /*
 922         * After holding conf->resync_lock, conf->nr_pending[idx]
 923         * should be decreased before waiting for barrier to drop.
 924         * Otherwise, we may encounter a race condition because
 925         * raise_barrer() might be waiting for conf->nr_pending[idx]
 926         * to be 0 at same time.
 927         */
 928        spin_lock_irq(&conf->resync_lock);
 929        atomic_inc(&conf->nr_waiting[idx]);
 930        atomic_dec(&conf->nr_pending[idx]);
 931        /*
 932         * In case freeze_array() is waiting for
 933         * get_unqueued_pending() == extra
 934         */
 935        wake_up(&conf->wait_barrier);
 936        /* Wait for the barrier in same barrier unit bucket to drop. */
 937        wait_event_lock_irq(conf->wait_barrier,
 938                            !conf->array_frozen &&
 939                             !atomic_read(&conf->barrier[idx]),
 940                            conf->resync_lock);
 941        atomic_inc(&conf->nr_pending[idx]);
 942        atomic_dec(&conf->nr_waiting[idx]);
 943        spin_unlock_irq(&conf->resync_lock);
 944}
 945
 946static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 947{
 948        int idx = sector_to_idx(sector_nr);
 949
 950        /*
 951         * Very similar to _wait_barrier(). The difference is, for read
 952         * I/O we don't need wait for sync I/O, but if the whole array
 953         * is frozen, the read I/O still has to wait until the array is
 954         * unfrozen. Since there is no ordering requirement with
 955         * conf->barrier[idx] here, memory barrier is unnecessary as well.
 956         */
 957        atomic_inc(&conf->nr_pending[idx]);
 958
 959        if (!READ_ONCE(conf->array_frozen))
 960                return;
 961
 962        spin_lock_irq(&conf->resync_lock);
 963        atomic_inc(&conf->nr_waiting[idx]);
 964        atomic_dec(&conf->nr_pending[idx]);
 965        /*
 966         * In case freeze_array() is waiting for
 967         * get_unqueued_pending() == extra
 968         */
 969        wake_up(&conf->wait_barrier);
 970        /* Wait for array to be unfrozen */
 971        wait_event_lock_irq(conf->wait_barrier,
 972                            !conf->array_frozen,
 973                            conf->resync_lock);
 974        atomic_inc(&conf->nr_pending[idx]);
 975        atomic_dec(&conf->nr_waiting[idx]);
 976        spin_unlock_irq(&conf->resync_lock);
 977}
 978
 979static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
 980{
 981        int idx = sector_to_idx(sector_nr);
 982
 983        _wait_barrier(conf, idx);
 984}
 985
 986static void wait_all_barriers(struct r1conf *conf)
 987{
 988        int idx;
 989
 990        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
 991                _wait_barrier(conf, idx);
 992}
 993
 994static void _allow_barrier(struct r1conf *conf, int idx)
 995{
 996        atomic_dec(&conf->nr_pending[idx]);
 997        wake_up(&conf->wait_barrier);
 998}
 999
1000static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1001{
1002        int idx = sector_to_idx(sector_nr);
1003
1004        _allow_barrier(conf, idx);
1005}
1006
1007static void allow_all_barriers(struct r1conf *conf)
1008{
1009        int idx;
1010
1011        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012                _allow_barrier(conf, idx);
1013}
1014
1015/* conf->resync_lock should be held */
1016static int get_unqueued_pending(struct r1conf *conf)
1017{
1018        int idx, ret;
1019
1020        for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1021                ret += atomic_read(&conf->nr_pending[idx]) -
1022                        atomic_read(&conf->nr_queued[idx]);
1023
1024        return ret;
1025}
1026
1027static void freeze_array(struct r1conf *conf, int extra)
1028{
1029        /* Stop sync I/O and normal I/O and wait for everything to
1030         * go quiet.
1031         * This is called in two situations:
1032         * 1) management command handlers (reshape, remove disk, quiesce).
1033         * 2) one normal I/O request failed.
1034
1035         * After array_frozen is set to 1, new sync IO will be blocked at
1036         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037         * or wait_read_barrier(). The flying I/Os will either complete or be
1038         * queued. When everything goes quite, there are only queued I/Os left.
1039
1040         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041         * barrier bucket index which this I/O request hits. When all sync and
1042         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044         * in handle_read_error(), we may call freeze_array() before trying to
1045         * fix the read error. In this case, the error read I/O is not queued,
1046         * so get_unqueued_pending() == 1.
1047         *
1048         * Therefore before this function returns, we need to wait until
1049         * get_unqueued_pendings(conf) gets equal to extra. For
1050         * normal I/O context, extra is 1, in rested situations extra is 0.
1051         */
1052        spin_lock_irq(&conf->resync_lock);
1053        conf->array_frozen = 1;
1054        raid1_log(conf->mddev, "wait freeze");
1055        wait_event_lock_irq_cmd(
1056                conf->wait_barrier,
1057                get_unqueued_pending(conf) == extra,
1058                conf->resync_lock,
1059                flush_pending_writes(conf));
1060        spin_unlock_irq(&conf->resync_lock);
1061}
1062static void unfreeze_array(struct r1conf *conf)
1063{
1064        /* reverse the effect of the freeze */
1065        spin_lock_irq(&conf->resync_lock);
1066        conf->array_frozen = 0;
1067        spin_unlock_irq(&conf->resync_lock);
1068        wake_up(&conf->wait_barrier);
1069}
1070
1071/* duplicate the data pages for behind I/O
1072 */
1073static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1074{
1075        int i;
1076        struct bio_vec *bvec;
1077        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1078                                        GFP_NOIO);
1079        if (unlikely(!bvecs))
1080                return;
1081
1082        bio_for_each_segment_all(bvec, bio, i) {
1083                bvecs[i] = *bvec;
1084                bvecs[i].bv_page = alloc_page(GFP_NOIO);
1085                if (unlikely(!bvecs[i].bv_page))
1086                        goto do_sync_io;
1087                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1088                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1089                kunmap(bvecs[i].bv_page);
1090                kunmap(bvec->bv_page);
1091        }
1092        r1_bio->behind_bvecs = bvecs;
1093        r1_bio->behind_page_count = bio->bi_vcnt;
1094        set_bit(R1BIO_BehindIO, &r1_bio->state);
1095        return;
1096
1097do_sync_io:
1098        for (i = 0; i < bio->bi_vcnt; i++)
1099                if (bvecs[i].bv_page)
1100                        put_page(bvecs[i].bv_page);
1101        kfree(bvecs);
1102        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103                 bio->bi_iter.bi_size);
1104}
1105
1106struct raid1_plug_cb {
1107        struct blk_plug_cb      cb;
1108        struct bio_list         pending;
1109        int                     pending_cnt;
1110};
1111
1112static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113{
1114        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1115                                                  cb);
1116        struct mddev *mddev = plug->cb.data;
1117        struct r1conf *conf = mddev->private;
1118        struct bio *bio;
1119
1120        if (from_schedule || current->bio_list) {
1121                spin_lock_irq(&conf->device_lock);
1122                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1123                conf->pending_count += plug->pending_cnt;
1124                spin_unlock_irq(&conf->device_lock);
1125                wake_up(&conf->wait_barrier);
1126                md_wakeup_thread(mddev->thread);
1127                kfree(plug);
1128                return;
1129        }
1130
1131        /* we aren't scheduling, so we can do the write-out directly. */
1132        bio = bio_list_get(&plug->pending);
1133        bitmap_unplug(mddev->bitmap);
1134        wake_up(&conf->wait_barrier);
1135
1136        while (bio) { /* submit pending writes */
1137                struct bio *next = bio->bi_next;
1138                struct md_rdev *rdev = (void*)bio->bi_bdev;
1139                bio->bi_next = NULL;
1140                bio->bi_bdev = rdev->bdev;
1141                if (test_bit(Faulty, &rdev->flags)) {
1142                        bio->bi_error = -EIO;
1143                        bio_endio(bio);
1144                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1145                                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                        /* Just ignore it */
1147                        bio_endio(bio);
1148                else
1149                        generic_make_request(bio);
1150                bio = next;
1151        }
1152        kfree(plug);
1153}
1154
1155static inline struct r1bio *
1156alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1157{
1158        struct r1conf *conf = mddev->private;
1159        struct r1bio *r1_bio;
1160
1161        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1162
1163        r1_bio->master_bio = bio;
1164        r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1165        r1_bio->state = 0;
1166        r1_bio->mddev = mddev;
1167        r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1168
1169        return r1_bio;
1170}
1171
1172static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1173{
1174        struct r1conf *conf = mddev->private;
1175        struct raid1_info *mirror;
1176        struct r1bio *r1_bio;
1177        struct bio *read_bio;
1178        struct bitmap *bitmap = mddev->bitmap;
1179        const int op = bio_op(bio);
1180        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1181        int sectors_handled;
1182        int max_sectors;
1183        int rdisk;
1184
1185        /*
1186         * Still need barrier for READ in case that whole
1187         * array is frozen.
1188         */
1189        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1190
1191        r1_bio = alloc_r1bio(mddev, bio, 0);
1192
1193        /*
1194         * We might need to issue multiple reads to different
1195         * devices if there are bad blocks around, so we keep
1196         * track of the number of reads in bio->bi_phys_segments.
1197         * If this is 0, there is only one r1_bio and no locking
1198         * will be needed when requests complete.  If it is
1199         * non-zero, then it is the number of not-completed requests.
1200         */
1201        bio->bi_phys_segments = 0;
1202        bio_clear_flag(bio, BIO_SEG_VALID);
1203
1204        /*
1205         * make_request() can abort the operation when read-ahead is being
1206         * used and no empty request is available.
1207         */
1208read_again:
1209        rdisk = read_balance(conf, r1_bio, &max_sectors);
1210
1211        if (rdisk < 0) {
1212                /* couldn't find anywhere to read from */
1213                raid_end_bio_io(r1_bio);
1214                return;
1215        }
1216        mirror = conf->mirrors + rdisk;
1217
1218        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1219            bitmap) {
1220                /*
1221                 * Reading from a write-mostly device must take care not to
1222                 * over-take any writes that are 'behind'
1223                 */
1224                raid1_log(mddev, "wait behind writes");
1225                wait_event(bitmap->behind_wait,
1226                           atomic_read(&bitmap->behind_writes) == 0);
1227        }
1228        r1_bio->read_disk = rdisk;
1229
1230        read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1231        bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1232                 max_sectors);
1233
1234        r1_bio->bios[rdisk] = read_bio;
1235
1236        read_bio->bi_iter.bi_sector = r1_bio->sector +
1237                mirror->rdev->data_offset;
1238        read_bio->bi_bdev = mirror->rdev->bdev;
1239        read_bio->bi_end_io = raid1_end_read_request;
1240        bio_set_op_attrs(read_bio, op, do_sync);
1241        if (test_bit(FailFast, &mirror->rdev->flags) &&
1242            test_bit(R1BIO_FailFast, &r1_bio->state))
1243                read_bio->bi_opf |= MD_FAILFAST;
1244        read_bio->bi_private = r1_bio;
1245
1246        if (mddev->gendisk)
1247                trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1248                                      read_bio, disk_devt(mddev->gendisk),
1249                                      r1_bio->sector);
1250
1251        if (max_sectors < r1_bio->sectors) {
1252                /*
1253                 * could not read all from this device, so we will need another
1254                 * r1_bio.
