linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <trace/events/block.h>
  29#include "md.h"
  30#include "raid10.h"
  31#include "raid0.h"
  32#include "bitmap.h"
  33
  34/*
  35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  36 * The layout of data is defined by
  37 *    chunk_size
  38 *    raid_disks
  39 *    near_copies (stored in low byte of layout)
  40 *    far_copies (stored in second byte of layout)
  41 *    far_offset (stored in bit 16 of layout )
  42 *    use_far_sets (stored in bit 17 of layout )
  43 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  44 *
  45 * The data to be stored is divided into chunks using chunksize.  Each device
  46 * is divided into far_copies sections.   In each section, chunks are laid out
  47 * in a style similar to raid0, but near_copies copies of each chunk is stored
  48 * (each on a different drive).  The starting device for each section is offset
  49 * near_copies from the starting device of the previous section.  Thus there
  50 * are (near_copies * far_copies) of each chunk, and each is on a different
  51 * drive.  near_copies and far_copies must be at least one, and their product
  52 * is at most raid_disks.
  53 *
  54 * If far_offset is true, then the far_copies are handled a bit differently.
  55 * The copies are still in different stripes, but instead of being very far
  56 * apart on disk, there are adjacent stripes.
  57 *
  58 * The far and offset algorithms are handled slightly differently if
  59 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  60 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  61 * are still shifted by 'near_copies' devices, but this shifting stays confined
  62 * to the set rather than the entire array.  This is done to improve the number
  63 * of device combinations that can fail without causing the array to fail.
  64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  65 * on a device):
  66 *    A B C D    A B C D E
  67 *      ...         ...
  68 *    D A B C    E A B C D
  69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  70 *    [A B] [C D]    [A B] [C D E]
  71 *    |...| |...|    |...| | ... |
  72 *    [B A] [D C]    [B A] [E C D]
  73 */
  74
  75/*
  76 * Number of guaranteed r10bios in case of extreme VM load:
  77 */
  78#define NR_RAID10_BIOS 256
  79
  80/* when we get a read error on a read-only array, we redirect to another
  81 * device without failing the first device, or trying to over-write to
  82 * correct the read error.  To keep track of bad blocks on a per-bio
  83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  84 */
  85#define IO_BLOCKED ((struct bio *)1)
  86/* When we successfully write to a known bad-block, we need to remove the
  87 * bad-block marking which must be done from process context.  So we record
  88 * the success by setting devs[n].bio to IO_MADE_GOOD
  89 */
  90#define IO_MADE_GOOD ((struct bio *)2)
  91
  92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  93
  94/* When there are this many requests queued to be written by
  95 * the raid10 thread, we become 'congested' to provide back-pressure
  96 * for writeback.
  97 */
  98static int max_queued_requests = 1024;
  99
 100static void allow_barrier(struct r10conf *conf);
 101static void lower_barrier(struct r10conf *conf);
 102static int _enough(struct r10conf *conf, int previous, int ignore);
 103static int enough(struct r10conf *conf, int ignore);
 104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 105                                int *skipped);
 106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 107static void end_reshape_write(struct bio *bio);
 108static void end_reshape(struct r10conf *conf);
 109
 110#define raid10_log(md, fmt, args...)                            \
 111        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
 112
 113static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 114{
 115        struct r10conf *conf = data;
 116        int size = offsetof(struct r10bio, devs[conf->copies]);
 117
 118        /* allocate a r10bio with room for raid_disks entries in the
 119         * bios array */
 120        return kzalloc(size, gfp_flags);
 121}
 122
 123static void r10bio_pool_free(void *r10_bio, void *data)
 124{
 125        kfree(r10_bio);
 126}
 127
 128/* Maximum size of each resync request */
 129#define RESYNC_BLOCK_SIZE (64*1024)
 130#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 131/* amount of memory to reserve for resync requests */
 132#define RESYNC_WINDOW (1024*1024)
 133/* maximum number of concurrent requests, memory permitting */
 134#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 135
 136/*
 137 * When performing a resync, we need to read and compare, so
 138 * we need as many pages are there are copies.
 139 * When performing a recovery, we need 2 bios, one for read,
 140 * one for write (we recover only one drive per r10buf)
 141 *
 142 */
 143static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 144{
 145        struct r10conf *conf = data;
 146        struct page *page;
 147        struct r10bio *r10_bio;
 148        struct bio *bio;
 149        int i, j;
 150        int nalloc;
 151
 152        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 153        if (!r10_bio)
 154                return NULL;
 155
 156        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 157            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 158                nalloc = conf->copies; /* resync */
 159        else
 160                nalloc = 2; /* recovery */
 161
 162        /*
 163         * Allocate bios.
 164         */
 165        for (j = nalloc ; j-- ; ) {
 166                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 167                if (!bio)
 168                        goto out_free_bio;
 169                r10_bio->devs[j].bio = bio;
 170                if (!conf->have_replacement)
 171                        continue;
 172                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 173                if (!bio)
 174                        goto out_free_bio;
 175                r10_bio->devs[j].repl_bio = bio;
 176        }
 177        /*
 178         * Allocate RESYNC_PAGES data pages and attach them
 179         * where needed.
 180         */
 181        for (j = 0 ; j < nalloc; j++) {
 182                struct bio *rbio = r10_bio->devs[j].repl_bio;
 183                bio = r10_bio->devs[j].bio;
 184                for (i = 0; i < RESYNC_PAGES; i++) {
 185                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 186                                               &conf->mddev->recovery)) {
 187                                /* we can share bv_page's during recovery
 188                                 * and reshape */
 189                                struct bio *rbio = r10_bio->devs[0].bio;
 190                                page = rbio->bi_io_vec[i].bv_page;
 191                                get_page(page);
 192                        } else
 193                                page = alloc_page(gfp_flags);
 194                        if (unlikely(!page))
 195                                goto out_free_pages;
 196
 197                        bio->bi_io_vec[i].bv_page = page;
 198                        if (rbio)
 199                                rbio->bi_io_vec[i].bv_page = page;
 200                }
 201        }
 202
 203        return r10_bio;
 204
 205out_free_pages:
 206        for ( ; i > 0 ; i--)
 207                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 208        while (j--)
 209                for (i = 0; i < RESYNC_PAGES ; i++)
 210                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 211        j = 0;
 212out_free_bio:
 213        for ( ; j < nalloc; j++) {
 214                if (r10_bio->devs[j].bio)
 215                        bio_put(r10_bio->devs[j].bio);
 216                if (r10_bio->devs[j].repl_bio)
 217                        bio_put(r10_bio->devs[j].repl_bio);
 218        }
 219        r10bio_pool_free(r10_bio, conf);
 220        return NULL;
 221}
 222
 223static void r10buf_pool_free(void *__r10_bio, void *data)
 224{
 225        int i;
 226        struct r10conf *conf = data;
 227        struct r10bio *r10bio = __r10_bio;
 228        int j;
 229
 230        for (j=0; j < conf->copies; j++) {
 231                struct bio *bio = r10bio->devs[j].bio;
 232                if (bio) {
 233                        for (i = 0; i < RESYNC_PAGES; i++) {
 234                                safe_put_page(bio->bi_io_vec[i].bv_page);
 235                                bio->bi_io_vec[i].bv_page = NULL;
 236                        }
 237                        bio_put(bio);
 238                }
 239                bio = r10bio->devs[j].repl_bio;
 240                if (bio)
 241                        bio_put(bio);
 242        }
 243        r10bio_pool_free(r10bio, conf);
 244}
 245
 246static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 247{
 248        int i;
 249
 250        for (i = 0; i < conf->copies; i++) {
 251                struct bio **bio = & r10_bio->devs[i].bio;
 252                if (!BIO_SPECIAL(*bio))
 253                        bio_put(*bio);
 254                *bio = NULL;
 255                bio = &r10_bio->devs[i].repl_bio;
 256                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 257                        bio_put(*bio);
 258                *bio = NULL;
 259        }
 260}
 261
 262static void free_r10bio(struct r10bio *r10_bio)
 263{
 264        struct r10conf *conf = r10_bio->mddev->private;
 265
 266        put_all_bios(conf, r10_bio);
 267        mempool_free(r10_bio, conf->r10bio_pool);
 268}
 269
 270static void put_buf(struct r10bio *r10_bio)
 271{
 272        struct r10conf *conf = r10_bio->mddev->private;
 273
 274        mempool_free(r10_bio, conf->r10buf_pool);
 275
 276        lower_barrier(conf);
 277}
 278
 279static void reschedule_retry(struct r10bio *r10_bio)
 280{
 281        unsigned long flags;
 282        struct mddev *mddev = r10_bio->mddev;
 283        struct r10conf *conf = mddev->private;
 284
 285        spin_lock_irqsave(&conf->device_lock, flags);
 286        list_add(&r10_bio->retry_list, &conf->retry_list);
 287        conf->nr_queued ++;
 288        spin_unlock_irqrestore(&conf->device_lock, flags);
 289
 290        /* wake up frozen array... */
 291        wake_up(&conf->wait_barrier);
 292
 293        md_wakeup_thread(mddev->thread);
 294}
 295
 296/*
 297 * raid_end_bio_io() is called when we have finished servicing a mirrored
 298 * operation and are ready to return a success/failure code to the buffer
 299 * cache layer.
 300 */
 301static void raid_end_bio_io(struct r10bio *r10_bio)
 302{
 303        struct bio *bio = r10_bio->master_bio;
 304        int done;
 305        struct r10conf *conf = r10_bio->mddev->private;
 306
 307        if (bio->bi_phys_segments) {
 308                unsigned long flags;
 309                spin_lock_irqsave(&conf->device_lock, flags);
 310                bio->bi_phys_segments--;
 311                done = (bio->bi_phys_segments == 0);
 312                spin_unlock_irqrestore(&conf->device_lock, flags);
 313        } else
 314                done = 1;
 315        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 316                bio->bi_error = -EIO;
 317        if (done) {
 318                bio_endio(bio);
 319                /*
 320                 * Wake up any possible resync thread that waits for the device
 321                 * to go idle.
 322                 */
 323                allow_barrier(conf);
 324        }
 325        free_r10bio(r10_bio);
 326}
 327
 328/*
 329 * Update disk head position estimator based on IRQ completion info.
 330 */
 331static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 332{
 333        struct r10conf *conf = r10_bio->mddev->private;
 334
 335        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 336                r10_bio->devs[slot].addr + (r10_bio->sectors);
 337}
 338
 339/*
 340 * Find the disk number which triggered given bio
 341 */
 342static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 343                         struct bio *bio, int *slotp, int *replp)
 344{
 345        int slot;
 346        int repl = 0;
 347
 348        for (slot = 0; slot < conf->copies; slot++) {
 349                if (r10_bio->devs[slot].bio == bio)
 350                        break;
 351                if (r10_bio->devs[slot].repl_bio == bio) {
 352                        repl = 1;
 353                        break;
 354                }
 355        }
 356
 357        BUG_ON(slot == conf->copies);
 358        update_head_pos(slot, r10_bio);
 359
 360        if (slotp)
 361                *slotp = slot;
 362        if (replp)
 363                *replp = repl;
 364        return r10_bio->devs[slot].devnum;
 365}
 366
 367static void raid10_end_read_request(struct bio *bio)
 368{
 369        int uptodate = !bio->bi_error;
 370        struct r10bio *r10_bio = bio->bi_private;
 371        int slot, dev;
 372        struct md_rdev *rdev;
 373        struct r10conf *conf = r10_bio->mddev->private;
 374
 375        slot = r10_bio->read_slot;
 376        dev = r10_bio->devs[slot].devnum;
 377        rdev = r10_bio->devs[slot].rdev;
 378        /*
 379         * this branch is our 'one mirror IO has finished' event handler:
 380         */
 381        update_head_pos(slot, r10_bio);
 382
 383        if (uptodate) {
 384                /*
 385                 * Set R10BIO_Uptodate in our master bio, so that
 386                 * we will return a good error code to the higher
 387                 * levels even if IO on some other mirrored buffer fails.
 388                 *
 389                 * The 'master' represents the composite IO operation to
 390                 * user-side. So if something waits for IO, then it will
 391                 * wait for the 'master' bio.