1255                 */
1256                sectors_handled = (r1_bio->sector + max_sectors
1257                                   - bio->bi_iter.bi_sector);
1258                r1_bio->sectors = max_sectors;
1259                spin_lock_irq(&conf->device_lock);
1260                if (bio->bi_phys_segments == 0)
1261                        bio->bi_phys_segments = 2;
1262                else
1263                        bio->bi_phys_segments++;
1264                spin_unlock_irq(&conf->device_lock);
1265
1266                /*
1267                 * Cannot call generic_make_request directly as that will be
1268                 * queued in __make_request and subsequent mempool_alloc might
1269                 * block waiting for it.  So hand bio over to raid1d.
1270                 */
1271                reschedule_retry(r1_bio);
1272
1273                r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1274                goto read_again;
1275        } else
1276                generic_make_request(read_bio);
1277}
1278
1279static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1280{
1281        struct r1conf *conf = mddev->private;
1282        struct r1bio *r1_bio;
1283        int i, disks;
1284        struct bitmap *bitmap = mddev->bitmap;
1285        unsigned long flags;
1286        struct md_rdev *blocked_rdev;
1287        struct blk_plug_cb *cb;
1288        struct raid1_plug_cb *plug = NULL;
1289        int first_clone;
1290        int sectors_handled;
1291        int max_sectors;
1292
1293        /*
1294         * Register the new request and wait if the reconstruction
1295         * thread has put up a bar for new requests.
1296         * Continue immediately if no resync is active currently.
1297         */
1298
1299        md_write_start(mddev, bio); /* wait on superblock update early */
1300
1301        if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302            bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303            (mddev_is_clustered(mddev) &&
1304             md_cluster_ops->area_resyncing(mddev, WRITE,
1305                     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306
1307                /*
1308                 * As the suspend_* range is controlled by userspace, we want
1309                 * an interruptible wait.
1310                 */
1311                DEFINE_WAIT(w);
1312                for (;;) {
1313                        flush_signals(current);
1314                        prepare_to_wait(&conf->wait_barrier,
1315                                        &w, TASK_INTERRUPTIBLE);
1316                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317                            bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318                            (mddev_is_clustered(mddev) &&
1319                             !md_cluster_ops->area_resyncing(mddev, WRITE,
1320                                     bio->bi_iter.bi_sector,
1321                                     bio_end_sector(bio))))
1322                                break;
1323                        schedule();
1324                }
1325                finish_wait(&conf->wait_barrier, &w);
1326        }
1327        wait_barrier(conf, bio->bi_iter.bi_sector);
1328
1329        r1_bio = alloc_r1bio(mddev, bio, 0);
1330
1331        /* We might need to issue multiple writes to different
1332         * devices if there are bad blocks around, so we keep
1333         * track of the number of writes in bio->bi_phys_segments.
1334         * If this is 0, there is only one r1_bio and no locking
1335         * will be needed when requests complete.  If it is
1336         * non-zero, then it is the number of not-completed requests.
1337         */
1338        bio->bi_phys_segments = 0;
1339        bio_clear_flag(bio, BIO_SEG_VALID);
1340
1341        if (conf->pending_count >= max_queued_requests) {
1342                md_wakeup_thread(mddev->thread);
1343                raid1_log(mddev, "wait queued");
1344                wait_event(conf->wait_barrier,
1345                           conf->pending_count < max_queued_requests);
1346        }
1347        /* first select target devices under rcu_lock and
1348         * inc refcount on their rdev.  Record them by setting
1349         * bios[x] to bio
1350         * If there are known/acknowledged bad blocks on any device on
1351         * which we have seen a write error, we want to avoid writing those
1352         * blocks.
1353         * This potentially requires several writes to write around
1354         * the bad blocks.  Each set of writes gets it's own r1bio
1355         * with a set of bios attached.
1356         */
1357
1358        disks = conf->raid_disks * 2;
1359 retry_write:
1360        blocked_rdev = NULL;
1361        rcu_read_lock();
1362        max_sectors = r1_bio->sectors;
1363        for (i = 0;  i < disks; i++) {
1364                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366                        atomic_inc(&rdev->nr_pending);
1367                        blocked_rdev = rdev;
1368                        break;
1369                }
1370                r1_bio->bios[i] = NULL;
1371                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372                        if (i < conf->raid_disks)
1373                                set_bit(R1BIO_Degraded, &r1_bio->state);
1374                        continue;
1375                }
1376
1377                atomic_inc(&rdev->nr_pending);
1378                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379                        sector_t first_bad;
1380                        int bad_sectors;
1381                        int is_bad;
1382
1383                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384                                             &first_bad, &bad_sectors);
1385                        if (is_bad < 0) {
1386                                /* mustn't write here until the bad block is
1387                                 * acknowledged*/
1388                                set_bit(BlockedBadBlocks, &rdev->flags);
1389                                blocked_rdev = rdev;
1390                                break;
1391                        }
1392                        if (is_bad && first_bad <= r1_bio->sector) {
1393                                /* Cannot write here at all */
1394                                bad_sectors -= (r1_bio->sector - first_bad);
1395                                if (bad_sectors < max_sectors)
1396                                        /* mustn't write more than bad_sectors
1397                                         * to other devices yet
1398                                         */
1399                                        max_sectors = bad_sectors;
1400                                rdev_dec_pending(rdev, mddev);
1401                                /* We don't set R1BIO_Degraded as that
1402                                 * only applies if the disk is
1403                                 * missing, so it might be re-added,
1404                                 * and we want to know to recover this
1405                                 * chunk.
1406                                 * In this case the device is here,
1407                                 * and the fact that this chunk is not
1408                                 * in-sync is recorded in the bad
1409                                 * block log
1410                                 */
1411                                continue;
1412                        }
1413                        if (is_bad) {
1414                                int good_sectors = first_bad - r1_bio->sector;
1415                                if (good_sectors < max_sectors)
1416                                        max_sectors = good_sectors;
1417                        }
1418                }
1419                r1_bio->bios[i] = bio;
1420        }
1421        rcu_read_unlock();
1422
1423        if (unlikely(blocked_rdev)) {
1424                /* Wait for this device to become unblocked */
1425                int j;
1426
1427                for (j = 0; j < i; j++)
1428                        if (r1_bio->bios[j])
1429                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430                r1_bio->state = 0;
1431                allow_barrier(conf, bio->bi_iter.bi_sector);
1432                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434                wait_barrier(conf, bio->bi_iter.bi_sector);
1435                goto retry_write;
1436        }
1437
1438        if (max_sectors < r1_bio->sectors) {
1439                /* We are splitting this write into multiple parts, so
1440                 * we need to prepare for allocating another r1_bio.
1441                 */
1442                r1_bio->sectors = max_sectors;
1443                spin_lock_irq(&conf->device_lock);
1444                if (bio->bi_phys_segments == 0)
1445                        bio->bi_phys_segments = 2;
1446                else
1447                        bio->bi_phys_segments++;
1448                spin_unlock_irq(&conf->device_lock);
1449        }
1450        sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451
1452        atomic_set(&r1_bio->remaining, 1);
1453        atomic_set(&r1_bio->behind_remaining, 0);
1454
1455        first_clone = 1;
1456        for (i = 0; i < disks; i++) {
1457                struct bio *mbio = NULL;
1458                sector_t offset;
1459                if (!r1_bio->bios[i])
1460                        continue;
1461
1462                offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463
1464                if (first_clone) {
1465                        /* do behind I/O ?
1466                         * Not if there are too many, or cannot
1467                         * allocate memory, or a reader on WriteMostly
1468                         * is waiting for behind writes to flush */
1469                        if (bitmap &&
1470                            (atomic_read(&bitmap->behind_writes)
1471                             < mddev->bitmap_info.max_write_behind) &&
1472                            !waitqueue_active(&bitmap->behind_wait)) {
1473                                mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474                                                                mddev->bio_set,
1475                                                                offset << 9,
1476                                                                max_sectors << 9);
1477                                alloc_behind_pages(mbio, r1_bio);
1478                        }
1479
1480                        bitmap_startwrite(bitmap, r1_bio->sector,
1481                                          r1_bio->sectors,
1482                                          test_bit(R1BIO_BehindIO,
1483                                                   &r1_bio->state));
1484                        first_clone = 0;
1485                }
1486
1487                if (!mbio) {
1488                        if (r1_bio->behind_bvecs)
1489                                mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490                                                                mddev->bio_set,
1491                                                                offset << 9,
1492                                                                max_sectors << 9);
1493                        else {
1494                                mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495                                bio_trim(mbio, offset, max_sectors);
1496                        }
1497                }
1498
1499                if (r1_bio->behind_bvecs) {
1500                        struct bio_vec *bvec;
1501                        int j;
1502
1503                        /*
1504                         * We trimmed the bio, so _all is legit
1505                         */
1506                        bio_for_each_segment_all(bvec, mbio, j)
1507                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1508                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509                                atomic_inc(&r1_bio->behind_remaining);
1510                }
1511
1512                r1_bio->bios[i] = mbio;
1513
1514                mbio->bi_iter.bi_sector = (r1_bio->sector +
1515                                   conf->mirrors[i].rdev->data_offset);
1516                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1517                mbio->bi_end_io = raid1_end_write_request;
1518                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1519                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521                    conf->raid_disks - mddev->degraded > 1)
1522                        mbio->bi_opf |= MD_FAILFAST;
1523                mbio->bi_private = r1_bio;
1524
1525                atomic_inc(&r1_bio->remaining);
1526
1527                if (mddev->gendisk)
1528                        trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529                                              mbio, disk_devt(mddev->gendisk),
1530                                              r1_bio->sector);
1531                /* flush_pending_writes() needs access to the rdev so...*/
1532                mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533
1534                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535                if (cb)
1536                        plug = container_of(cb, struct raid1_plug_cb, cb);
1537                else
1538                        plug = NULL;
1539                spin_lock_irqsave(&conf->device_lock, flags);
1540                if (plug) {
1541                        bio_list_add(&plug->pending, mbio);
1542                        plug->pending_cnt++;
1543                } else {
1544                        bio_list_add(&conf->pending_bio_list, mbio);
1545                        conf->pending_count++;
1546                }
1547                spin_unlock_irqrestore(&conf->device_lock, flags);
1548                if (!plug)
1549                        md_wakeup_thread(mddev->thread);
1550        }
1551        /* Mustn't call r1_bio_write_done before this next test,
1552         * as it could result in the bio being freed.