 392                 */
 393                set_bit(R10BIO_Uptodate, &r10_bio->state);
 394        } else {
 395                /* If all other devices that store this block have
 396                 * failed, we want to return the error upwards rather
 397                 * than fail the last device.  Here we redefine
 398                 * "uptodate" to mean "Don't want to retry"
 399                 */
 400                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 401                             rdev->raid_disk))
 402                        uptodate = 1;
 403        }
 404        if (uptodate) {
 405                raid_end_bio_io(r10_bio);
 406                rdev_dec_pending(rdev, conf->mddev);
 407        } else {
 408                /*
 409                 * oops, read error - keep the refcount on the rdev
 410                 */
 411                char b[BDEVNAME_SIZE];
 412                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 413                                   mdname(conf->mddev),
 414                                   bdevname(rdev->bdev, b),
 415                                   (unsigned long long)r10_bio->sector);
 416                set_bit(R10BIO_ReadError, &r10_bio->state);
 417                reschedule_retry(r10_bio);
 418        }
 419}
 420
 421static void close_write(struct r10bio *r10_bio)
 422{
 423        /* clear the bitmap if all writes complete successfully */
 424        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 425                        r10_bio->sectors,
 426                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 427                        0);
 428        md_write_end(r10_bio->mddev);
 429}
 430
 431static void one_write_done(struct r10bio *r10_bio)
 432{
 433        if (atomic_dec_and_test(&r10_bio->remaining)) {
 434                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 435                        reschedule_retry(r10_bio);
 436                else {
 437                        close_write(r10_bio);
 438                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 439                                reschedule_retry(r10_bio);
 440                        else
 441                                raid_end_bio_io(r10_bio);
 442                }
 443        }
 444}
 445
 446static void raid10_end_write_request(struct bio *bio)
 447{
 448        struct r10bio *r10_bio = bio->bi_private;
 449        int dev;
 450        int dec_rdev = 1;
 451        struct r10conf *conf = r10_bio->mddev->private;
 452        int slot, repl;
 453        struct md_rdev *rdev = NULL;
 454        struct bio *to_put = NULL;
 455        bool discard_error;
 456
 457        discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
 458
 459        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 460
 461        if (repl)
 462                rdev = conf->mirrors[dev].replacement;
 463        if (!rdev) {
 464                smp_rmb();
 465                repl = 0;
 466                rdev = conf->mirrors[dev].rdev;
 467        }
 468        /*
 469         * this branch is our 'one mirror IO has finished' event handler:
 470         */
 471        if (bio->bi_error && !discard_error) {
 472                if (repl)
 473                        /* Never record new bad blocks to replacement,
 474                         * just fail it.
 475                         */
 476                        md_error(rdev->mddev, rdev);
 477                else {
 478                        set_bit(WriteErrorSeen, &rdev->flags);
 479                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 480                                set_bit(MD_RECOVERY_NEEDED,
 481                                        &rdev->mddev->recovery);
 482
 483                        dec_rdev = 0;
 484                        if (test_bit(FailFast, &rdev->flags) &&
 485                            (bio->bi_opf & MD_FAILFAST)) {
 486                                md_error(rdev->mddev, rdev);
 487                                if (!test_bit(Faulty, &rdev->flags))
 488                                        /* This is the only remaining device,
 489                                         * We need to retry the write without
 490                                         * FailFast
 491                                         */
 492                                        set_bit(R10BIO_WriteError, &r10_bio->state);
 493                                else {
 494                                        r10_bio->devs[slot].bio = NULL;
 495                                        to_put = bio;
 496                                        dec_rdev = 1;
 497                                }
 498                        } else
 499                                set_bit(R10BIO_WriteError, &r10_bio->state);
 500                }
 501        } else {
 502                /*
 503                 * Set R10BIO_Uptodate in our master bio, so that
 504                 * we will return a good error code for to the higher
 505                 * levels even if IO on some other mirrored buffer fails.
 506                 *
 507                 * The 'master' represents the composite IO operation to
 508                 * user-side. So if something waits for IO, then it will
 509                 * wait for the 'master' bio.
 510                 */
 511                sector_t first_bad;
 512                int bad_sectors;
 513
 514                /*
 515                 * Do not set R10BIO_Uptodate if the current device is
 516                 * rebuilding or Faulty. This is because we cannot use
 517                 * such device for properly reading the data back (we could
 518                 * potentially use it, if the current write would have felt
 519                 * before rdev->recovery_offset, but for simplicity we don't
 520                 * check this here.
 521                 */
 522                if (test_bit(In_sync, &rdev->flags) &&
 523                    !test_bit(Faulty, &rdev->flags))
 524                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 525
 526                /* Maybe we can clear some bad blocks. */
 527                if (is_badblock(rdev,
 528                                r10_bio->devs[slot].addr,
 529                                r10_bio->sectors,
 530                                &first_bad, &bad_sectors) && !discard_error) {
 531                        bio_put(bio);
 532                        if (repl)
 533                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 534                        else
 535                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 536                        dec_rdev = 0;
 537                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 538                }
 539        }
 540
 541        /*
 542         *
 543         * Let's see if all mirrored write operations have finished
 544         * already.
 545         */
 546        one_write_done(r10_bio);
 547        if (dec_rdev)
 548                rdev_dec_pending(rdev, conf->mddev);
 549        if (to_put)
 550                bio_put(to_put);
 551}
 552
 553/*
 554 * RAID10 layout manager
 555 * As well as the chunksize and raid_disks count, there are two
 556 * parameters: near_copies and far_copies.
 557 * near_copies * far_copies must be <= raid_disks.
 558 * Normally one of these will be 1.
 559 * If both are 1, we get raid0.
 560 * If near_copies == raid_disks, we get raid1.
 561 *
 562 * Chunks are laid out in raid0 style with near_copies copies of the
 563 * first chunk, followed by near_copies copies of the next chunk and
 564 * so on.
 565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 566 * as described above, we start again with a device offset of near_copies.
 567 * So we effectively have another copy of the whole array further down all
 568 * the drives, but with blocks on different drives.
 569 * With this layout, and block is never stored twice on the one device.
 570 *
 571 * raid10_find_phys finds the sector offset of a given virtual sector
 572 * on each device that it is on.
 573 *
 574 * raid10_find_virt does the reverse mapping, from a device and a
 575 * sector offset to a virtual address
 576 */
 577
 578static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 579{
 580        int n,f;
 581        sector_t sector;
 582        sector_t chunk;
 583        sector_t stripe;
 584        int dev;
 585        int slot = 0;
 586        int last_far_set_start, last_far_set_size;
 587
 588        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 589        last_far_set_start *= geo->far_set_size;
 590
 591        last_far_set_size = geo->far_set_size;
 592        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 593
 594        /* now calculate first sector/dev */
 595        chunk = r10bio->sector >> geo->chunk_shift;
 596        sector = r10bio->sector & geo->chunk_mask;
 597
 598        chunk *= geo->near_copies;
 599        stripe = chunk;
 600        dev = sector_div(stripe, geo->raid_disks);
 601        if (geo->far_offset)
 602                stripe *= geo->far_copies;
 603
 604        sector += stripe << geo->chunk_shift;
 605
 606        /* and calculate all the others */
 607        for (n = 0; n < geo->near_copies; n++) {
 608                int d = dev;
 609                int set;
 610                sector_t s = sector;
 611                r10bio->devs[slot].devnum = d;
 612                r10bio->devs[slot].addr = s;
 613                slot++;
 614
 615                for (f = 1; f < geo->far_copies; f++) {
 616                        set = d / geo->far_set_size;
 617                        d += geo->near_copies;
 618
 619                        if ((geo->raid_disks % geo->far_set_size) &&
 620                            (d > last_far_set_start)) {
 621                                d -= last_far_set_start;
 622                                d %= last_far_set_size;
 623                                d += last_far_set_start;
 624                        } else {
 625                                d %= geo->far_set_size;
 626                                d += geo->far_set_size * set;
 627                        }
 628                        s += geo->stride;
 629                        r10bio->devs[slot].devnum = d;
 630                        r10bio->devs[slot].addr = s;
 631                        slot++;
 632                }
 633                dev++;
 634                if (dev >= geo->raid_disks) {
 635                        dev = 0;
 636                        sector += (geo->chunk_mask + 1);
 637                }
 638        }
 639}
 640
 641static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 642{
 643        struct geom *geo = &conf->geo;
 644
 645        if (conf->reshape_progress != MaxSector &&
 646            ((r10bio->sector >= conf->reshape_progress) !=
 647             conf->mddev->reshape_backwards)) {
 648                set_bit(R10BIO_Previous, &r10bio->state);
 649                geo = &conf->prev;
 650        } else
 651                clear_bit(R10BIO_Previous, &r10bio->state);
 652
 653        __raid10_find_phys(geo, r10bio);
 654}
 655
 656static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 657{
 658        sector_t offset, chunk, vchunk;
 659        /* Never use conf->prev as this is only called during resync
 660         * or recovery, so reshape isn't happening
 661         */
 662        struct geom *geo = &conf->geo;
 663        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 664        int far_set_size = geo->far_set_size;
 665        int last_far_set_start;
 666
 667        if (geo->raid_disks % geo->far_set_size) {
 668                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 669                last_far_set_start *= geo->far_set_size;
 670
 671                if (dev >= last_far_set_start) {
 672                        far_set_size = geo->far_set_size;
 673                        far_set_size += (geo->raid_disks % geo->far_set_size);
 674                        far_set_start = last_far_set_start;
 675                }
 676        }
 677
 678        offset = sector & geo->chunk_mask;
 679        if (geo->far_offset) {
 680                int fc;
 681                chunk = sector >> geo->chunk_shift;
 682                fc = sector_div(chunk, geo->far_copies);
 683                dev -= fc * geo->near_copies;
 684                if (dev < far_set_start)
 685                        dev += far_set_size;
 686        } else {
 687                while (sector >= geo->stride) {
 688                        sector -= geo->stride;
 689                        if (dev < (geo->near_copies + far_set_start))
 690                                dev += far_set_size - geo->near_copies;
 691                        else
 692                                dev -= geo->near_copies;
 693                }
 694                chunk = sector >> geo->chunk_shift;
 695        }
 696        vchunk = chunk * geo->raid_disks + dev;
 697        sector_div(vchunk, geo->near_copies);
 698        return (vchunk << geo->chunk_shift) + offset;
 699}
 700
 701/*
 702 * This routine returns the disk from which the requested read should
 703 * be done. There is a per-array 'next expected sequential IO' sector
 704 * number - if this matches on the next IO then we use the last disk.
 705 * There is also a per-disk 'last know head position' sector that is
 706 * maintained from IRQ contexts, both the normal and the resync IO
 707 * completion handlers update this position correctly. If there is no
 708 * perfect sequential match then we pick the disk whose head is closest.
 709 *
 710 * If there are 2 mirrors in the same 2 devices, performance degrades
 711 * because position is mirror, not device based.
 712 *
 713 * The rdev for the device selected will have nr_pending incremented.
 714 */
 715
 716/*
 717 * FIXME: possibly should rethink readbalancing and do it differently
 718 * depending on near_copies / far_copies geometry.
 719 */
 720static struct md_rdev *read_balance(struct r10conf *conf,
 721                                    struct r10bio *r10_bio,
 722                                    int *max_sectors)
 723{
 724        const sector_t this_sector = r10_bio->sector;
 725        int disk, slot;
 726        int sectors = r10_bio->sectors;
 727        int best_good_sectors;
 728        sector_t new_distance, best_dist;
 729        struct md_rdev *best_rdev, *rdev = NULL;
 730        int do_balance;
 731        int best_slot;
 732        struct geom *geo = &conf->geo;
 733
 734        raid10_find_phys(conf, r10_bio);
 735        rcu_read_lock();
 736        sectors = r10_bio->sectors;
 737        best_slot = -1;
 738        best_rdev = NULL;
 739        best_dist = MaxSector;
 740        best_good_sectors = 0;
 741        do_balance = 1;
 742        clear_bit(R10BIO_FailFast, &r10_bio->state);
 743        /*
 744         * Check if we can balance. We can balance on the whole
 745         * device if no resync is going on (recovery is ok), or below
 746         * the resync window. We take the first readable disk when
 747         * above the resync window.
 748         */
 749        if (conf->mddev->recovery_cp < MaxSector
 750            && (this_sector + sectors >= conf->next_resync))
 751                do_balance = 0;
 752
 753        for (slot = 0; slot < conf->copies ; slot++) {
 754                sector_t first_bad;
 755                int bad_sectors;
 756                sector_t dev_sector;
 757
 758                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 759                        continue;
 760                disk = r10_bio->devs[slot].devnum;
 761                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 762                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 763                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 764                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 765                if (rdev == NULL ||
 766                    test_bit(Faulty, &rdev->flags))
 767                        continue;
 768                if (!test_bit(In_sync, &rdev->flags) &&
 769                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 770                        continue;
 771
 772                dev_sector = r10_bio->devs[slot].addr;
 773                if (is_badblock(rdev, dev_sector, sectors,
 774                                &first_bad, &bad_sectors)) {
 775                        if (best_dist < MaxSector)
 776                                /* Already have a better slot */
 777                                continue;
 778                        if (first_bad <= dev_sector) {
 779                                /* Cannot read here.  If this is the
 780                                 * 'primary' device, then we must not read
 781                                 * beyond 'bad_sectors' from another device.
 782                                 */
 783                                bad_sectors -= (dev_sector - first_bad);
 784                                if (!do_balance && sectors > bad_sectors)
 785                                        sectors = bad_sectors;
 786                                if (best_good_sectors > sectors)
 787                                        best_good_sectors = sectors;
 788                        } else {
 789                                sector_t good_sectors =
 790                                        first_bad - dev_sector;
 791                                if (good_sectors > best_good_sectors) {
 792                                        best_good_sectors = good_sectors;
 793                                        best_slot = slot;
 794                                        best_rdev = rdev;
 795                                }
 796                                if (!do_balance)
 797                                        /* Must read from here */
 798                                        break;
 799                        }
 800                        continue;
 801                } else
 802                        best_good_sectors = sectors;
 803
 804                if (!do_balance)
 805                        break;
 806
 807                if (best_slot >= 0)
 808                        /* At least 2 disks to choose from so failfast is OK */
 809                        set_bit(R10BIO_FailFast, &r10_bio->state);
 810                /* This optimisation is debatable, and completely destroys
 811                 * sequential read speed for 'far copies' arrays.  So only
 812                 * keep it for 'near' arrays, and review those later.
 813                 */
 814                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 815                        new_distance = 0;
 816
 817                /* for far > 1 always use the lowest address */
 818                else if (geo->far_copies > 1)
 819                        new_distance = r10_bio->devs[slot].addr;
 820                else
 821                        new_distance = abs(r10_bio->devs[slot].addr -
 822                                           conf->mirrors[disk].head_position);
 823                if (new_distance < best_dist) {
 824                        best_dist = new_distance;
 825                        best_slot = slot;
 826                        best_rdev = rdev;
 827                }
 828        }
 829        if (slot >= conf->copies) {
 830                slot = best_slot;
 831                rdev = best_rdev;
 832        }
 833
 834        if (slot >= 0) {
 835                atomic_inc(&rdev->nr_pending);
 836                r10_bio->read_slot = slot;
 837        } else
 838                rdev = NULL;
 839        rcu_read_unlock();
 840        *max_sectors = best_good_sectors;
 841
 842        return rdev;
 843}
 844
 845static int raid10_congested(struct mddev *mddev, int bits)
 846{
 847        struct r10conf *conf = mddev->private;
 848        int i, ret = 0;
 849
 850        if ((bits & (1 << WB_async_congested)) &&
 851            conf->pending_count >= max_queued_requests)
 852                return 1;
 853
 854        rcu_read_lock();
 855        for (i = 0;
 856             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 857                     && ret == 0;
 858             i++) {
 859                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 860                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 861                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 862
 863                        ret |= bdi_congested(q->backing_dev_info, bits);
 864                }
 865        }
 866        rcu_read_unlock();
 867        return ret;
 868}
 869
 870static void flush_pending_writes(struct r10conf *conf)
 871{
 872        /* Any writes that have been queued but are awaiting
 873         * bitmap updates get flushed here.
 874         */
 875        spin_lock_irq(&conf->device_lock);
 876
 877        if (conf->pending_bio_list.head) {
 878                struct bio *bio;
 879                bio = bio_list_get(&conf->pending_bio_list);
 880                conf->pending_count = 0;
 881                spin_unlock_irq(&conf->device_lock);
 882                /* flush any pending bitmap writes to disk
 883                 * before proceeding w/ I/O */
 884                bitmap_unplug(conf->mddev->bitmap);
 885                wake_up(&conf->wait_barrier);
 886
 887                while (bio) { /* submit pending writes */
 888                        struct bio *next = bio->bi_next;
 889                        struct md_rdev *rdev = (void*)bio->bi_bdev;
 890                        bio->bi_next = NULL;
 891                        bio->bi_bdev = rdev->bdev;
 892                        if (test_bit(Faulty, &rdev->flags)) {
 893                                bio->bi_error = -EIO;
 894                                bio_endio(bio);
 895                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 896                                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 897                                /* Just ignore it */
 898                                bio_endio(bio);
 899                        else
 900                                generic_make_request(bio);
 901                        bio = next;
 902                }
 903        } else
 904                spin_unlock_irq(&conf->device_lock);
 905}
 906
 907/* Barriers....
 908 * Sometimes we need to suspend IO while we do something else,
 909 * either some resync/recovery, or reconfigure the array.
 910 * To do this we raise a 'barrier'.
 911 * The 'barrier' is a counter that can be raised multiple times
 912 * to count how many activities are happening which preclude
 913 * normal IO.
 914 * We can only raise the barrier if there is no pending IO.
 915 * i.e. if nr_pending == 0.
 916 * We choose only to raise the barrier if no-one is waiting for the
 917 * barrier to go down.  This means that as soon as an IO request
 918 * is ready, no other operations which require a barrier will start
 919 * until the IO request has had a chance.
 920 *
 921 * So: regular IO calls 'wait_barrier'.  When that returns there
 922 *    is no backgroup IO happening,  It must arrange to call
 923 *    allow_barrier when it has finished its IO.
 924 * backgroup IO calls must call raise_barrier.  Once that returns
 925 *    there is no normal IO happeing.  It must arrange to call
 926 *    lower_barrier when the particular background IO completes.
 927 */
 928
 929static void raise_barrier(struct r10conf *conf, int force)
 930{
 931        BUG_ON(force && !conf->barrier);
 932        spin_lock_irq(&conf->resync_lock);
 933
 934        /* Wait until no block IO is waiting (unless 'force') */
 935        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 936                            conf->resync_lock);
 937
 938        /* block any new IO from starting */
 939        conf->barrier++;
 940
 941        /* Now wait for all pending IO to complete */
 942        wait_event_lock_irq(conf->wait_barrier,
 943                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 944                            conf->resync_lock);
 945
 946        spin_unlock_irq(&conf->resync_lock);
 947}
 948
 949static void lower_barrier(struct r10conf *conf)
 950{
 951        unsigned long flags;
 952        spin_lock_irqsave(&conf->resync_lock, flags);
 953        conf->barrier--;
 954        spin_unlock_irqrestore(&conf->resync_lock, flags);
 955        wake_up(&conf->wait_barrier);
 956}
 957
 958static void wait_barrier(struct r10conf *conf)
 959{
 960        spin_lock_irq(&conf->resync_lock);
 961        if (conf->barrier) {
 962                conf->nr_waiting++;
 963                /* Wait for the barrier to drop.
 964                 * However if there are already pending
 965                 * requests (preventing the barrier from
 966                 * rising completely), and the
 967                 * pre-process bio queue isn't empty,
 968                 * then don't wait, as we need to empty
 969                 * that queue to get the nr_pending
 970                 * count down.
 971                 */
 972                raid10_log(conf->mddev, "wait barrier");
 973                wait_event_lock_irq(conf->wait_barrier,
 974                                    !conf->barrier ||
 975                                    (atomic_read(&conf->nr_pending) &&
 976                                     current->bio_list &&
 977                                     (!bio_list_empty(&current->bio_list[0]) ||
 978                                      !bio_list_empty(&current->bio_list[1]))),
 979                                    conf->resync_lock);
 980                conf->nr_waiting--;
 981                if (!conf->nr_waiting)
 982                        wake_up(&conf->wait_barrier);
 983        }
 984        atomic_inc(&conf->nr_pending);
 985        spin_unlock_irq(&conf->resync_lock);
 986}
 987
 988static void allow_barrier(struct r10conf *conf)
 989{
 990        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 991                        (conf->array_freeze_pending))
 992                wake_up(&conf->wait_barrier);
 993}
 994
 995static void freeze_array(struct r10conf *conf, int extra)
 996{
 997        /* stop syncio and normal IO and wait for everything to
 998         * go quiet.
 999         * We increment barrier and nr_waiting, and then
1000         * wait until nr_pending match nr_queued+extra
1001         * This is called in the context of one normal IO request
1002         * that has failed. Thus any sync request that might be pending
1003         * will be blocked by nr_pending, and we need to wait for
1004         * pending IO requests to complete or be queued for re-try.
1005         * Thus the number queued (nr_queued) plus this request (extra)
1006         * must match the number of pending IOs (nr_pending) before
1007         * we continue.
1008         */
1009        spin_lock_irq(&conf->resync_lock);
1010        conf->array_freeze_pending++;
1011        conf->barrier++;
1012        conf->nr_waiting++;
1013        wait_event_lock_irq_cmd(conf->wait_barrier,
1014                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1015                                conf->resync_lock,
1016                                flush_pending_writes(conf));
1017
1018        conf->array_freeze_pending--;
1019        spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void unfreeze_array(struct r10conf *conf)
1023{
1024        /* reverse the effect of the freeze */
1025        spin_lock_irq(&conf->resync_lock);
1026        conf->barrier--;
1027        conf->nr_waiting--;
1028        wake_up(&conf->wait_barrier);
1029        spin_unlock_irq(&conf->resync_lock);
1030}
1031
1032static sector_t choose_data_offset(struct r10bio *r10_bio,
1033                                   struct md_rdev *rdev)
1034{
1035        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1036            test_bit(R10BIO_Previous, &r10_bio->state))
1037                return rdev->data_offset;
1038        else
1039                return rdev->new_data_offset;
1040}
1041
1042struct raid10_plug_cb {
1043        struct blk_plug_cb      cb;
1044        struct bio_list         pending;
1045        int                     pending_cnt;
1046};
1047
1048static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049{
1050        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1051                                                   cb);
1052        struct mddev *mddev = plug->cb.data;
1053        struct r10conf *conf = mddev->private;
1054        struct bio *bio;
1055
1056        if (from_schedule || current->bio_list) {
1057                spin_lock_irq(&conf->device_lock);
1058                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1059                conf->pending_count += plug->pending_cnt;
1060                spin_unlock_irq(&conf->device_lock);
1061                wake_up(&conf->wait_barrier);
1062                md_wakeup_thread(mddev->thread);
1063                kfree(plug);
1064                return;
1065        }
1066
1067        /* we aren't scheduling, so we can do the write-out directly. */
1068        bio = bio_list_get(&plug->pending);
1069        bitmap_unplug(mddev->bitmap);
1070        wake_up(&conf->wait_barrier);
1071
1072        while (bio) { /* submit pending writes */
1073                struct bio *next = bio->bi_next;
1074                struct md_rdev *rdev = (void*)bio->bi_bdev;
1075                bio->bi_next = NULL;
1076                bio->bi_bdev = rdev->bdev;
1077                if (test_bit(Faulty, &rdev->flags)) {
1078                        bio->bi_error = -EIO;
1079                        bio_endio(bio);
1080                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1081                                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1082                        /* Just ignore it */
1083                        bio_endio(bio);
1084                else
1085                        generic_make_request(bio);
1086                bio = next;
1087        }
1088        kfree(plug);
1089}
1090
1091static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1092                                struct r10bio *r10_bio)
1093{
1094        struct r10conf *conf = mddev->private;
1095        struct bio *read_bio;
1096        const int op = bio_op(bio);
1097        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1098        int sectors_handled;
1099        int max_sectors;
1100        sector_t sectors;
1101        struct md_rdev *rdev;
1102        int slot;
1103
1104        /*
1105         * Register the new request and wait if the reconstruction
1106         * thread has put up a bar for new requests.
1107         * Continue immediately if no resync is active currently.