1553         */
1554        if (sectors_handled < bio_sectors(bio)) {
1555                r1_bio_write_done(r1_bio);
1556                /* We need another r1_bio.  It has already been counted
1557                 * in bio->bi_phys_segments
1558                 */
1559                r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1560                goto retry_write;
1561        }
1562
1563        r1_bio_write_done(r1_bio);
1564
1565        /* In case raid1d snuck in to freeze_array */
1566        wake_up(&conf->wait_barrier);
1567}
1568
1569static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570{
1571        struct bio *split;
1572        sector_t sectors;
1573
1574        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575                md_flush_request(mddev, bio);
1576                return;
1577        }
1578
1579        /* if bio exceeds barrier unit boundary, split it */
1580        do {
1581                sectors = align_to_barrier_unit_end(
1582                                bio->bi_iter.bi_sector, bio_sectors(bio));
1583                if (sectors < bio_sectors(bio)) {
1584                        split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585                        bio_chain(split, bio);
1586                } else {
1587                        split = bio;
1588                }
1589
1590                if (bio_data_dir(split) == READ) {
1591                        raid1_read_request(mddev, split);
1592
1593                        /*
1594                         * If a bio is splitted, the first part of bio will
1595                         * pass barrier but the bio is queued in
1596                         * current->bio_list (see generic_make_request). If
1597                         * there is a raise_barrier() called here, the second
1598                         * part of bio can't pass barrier. But since the first
1599                         * part bio isn't dispatched to underlaying disks yet,
1600                         * the barrier is never released, hence raise_barrier
1601                         * will alays wait. We have a deadlock.
1602                         * Note, this only happens in read path. For write
1603                         * path, the first part of bio is dispatched in a
1604                         * schedule() call (because of blk plug) or offloaded
1605                         * to raid10d.
1606                         * Quitting from the function immediately can change
1607                         * the bio order queued in bio_list and avoid the deadlock.
1608                         */
1609                        if (split != bio) {
1610                                generic_make_request(bio);
1611                                break;
1612                        }
1613                } else
1614                        raid1_write_request(mddev, split);
1615        } while (split != bio);
1616}
1617
1618static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1619{
1620        struct r1conf *conf = mddev->private;
1621        int i;
1622
1623        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1624                   conf->raid_disks - mddev->degraded);
1625        rcu_read_lock();
1626        for (i = 0; i < conf->raid_disks; i++) {
1627                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1628                seq_printf(seq, "%s",
1629                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1630        }
1631        rcu_read_unlock();
1632        seq_printf(seq, "]");
1633}
1634
1635static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1636{
1637        char b[BDEVNAME_SIZE];
1638        struct r1conf *conf = mddev->private;
1639        unsigned long flags;
1640
1641        /*
1642         * If it is not operational, then we have already marked it as dead
1643         * else if it is the last working disks, ignore the error, let the
1644         * next level up know.
1645         * else mark the drive as failed
1646         */
1647        spin_lock_irqsave(&conf->device_lock, flags);
1648        if (test_bit(In_sync, &rdev->flags)
1649            && (conf->raid_disks - mddev->degraded) == 1) {
1650                /*
1651                 * Don't fail the drive, act as though we were just a
1652                 * normal single drive.
1653                 * However don't try a recovery from this drive as
1654                 * it is very likely to fail.
1655                 */
1656                conf->recovery_disabled = mddev->recovery_disabled;
1657                spin_unlock_irqrestore(&conf->device_lock, flags);
1658                return;
1659        }
1660        set_bit(Blocked, &rdev->flags);
1661        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1662                mddev->degraded++;
1663                set_bit(Faulty, &rdev->flags);
1664        } else
1665                set_bit(Faulty, &rdev->flags);
1666        spin_unlock_irqrestore(&conf->device_lock, flags);
1667        /*
1668         * if recovery is running, make sure it aborts.
1669         */
1670        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1671        set_mask_bits(&mddev->sb_flags, 0,
1672                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1673        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1674                "md/raid1:%s: Operation continuing on %d devices.\n",
1675                mdname(mddev), bdevname(rdev->bdev, b),
1676                mdname(mddev), conf->raid_disks - mddev->degraded);
1677}
1678
1679static void print_conf(struct r1conf *conf)
1680{
1681        int i;
1682
1683        pr_debug("RAID1 conf printout:\n");
1684        if (!conf) {
1685                pr_debug("(!conf)\n");
1686                return;
1687        }
1688        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1689                 conf->raid_disks);
1690
1691        rcu_read_lock();
1692        for (i = 0; i < conf->raid_disks; i++) {
1693                char b[BDEVNAME_SIZE];
1694                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1695                if (rdev)
1696                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697                                 i, !test_bit(In_sync, &rdev->flags),
1698                                 !test_bit(Faulty, &rdev->flags),
1699                                 bdevname(rdev->bdev,b));
1700        }
1701        rcu_read_unlock();
1702}
1703
1704static void close_sync(struct r1conf *conf)
1705{
1706        wait_all_barriers(conf);
1707        allow_all_barriers(conf);
1708
1709        mempool_destroy(conf->r1buf_pool);
1710        conf->r1buf_pool = NULL;
1711}
1712
1713static int raid1_spare_active(struct mddev *mddev)
1714{
1715        int i;
1716        struct r1conf *conf = mddev->private;
1717        int count = 0;
1718        unsigned long flags;
1719
1720        /*
1721         * Find all failed disks within the RAID1 configuration
1722         * and mark them readable.
1723         * Called under mddev lock, so rcu protection not needed.
1724         * device_lock used to avoid races with raid1_end_read_request
1725         * which expects 'In_sync' flags and ->degraded to be consistent.
1726         */
1727        spin_lock_irqsave(&conf->device_lock, flags);
1728        for (i = 0; i < conf->raid_disks; i++) {
1729                struct md_rdev *rdev = conf->mirrors[i].rdev;
1730                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731                if (repl
1732                    && !test_bit(Candidate, &repl->flags)
1733                    && repl->recovery_offset == MaxSector
1734                    && !test_bit(Faulty, &repl->flags)
1735                    && !test_and_set_bit(In_sync, &repl->flags)) {
1736                        /* replacement has just become active */
1737                        if (!rdev ||
1738                            !test_and_clear_bit(In_sync, &rdev->flags))
1739                                count++;
1740                        if (rdev) {
1741                                /* Replaced device not technically
1742                                 * faulty, but we need to be sure
1743                                 * it gets removed and never re-added
1744                                 */
1745                                set_bit(Faulty, &rdev->flags);
1746                                sysfs_notify_dirent_safe(
1747                                        rdev->sysfs_state);
1748                        }
1749                }
1750                if (rdev
1751                    && rdev->recovery_offset == MaxSector
1752                    && !test_bit(Faulty, &rdev->flags)
1753                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1754                        count++;
1755                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1756                }
1757        }
1758        mddev->degraded -= count;
1759        spin_unlock_irqrestore(&conf->device_lock, flags);
1760
1761        print_conf(conf);
1762        return count;
1763}
1764
1765static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1766{
1767        struct r1conf *conf = mddev->private;
1768        int err = -EEXIST;
1769        int mirror = 0;
1770        struct raid1_info *p;
1771        int first = 0;
1772        int last = conf->raid_disks - 1;
1773
1774        if (mddev->recovery_disabled == conf->recovery_disabled)
1775                return -EBUSY;
1776
1777        if (md_integrity_add_rdev(rdev, mddev))
1778                return -ENXIO;
1779
1780        if (rdev->raid_disk >= 0)
1781                first = last = rdev->raid_disk;
1782
1783        /*
1784         * find the disk ... but prefer rdev->saved_raid_disk
1785         * if possible.
1786         */
1787        if (rdev->saved_raid_disk >= 0 &&
1788            rdev->saved_raid_disk >= first &&
1789            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1790                first = last = rdev->saved_raid_disk;
1791
1792        for (mirror = first; mirror <= last; mirror++) {
1793                p = conf->mirrors+mirror;
1794                if (!p->rdev) {
1795
1796                        if (mddev->gendisk)
1797                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1798                                                  rdev->data_offset << 9);
1799
1800                        p->head_position = 0;
1801                        rdev->raid_disk = mirror;
1802                        err = 0;
1803                        /* As all devices are equivalent, we don't need a full recovery
1804                         * if this was recently any drive of the array
1805                         */
1806                        if (rdev->saved_raid_disk < 0)
1807                                conf->fullsync = 1;
1808                        rcu_assign_pointer(p->rdev, rdev);
1809                        break;
1810                }
1811                if (test_bit(WantReplacement, &p->rdev->flags) &&
1812                    p[conf->raid_disks].rdev == NULL) {
1813                        /* Add this device as a replacement */
1814                        clear_bit(In_sync, &rdev->flags);
1815                        set_bit(Replacement, &rdev->flags);
1816                        rdev->raid_disk = mirror;
1817                        err = 0;
1818                        conf->fullsync = 1;
1819                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820                        break;
1821                }
1822        }
1823        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1824                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1825        print_conf(conf);
1826        return err;
1827}
1828
1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830{
1831        struct r1conf *conf = mddev->private;
1832        int err = 0;
1833        int number = rdev->raid_disk;
1834        struct raid1_info *p = conf->mirrors + number;
1835
1836        if (rdev != p->rdev)
1837                p = conf->mirrors + conf->raid_disks + number;
1838
1839        print_conf(conf);
1840        if (rdev == p->rdev) {
1841                if (test_bit(In_sync, &rdev->flags) ||
1842                    atomic_read(&rdev->nr_pending)) {
1843                        err = -EBUSY;
1844                        goto abort;
1845                }
1846                /* Only remove non-faulty devices if recovery
1847                 * is not possible.
1848                 */
1849                if (!test_bit(Faulty, &rdev->flags) &&
1850                    mddev->recovery_disabled != conf->recovery_disabled &&
1851                    mddev->degraded < conf->raid_disks) {
1852                        err = -EBUSY;
1853                        goto abort;
1854                }
1855                p->rdev = NULL;
1856                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857                        synchronize_rcu();
1858                        if (atomic_read(&rdev->nr_pending)) {
1859                                /* lost the race, try later */
1860                                err = -EBUSY;
1861                                p->rdev = rdev;
1862                                goto abort;
1863                        }
1864                }
1865                if (conf->mirrors[conf->raid_disks + number].rdev) {
1866                        /* We just removed a device that is being replaced.
1867                         * Move down the replacement.  We drain all IO before
1868                         * doing this to avoid confusion.