1108         */
1109        wait_barrier(conf);
1110
1111        sectors = bio_sectors(bio);
1112        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1113            bio->bi_iter.bi_sector < conf->reshape_progress &&
1114            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1115                /*
1116                 * IO spans the reshape position.  Need to wait for reshape to
1117                 * pass
1118                 */
1119                raid10_log(conf->mddev, "wait reshape");
1120                allow_barrier(conf);
1121                wait_event(conf->wait_barrier,
1122                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1123                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1124                           sectors);
1125                wait_barrier(conf);
1126        }
1127
1128read_again:
1129        rdev = read_balance(conf, r10_bio, &max_sectors);
1130        if (!rdev) {
1131                raid_end_bio_io(r10_bio);
1132                return;
1133        }
1134        slot = r10_bio->read_slot;
1135
1136        read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1137        bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1138                 max_sectors);
1139
1140        r10_bio->devs[slot].bio = read_bio;
1141        r10_bio->devs[slot].rdev = rdev;
1142
1143        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1144                choose_data_offset(r10_bio, rdev);
1145        read_bio->bi_bdev = rdev->bdev;
1146        read_bio->bi_end_io = raid10_end_read_request;
1147        bio_set_op_attrs(read_bio, op, do_sync);
1148        if (test_bit(FailFast, &rdev->flags) &&
1149            test_bit(R10BIO_FailFast, &r10_bio->state))
1150                read_bio->bi_opf |= MD_FAILFAST;
1151        read_bio->bi_private = r10_bio;
1152
1153        if (mddev->gendisk)
1154                trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1155                                      read_bio, disk_devt(mddev->gendisk),
1156                                      r10_bio->sector);
1157        if (max_sectors < r10_bio->sectors) {
1158                /*
1159                 * Could not read all from this device, so we will need another
1160                 * r10_bio.
1161                 */
1162                sectors_handled = (r10_bio->sector + max_sectors
1163                                   - bio->bi_iter.bi_sector);
1164                r10_bio->sectors = max_sectors;
1165                spin_lock_irq(&conf->device_lock);
1166                if (bio->bi_phys_segments == 0)
1167                        bio->bi_phys_segments = 2;
1168                else
1169                        bio->bi_phys_segments++;
1170                spin_unlock_irq(&conf->device_lock);
1171                /*
1172                 * Cannot call generic_make_request directly as that will be
1173                 * queued in __generic_make_request and subsequent
1174                 * mempool_alloc might block waiting for it.  so hand bio over
1175                 * to raid10d.
1176                 */
1177                reschedule_retry(r10_bio);
1178
1179                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1180
1181                r10_bio->master_bio = bio;
1182                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183                r10_bio->state = 0;
1184                r10_bio->mddev = mddev;
1185                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1186                goto read_again;
1187        } else
1188                generic_make_request(read_bio);
1189        return;
1190}
1191
1192static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1193                                 struct r10bio *r10_bio)
1194{
1195        struct r10conf *conf = mddev->private;
1196        int i;
1197        const int op = bio_op(bio);
1198        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1200        unsigned long flags;
1201        struct md_rdev *blocked_rdev;
1202        struct blk_plug_cb *cb;
1203        struct raid10_plug_cb *plug = NULL;
1204        sector_t sectors;
1205        int sectors_handled;
1206        int max_sectors;
1207
1208        md_write_start(mddev, bio);
1209
1210        /*
1211         * Register the new request and wait if the reconstruction
1212         * thread has put up a bar for new requests.
1213         * Continue immediately if no resync is active currently.
1214         */
1215        wait_barrier(conf);
1216
1217        sectors = bio_sectors(bio);
1218        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1219            bio->bi_iter.bi_sector < conf->reshape_progress &&
1220            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1221                /*
1222                 * IO spans the reshape position.  Need to wait for reshape to
1223                 * pass
1224                 */
1225                raid10_log(conf->mddev, "wait reshape");
1226                allow_barrier(conf);
1227                wait_event(conf->wait_barrier,
1228                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1229                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1230                           sectors);
1231                wait_barrier(conf);
1232        }
1233
1234        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1235            (mddev->reshape_backwards
1236             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1237                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1238             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1239                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1240                /* Need to update reshape_position in metadata */
1241                mddev->reshape_position = conf->reshape_progress;
1242                set_mask_bits(&mddev->sb_flags, 0,
1243                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1244                md_wakeup_thread(mddev->thread);
1245                raid10_log(conf->mddev, "wait reshape metadata");
1246                wait_event(mddev->sb_wait,
1247                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1248
1249                conf->reshape_safe = mddev->reshape_position;
1250        }
1251
1252        if (conf->pending_count >= max_queued_requests) {
1253                md_wakeup_thread(mddev->thread);
1254                raid10_log(mddev, "wait queued");
1255                wait_event(conf->wait_barrier,
1256                           conf->pending_count < max_queued_requests);
1257        }
1258        /* first select target devices under rcu_lock and
1259         * inc refcount on their rdev.  Record them by setting
1260         * bios[x] to bio
1261         * If there are known/acknowledged bad blocks on any device
1262         * on which we have seen a write error, we want to avoid
1263         * writing to those blocks.  This potentially requires several
1264         * writes to write around the bad blocks.  Each set of writes
1265         * gets its own r10_bio with a set of bios attached.  The number
1266         * of r10_bios is recored in bio->bi_phys_segments just as with
1267         * the read case.
1268         */
1269
1270        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1271        raid10_find_phys(conf, r10_bio);
1272retry_write:
1273        blocked_rdev = NULL;
1274        rcu_read_lock();
1275        max_sectors = r10_bio->sectors;
1276
1277        for (i = 0;  i < conf->copies; i++) {
1278                int d = r10_bio->devs[i].devnum;
1279                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1280                struct md_rdev *rrdev = rcu_dereference(
1281                        conf->mirrors[d].replacement);
1282                if (rdev == rrdev)
1283                        rrdev = NULL;
1284                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1285                        atomic_inc(&rdev->nr_pending);
1286                        blocked_rdev = rdev;
1287                        break;
1288                }
1289                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1290                        atomic_inc(&rrdev->nr_pending);
1291                        blocked_rdev = rrdev;
1292                        break;
1293                }
1294                if (rdev && (test_bit(Faulty, &rdev->flags)))
1295                        rdev = NULL;
1296                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1297                        rrdev = NULL;
1298
1299                r10_bio->devs[i].bio = NULL;
1300                r10_bio->devs[i].repl_bio = NULL;
1301
1302                if (!rdev && !rrdev) {
1303                        set_bit(R10BIO_Degraded, &r10_bio->state);
1304                        continue;
1305                }
1306                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                        sector_t first_bad;
1308                        sector_t dev_sector = r10_bio->devs[i].addr;
1309                        int bad_sectors;
1310                        int is_bad;
1311
1312                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1313                                             &first_bad, &bad_sectors);
1314                        if (is_bad < 0) {
1315                                /* Mustn't write here until the bad block
1316                                 * is acknowledged
1317                                 */
1318                                atomic_inc(&rdev->nr_pending);
1319                                set_bit(BlockedBadBlocks, &rdev->flags);
1320                                blocked_rdev = rdev;
1321                                break;
1322                        }
1323                        if (is_bad && first_bad <= dev_sector) {
1324                                /* Cannot write here at all */
1325                                bad_sectors -= (dev_sector - first_bad);
1326                                if (bad_sectors < max_sectors)
1327                                        /* Mustn't write more than bad_sectors
1328                                         * to other devices yet
1329                                         */
1330                                        max_sectors = bad_sectors;
1331                                /* We don't set R10BIO_Degraded as that
1332                                 * only applies if the disk is missing,
1333                                 * so it might be re-added, and we want to
1334                                 * know to recover this chunk.
1335                                 * In this case the device is here, and the
1336                                 * fact that this chunk is not in-sync is
1337                                 * recorded in the bad block log.
1338                                 */
1339                                continue;
1340                        }
1341                        if (is_bad) {
1342                                int good_sectors = first_bad - dev_sector;
1343                                if (good_sectors < max_sectors)
1344                                        max_sectors = good_sectors;
1345                        }
1346                }
1347                if (rdev) {
1348                        r10_bio->devs[i].bio = bio;
1349                        atomic_inc(&rdev->nr_pending);
1350                }
1351                if (rrdev) {
1352                        r10_bio->devs[i].repl_bio = bio;
1353                        atomic_inc(&rrdev->nr_pending);
1354                }
1355        }
1356        rcu_read_unlock();
1357
1358        if (unlikely(blocked_rdev)) {
1359                /* Have to wait for this device to get unblocked, then retry */
1360                int j;
1361                int d;
1362
1363                for (j = 0; j < i; j++) {
1364                        if (r10_bio->devs[j].bio) {
1365                                d = r10_bio->devs[j].devnum;
1366                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1367                        }
1368                        if (r10_bio->devs[j].repl_bio) {
1369                                struct md_rdev *rdev;
1370                                d = r10_bio->devs[j].devnum;
1371                                rdev = conf->mirrors[d].replacement;
1372                                if (!rdev) {
1373                                        /* Race with remove_disk */
1374                                        smp_mb();
1375                                        rdev = conf->mirrors[d].rdev;
1376                                }
1377                                rdev_dec_pending(rdev, mddev);
1378                        }
1379                }
1380                allow_barrier(conf);
1381                raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1382                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1383                wait_barrier(conf);
1384                goto retry_write;
1385        }
1386
1387        if (max_sectors < r10_bio->sectors) {
1388                /* We are splitting this into multiple parts, so
1389                 * we need to prepare for allocating another r10_bio.
1390                 */
1391                r10_bio->sectors = max_sectors;
1392                spin_lock_irq(&conf->device_lock);
1393                if (bio->bi_phys_segments == 0)
1394                        bio->bi_phys_segments = 2;
1395                else
1396                        bio->bi_phys_segments++;
1397                spin_unlock_irq(&conf->device_lock);
1398        }
1399        sectors_handled = r10_bio->sector + max_sectors -
1400                bio->bi_iter.bi_sector;
1401
1402        atomic_set(&r10_bio->remaining, 1);
1403        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1404
1405        for (i = 0; i < conf->copies; i++) {
1406                struct bio *mbio;
1407                int d = r10_bio->devs[i].devnum;
1408                if (r10_bio->devs[i].bio) {
1409                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1410                        mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1411                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1412                                 max_sectors);
1413                        r10_bio->devs[i].bio = mbio;
1414
1415                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1416                                           choose_data_offset(r10_bio, rdev));
1417                        mbio->bi_bdev = rdev->bdev;
1418                        mbio->bi_end_io = raid10_end_write_request;
1419                        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1420                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1421                            enough(conf, d))
1422                                mbio->bi_opf |= MD_FAILFAST;
1423                        mbio->bi_private = r10_bio;
1424
1425                        if (conf->mddev->gendisk)
1426                                trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1427                                                      mbio, disk_devt(conf->mddev->gendisk),
1428                                                      r10_bio->sector);
1429                        /* flush_pending_writes() needs access to the rdev so...*/
1430                        mbio->bi_bdev = (void*)rdev;
1431
1432                        atomic_inc(&r10_bio->remaining);
1433
1434                        cb = blk_check_plugged(raid10_unplug, mddev,
1435                                               sizeof(*plug));
1436                        if (cb)
1437                                plug = container_of(cb, struct raid10_plug_cb,
1438                                                    cb);
1439                        else
1440                                plug = NULL;
1441                        spin_lock_irqsave(&conf->device_lock, flags);
1442                        if (plug) {
1443                                bio_list_add(&plug->pending, mbio);
1444                                plug->pending_cnt++;
1445                        } else {
1446                                bio_list_add(&conf->pending_bio_list, mbio);
1447                                conf->pending_count++;
1448                        }
1449                        spin_unlock_irqrestore(&conf->device_lock, flags);
1450                        if (!plug)
1451                                md_wakeup_thread(mddev->thread);
1452                }
1453
1454                if (r10_bio->devs[i].repl_bio) {
1455                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1456                        if (rdev == NULL) {
1457                                /* Replacement just got moved to main 'rdev' */
1458                                smp_mb();
1459                                rdev = conf->mirrors[d].rdev;
1460                        }
1461                        mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462                        bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1463                                 max_sectors);
1464                        r10_bio->devs[i].repl_bio = mbio;
1465
1466                        mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1467                                           choose_data_offset(r10_bio, rdev));
1468                        mbio->bi_bdev = rdev->bdev;
1469                        mbio->bi_end_io = raid10_end_write_request;
1470                        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1471                        mbio->bi_private = r10_bio;
1472
1473                        if (conf->mddev->gendisk)
1474                                trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1475                                                      mbio, disk_devt(conf->mddev->gendisk),
1476                                                      r10_bio->sector);
1477                        /* flush_pending_writes() needs access to the rdev so...*/
1478                        mbio->bi_bdev = (void*)rdev;
1479
1480                        atomic_inc(&r10_bio->remaining);
1481
1482                        cb = blk_check_plugged(raid10_unplug, mddev,
1483                                               sizeof(*plug));
1484                        if (cb)
1485                                plug = container_of(cb, struct raid10_plug_cb,
1486                                                    cb);
1487                        else
1488                                plug = NULL;
1489                        spin_lock_irqsave(&conf->device_lock, flags);
1490                        if (plug) {
1491                                bio_list_add(&plug->pending, mbio);
1492                                plug->pending_cnt++;
1493                        } else {
1494                                bio_list_add(&conf->pending_bio_list, mbio);
1495                                conf->pending_count++;
1496                        }
1497                        spin_unlock_irqrestore(&conf->device_lock, flags);
1498                        if (!plug)
1499                                md_wakeup_thread(mddev->thread);
1500                }
1501        }
1502
1503        /* Don't remove the bias on 'remaining' (one_write_done) until
1504         * after checking if we need to go around again.