1869                         */
1870                        struct md_rdev *repl =
1871                                conf->mirrors[conf->raid_disks + number].rdev;
1872                        freeze_array(conf, 0);
1873                        clear_bit(Replacement, &repl->flags);
1874                        p->rdev = repl;
1875                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1876                        unfreeze_array(conf);
1877                        clear_bit(WantReplacement, &rdev->flags);
1878                } else
1879                        clear_bit(WantReplacement, &rdev->flags);
1880                err = md_integrity_register(mddev);
1881        }
1882abort:
1883
1884        print_conf(conf);
1885        return err;
1886}
1887
1888static void end_sync_read(struct bio *bio)
1889{
1890        struct r1bio *r1_bio = bio->bi_private;
1891
1892        update_head_pos(r1_bio->read_disk, r1_bio);
1893
1894        /*
1895         * we have read a block, now it needs to be re-written,
1896         * or re-read if the read failed.
1897         * We don't do much here, just schedule handling by raid1d
1898         */
1899        if (!bio->bi_error)
1900                set_bit(R1BIO_Uptodate, &r1_bio->state);
1901
1902        if (atomic_dec_and_test(&r1_bio->remaining))
1903                reschedule_retry(r1_bio);
1904}
1905
1906static void end_sync_write(struct bio *bio)
1907{
1908        int uptodate = !bio->bi_error;
1909        struct r1bio *r1_bio = bio->bi_private;
1910        struct mddev *mddev = r1_bio->mddev;
1911        struct r1conf *conf = mddev->private;
1912        sector_t first_bad;
1913        int bad_sectors;
1914        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1915
1916        if (!uptodate) {
1917                sector_t sync_blocks = 0;
1918                sector_t s = r1_bio->sector;
1919                long sectors_to_go = r1_bio->sectors;
1920                /* make sure these bits doesn't get cleared. */
1921                do {
1922                        bitmap_end_sync(mddev->bitmap, s,
1923                                        &sync_blocks, 1);
1924                        s += sync_blocks;
1925                        sectors_to_go -= sync_blocks;
1926                } while (sectors_to_go > 0);
1927                set_bit(WriteErrorSeen, &rdev->flags);
1928                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929                        set_bit(MD_RECOVERY_NEEDED, &
1930                                mddev->recovery);
1931                set_bit(R1BIO_WriteError, &r1_bio->state);
1932        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933                               &first_bad, &bad_sectors) &&
1934                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935                                r1_bio->sector,
1936                                r1_bio->sectors,
1937                                &first_bad, &bad_sectors)
1938                )
1939                set_bit(R1BIO_MadeGood, &r1_bio->state);
1940
1941        if (atomic_dec_and_test(&r1_bio->remaining)) {
1942                int s = r1_bio->sectors;
1943                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1944                    test_bit(R1BIO_WriteError, &r1_bio->state))
1945                        reschedule_retry(r1_bio);
1946                else {
1947                        put_buf(r1_bio);
1948                        md_done_sync(mddev, s, uptodate);
1949                }
1950        }
1951}
1952
1953static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1954                            int sectors, struct page *page, int rw)
1955{
1956        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1957                /* success */
1958                return 1;
1959        if (rw == WRITE) {
1960                set_bit(WriteErrorSeen, &rdev->flags);
1961                if (!test_and_set_bit(WantReplacement,
1962                                      &rdev->flags))
1963                        set_bit(MD_RECOVERY_NEEDED, &
1964                                rdev->mddev->recovery);
1965        }
1966        /* need to record an error - either for the block or the device */
1967        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1968                md_error(rdev->mddev, rdev);
1969        return 0;
1970}
1971
1972static int fix_sync_read_error(struct r1bio *r1_bio)
1973{
1974        /* Try some synchronous reads of other devices to get
1975         * good data, much like with normal read errors.  Only
1976         * read into the pages we already have so we don't
1977         * need to re-issue the read request.
1978         * We don't need to freeze the array, because being in an
1979         * active sync request, there is no normal IO, and
1980         * no overlapping syncs.
1981         * We don't need to check is_badblock() again as we
1982         * made sure that anything with a bad block in range
1983         * will have bi_end_io clear.
1984         */
1985        struct mddev *mddev = r1_bio->mddev;
1986        struct r1conf *conf = mddev->private;
1987        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1988        sector_t sect = r1_bio->sector;
1989        int sectors = r1_bio->sectors;
1990        int idx = 0;
1991        struct md_rdev *rdev;
1992
1993        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1994        if (test_bit(FailFast, &rdev->flags)) {
1995                /* Don't try recovering from here - just fail it
1996                 * ... unless it is the last working device of course */
1997                md_error(mddev, rdev);
1998                if (test_bit(Faulty, &rdev->flags))
1999                        /* Don't try to read from here, but make sure
2000                         * put_buf does it's thing
2001                         */
2002                        bio->bi_end_io = end_sync_write;
2003        }
2004
2005        while(sectors) {
2006                int s = sectors;
2007                int d = r1_bio->read_disk;
2008                int success = 0;
2009                int start;
2010
2011                if (s > (PAGE_SIZE>>9))
2012                        s = PAGE_SIZE >> 9;
2013                do {
2014                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2015                                /* No rcu protection needed here devices
2016                                 * can only be removed when no resync is
2017                                 * active, and resync is currently active
2018                                 */
2019                                rdev = conf->mirrors[d].rdev;
2020                                if (sync_page_io(rdev, sect, s<<9,
2021                                                 bio->bi_io_vec[idx].bv_page,
2022                                                 REQ_OP_READ, 0, false)) {
2023                                        success = 1;
2024                                        break;
2025                                }
2026                        }
2027                        d++;
2028                        if (d == conf->raid_disks * 2)
2029                                d = 0;
2030                } while (!success && d != r1_bio->read_disk);
2031
2032                if (!success) {
2033                        char b[BDEVNAME_SIZE];
2034                        int abort = 0;
2035                        /* Cannot read from anywhere, this block is lost.
2036                         * Record a bad block on each device.  If that doesn't
2037                         * work just disable and interrupt the recovery.
2038                         * Don't fail devices as that won't really help.
2039                         */
2040                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2041                                            mdname(mddev),
2042                                            bdevname(bio->bi_bdev, b),
2043                                            (unsigned long long)r1_bio->sector);
2044                        for (d = 0; d < conf->raid_disks * 2; d++) {
2045                                rdev = conf->mirrors[d].rdev;
2046                                if (!rdev || test_bit(Faulty, &rdev->flags))
2047                                        continue;
2048                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2049                                        abort = 1;
2050                        }
2051                        if (abort) {
2052                                conf->recovery_disabled =
2053                                        mddev->recovery_disabled;
2054                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055                                md_done_sync(mddev, r1_bio->sectors, 0);
2056                                put_buf(r1_bio);
2057                                return 0;
2058                        }
2059                        /* Try next page */
2060                        sectors -= s;
2061                        sect += s;
2062                        idx++;
2063                        continue;
2064                }
2065
2066                start = d;
2067                /* write it back and re-read */
2068                while (d != r1_bio->read_disk) {
2069                        if (d == 0)
2070                                d = conf->raid_disks * 2;
2071                        d--;
2072                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2073                                continue;
2074                        rdev = conf->mirrors[d].rdev;
2075                        if (r1_sync_page_io(rdev, sect, s,
2076                                            bio->bi_io_vec[idx].bv_page,
2077                                            WRITE) == 0) {
2078                                r1_bio->bios[d]->bi_end_io = NULL;
2079                                rdev_dec_pending(rdev, mddev);
2080                        }
2081                }
2082                d = start;
2083                while (d != r1_bio->read_disk) {
2084                        if (d == 0)
2085                                d = conf->raid_disks * 2;
2086                        d--;
2087                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088                                continue;
2089                        rdev = conf->mirrors[d].rdev;
2090                        if (r1_sync_page_io(rdev, sect, s,
2091                                            bio->bi_io_vec[idx].bv_page,
2092                                            READ) != 0)
2093                                atomic_add(s, &rdev->corrected_errors);
2094                }
2095                sectors -= s;
2096                sect += s;
2097                idx ++;
2098        }
2099        set_bit(R1BIO_Uptodate, &r1_bio->state);
2100        bio->bi_error = 0;
2101        return 1;
2102}
2103
2104static void process_checks(struct r1bio *r1_bio)
2105{
2106        /* We have read all readable devices.  If we haven't
2107         * got the block, then there is no hope left.
2108         * If we have, then we want to do a comparison
2109         * and skip the write if everything is the same.
2110         * If any blocks failed to read, then we need to
2111         * attempt an over-write
2112         */
2113        struct mddev *mddev = r1_bio->mddev;
2114        struct r1conf *conf = mddev->private;
2115        int primary;
2116        int i;
2117        int vcnt;
2118
2119        /* Fix variable parts of all bios */
2120        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2121        for (i = 0; i < conf->raid_disks * 2; i++) {
2122                int j;
2123                int size;
2124                int error;
2125                struct bio *b = r1_bio->bios[i];
2126                if (b->bi_end_io != end_sync_read)
2127                        continue;
2128                /* fixup the bio for reuse, but preserve errno */
2129                error = b->bi_error;
2130                bio_reset(b);
2131                b->bi_error = error;
2132                b->bi_vcnt = vcnt;
2133                b->bi_iter.bi_size = r1_bio->sectors << 9;
2134                b->bi_iter.bi_sector = r1_bio->sector +
2135                        conf->mirrors[i].rdev->data_offset;
2136                b->bi_bdev = conf->mirrors[i].rdev->bdev;
2137                b->bi_end_io = end_sync_read;
2138                b->bi_private = r1_bio;
2139
2140                size = b->bi_iter.bi_size;
2141                for (j = 0; j < vcnt ; j++) {
2142                        struct bio_vec *bi;
2143                        bi = &b->bi_io_vec[j];
2144                        bi->bv_offset = 0;
2145                        if (size > PAGE_SIZE)
2146                                bi->bv_len = PAGE_SIZE;
2147                        else
2148                                bi->bv_len = size;
2149                        size -= PAGE_SIZE;
2150                }
2151        }
2152        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2153                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2154                    !r1_bio->bios[primary]->bi_error) {
2155                        r1_bio->bios[primary]->bi_end_io = NULL;
2156                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2157                        break;
2158                }
2159        r1_bio->read_disk = primary;
2160        for (i = 0; i < conf->raid_disks * 2; i++) {
2161                int j;
2162                struct bio *pbio = r1_bio->bios[primary];
2163                struct bio *sbio = r1_bio->bios[i];
2164                int error = sbio->bi_error;
2165
2166                if (sbio->bi_end_io != end_sync_read)
2167                        continue;
2168                /* Now we can 'fixup' the error value */
2169                sbio->bi_error = 0;
2170
2171                if (!error) {
2172                        for (j = vcnt; j-- ; ) {
2173                                struct page *p, *s;
2174                                p = pbio->bi_io_vec[j].bv_page;
2175                                s = sbio->bi_io_vec[j].bv_page;
2176                                if (memcmp(page_address(p),
2177                                           page_address(s),
2178                                           sbio->bi_io_vec[j].bv_len))
2179                                        break;
2180                        }
2181                } else
2182                        j = 0;
2183                if (j >= 0)
2184                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2185                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2186                              && !error)) {
2187                        /* No need to write to this device. */
2188                        sbio->bi_end_io = NULL;
2189                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2190                        continue;
2191                }
2192
2193                bio_copy_data(sbio, pbio);
2194        }
2195}
2196
2197static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2198{
2199        struct r1conf *conf = mddev->private;
2200        int i;
2201        int disks = conf->raid_disks * 2;
2202        struct bio *bio, *wbio;
2203
2204        bio = r1_bio->bios[r1_bio->read_disk];
2205
2206        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2207                /* ouch - failed to read all of that. */
2208                if (!fix_sync_read_error(r1_bio))
2209                        return;
2210
2211        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2212                process_checks(r1_bio);
2213
2214        /*
2215         * schedule writes
2216         */
2217        atomic_set(&r1_bio->remaining, 1);
2218        for (i = 0; i < disks ; i++) {
2219                wbio = r1_bio->bios[i];
2220                if (wbio->bi_end_io == NULL ||
2221                    (wbio->bi_end_io == end_sync_read &&
2222                     (i == r1_bio->read_disk ||
2223                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2224                        continue;
2225
2226                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2227                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2228                        wbio->bi_opf |= MD_FAILFAST;
2229
2230                wbio->bi_end_io = end_sync_write;
2231                atomic_inc(&r1_bio->remaining);
2232                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2233
2234                generic_make_request(wbio);
2235        }
2236
2237        if (atomic_dec_and_test(&r1_bio->remaining)) {
2238                /* if we're here, all write(s) have completed, so clean up */
2239                int s = r1_bio->sectors;
2240                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2241                    test_bit(R1BIO_WriteError, &r1_bio->state))
2242                        reschedule_retry(r1_bio);
2243                else {
2244                        put_buf(r1_bio);
2245                        md_done_sync(mddev, s, 1);
2246                }
2247        }
2248}
2249
2250/*
2251 * This is a kernel thread which:
2252 *
2253 *      1.      Retries failed read operations on working mirrors.
2254 *      2.      Updates the raid superblock when problems encounter.
2255 *      3.      Performs writes following reads for array synchronising.
2256 */
2257
2258static void fix_read_error(struct r1conf *conf, int read_disk,
2259                           sector_t sect, int sectors)
2260{
2261        struct mddev *mddev = conf->mddev;
2262        while(sectors) {
2263                int s = sectors;
2264                int d = read_disk;
2265                int success = 0;
2266                int start;
2267                struct md_rdev *rdev;
2268
2269                if (s > (PAGE_SIZE>>9))
2270                        s = PAGE_SIZE >> 9;
2271
2272                do {
2273                        sector_t first_bad;
2274                        int bad_sectors;
2275
2276                        rcu_read_lock();
2277                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2278                        if (rdev &&
2279                            (test_bit(In_sync, &rdev->flags) ||
2280                             (!test_bit(Faulty, &rdev->flags) &&
2281                              rdev->recovery_offset >= sect + s)) &&
2282                            is_badblock(rdev, sect, s,
2283                                        &first_bad, &bad_sectors) == 0) {
2284                                atomic_inc(&rdev->nr_pending);
2285                                rcu_read_unlock();
2286                                if (sync_page_io(rdev, sect, s<<9,
2287                                         conf->tmppage, REQ_OP_READ, 0, false))
2288                                        success = 1;
2289                                rdev_dec_pending(rdev, mddev);
2290                                if (success)
2291                                        break;
2292                        } else
2293                                rcu_read_unlock();
2294                        d++;
2295                        if (d == conf->raid_disks * 2)
2296                                d = 0;
2297                } while (!success && d != read_disk);
2298
2299                if (!success) {
2300                        /* Cannot read from anywhere - mark it bad */
2301                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2302                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2303                                md_error(mddev, rdev);
2304                        break;
2305                }
2306                /* write it back and re-read */
2307                start = d;
2308                while (d != read_disk) {
2309                        if (d==0)
2310                                d = conf->raid_disks * 2;
2311                        d--;
2312                        rcu_read_lock();
2313                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2314                        if (rdev &&
2315                            !test_bit(Faulty, &rdev->flags)) {
2316                                atomic_inc(&rdev->nr_pending);
2317                                rcu_read_unlock();
2318                                r1_sync_page_io(rdev, sect, s,
2319                                                conf->tmppage, WRITE);
2320                                rdev_dec_pending(rdev, mddev);
2321                        } else
2322                                rcu_read_unlock();
2323                }
2324                d = start;
2325                while (d != read_disk) {
2326                        char b[BDEVNAME_SIZE];
2327                        if (d==0)
2328                                d = conf->raid_disks * 2;
2329                        d--;
2330                        rcu_read_lock();
2331                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2332                        if (rdev &&
2333                            !test_bit(Faulty, &rdev->flags)) {
2334                                atomic_inc(&rdev->nr_pending);
2335                                rcu_read_unlock();
2336                                if (r1_sync_page_io(rdev, sect, s,
2337                                                    conf->tmppage, READ)) {
2338                                        atomic_add(s, &rdev->corrected_errors);
2339                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2340                                                mdname(mddev), s,
2341                                                (unsigned long long)(sect +
2342                                                                     rdev->data_offset),
2343                                                bdevname(rdev->bdev, b));
2344                                }
2345                                rdev_dec_pending(rdev, mddev);
2346                        } else
2347                                rcu_read_unlock();
2348                }
2349                sectors -= s;
2350                sect += s;
2351        }
2352}
2353
2354static int narrow_write_error(struct r1bio *r1_bio, int i)
2355{
2356        struct mddev *mddev = r1_bio->mddev;
2357        struct r1conf *conf = mddev->private;
2358        struct md_rdev *rdev = conf->mirrors[i].rdev;
2359
2360        /* bio has the data to be written to device 'i' where
2361         * we just recently had a write error.
2362         * We repeatedly clone the bio and trim down to one block,
2363         * then try the write.  Where the write fails we record
2364         * a bad block.
2365         * It is conceivable that the bio doesn't exactly align with
2366         * blocks.  We must handle this somehow.
2367         *
2368         * We currently own a reference on the rdev.
2369         */
2370
2371        int block_sectors;
2372        sector_t sector;
2373        int sectors;
2374        int sect_to_write = r1_bio->sectors;
2375        int ok = 1;
2376
2377        if (rdev->badblocks.shift < 0)
2378                return 0;
2379
2380        block_sectors = roundup(1 << rdev->badblocks.shift,
2381                                bdev_logical_block_size(rdev->bdev) >> 9);
2382        sector = r1_bio->sector;
2383        sectors = ((sector + block_sectors)
2384                   & ~(sector_t)(block_sectors - 1))
2385                - sector;
2386
2387        while (sect_to_write) {
2388                struct bio *wbio;
2389                if (sectors > sect_to_write)
2390                        sectors = sect_to_write;
2391                /* Write at 'sector' for 'sectors'*/
2392
2393                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394                        unsigned vcnt = r1_bio->behind_page_count;
2395                        struct bio_vec *vec = r1_bio->behind_bvecs;
2396
2397                        while (!vec->bv_page) {
2398                                vec++;
2399                                vcnt--;
2400                        }
2401
2402                        wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2403                        memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2404
2405                        wbio->bi_vcnt = vcnt;
2406                } else {
2407                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2408                                              mddev->bio_set);
2409                }
2410
2411                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2412                wbio->bi_iter.bi_sector = r1_bio->sector;
2413                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2414
2415                bio_trim(wbio, sector - r1_bio->sector, sectors);
2416                wbio->bi_iter.bi_sector += rdev->data_offset;
2417                wbio->bi_bdev = rdev->bdev;
2418
2419                if (submit_bio_wait(wbio) < 0)
2420                        /* failure! */
2421                        ok = rdev_set_badblocks(rdev, sector,
2422                                                sectors, 0)
2423                                && ok;
2424
2425                bio_put(wbio);
2426                sect_to_write -= sectors;
2427                sector += sectors;
2428                sectors = block_sectors;
2429        }
2430        return ok;
2431}
2432
2433static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2434{
2435        int m;
2436        int s = r1_bio->sectors;
2437        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2438                struct md_rdev *rdev = conf->mirrors[m].rdev;
2439                struct bio *bio = r1_bio->bios[m];
2440                if (bio->bi_end_io == NULL)
2441                        continue;
2442                if (!bio->bi_error &&
2443                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2444                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2445                }
2446                if (bio->bi_error &&
2447                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2448                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2449                                md_error(conf->mddev, rdev);
2450                }
2451        }
2452        put_buf(r1_bio);
2453        md_done_sync(conf->mddev, s, 1);
2454}
2455
2456static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2457{
2458        int m, idx;
2459        bool fail = false;
2460
2461        for (m = 0; m < conf->raid_disks * 2 ; m++)
2462                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2463                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2464                        rdev_clear_badblocks(rdev,
2465                                             r1_bio->sector,
2466                                             r1_bio->sectors, 0);
2467                        rdev_dec_pending(rdev, conf->mddev);
2468                } else if (r1_bio->bios[m] != NULL) {
2469                        /* This drive got a write error.  We need to
2470                         * narrow down and record precise write
2471                         * errors.
2472                         */
2473                        fail = true;
2474                        if (!narrow_write_error(r1_bio, m)) {
2475                                md_error(conf->mddev,
2476                                         conf->mirrors[m].rdev);
2477                                /* an I/O failed, we can't clear the bitmap */
2478                                set_bit(R1BIO_Degraded, &r1_bio->state);
2479                        }
2480                        rdev_dec_pending(conf->mirrors[m].rdev,
2481                                         conf->mddev);
2482                }
2483        if (fail) {
2484                spin_lock_irq(&conf->device_lock);
2485                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2486                idx = sector_to_idx(r1_bio->sector);
2487                atomic_inc(&conf->nr_queued[idx]);
2488                spin_unlock_irq(&conf->device_lock);
2489                /*
2490                 * In case freeze_array() is waiting for condition
2491                 * get_unqueued_pending() == extra to be true.