1505         */
1506
1507        if (sectors_handled < bio_sectors(bio)) {
1508                one_write_done(r10_bio);
1509                /* We need another r10_bio.  It has already been counted
1510                 * in bio->bi_phys_segments.
1511                 */
1512                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513
1514                r10_bio->master_bio = bio;
1515                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1516
1517                r10_bio->mddev = mddev;
1518                r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1519                r10_bio->state = 0;
1520                goto retry_write;
1521        }
1522        one_write_done(r10_bio);
1523}
1524
1525static void __make_request(struct mddev *mddev, struct bio *bio)
1526{
1527        struct r10conf *conf = mddev->private;
1528        struct r10bio *r10_bio;
1529
1530        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1531
1532        r10_bio->master_bio = bio;
1533        r10_bio->sectors = bio_sectors(bio);
1534
1535        r10_bio->mddev = mddev;
1536        r10_bio->sector = bio->bi_iter.bi_sector;
1537        r10_bio->state = 0;
1538
1539        /*
1540         * We might need to issue multiple reads to different devices if there
1541         * are bad blocks around, so we keep track of the number of reads in
1542         * bio->bi_phys_segments.  If this is 0, there is only one r10_bio and
1543         * no locking will be needed when the request completes.  If it is
1544         * non-zero, then it is the number of not-completed requests.
1545         */
1546        bio->bi_phys_segments = 0;
1547        bio_clear_flag(bio, BIO_SEG_VALID);
1548
1549        if (bio_data_dir(bio) == READ)
1550                raid10_read_request(mddev, bio, r10_bio);
1551        else
1552                raid10_write_request(mddev, bio, r10_bio);
1553}
1554
1555static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1556{
1557        struct r10conf *conf = mddev->private;
1558        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1559        int chunk_sects = chunk_mask + 1;
1560
1561        struct bio *split;
1562
1563        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1564                md_flush_request(mddev, bio);
1565                return;
1566        }
1567
1568        do {
1569
1570                /*
1571                 * If this request crosses a chunk boundary, we need to split
1572                 * it.
1573                 */
1574                if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1575                             bio_sectors(bio) > chunk_sects
1576                             && (conf->geo.near_copies < conf->geo.raid_disks
1577                                 || conf->prev.near_copies <
1578                                 conf->prev.raid_disks))) {
1579                        split = bio_split(bio, chunk_sects -
1580                                          (bio->bi_iter.bi_sector &
1581                                           (chunk_sects - 1)),
1582                                          GFP_NOIO, fs_bio_set);
1583                        bio_chain(split, bio);
1584                } else {
1585                        split = bio;
1586                }
1587
1588                /*
1589                 * If a bio is splitted, the first part of bio will pass
1590                 * barrier but the bio is queued in current->bio_list (see
1591                 * generic_make_request). If there is a raise_barrier() called
1592                 * here, the second part of bio can't pass barrier. But since
1593                 * the first part bio isn't dispatched to underlaying disks
1594                 * yet, the barrier is never released, hence raise_barrier will
1595                 * alays wait. We have a deadlock.
1596                 * Note, this only happens in read path. For write path, the
1597                 * first part of bio is dispatched in a schedule() call
1598                 * (because of blk plug) or offloaded to raid10d.
1599                 * Quitting from the function immediately can change the bio
1600                 * order queued in bio_list and avoid the deadlock.
1601                 */
1602                __make_request(mddev, split);
1603                if (split != bio && bio_data_dir(bio) == READ) {
1604                        generic_make_request(bio);
1605                        break;
1606                }
1607        } while (split != bio);
1608
1609        /* In case raid10d snuck in to freeze_array */
1610        wake_up(&conf->wait_barrier);
1611}
1612
1613static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1614{
1615        struct r10conf *conf = mddev->private;
1616        int i;
1617
1618        if (conf->geo.near_copies < conf->geo.raid_disks)
1619                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1620        if (conf->geo.near_copies > 1)
1621                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1622        if (conf->geo.far_copies > 1) {
1623                if (conf->geo.far_offset)
1624                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1625                else
1626                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1627                if (conf->geo.far_set_size != conf->geo.raid_disks)
1628                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1629        }
1630        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1631                                        conf->geo.raid_disks - mddev->degraded);
1632        rcu_read_lock();
1633        for (i = 0; i < conf->geo.raid_disks; i++) {
1634                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1635                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1636        }
1637        rcu_read_unlock();
1638        seq_printf(seq, "]");
1639}
1640
1641/* check if there are enough drives for
1642 * every block to appear on atleast one.
1643 * Don't consider the device numbered 'ignore'
1644 * as we might be about to remove it.
1645 */
1646static int _enough(struct r10conf *conf, int previous, int ignore)
1647{
1648        int first = 0;
1649        int has_enough = 0;
1650        int disks, ncopies;
1651        if (previous) {
1652                disks = conf->prev.raid_disks;
1653                ncopies = conf->prev.near_copies;
1654        } else {
1655                disks = conf->geo.raid_disks;
1656                ncopies = conf->geo.near_copies;
1657        }
1658
1659        rcu_read_lock();
1660        do {
1661                int n = conf->copies;
1662                int cnt = 0;
1663                int this = first;
1664                while (n--) {
1665                        struct md_rdev *rdev;
1666                        if (this != ignore &&
1667                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1668                            test_bit(In_sync, &rdev->flags))
1669                                cnt++;
1670                        this = (this+1) % disks;
1671                }
1672                if (cnt == 0)
1673                        goto out;
1674                first = (first + ncopies) % disks;
1675        } while (first != 0);
1676        has_enough = 1;
1677out:
1678        rcu_read_unlock();
1679        return has_enough;
1680}
1681
1682static int enough(struct r10conf *conf, int ignore)
1683{
1684        /* when calling 'enough', both 'prev' and 'geo' must
1685         * be stable.
1686         * This is ensured if ->reconfig_mutex or ->device_lock
1687         * is held.
1688         */
1689        return _enough(conf, 0, ignore) &&
1690                _enough(conf, 1, ignore);
1691}
1692
1693static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1694{
1695        char b[BDEVNAME_SIZE];
1696        struct r10conf *conf = mddev->private;
1697        unsigned long flags;
1698
1699        /*
1700         * If it is not operational, then we have already marked it as dead
1701         * else if it is the last working disks, ignore the error, let the
1702         * next level up know.
1703         * else mark the drive as failed
1704         */
1705        spin_lock_irqsave(&conf->device_lock, flags);
1706        if (test_bit(In_sync, &rdev->flags)
1707            && !enough(conf, rdev->raid_disk)) {
1708                /*
1709                 * Don't fail the drive, just return an IO error.
1710                 */
1711                spin_unlock_irqrestore(&conf->device_lock, flags);
1712                return;
1713        }
1714        if (test_and_clear_bit(In_sync, &rdev->flags))
1715                mddev->degraded++;
1716        /*
1717         * If recovery is running, make sure it aborts.
1718         */
1719        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720        set_bit(Blocked, &rdev->flags);
1721        set_bit(Faulty, &rdev->flags);
1722        set_mask_bits(&mddev->sb_flags, 0,
1723                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1724        spin_unlock_irqrestore(&conf->device_lock, flags);
1725        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1726                "md/raid10:%s: Operation continuing on %d devices.\n",
1727                mdname(mddev), bdevname(rdev->bdev, b),
1728                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1729}
1730
1731static void print_conf(struct r10conf *conf)
1732{
1733        int i;
1734        struct md_rdev *rdev;
1735
1736        pr_debug("RAID10 conf printout:\n");
1737        if (!conf) {
1738                pr_debug("(!conf)\n");
1739                return;
1740        }
1741        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1742                 conf->geo.raid_disks);
1743
1744        /* This is only called with ->reconfix_mutex held, so
1745         * rcu protection of rdev is not needed */
1746        for (i = 0; i < conf->geo.raid_disks; i++) {
1747                char b[BDEVNAME_SIZE];
1748                rdev = conf->mirrors[i].rdev;
1749                if (rdev)
1750                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1751                                 i, !test_bit(In_sync, &rdev->flags),
1752                                 !test_bit(Faulty, &rdev->flags),
1753                                 bdevname(rdev->bdev,b));
1754        }
1755}
1756
1757static void close_sync(struct r10conf *conf)
1758{
1759        wait_barrier(conf);
1760        allow_barrier(conf);
1761
1762        mempool_destroy(conf->r10buf_pool);
1763        conf->r10buf_pool = NULL;
1764}
1765
1766static int raid10_spare_active(struct mddev *mddev)
1767{
1768        int i;
1769        struct r10conf *conf = mddev->private;
1770        struct raid10_info *tmp;
1771        int count = 0;
1772        unsigned long flags;
1773
1774        /*
1775         * Find all non-in_sync disks within the RAID10 configuration
1776         * and mark them in_sync
1777         */
1778        for (i = 0; i < conf->geo.raid_disks; i++) {
1779                tmp = conf->mirrors + i;
1780                if (tmp->replacement
1781                    && tmp->replacement->recovery_offset == MaxSector
1782                    && !test_bit(Faulty, &tmp->replacement->flags)
1783                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1784                        /* Replacement has just become active */
1785                        if (!tmp->rdev
1786                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1787                                count++;
1788                        if (tmp->rdev) {
1789                                /* Replaced device not technically faulty,
1790                                 * but we need to be sure it gets removed
1791                                 * and never re-added.
1792                                 */
1793                                set_bit(Faulty, &tmp->rdev->flags);
1794                                sysfs_notify_dirent_safe(
1795                                        tmp->rdev->sysfs_state);
1796                        }
1797                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1798                } else if (tmp->rdev
1799                           && tmp->rdev->recovery_offset == MaxSector
1800                           && !test_bit(Faulty, &tmp->rdev->flags)
1801                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1802                        count++;
1803                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1804                }
1805        }
1806        spin_lock_irqsave(&conf->device_lock, flags);
1807        mddev->degraded -= count;
1808        spin_unlock_irqrestore(&conf->device_lock, flags);
1809
1810        print_conf(conf);
1811        return count;
1812}
1813
1814static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1815{
1816        struct r10conf *conf = mddev->private;
1817        int err = -EEXIST;
1818        int mirror;
1819        int first = 0;
1820        int last = conf->geo.raid_disks - 1;
1821
1822        if (mddev->recovery_cp < MaxSector)
1823                /* only hot-add to in-sync arrays, as recovery is
1824                 * very different from resync
1825                 */
1826                return -EBUSY;
1827        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1828                return -EINVAL;
1829
1830        if (md_integrity_add_rdev(rdev, mddev))
1831                return -ENXIO;
1832
1833        if (rdev->raid_disk >= 0)
1834                first = last = rdev->raid_disk;
1835
1836        if (rdev->saved_raid_disk >= first &&
1837            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1838                mirror = rdev->saved_raid_disk;
1839        else
1840                mirror = first;
1841        for ( ; mirror <= last ; mirror++) {
1842                struct raid10_info *p = &conf->mirrors[mirror];
1843                if (p->recovery_disabled == mddev->recovery_disabled)
1844                        continue;
1845                if (p->rdev) {
1846                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1847                            p->replacement != NULL)
1848                                continue;
1849                        clear_bit(In_sync, &rdev->flags);
1850                        set_bit(Replacement, &rdev->flags);
1851                        rdev->raid_disk = mirror;
1852                        err = 0;
1853                        if (mddev->gendisk)
1854                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1855                                                  rdev->data_offset << 9);
1856                        conf->fullsync = 1;
1857                        rcu_assign_pointer(p->replacement, rdev);
1858                        break;
1859                }
1860
1861                if (mddev->gendisk)
1862                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1863                                          rdev->data_offset << 9);
1864
1865                p->head_position = 0;
1866                p->recovery_disabled = mddev->recovery_disabled - 1;
1867                rdev->raid_disk = mirror;
1868                err = 0;
1869                if (rdev->saved_raid_disk != mirror)
1870                        conf->fullsync = 1;
1871                rcu_assign_pointer(p->rdev, rdev);
1872                break;
1873        }
1874        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1875                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1876
1877        print_conf(conf);
1878        return err;
1879}
1880
1881static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1882{
1883        struct r10conf *conf = mddev->private;
1884        int err = 0;
1885        int number = rdev->raid_disk;
1886        struct md_rdev **rdevp;
1887        struct raid10_info *p = conf->mirrors + number;
1888
1889        print_conf(conf);
1890        if (rdev == p->rdev)
1891                rdevp = &p->rdev;
1892        else if (rdev == p->replacement)
1893                rdevp = &p->replacement;
1894        else
1895                return 0;
1896
1897        if (test_bit(In_sync, &rdev->flags) ||
1898            atomic_read(&rdev->nr_pending)) {
1899                err = -EBUSY;
1900                goto abort;
1901        }
1902        /* Only remove non-faulty devices if recovery
1903         * is not possible.
1904         */
1905        if (!test_bit(Faulty, &rdev->flags) &&
1906            mddev->recovery_disabled != p->recovery_disabled &&
1907            (!p->replacement || p->replacement == rdev) &&
1908            number < conf->geo.raid_disks &&
1909            enough(conf, -1)) {
1910                err = -EBUSY;
1911                goto abort;
1912        }
1913        *rdevp = NULL;
1914        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1915                synchronize_rcu();
1916                if (atomic_read(&rdev->nr_pending)) {
1917                        /* lost the race, try later */
1918                        err = -EBUSY;
1919                        *rdevp = rdev;
1920                        goto abort;
1921                }
1922        }
1923        if (p->replacement) {
1924                /* We must have just cleared 'rdev' */
1925                p->rdev = p->replacement;
1926                clear_bit(Replacement, &p->replacement->flags);
1927                smp_mb(); /* Make sure other CPUs may see both as identical
1928                           * but will never see neither -- if they are careful.
1929                           */
1930                p->replacement = NULL;
1931                clear_bit(WantReplacement, &rdev->flags);
1932        } else
1933                /* We might have just remove the Replacement as faulty
1934                 * Clear the flag just in case
1935                 */
1936                clear_bit(WantReplacement, &rdev->flags);
1937
1938        err = md_integrity_register(mddev);
1939
1940abort:
1941
1942        print_conf(conf);
1943        return err;
1944}
1945
1946static void end_sync_read(struct bio *bio)
1947{
1948        struct r10bio *r10_bio = bio->bi_private;
1949        struct r10conf *conf = r10_bio->mddev->private;
1950        int d;
1951
1952        if (bio == r10_bio->master_bio) {
1953                /* this is a reshape read */
1954                d = r10_bio->read_slot; /* really the read dev */
1955        } else
1956                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1957
1958        if (!bio->bi_error)
1959                set_bit(R10BIO_Uptodate, &r10_bio->state);
1960        else
1961                /* The write handler will notice the lack of
1962                 * R10BIO_Uptodate and record any errors etc
1963                 */
1964                atomic_add(r10_bio->sectors,
1965                           &conf->mirrors[d].rdev->corrected_errors);
1966
1967        /* for reconstruct, we always reschedule after a read.
1968         * for resync, only after all reads
1969         */
1970        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1971        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1972            atomic_dec_and_test(&r10_bio->remaining)) {
1973                /* we have read all the blocks,
1974                 * do the comparison in process context in raid10d
1975                 */
1976                reschedule_retry(r10_bio);
1977        }
1978}
1979
1980static void end_sync_request(struct r10bio *r10_bio)
1981{
1982        struct mddev *mddev = r10_bio->mddev;
1983
1984        while (atomic_dec_and_test(&r10_bio->remaining)) {
1985                if (r10_bio->master_bio == NULL) {
1986                        /* the primary of several recovery bios */
1987                        sector_t s = r10_bio->sectors;
1988                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1989                            test_bit(R10BIO_WriteError, &r10_bio->state))
1990                                reschedule_retry(r10_bio);
1991                        else
1992                                put_buf(r10_bio);
1993                        md_done_sync(mddev, s, 1);
1994                        break;
1995                } else {
1996                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1997                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1998                            test_bit(R10BIO_WriteError, &r10_bio->state))
1999                                reschedule_retry(r10_bio);
2000                        else
2001                                put_buf(r10_bio);
2002                        r10_bio = r10_bio2;
2003                }
2004        }
2005}
2006
2007static void end_sync_write(struct bio *bio)
2008{
2009        struct r10bio *r10_bio = bio->bi_private;
2010        struct mddev *mddev = r10_bio->mddev;
2011        struct r10conf *conf = mddev->private;
2012        int d;
2013        sector_t first_bad;
2014        int bad_sectors;
2015        int slot;
2016        int repl;
2017        struct md_rdev *rdev = NULL;
2018
2019        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2020        if (repl)
2021                rdev = conf->mirrors[d].replacement;
2022        else
2023                rdev = conf->mirrors[d].rdev;
2024
2025        if (bio->bi_error) {
2026                if (repl)
2027                        md_error(mddev, rdev);
2028                else {
2029                        set_bit(WriteErrorSeen, &rdev->flags);
2030                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2031                                set_bit(MD_RECOVERY_NEEDED,
2032                                        &rdev->mddev->recovery);
2033                        set_bit(R10BIO_WriteError, &r10_bio->state);
2034                }
2035        } else if (is_badblock(rdev,
2036                             r10_bio->devs[slot].addr,
2037                             r10_bio->sectors,
2038                             &first_bad, &bad_sectors))
2039                set_bit(R10BIO_MadeGood, &r10_bio->state);
2040
2041        rdev_dec_pending(rdev, mddev);
2042
2043        end_sync_request(r10_bio);
2044}
2045
2046/*
2047 * Note: sync and recover and handled very differently for raid10
2048 * This code is for resync.
2049 * For resync, we read through virtual addresses and read all blocks.
2050 * If there is any error, we schedule a write.  The lowest numbered
2051 * drive is authoritative.
2052 * However requests come for physical address, so we need to map.
2053 * For every physical address there are raid_disks/copies virtual addresses,
2054 * which is always are least one, but is not necessarly an integer.
2055 * This means that a physical address can span multiple chunks, so we may
2056 * have to submit multiple io requests for a single sync request.
2057 */
2058/*
2059 * We check if all blocks are in-sync and only write to blocks that
2060 * aren't in sync
2061 */
2062static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2063{
2064        struct r10conf *conf = mddev->private;
2065        int i, first;
2066        struct bio *tbio, *fbio;
2067        int vcnt;
2068
2069        atomic_set(&r10_bio->remaining, 1);
2070
2071        /* find the first device with a block */
2072        for (i=0; i<conf->copies; i++)
2073                if (!r10_bio->devs[i].bio->bi_error)
2074                        break;
2075
2076        if (i == conf->copies)
2077                goto done;
2078
2079        first = i;
2080        fbio = r10_bio->devs[i].bio;
2081        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2082        fbio->bi_iter.bi_idx = 0;
2083
2084        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085        /* now find blocks with errors */
2086        for (i=0 ; i < conf->copies ; i++) {
2087                int  j, d;
2088                struct md_rdev *rdev;
2089
2090                tbio = r10_bio->devs[i].bio;
2091
2092                if (tbio->bi_end_io != end_sync_read)
2093                        continue;
2094                if (i == first)
2095                        continue;
2096                d = r10_bio->devs[i].devnum;
2097                rdev = conf->mirrors[d].rdev;
2098                if (!r10_bio->devs[i].bio->bi_error) {
2099                        /* We know that the bi_io_vec layout is the same for
2100                         * both 'first' and 'i', so we just compare them.
2101                         * All vec entries are PAGE_SIZE;
2102                         */
2103                        int sectors = r10_bio->sectors;
2104                        for (j = 0; j < vcnt; j++) {
2105                                int len = PAGE_SIZE;
2106                                if (sectors < (len / 512))
2107                                        len = sectors * 512;
2108                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2109                                           page_address(tbio->bi_io_vec[j].bv_page),
2110                                           len))
2111                                        break;
2112                                sectors -= len/512;
2113                        }
2114                        if (j == vcnt)
2115                                continue;
2116                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2117                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2118                                /* Don't fix anything. */
2119                                continue;
2120                } else if (test_bit(FailFast, &rdev->flags)) {
2121                        /* Just give up on this device */
2122                        md_error(rdev->mddev, rdev);
2123                        continue;
2124                }
2125                /* Ok, we need to write this bio, either to correct an
2126                 * inconsistency or to correct an unreadable block.
2127                 * First we need to fixup bv_offset, bv_len and
2128                 * bi_vecs, as the read request might have corrupted these
2129                 */
2130                bio_reset(tbio);
2131
2132                tbio->bi_vcnt = vcnt;
2133                tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2134                tbio->bi_private = r10_bio;
2135                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2136                tbio->bi_end_io = end_sync_write;
2137                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2138
2139                bio_copy_data(tbio, fbio);
2140
2141                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2142                atomic_inc(&r10_bio->remaining);
2143                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2144
2145                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2146                        tbio->bi_opf |= MD_FAILFAST;
2147                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2148                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149                generic_make_request(tbio);
2150        }
2151
2152        /* Now write out to any replacement devices
2153         * that are active
2154         */
2155        for (i = 0; i < conf->copies; i++) {
2156                int d;
2157
2158                tbio = r10_bio->devs[i].repl_bio;
2159                if (!tbio || !tbio->bi_end_io)
2160                        continue;
2161                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162                    && r10_bio->devs[i].bio != fbio)
2163                        bio_copy_data(tbio, fbio);
2164                d = r10_bio->devs[i].devnum;
2165                atomic_inc(&r10_bio->remaining);
2166                md_sync_acct(conf->mirrors[d].replacement->bdev,
2167                             bio_sectors(tbio));
2168                generic_make_request(tbio);
2169        }
2170
2171done:
2172        if (atomic_dec_and_test(&r10_bio->remaining)) {
2173                md_done_sync(mddev, r10_bio->sectors, 1);
2174                put_buf(r10_bio);
2175        }
2176}
2177
2178/*
2179 * Now for the recovery code.
2180 * Recovery happens across physical sectors.
2181 * We recover all non-is_sync drives by finding the virtual address of
2182 * each, and then choose a working drive that also has that virt address.
2183 * There is a separate r10_bio for each non-in_sync drive.
2184 * Only the first two slots are in use. The first for reading,
2185 * The second for writing.
2186 *
2187 */
2188static void fix_recovery_read_error(struct r10bio *r10_bio)
2189{
2190        /* We got a read error during recovery.
2191         * We repeat the read in smaller page-sized sections.
2192         * If a read succeeds, write it to the new device or record
2193         * a bad block if we cannot.
2194         * If a read fails, record a bad block on both old and
2195         * new devices.
2196         */
2197        struct mddev *mddev = r10_bio->mddev;
2198        struct r10conf *conf = mddev->private;
2199        struct bio *bio = r10_bio->devs[0].bio;
2200        sector_t sect = 0;
2201        int sectors = r10_bio->sectors;
2202        int idx = 0;
2203        int dr = r10_bio->devs[0].devnum;
2204        int dw = r10_bio->devs[1].devnum;
2205
2206        while (sectors) {
2207                int s = sectors;
2208                struct md_rdev *rdev;
2209                sector_t addr;
2210                int ok;
2211
2212                if (s > (PAGE_SIZE>>9))
2213                        s = PAGE_SIZE >> 9;
2214
2215                rdev = conf->mirrors[dr].rdev;
2216                addr = r10_bio->devs[0].addr + sect,
2217                ok = sync_page_io(rdev,
2218                                  addr,
2219                                  s << 9,
2220                                  bio->bi_io_vec[idx].bv_page,
2221                                  REQ_OP_READ, 0, false);
2222                if (ok) {
2223                        rdev = conf->mirrors[dw].rdev;
2224                        addr = r10_bio->devs[1].addr + sect;
2225                        ok = sync_page_io(rdev,
2226                                          addr,
2227                                          s << 9,
2228                                          bio->bi_io_vec[idx].bv_page,
2229                                          REQ_OP_WRITE, 0, false);
2230                        if (!ok) {
2231                                set_bit(WriteErrorSeen, &rdev->flags);
2232                                if (!test_and_set_bit(WantReplacement,
2233                                                      &rdev->flags))
2234                                        set_bit(MD_RECOVERY_NEEDED,
2235                                                &rdev->mddev->recovery);
2236                        }
2237                }
2238                if (!ok) {
2239                        /* We don't worry if we cannot set a bad block -
2240                         * it really is bad so there is no loss in not
2241                         * recording it yet
2242                         */
2243                        rdev_set_badblocks(rdev, addr, s, 0);
2244
2245                        if (rdev != conf->mirrors[dw].rdev) {
2246                                /* need bad block on destination too */
2247                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2248                                addr = r10_bio->devs[1].addr + sect;
2249                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2250                                if (!ok) {
2251                                        /* just abort the recovery */
2252                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2253                                                  mdname(mddev));
2254
2255                                        conf->mirrors[dw].recovery_disabled
2256                                                = mddev->recovery_disabled;
2257                                        set_bit(MD_RECOVERY_INTR,
2258                                                &mddev->recovery);
2259                                        break;
2260                                }
2261                        }
2262                }
2263
2264                sectors -= s;
2265                sect += s;
2266                idx++;
2267        }
2268}
2269
2270static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2271{
2272        struct r10conf *conf = mddev->private;
2273        int d;
2274        struct bio *wbio, *wbio2;
2275
2276        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2277                fix_recovery_read_error(r10_bio);
2278                end_sync_request(r10_bio);
2279                return;
2280        }
2281
2282        /*
2283         * share the pages with the first bio
2284         * and submit the write request
2285         */
2286        d = r10_bio->devs[1].devnum;
2287        wbio = r10_bio->devs[1].bio;
2288        wbio2 = r10_bio->devs[1].repl_bio;
2289        /* Need to test wbio2->bi_end_io before we call
2290         * generic_make_request as if the former is NULL,
2291         * the latter is free to free wbio2.