2492                 */
2493                wake_up(&conf->wait_barrier);
2494                md_wakeup_thread(conf->mddev->thread);
2495        } else {
2496                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2497                        close_write(r1_bio);
2498                raid_end_bio_io(r1_bio);
2499        }
2500}
2501
2502static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2503{
2504        int disk;
2505        int max_sectors;
2506        struct mddev *mddev = conf->mddev;
2507        struct bio *bio;
2508        char b[BDEVNAME_SIZE];
2509        struct md_rdev *rdev;
2510        dev_t bio_dev;
2511        sector_t bio_sector;
2512
2513        clear_bit(R1BIO_ReadError, &r1_bio->state);
2514        /* we got a read error. Maybe the drive is bad.  Maybe just
2515         * the block and we can fix it.
2516         * We freeze all other IO, and try reading the block from
2517         * other devices.  When we find one, we re-write
2518         * and check it that fixes the read error.
2519         * This is all done synchronously while the array is
2520         * frozen
2521         */
2522
2523        bio = r1_bio->bios[r1_bio->read_disk];
2524        bdevname(bio->bi_bdev, b);
2525        bio_dev = bio->bi_bdev->bd_dev;
2526        bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2527        bio_put(bio);
2528        r1_bio->bios[r1_bio->read_disk] = NULL;
2529
2530        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2531        if (mddev->ro == 0
2532            && !test_bit(FailFast, &rdev->flags)) {
2533                freeze_array(conf, 1);
2534                fix_read_error(conf, r1_bio->read_disk,
2535                               r1_bio->sector, r1_bio->sectors);
2536                unfreeze_array(conf);
2537        } else {
2538                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539        }
2540
2541        rdev_dec_pending(rdev, conf->mddev);
2542
2543read_more:
2544        disk = read_balance(conf, r1_bio, &max_sectors);
2545        if (disk == -1) {
2546                pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2547                                    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2548                raid_end_bio_io(r1_bio);
2549        } else {
2550                const unsigned long do_sync
2551                        = r1_bio->master_bio->bi_opf & REQ_SYNC;
2552                r1_bio->read_disk = disk;
2553                bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2554                                     mddev->bio_set);
2555                bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2556                         max_sectors);
2557                r1_bio->bios[r1_bio->read_disk] = bio;
2558                rdev = conf->mirrors[disk].rdev;
2559                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2560                                    mdname(mddev),
2561                                    (unsigned long long)r1_bio->sector,
2562                                    bdevname(rdev->bdev, b));
2563                bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2564                bio->bi_bdev = rdev->bdev;
2565                bio->bi_end_io = raid1_end_read_request;
2566                bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2567                if (test_bit(FailFast, &rdev->flags) &&
2568                    test_bit(R1BIO_FailFast, &r1_bio->state))
2569                        bio->bi_opf |= MD_FAILFAST;
2570                bio->bi_private = r1_bio;
2571                if (max_sectors < r1_bio->sectors) {
2572                        /* Drat - have to split this up more */
2573                        struct bio *mbio = r1_bio->master_bio;
2574                        int sectors_handled = (r1_bio->sector + max_sectors
2575                                               - mbio->bi_iter.bi_sector);
2576                        r1_bio->sectors = max_sectors;
2577                        spin_lock_irq(&conf->device_lock);
2578                        if (mbio->bi_phys_segments == 0)
2579                                mbio->bi_phys_segments = 2;
2580                        else
2581                                mbio->bi_phys_segments++;
2582                        spin_unlock_irq(&conf->device_lock);
2583                        trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2584                                              bio, bio_dev, bio_sector);
2585                        generic_make_request(bio);
2586                        bio = NULL;
2587
2588                        r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2589                        set_bit(R1BIO_ReadError, &r1_bio->state);
2590
2591                        goto read_more;
2592                } else {
2593                        trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2594                                              bio, bio_dev, bio_sector);
2595                        generic_make_request(bio);
2596                }
2597        }
2598}
2599
2600static void raid1d(struct md_thread *thread)
2601{
2602        struct mddev *mddev = thread->mddev;
2603        struct r1bio *r1_bio;
2604        unsigned long flags;
2605        struct r1conf *conf = mddev->private;
2606        struct list_head *head = &conf->retry_list;
2607        struct blk_plug plug;
2608        int idx;
2609
2610        md_check_recovery(mddev);
2611
2612        if (!list_empty_careful(&conf->bio_end_io_list) &&
2613            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2614                LIST_HEAD(tmp);
2615                spin_lock_irqsave(&conf->device_lock, flags);
2616                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2617                        list_splice_init(&conf->bio_end_io_list, &tmp);
2618                spin_unlock_irqrestore(&conf->device_lock, flags);
2619                while (!list_empty(&tmp)) {
2620                        r1_bio = list_first_entry(&tmp, struct r1bio,
2621                                                  retry_list);
2622                        list_del(&r1_bio->retry_list);
2623                        idx = sector_to_idx(r1_bio->sector);
2624                        atomic_dec(&conf->nr_queued[idx]);
2625                        if (mddev->degraded)
2626                                set_bit(R1BIO_Degraded, &r1_bio->state);
2627                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2628                                close_write(r1_bio);
2629                        raid_end_bio_io(r1_bio);
2630                }
2631        }
2632
2633        blk_start_plug(&plug);
2634        for (;;) {
2635
2636                flush_pending_writes(conf);
2637
2638                spin_lock_irqsave(&conf->device_lock, flags);
2639                if (list_empty(head)) {
2640                        spin_unlock_irqrestore(&conf->device_lock, flags);
2641                        break;
2642                }
2643                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2644                list_del(head->prev);
2645                idx = sector_to_idx(r1_bio->sector);
2646                atomic_dec(&conf->nr_queued[idx]);
2647                spin_unlock_irqrestore(&conf->device_lock, flags);
2648
2649                mddev = r1_bio->mddev;
2650                conf = mddev->private;
2651                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2652                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2653                            test_bit(R1BIO_WriteError, &r1_bio->state))
2654                                handle_sync_write_finished(conf, r1_bio);
2655                        else
2656                                sync_request_write(mddev, r1_bio);
2657                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2658                           test_bit(R1BIO_WriteError, &r1_bio->state))
2659                        handle_write_finished(conf, r1_bio);
2660                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2661                        handle_read_error(conf, r1_bio);
2662                else
2663                        /* just a partial read to be scheduled from separate
2664                         * context
2665                         */
2666                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2667
2668                cond_resched();
2669                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2670                        md_check_recovery(mddev);
2671        }
2672        blk_finish_plug(&plug);
2673}
2674
2675static int init_resync(struct r1conf *conf)
2676{
2677        int buffs;
2678
2679        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2680        BUG_ON(conf->r1buf_pool);
2681        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2682                                          conf->poolinfo);
2683        if (!conf->r1buf_pool)
2684                return -ENOMEM;
2685        return 0;
2686}
2687
2688/*
2689 * perform a "sync" on one "block"
2690 *
2691 * We need to make sure that no normal I/O request - particularly write
2692 * requests - conflict with active sync requests.
2693 *
2694 * This is achieved by tracking pending requests and a 'barrier' concept
2695 * that can be installed to exclude normal IO requests.
2696 */
2697
2698static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2699                                   int *skipped)
2700{
2701        struct r1conf *conf = mddev->private;
2702        struct r1bio *r1_bio;
2703        struct bio *bio;
2704        sector_t max_sector, nr_sectors;
2705        int disk = -1;
2706        int i;
2707        int wonly = -1;
2708        int write_targets = 0, read_targets = 0;
2709        sector_t sync_blocks;
2710        int still_degraded = 0;
2711        int good_sectors = RESYNC_SECTORS;
2712        int min_bad = 0; /* number of sectors that are bad in all devices */
2713        int idx = sector_to_idx(sector_nr);
2714
2715        if (!conf->r1buf_pool)
2716                if (init_resync(conf))
2717                        return 0;
2718
2719        max_sector = mddev->dev_sectors;
2720        if (sector_nr >= max_sector) {
2721                /* If we aborted, we need to abort the
2722                 * sync on the 'current' bitmap chunk (there will
2723                 * only be one in raid1 resync.
2724                 * We can find the current addess in mddev->curr_resync
2725                 */
2726                if (mddev->curr_resync < max_sector) /* aborted */
2727                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2728                                                &sync_blocks, 1);
2729                else /* completed sync */
2730                        conf->fullsync = 0;
2731
2732                bitmap_close_sync(mddev->bitmap);
2733                close_sync(conf);
2734
2735                if (mddev_is_clustered(mddev)) {
2736                        conf->cluster_sync_low = 0;
2737                        conf->cluster_sync_high = 0;
2738                }
2739                return 0;
2740        }
2741
2742        if (mddev->bitmap == NULL &&
2743            mddev->recovery_cp == MaxSector &&
2744            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2745            conf->fullsync == 0) {
2746                *skipped = 1;
2747                return max_sector - sector_nr;
2748        }
2749        /* before building a request, check if we can skip these blocks..
2750         * This call the bitmap_start_sync doesn't actually record anything
2751         */
2752        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2753            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2754                /* We can skip this block, and probably several more */
2755                *skipped = 1;
2756                return sync_blocks;
2757        }
2758
2759        /*
2760         * If there is non-resync activity waiting for a turn, then let it
2761         * though before starting on this new sync request.
2762         */
2763        if (atomic_read(&conf->nr_waiting[idx]))
2764                schedule_timeout_uninterruptible(1);
2765
2766        /* we are incrementing sector_nr below. To be safe, we check against
2767         * sector_nr + two times RESYNC_SECTORS
2768         */
2769
2770        bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2771                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2772        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2773
2774        raise_barrier(conf, sector_nr);
2775
2776        rcu_read_lock();
2777        /*
2778         * If we get a correctably read error during resync or recovery,
2779         * we might want to read from a different device.  So we
2780         * flag all drives that could conceivably be read from for READ,
2781         * and any others (which will be non-In_sync devices) for WRITE.
2782         * If a read fails, we try reading from something else for which READ
2783         * is OK.