2292         */
2293        if (wbio2 && !wbio2->bi_end_io)
2294                wbio2 = NULL;
2295        if (wbio->bi_end_io) {
2296                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2297                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2298                generic_make_request(wbio);
2299        }
2300        if (wbio2) {
2301                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2302                md_sync_acct(conf->mirrors[d].replacement->bdev,
2303                             bio_sectors(wbio2));
2304                generic_make_request(wbio2);
2305        }
2306}
2307
2308/*
2309 * Used by fix_read_error() to decay the per rdev read_errors.
2310 * We halve the read error count for every hour that has elapsed
2311 * since the last recorded read error.
2312 *
2313 */
2314static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2315{
2316        long cur_time_mon;
2317        unsigned long hours_since_last;
2318        unsigned int read_errors = atomic_read(&rdev->read_errors);
2319
2320        cur_time_mon = ktime_get_seconds();
2321
2322        if (rdev->last_read_error == 0) {
2323                /* first time we've seen a read error */
2324                rdev->last_read_error = cur_time_mon;
2325                return;
2326        }
2327
2328        hours_since_last = (long)(cur_time_mon -
2329                            rdev->last_read_error) / 3600;
2330
2331        rdev->last_read_error = cur_time_mon;
2332
2333        /*
2334         * if hours_since_last is > the number of bits in read_errors
2335         * just set read errors to 0. We do this to avoid
2336         * overflowing the shift of read_errors by hours_since_last.
2337         */
2338        if (hours_since_last >= 8 * sizeof(read_errors))
2339                atomic_set(&rdev->read_errors, 0);
2340        else
2341                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2342}
2343
2344static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2345                            int sectors, struct page *page, int rw)
2346{
2347        sector_t first_bad;
2348        int bad_sectors;
2349
2350        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2351            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2352                return -1;
2353        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2354                /* success */
2355                return 1;
2356        if (rw == WRITE) {
2357                set_bit(WriteErrorSeen, &rdev->flags);
2358                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2359                        set_bit(MD_RECOVERY_NEEDED,
2360                                &rdev->mddev->recovery);
2361        }
2362        /* need to record an error - either for the block or the device */
2363        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2364                md_error(rdev->mddev, rdev);
2365        return 0;
2366}
2367
2368/*
2369 * This is a kernel thread which:
2370 *
2371 *      1.      Retries failed read operations on working mirrors.
2372 *      2.      Updates the raid superblock when problems encounter.
2373 *      3.      Performs writes following reads for array synchronising.
2374 */
2375
2376static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2377{
2378        int sect = 0; /* Offset from r10_bio->sector */
2379        int sectors = r10_bio->sectors;
2380        struct md_rdev*rdev;
2381        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2382        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2383
2384        /* still own a reference to this rdev, so it cannot
2385         * have been cleared recently.
2386         */
2387        rdev = conf->mirrors[d].rdev;
2388
2389        if (test_bit(Faulty, &rdev->flags))
2390                /* drive has already been failed, just ignore any
2391                   more fix_read_error() attempts */
2392                return;
2393
2394        check_decay_read_errors(mddev, rdev);
2395        atomic_inc(&rdev->read_errors);
2396        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2397                char b[BDEVNAME_SIZE];
2398                bdevname(rdev->bdev, b);
2399
2400                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2401                          mdname(mddev), b,
2402                          atomic_read(&rdev->read_errors), max_read_errors);
2403                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2404                          mdname(mddev), b);
2405                md_error(mddev, rdev);
2406                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2407                return;
2408        }
2409
2410        while(sectors) {
2411                int s = sectors;
2412                int sl = r10_bio->read_slot;
2413                int success = 0;
2414                int start;
2415
2416                if (s > (PAGE_SIZE>>9))
2417                        s = PAGE_SIZE >> 9;
2418
2419                rcu_read_lock();
2420                do {
2421                        sector_t first_bad;
2422                        int bad_sectors;
2423
2424                        d = r10_bio->devs[sl].devnum;
2425                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2426                        if (rdev &&
2427                            test_bit(In_sync, &rdev->flags) &&
2428                            !test_bit(Faulty, &rdev->flags) &&
2429                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2430                                        &first_bad, &bad_sectors) == 0) {
2431                                atomic_inc(&rdev->nr_pending);
2432                                rcu_read_unlock();
2433                                success = sync_page_io(rdev,
2434                                                       r10_bio->devs[sl].addr +
2435                                                       sect,
2436                                                       s<<9,
2437                                                       conf->tmppage,
2438                                                       REQ_OP_READ, 0, false);
2439                                rdev_dec_pending(rdev, mddev);
2440                                rcu_read_lock();
2441                                if (success)
2442                                        break;
2443                        }
2444                        sl++;
2445                        if (sl == conf->copies)
2446                                sl = 0;
2447                } while (!success && sl != r10_bio->read_slot);
2448                rcu_read_unlock();
2449
2450                if (!success) {
2451                        /* Cannot read from anywhere, just mark the block
2452                         * as bad on the first device to discourage future
2453                         * reads.
2454                         */
2455                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2456                        rdev = conf->mirrors[dn].rdev;
2457
2458                        if (!rdev_set_badblocks(
2459                                    rdev,
2460                                    r10_bio->devs[r10_bio->read_slot].addr
2461                                    + sect,
2462                                    s, 0)) {
2463                                md_error(mddev, rdev);
2464                                r10_bio->devs[r10_bio->read_slot].bio
2465                                        = IO_BLOCKED;
2466                        }
2467                        break;
2468                }
2469
2470                start = sl;
2471                /* write it back and re-read */
2472                rcu_read_lock();
2473                while (sl != r10_bio->read_slot) {
2474                        char b[BDEVNAME_SIZE];
2475
2476                        if (sl==0)
2477                                sl = conf->copies;
2478                        sl--;
2479                        d = r10_bio->devs[sl].devnum;
2480                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2481                        if (!rdev ||
2482                            test_bit(Faulty, &rdev->flags) ||
2483                            !test_bit(In_sync, &rdev->flags))
2484                                continue;
2485
2486                        atomic_inc(&rdev->nr_pending);
2487                        rcu_read_unlock();
2488                        if (r10_sync_page_io(rdev,
2489                                             r10_bio->devs[sl].addr +
2490                                             sect,
2491                                             s, conf->tmppage, WRITE)
2492                            == 0) {
2493                                /* Well, this device is dead */
2494                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2495                                          mdname(mddev), s,
2496                                          (unsigned long long)(
2497                                                  sect +
2498                                                  choose_data_offset(r10_bio,
2499                                                                     rdev)),
2500                                          bdevname(rdev->bdev, b));
2501                                pr_notice("md/raid10:%s: %s: failing drive\n",
2502                                          mdname(mddev),
2503                                          bdevname(rdev->bdev, b));
2504                        }
2505                        rdev_dec_pending(rdev, mddev);
2506                        rcu_read_lock();
2507                }
2508                sl = start;
2509                while (sl != r10_bio->read_slot) {
2510                        char b[BDEVNAME_SIZE];
2511
2512                        if (sl==0)
2513                                sl = conf->copies;
2514                        sl--;
2515                        d = r10_bio->devs[sl].devnum;
2516                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2517                        if (!rdev ||
2518                            test_bit(Faulty, &rdev->flags) ||
2519                            !test_bit(In_sync, &rdev->flags))
2520                                continue;
2521
2522                        atomic_inc(&rdev->nr_pending);
2523                        rcu_read_unlock();
2524                        switch (r10_sync_page_io(rdev,
2525                                             r10_bio->devs[sl].addr +
2526                                             sect,
2527                                             s, conf->tmppage,
2528                                                 READ)) {
2529                        case 0:
2530                                /* Well, this device is dead */
2531                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2532                                       mdname(mddev), s,
2533                                       (unsigned long long)(
2534                                               sect +
2535                                               choose_data_offset(r10_bio, rdev)),
2536                                       bdevname(rdev->bdev, b));
2537                                pr_notice("md/raid10:%s: %s: failing drive\n",
2538                                       mdname(mddev),
2539                                       bdevname(rdev->bdev, b));
2540                                break;
2541                        case 1:
2542                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2543                                       mdname(mddev), s,
2544                                       (unsigned long long)(
2545                                               sect +
2546                                               choose_data_offset(r10_bio, rdev)),
2547                                       bdevname(rdev->bdev, b));
2548                                atomic_add(s, &rdev->corrected_errors);
2549                        }
2550
2551                        rdev_dec_pending(rdev, mddev);
2552                        rcu_read_lock();
2553                }
2554                rcu_read_unlock();
2555
2556                sectors -= s;
2557                sect += s;
2558        }
2559}
2560
2561static int narrow_write_error(struct r10bio *r10_bio, int i)
2562{
2563        struct bio *bio = r10_bio->master_bio;
2564        struct mddev *mddev = r10_bio->mddev;
2565        struct r10conf *conf = mddev->private;
2566        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2567        /* bio has the data to be written to slot 'i' where
2568         * we just recently had a write error.
2569         * We repeatedly clone the bio and trim down to one block,
2570         * then try the write.  Where the write fails we record
2571         * a bad block.
2572         * It is conceivable that the bio doesn't exactly align with
2573         * blocks.  We must handle this.
2574         *
2575         * We currently own a reference to the rdev.
2576         */
2577
2578        int block_sectors;
2579        sector_t sector;
2580        int sectors;
2581        int sect_to_write = r10_bio->sectors;
2582        int ok = 1;
2583
2584        if (rdev->badblocks.shift < 0)
2585                return 0;
2586
2587        block_sectors = roundup(1 << rdev->badblocks.shift,
2588                                bdev_logical_block_size(rdev->bdev) >> 9);
2589        sector = r10_bio->sector;
2590        sectors = ((r10_bio->sector + block_sectors)
2591                   & ~(sector_t)(block_sectors - 1))
2592                - sector;
2593
2594        while (sect_to_write) {
2595                struct bio *wbio;
2596                sector_t wsector;
2597                if (sectors > sect_to_write)
2598                        sectors = sect_to_write;
2599                /* Write at 'sector' for 'sectors' */
2600                wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2601                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2602                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2603                wbio->bi_iter.bi_sector = wsector +
2604                                   choose_data_offset(r10_bio, rdev);
2605                wbio->bi_bdev = rdev->bdev;
2606                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2607
2608                if (submit_bio_wait(wbio) < 0)
2609                        /* Failure! */
2610                        ok = rdev_set_badblocks(rdev, wsector,
2611                                                sectors, 0)
2612                                && ok;
2613
2614                bio_put(wbio);
2615                sect_to_write -= sectors;
2616                sector += sectors;
2617                sectors = block_sectors;
2618        }
2619        return ok;
2620}
2621
2622static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623{
2624        int slot = r10_bio->read_slot;
2625        struct bio *bio;
2626        struct r10conf *conf = mddev->private;
2627        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628        char b[BDEVNAME_SIZE];
2629        unsigned long do_sync;
2630        int max_sectors;
2631        dev_t bio_dev;
2632        sector_t bio_last_sector;
2633
2634        /* we got a read error. Maybe the drive is bad.  Maybe just
2635         * the block and we can fix it.