2784         */
2785
2786        r1_bio->mddev = mddev;
2787        r1_bio->sector = sector_nr;
2788        r1_bio->state = 0;
2789        set_bit(R1BIO_IsSync, &r1_bio->state);
2790        /* make sure good_sectors won't go across barrier unit boundary */
2791        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2792
2793        for (i = 0; i < conf->raid_disks * 2; i++) {
2794                struct md_rdev *rdev;
2795                bio = r1_bio->bios[i];
2796                bio_reset(bio);
2797
2798                rdev = rcu_dereference(conf->mirrors[i].rdev);
2799                if (rdev == NULL ||
2800                    test_bit(Faulty, &rdev->flags)) {
2801                        if (i < conf->raid_disks)
2802                                still_degraded = 1;
2803                } else if (!test_bit(In_sync, &rdev->flags)) {
2804                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2805                        bio->bi_end_io = end_sync_write;
2806                        write_targets ++;
2807                } else {
2808                        /* may need to read from here */
2809                        sector_t first_bad = MaxSector;
2810                        int bad_sectors;
2811
2812                        if (is_badblock(rdev, sector_nr, good_sectors,
2813                                        &first_bad, &bad_sectors)) {
2814                                if (first_bad > sector_nr)
2815                                        good_sectors = first_bad - sector_nr;
2816                                else {
2817                                        bad_sectors -= (sector_nr - first_bad);
2818                                        if (min_bad == 0 ||
2819                                            min_bad > bad_sectors)
2820                                                min_bad = bad_sectors;
2821                                }
2822                        }
2823                        if (sector_nr < first_bad) {
2824                                if (test_bit(WriteMostly, &rdev->flags)) {
2825                                        if (wonly < 0)
2826                                                wonly = i;
2827                                } else {
2828                                        if (disk < 0)
2829                                                disk = i;
2830                                }
2831                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2832                                bio->bi_end_io = end_sync_read;
2833                                read_targets++;
2834                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2835                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2837                                /*
2838                                 * The device is suitable for reading (InSync),
2839                                 * but has bad block(s) here. Let's try to correct them,
2840                                 * if we are doing resync or repair. Otherwise, leave
2841                                 * this device alone for this sync request.
2842                                 */
2843                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2844                                bio->bi_end_io = end_sync_write;
2845                                write_targets++;
2846                        }
2847                }
2848                if (bio->bi_end_io) {
2849                        atomic_inc(&rdev->nr_pending);
2850                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2851                        bio->bi_bdev = rdev->bdev;
2852                        bio->bi_private = r1_bio;
2853                        if (test_bit(FailFast, &rdev->flags))
2854                                bio->bi_opf |= MD_FAILFAST;
2855                }
2856        }
2857        rcu_read_unlock();
2858        if (disk < 0)
2859                disk = wonly;
2860        r1_bio->read_disk = disk;
2861
2862        if (read_targets == 0 && min_bad > 0) {
2863                /* These sectors are bad on all InSync devices, so we
2864                 * need to mark them bad on all write targets
2865                 */
2866                int ok = 1;
2867                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2868                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2869                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2870                                ok = rdev_set_badblocks(rdev, sector_nr,
2871                                                        min_bad, 0
2872                                        ) && ok;
2873                        }
2874                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2875                *skipped = 1;
2876                put_buf(r1_bio);
2877
2878                if (!ok) {
2879                        /* Cannot record the badblocks, so need to
2880                         * abort the resync.
2881                         * If there are multiple read targets, could just
2882                         * fail the really bad ones ???
2883                         */
2884                        conf->recovery_disabled = mddev->recovery_disabled;
2885                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2886                        return 0;
2887                } else
2888                        return min_bad;
2889
2890        }
2891        if (min_bad > 0 && min_bad < good_sectors) {
2892                /* only resync enough to reach the next bad->good
2893                 * transition */
2894                good_sectors = min_bad;
2895        }
2896
2897        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2898                /* extra read targets are also write targets */
2899                write_targets += read_targets-1;
2900
2901        if (write_targets == 0 || read_targets == 0) {
2902                /* There is nowhere to write, so all non-sync
2903                 * drives must be failed - so we are finished
2904                 */
2905                sector_t rv;
2906                if (min_bad > 0)
2907                        max_sector = sector_nr + min_bad;
2908                rv = max_sector - sector_nr;
2909                *skipped = 1;
2910                put_buf(r1_bio);
2911                return rv;
2912        }
2913
2914        if (max_sector > mddev->resync_max)
2915                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2916        if (max_sector > sector_nr + good_sectors)
2917                max_sector = sector_nr + good_sectors;
2918        nr_sectors = 0;
2919        sync_blocks = 0;
2920        do {
2921                struct page *page;
2922                int len = PAGE_SIZE;
2923                if (sector_nr + (len>>9) > max_sector)
2924                        len = (max_sector - sector_nr) << 9;
2925                if (len == 0)
2926                        break;
2927                if (sync_blocks == 0) {
2928                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2929                                               &sync_blocks, still_degraded) &&
2930                            !conf->fullsync &&
2931                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2932                                break;
2933                        if ((len >> 9) > sync_blocks)
2934                                len = sync_blocks<<9;
2935                }
2936
2937                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2938                        bio = r1_bio->bios[i];
2939                        if (bio->bi_end_io) {
2940                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2941                                if (bio_add_page(bio, page, len, 0) == 0) {
2942                                        /* stop here */
2943                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2944                                        while (i > 0) {
2945                                                i--;
2946                                                bio = r1_bio->bios[i];
2947                                                if (bio->bi_end_io==NULL)
2948                                                        continue;
2949                                                /* remove last page from this bio */
2950                                                bio->bi_vcnt--;
2951                                                bio->bi_iter.bi_size -= len;
2952                                                bio_clear_flag(bio, BIO_SEG_VALID);
2953                                        }
2954                                        goto bio_full;
2955                                }
2956                        }
2957                }
2958                nr_sectors += len>>9;
2959                sector_nr += len>>9;
2960                sync_blocks -= (len>>9);
2961        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2962 bio_full:
2963        r1_bio->sectors = nr_sectors;
2964
2965        if (mddev_is_clustered(mddev) &&
2966                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2967                conf->cluster_sync_low = mddev->curr_resync_completed;
2968                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2969                /* Send resync message */
2970                md_cluster_ops->resync_info_update(mddev,
2971                                conf->cluster_sync_low,
2972                                conf->cluster_sync_high);
2973        }
2974
2975        /* For a user-requested sync, we read all readable devices and do a
2976         * compare
2977         */
2978        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2979                atomic_set(&r1_bio->remaining, read_targets);
2980                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2981                        bio = r1_bio->bios[i];
2982                        if (bio->bi_end_io == end_sync_read) {
2983                                read_targets--;
2984                                md_sync_acct(bio->bi_bdev, nr_sectors);
2985                                if (read_targets == 1)
2986                                        bio->bi_opf &= ~MD_FAILFAST;
2987                                generic_make_request(bio);
2988                        }
2989                }
2990        } else {
2991                atomic_set(&r1_bio->remaining, 1);
2992                bio = r1_bio->bios[r1_bio->read_disk];
2993                md_sync_acct(bio->bi_bdev, nr_sectors);
2994                if (read_targets == 1)
2995                        bio->bi_opf &= ~MD_FAILFAST;
2996                generic_make_request(bio);
2997
2998        }
2999        return nr_sectors;
3000}
3001
3002static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3003{
3004        if (sectors)
3005                return sectors;
3006
3007        return mddev->dev_sectors;
3008}
3009
3010static struct r1conf *setup_conf(struct mddev *mddev)
3011{
3012        struct r1conf *conf;
3013        int i;
3014        struct raid1_info *disk;
3015        struct md_rdev *rdev;
3016        int err = -ENOMEM;
3017
3018        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3019        if (!conf)
3020                goto abort;
3021
3022        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3023                                   sizeof(atomic_t), GFP_KERNEL);
3024        if (!conf->nr_pending)
3025                goto abort;
3026
3027        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3028                                   sizeof(atomic_t), GFP_KERNEL);
3029        if (!conf->nr_waiting)
3030                goto abort;
3031
3032        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3033                                  sizeof(atomic_t), GFP_KERNEL);
3034        if (!conf->nr_queued)
3035                goto abort;
3036
3037        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3038                                sizeof(atomic_t), GFP_KERNEL);
3039        if (!conf->barrier)
3040                goto abort;
3041
3042        conf->mirrors = kzalloc(sizeof(struct raid1_info)
3043                                * mddev->raid_disks * 2,
3044                                 GFP_KERNEL);
3045        if (!conf->mirrors)
3046                goto abort;
3047
3048        conf->tmppage = alloc_page(GFP_KERNEL);
3049        if (!conf->tmppage)
3050                goto abort;
3051
3052        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3053        if (!conf->poolinfo)
3054                goto abort;
3055        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3056        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3057                                          r1bio_pool_free,
3058                                          conf->poolinfo);
3059        if (!conf->r1bio_pool)
3060                goto abort;
3061
3062        conf->poolinfo->mddev = mddev;
3063
3064        err = -EINVAL;
3065        spin_lock_init(&conf->device_lock);
3066        rdev_for_each(rdev, mddev) {
3067                struct request_queue *q;
3068                int disk_idx = rdev->raid_disk;
3069                if (disk_idx >= mddev->raid_disks
3070                    || disk_idx < 0)
3071                        continue;
3072                if (test_bit(Replacement, &rdev->flags))
3073                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
3074                else
3075                        disk = conf->mirrors + disk_idx;
3076
3077                if (disk->rdev)
3078                        goto abort;
3079                disk->rdev = rdev;
3080                q = bdev_get_queue(rdev->bdev);
3081
3082                disk->head_position = 0;
3083                disk->seq_start = MaxSector;
3084        }
3085        conf->raid_disks = mddev->raid_disks;
3086        conf->mddev = mddev;
3087        INIT_LIST_HEAD(&conf->retry_list);
3088        INIT_LIST_HEAD(&conf->bio_end_io_list);
3089
3090        spin_lock_init(&conf->resync_lock);
3091        init_waitqueue_head(&conf->wait_barrier);
3092
3093        bio_list_init(&conf->pending_bio_list);
3094        conf->pending_count = 0;
3095        conf->recovery_disabled = mddev->recovery_disabled - 1;
3096
3097        err = -EIO;
3098        for (i = 0; i < conf->raid_disks * 2; i++) {
3099
3100                disk = conf->mirrors + i;
3101
3102                if (i < conf->raid_disks &&
3103                    disk[conf->raid_disks].rdev) {
3104                        /* This slot has a replacement. */
3105                        if (!disk->rdev) {
3106                                /* No original, just make the replacement
3107                                 * a recovering spare
3108                                 */
3109                                disk->rdev =
3110                                        disk[conf->raid_disks].rdev;
3111                                disk[conf->raid_disks].rdev = NULL;
3112                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3113                                /* Original is not in_sync - bad */
3114                                goto abort;
3115                }
3116
3117                if (!disk->rdev ||
3118                    !test_bit(In_sync, &disk->rdev->flags)) {
3119                        disk->head_position = 0;
3120                        if (disk->rdev &&
3121                            (disk->rdev->saved_raid_disk < 0))
3122                                conf->fullsync = 1;
3123                }
3124        }
3125
3126        err = -ENOMEM;
3127        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3128        if (!conf->thread)
3129                goto abort;
3130
3131        return conf;
3132
3133 abort:
3134        if (conf) {
3135                mempool_destroy(conf->r1bio_pool);
3136                kfree(conf->mirrors);
3137                safe_put_page(conf->tmppage);
3138                kfree(conf->poolinfo);
3139                kfree(conf->nr_pending);
3140                kfree(conf->nr_waiting);
3141                kfree(conf->nr_queued);
3142                kfree(conf->barrier);
3143                kfree(conf);
3144        }
3145        return ERR_PTR(err);
3146}
3147
3148static void raid1_free(struct mddev *mddev, void *priv);
3149static int raid1_run(struct mddev *mddev)
3150{
3151        struct r1conf *conf;
3152        int i;
3153        struct md_rdev *rdev;
3154        int ret;
3155        bool discard_supported = false;
3156
3157        if (mddev->level != 1) {
3158                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3159                        mdname(mddev), mddev->level);
3160                return -EIO;
3161        }
3162        if (mddev->reshape_position != MaxSector) {
3163                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3164                        mdname(mddev));
3165                return -EIO;
3166        }
3167        /*
3168         * copy the already verified devices into our private RAID1
3169         * bookkeeping area. [whatever we allocate in run(),
3170         * should be freed in raid1_free()]
3171         */
3172        if (mddev->private == NULL)
3173                conf = setup_conf(mddev);
3174        else
3175                conf = mddev->private;
3176
3177        if (IS_ERR(conf))
3178                return PTR_ERR(conf);
3179
3180        if (mddev->queue)
3181                blk_queue_max_write_same_sectors(mddev->queue, 0);
3182
3183        rdev_for_each(rdev, mddev) {
3184                if (!mddev->gendisk)
3185                        continue;
3186                disk_stack_limits(mddev->gendisk, rdev->bdev,
3187                                  rdev->data_offset << 9);
3188                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3189                        discard_supported = true;
3190        }
3191
3192        mddev->degraded = 0;
3193        for (i=0; i < conf->raid_disks; i++)
3194                if (conf->mirrors[i].rdev == NULL ||
3195                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3196                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3197                        mddev->degraded++;
3198
3199        if (conf->raid_disks - mddev->degraded == 1)
3200                mddev->recovery_cp = MaxSector;
3201
3202        if (mddev->recovery_cp != MaxSector)
3203                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3204                        mdname(mddev));
3205        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3206                mdname(mddev), mddev->raid_disks - mddev->degraded,
3207                mddev->raid_disks);
3208
3209        /*
3210         * Ok, everything is just fine now
3211         */
3212        mddev->thread = conf->thread;
3213        conf->thread = NULL;
3214        mddev->private = conf;
3215        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3216
3217        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3218
3219        if (mddev->queue) {
3220                if (discard_supported)
3221                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3222                                                mddev->queue);
3223                else
3224                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3225                                                  mddev->queue);
3226        }
3227
3228        ret =  md_integrity_register(mddev);
3229        if (ret) {
3230                md_unregister_thread(&mddev->thread);
3231                raid1_free(mddev, conf);
3232        }
3233        return ret;
3234}
3235
3236static void raid1_free(struct mddev *mddev, void *priv)
3237{
3238        struct r1conf *conf = priv;
3239
3240        mempool_destroy(conf->r1bio_pool);
3241        kfree(conf->mirrors);
3242        safe_put_page(conf->tmppage);
3243        kfree(conf->poolinfo);
3244        kfree(conf->nr_pending);
3245        kfree(conf->nr_waiting);
3246        kfree(conf->nr_queued);
3247        kfree(conf->barrier);
3248        kfree(conf);
3249}
3250
3251static int raid1_resize(struct mddev *mddev, sector_t sectors)
3252{
3253        /* no resync is happening, and there is enough space
3254         * on all devices, so we can resize.
3255         * We need to make sure resync covers any new space.
3256         * If the array is shrinking we should possibly wait until
3257         * any io in the removed space completes, but it hardly seems
3258         * worth it.
3259         */
3260        sector_t newsize = raid1_size(mddev, sectors, 0);
3261        if (mddev->external_size &&
3262            mddev->array_sectors > newsize)
3263                return -EINVAL;
3264        if (mddev->bitmap) {
3265                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3266                if (ret)
3267                        return ret;
3268        }
3269        md_set_array_sectors(mddev, newsize);
3270        if (sectors > mddev->dev_sectors &&
3271            mddev->recovery_cp > mddev->dev_sectors) {
3272                mddev->recovery_cp = mddev->dev_sectors;
3273                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274        }
3275        mddev->dev_sectors = sectors;
3276        mddev->resync_max_sectors = sectors;
3277        return 0;
3278}
3279
3280static int raid1_reshape(struct mddev *mddev)
3281{
3282        /* We need to:
3283         * 1/ resize the r1bio_pool
3284         * 2/ resize conf->mirrors
3285         *
3286         * We allocate a new r1bio_pool if we can.
3287         * Then raise a device barrier and wait until all IO stops.
3288         * Then resize conf->mirrors and swap in the new r1bio pool.
3289         *
3290         * At the same time, we "pack" the devices so that all the missing
3291         * devices have the higher raid_disk numbers.
3292         */
3293        mempool_t *newpool, *oldpool;
3294        struct pool_info *newpoolinfo;
3295        struct raid1_info *newmirrors;
3296        struct r1conf *conf = mddev->private;
3297        int cnt, raid_disks;
3298        unsigned long flags;
3299        int d, d2, err;
3300
3301        /* Cannot change chunk_size, layout, or level */
3302        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3303            mddev->layout != mddev->new_layout ||
3304            mddev->level != mddev->new_level) {
3305                mddev->new_chunk_sectors = mddev->chunk_sectors;
3306                mddev->new_layout = mddev->layout;
3307                mddev->new_level = mddev->level;
3308                return -EINVAL;
3309        }
3310
3311        if (!mddev_is_clustered(mddev)) {
3312                err = md_allow_write(mddev);
3313                if (err)
3314                        return err;
3315        }
3316
3317        raid_disks = mddev->raid_disks + mddev->delta_disks;
3318
3319        if (raid_disks < conf->raid_disks) {
3320                cnt=0;
3321                for (d= 0; d < conf->raid_disks; d++)
3322                        if (conf->mirrors[d].rdev)
3323                                cnt++;
3324                if (cnt > raid_disks)
3325                        return -EBUSY;
3326        }
3327
3328        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3329        if (!newpoolinfo)
3330                return -ENOMEM;
3331        newpoolinfo->mddev = mddev;
3332        newpoolinfo->raid_disks = raid_disks * 2;
3333
3334        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3335                                 r1bio_pool_free, newpoolinfo);
3336        if (!newpool) {
3337                kfree(newpoolinfo);
3338                return -ENOMEM;
3339        }
3340        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3341                             GFP_KERNEL);
3342        if (!newmirrors) {
3343                kfree(newpoolinfo);
3344                mempool_destroy(newpool);
3345                return -ENOMEM;
3346        }
3347
3348        freeze_array(conf, 0);
3349
3350        /* ok, everything is stopped */
3351        oldpool = conf->r1bio_pool;
3352        conf->r1bio_pool = newpool;
3353
3354        for (d = d2 = 0; d < conf->raid_disks; d++) {
3355                struct md_rdev *rdev = conf->mirrors[d].rdev;
3356                if (rdev && rdev->raid_disk != d2) {
3357                        sysfs_unlink_rdev(mddev, rdev);
3358                        rdev->raid_disk = d2;
3359                        sysfs_unlink_rdev(mddev, rdev);
3360                        if (sysfs_link_rdev(mddev, rdev))
3361                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3362                                        mdname(mddev), rdev->raid_disk);
3363                }
3364                if (rdev)
3365                        newmirrors[d2++].rdev = rdev;
3366        }
3367        kfree(conf->mirrors);
3368        conf->mirrors = newmirrors;
3369        kfree(conf->poolinfo);
3370        conf->poolinfo = newpoolinfo;
3371
3372        spin_lock_irqsave(&conf->device_lock, flags);
3373        mddev->degraded += (raid_disks - conf->raid_disks);
3374        spin_unlock_irqrestore(&conf->device_lock, flags);
3375        conf->raid_disks = mddev->raid_disks = raid_disks;
3376        mddev->delta_disks = 0;
3377
3378        unfreeze_array(conf);
3379
3380        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3381        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3382        md_wakeup_thread(mddev->thread);
3383
3384        mempool_destroy(oldpool);
3385        return 0;
3386}
3387
3388static void raid1_quiesce(struct mddev *mddev, int state)
3389{
3390        struct r1conf *conf = mddev->private;
3391
3392        switch(state) {
3393        case 2: /* wake for suspend */
3394                wake_up(&conf->wait_barrier);
3395                break;
3396        case 1:
3397                freeze_array(conf, 0);
3398                break;
3399        case 0:
3400                unfreeze_array(conf);
3401                break;
3402        }
3403}
3404
3405static void *raid1_takeover(struct mddev *mddev)
3406{
3407        /* raid1 can take over:
3408         *  raid5 with 2 devices, any layout or chunk size
3409         */
3410        if (mddev->level == 5 && mddev->raid_disks == 2) {
3411                struct r1conf *conf;
3412                mddev->new_level = 1;
3413                mddev->new_layout = 0;
3414                mddev->new_chunk_sectors = 0;
3415                conf = setup_conf(mddev);
3416                if (!IS_ERR(conf)) {
3417                        /* Array must appear to be quiesced */
3418                        conf->array_frozen = 1;
3419                        mddev_clear_unsupported_flags(mddev,
3420                                UNSUPPORTED_MDDEV_FLAGS);
3421                }
3422                return conf;
3423        }
3424        return ERR_PTR(-EINVAL);
3425}
3426
3427static struct md_personality raid1_personality =
3428{
3429        .name           = "raid1",
3430        .level          = 1,
3431        .owner          = THIS_MODULE,
3432        .make_request   = raid1_make_request,
3433        .run            = raid1_run,
3434        .free           = raid1_free,
3435        .status         = raid1_status,
3436        .error_handler  = raid1_error,
3437        .hot_add_disk   = raid1_add_disk,
3438        .hot_remove_disk= raid1_remove_disk,
3439        .spare_active   = raid1_spare_active,
3440        .sync_request   = raid1_sync_request,
3441        .resize         = raid1_resize,
3442        .size           = raid1_size,
3443        .check_reshape  = raid1_reshape,
3444        .quiesce        = raid1_quiesce,
3445        .takeover       = raid1_takeover,
3446        .congested      = raid1_congested,
3447};
3448
3449static int __init raid_init(void)
3450{
3451        return register_md_personality(&raid1_personality);
3452}
3453
3454static void raid_exit(void)
3455{
3456        unregister_md_personality(&raid1_personality);
3457}
3458
3459module_init(raid_init);
3460module_exit(raid_exit);
3461MODULE_LICENSE("GPL");
3462MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3463MODULE_ALIAS("md-personality-3"); /* RAID1 */
3464MODULE_ALIAS("md-raid1");
3465MODULE_ALIAS("md-level-1");
3466
3467module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3468