2636         * We freeze all other IO, and try reading the block from
2637         * other devices.  When we find one, we re-write
2638         * and check it that fixes the read error.
2639         * This is all done synchronously while the array is
2640         * frozen.
2641         */
2642        bio = r10_bio->devs[slot].bio;
2643        bdevname(bio->bi_bdev, b);
2644        bio_dev = bio->bi_bdev->bd_dev;
2645        bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2646        bio_put(bio);
2647        r10_bio->devs[slot].bio = NULL;
2648
2649        if (mddev->ro)
2650                r10_bio->devs[slot].bio = IO_BLOCKED;
2651        else if (!test_bit(FailFast, &rdev->flags)) {
2652                freeze_array(conf, 1);
2653                fix_read_error(conf, mddev, r10_bio);
2654                unfreeze_array(conf);
2655        } else
2656                md_error(mddev, rdev);
2657
2658        rdev_dec_pending(rdev, mddev);
2659
2660read_more:
2661        rdev = read_balance(conf, r10_bio, &max_sectors);
2662        if (rdev == NULL) {
2663                pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2664                                    mdname(mddev), b,
2665                                    (unsigned long long)r10_bio->sector);
2666                raid_end_bio_io(r10_bio);
2667                return;
2668        }
2669
2670        do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2671        slot = r10_bio->read_slot;
2672        pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2673                           mdname(mddev),
2674                           bdevname(rdev->bdev, b),
2675                           (unsigned long long)r10_bio->sector);
2676        bio = bio_clone_fast(r10_bio->master_bio, GFP_NOIO, mddev->bio_set);
2677        bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2678        r10_bio->devs[slot].bio = bio;
2679        r10_bio->devs[slot].rdev = rdev;
2680        bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2681                + choose_data_offset(r10_bio, rdev);
2682        bio->bi_bdev = rdev->bdev;
2683        bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2684        if (test_bit(FailFast, &rdev->flags) &&
2685            test_bit(R10BIO_FailFast, &r10_bio->state))
2686                bio->bi_opf |= MD_FAILFAST;
2687        bio->bi_private = r10_bio;
2688        bio->bi_end_io = raid10_end_read_request;
2689        trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2690                              bio, bio_dev,
2691                              bio_last_sector - r10_bio->sectors);
2692
2693        if (max_sectors < r10_bio->sectors) {
2694                /* Drat - have to split this up more */
2695                struct bio *mbio = r10_bio->master_bio;
2696                int sectors_handled =
2697                        r10_bio->sector + max_sectors
2698                        - mbio->bi_iter.bi_sector;
2699                r10_bio->sectors = max_sectors;
2700                spin_lock_irq(&conf->device_lock);
2701                if (mbio->bi_phys_segments == 0)
2702                        mbio->bi_phys_segments = 2;
2703                else
2704                        mbio->bi_phys_segments++;
2705                spin_unlock_irq(&conf->device_lock);
2706                generic_make_request(bio);
2707
2708                r10_bio = mempool_alloc(conf->r10bio_pool,
2709                                        GFP_NOIO);
2710                r10_bio->master_bio = mbio;
2711                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2712                r10_bio->state = 0;
2713                set_bit(R10BIO_ReadError,
2714                        &r10_bio->state);
2715                r10_bio->mddev = mddev;
2716                r10_bio->sector = mbio->bi_iter.bi_sector
2717                        + sectors_handled;
2718
2719                goto read_more;
2720        } else
2721                generic_make_request(bio);
2722}
2723
2724static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2725{
2726        /* Some sort of write request has finished and it
2727         * succeeded in writing where we thought there was a
2728         * bad block.  So forget the bad block.
2729         * Or possibly if failed and we need to record
2730         * a bad block.
2731         */
2732        int m;
2733        struct md_rdev *rdev;
2734
2735        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2736            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2737                for (m = 0; m < conf->copies; m++) {
2738                        int dev = r10_bio->devs[m].devnum;
2739                        rdev = conf->mirrors[dev].rdev;
2740                        if (r10_bio->devs[m].bio == NULL)
2741                                continue;
2742                        if (!r10_bio->devs[m].bio->bi_error) {
2743                                rdev_clear_badblocks(
2744                                        rdev,
2745                                        r10_bio->devs[m].addr,
2746                                        r10_bio->sectors, 0);
2747                        } else {
2748                                if (!rdev_set_badblocks(
2749                                            rdev,
2750                                            r10_bio->devs[m].addr,
2751                                            r10_bio->sectors, 0))
2752                                        md_error(conf->mddev, rdev);
2753                        }
2754                        rdev = conf->mirrors[dev].replacement;
2755                        if (r10_bio->devs[m].repl_bio == NULL)
2756                                continue;
2757
2758                        if (!r10_bio->devs[m].repl_bio->bi_error) {
2759                                rdev_clear_badblocks(
2760                                        rdev,
2761                                        r10_bio->devs[m].addr,
2762                                        r10_bio->sectors, 0);
2763                        } else {
2764                                if (!rdev_set_badblocks(
2765                                            rdev,
2766                                            r10_bio->devs[m].addr,
2767                                            r10_bio->sectors, 0))
2768                                        md_error(conf->mddev, rdev);
2769                        }
2770                }
2771                put_buf(r10_bio);
2772        } else {
2773                bool fail = false;
2774                for (m = 0; m < conf->copies; m++) {
2775                        int dev = r10_bio->devs[m].devnum;
2776                        struct bio *bio = r10_bio->devs[m].bio;
2777                        rdev = conf->mirrors[dev].rdev;
2778                        if (bio == IO_MADE_GOOD) {
2779                                rdev_clear_badblocks(
2780                                        rdev,
2781                                        r10_bio->devs[m].addr,
2782                                        r10_bio->sectors, 0);
2783                                rdev_dec_pending(rdev, conf->mddev);
2784                        } else if (bio != NULL && bio->bi_error) {
2785                                fail = true;
2786                                if (!narrow_write_error(r10_bio, m)) {
2787                                        md_error(conf->mddev, rdev);
2788                                        set_bit(R10BIO_Degraded,
2789                                                &r10_bio->state);
2790                                }
2791                                rdev_dec_pending(rdev, conf->mddev);
2792                        }
2793                        bio = r10_bio->devs[m].repl_bio;
2794                        rdev = conf->mirrors[dev].replacement;
2795                        if (rdev && bio == IO_MADE_GOOD) {
2796                                rdev_clear_badblocks(
2797                                        rdev,
2798                                        r10_bio->devs[m].addr,
2799                                        r10_bio->sectors, 0);
2800                                rdev_dec_pending(rdev, conf->mddev);
2801                        }
2802                }
2803                if (fail) {
2804                        spin_lock_irq(&conf->device_lock);
2805                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2806                        conf->nr_queued++;
2807                        spin_unlock_irq(&conf->device_lock);
2808                        md_wakeup_thread(conf->mddev->thread);
2809                } else {
2810                        if (test_bit(R10BIO_WriteError,
2811                                     &r10_bio->state))
2812                                close_write(r10_bio);
2813                        raid_end_bio_io(r10_bio);
2814                }
2815        }
2816}
2817
2818static void raid10d(struct md_thread *thread)
2819{
2820        struct mddev *mddev = thread->mddev;
2821        struct r10bio *r10_bio;
2822        unsigned long flags;
2823        struct r10conf *conf = mddev->private;
2824        struct list_head *head = &conf->retry_list;
2825        struct blk_plug plug;
2826
2827        md_check_recovery(mddev);
2828
2829        if (!list_empty_careful(&conf->bio_end_io_list) &&
2830            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2831                LIST_HEAD(tmp);
2832                spin_lock_irqsave(&conf->device_lock, flags);
2833                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2834                        while (!list_empty(&conf->bio_end_io_list)) {
2835                                list_move(conf->bio_end_io_list.prev, &tmp);
2836                                conf->nr_queued--;
2837                        }
2838                }
2839                spin_unlock_irqrestore(&conf->device_lock, flags);
2840                while (!list_empty(&tmp)) {
2841                        r10_bio = list_first_entry(&tmp, struct r10bio,
2842                                                   retry_list);
2843                        list_del(&r10_bio->retry_list);
2844                        if (mddev->degraded)
2845                                set_bit(R10BIO_Degraded, &r10_bio->state);
2846
2847                        if (test_bit(R10BIO_WriteError,
2848                                     &r10_bio->state))
2849                                close_write(r10_bio);
2850                        raid_end_bio_io(r10_bio);
2851                }
2852        }
2853
2854        blk_start_plug(&plug);
2855        for (;;) {
2856
2857                flush_pending_writes(conf);
2858
2859                spin_lock_irqsave(&conf->device_lock, flags);
2860                if (list_empty(head)) {
2861                        spin_unlock_irqrestore(&conf->device_lock, flags);
2862                        break;
2863                }
2864                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2865                list_del(head->prev);
2866                conf->nr_queued--;
2867                spin_unlock_irqrestore(&conf->device_lock, flags);
2868
2869                mddev = r10_bio->mddev;
2870                conf = mddev->private;
2871                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2872                    test_bit(R10BIO_WriteError, &r10_bio->state))
2873                        handle_write_completed(conf, r10_bio);
2874                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2875                        reshape_request_write(mddev, r10_bio);
2876                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2877                        sync_request_write(mddev, r10_bio);
2878                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2879                        recovery_request_write(mddev, r10_bio);
2880                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2881                        handle_read_error(mddev, r10_bio);
2882                else {
2883                        /* just a partial read to be scheduled from a
2884                         * separate context
2885                         */
2886                        int slot = r10_bio->read_slot;
2887                        generic_make_request(r10_bio->devs[slot].bio);
2888                }
2889
2890                cond_resched();
2891                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2892                        md_check_recovery(mddev);
2893        }
2894        blk_finish_plug(&plug);
2895}
2896
2897static int init_resync(struct r10conf *conf)
2898{
2899        int buffs;
2900        int i;
2901
2902        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2903        BUG_ON(conf->r10buf_pool);
2904        conf->have_replacement = 0;
2905        for (i = 0; i < conf->geo.raid_disks; i++)
2906                if (conf->mirrors[i].replacement)
2907                        conf->have_replacement = 1;
2908        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2909        if (!conf->r10buf_pool)
2910                return -ENOMEM;
2911        conf->next_resync = 0;
2912        return 0;
2913}
2914
2915/*
2916 * perform a "sync" on one "block"
2917 *
2918 * We need to make sure that no normal I/O request - particularly write
2919 * requests - conflict with active sync requests.
2920 *
2921 * This is achieved by tracking pending requests and a 'barrier' concept
2922 * that can be installed to exclude normal IO requests.
2923 *
2924 * Resync and recovery are handled very differently.
2925 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2926 *
2927 * For resync, we iterate over virtual addresses, read all copies,
2928 * and update if there are differences.  If only one copy is live,
2929 * skip it.
2930 * For recovery, we iterate over physical addresses, read a good
2931 * value for each non-in_sync drive, and over-write.
2932 *
2933 * So, for recovery we may have several outstanding complex requests for a
2934 * given address, one for each out-of-sync device.  We model this by allocating
2935 * a number of r10_bio structures, one for each out-of-sync device.
2936 * As we setup these structures, we collect all bio's together into a list
2937 * which we then process collectively to add pages, and then process again
2938 * to pass to generic_make_request.
2939 *
2940 * The r10_bio structures are linked using a borrowed master_bio pointer.
2941 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2942 * has its remaining count decremented to 0, the whole complex operation
2943 * is complete.
2944 *
2945 */
2946
2947static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2948                             int *skipped)
2949{
2950        struct r10conf *conf = mddev->private;
2951        struct r10bio *r10_bio;
2952        struct bio *biolist = NULL, *bio;
2953        sector_t max_sector, nr_sectors;
2954        int i;
2955        int max_sync;
2956        sector_t sync_blocks;
2957        sector_t sectors_skipped = 0;
2958        int chunks_skipped = 0;
2959        sector_t chunk_mask = conf->geo.chunk_mask;
2960
2961        if (!conf->r10buf_pool)
2962                if (init_resync(conf))
2963                        return 0;
2964
2965        /*
2966         * Allow skipping a full rebuild for incremental assembly
2967         * of a clean array, like RAID1 does.
2968         */
2969        if (mddev->bitmap == NULL &&
2970            mddev->recovery_cp == MaxSector &&
2971            mddev->reshape_position == MaxSector &&
2972            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2973            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2974            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2975            conf->fullsync == 0) {
2976                *skipped = 1;
2977                return mddev->dev_sectors - sector_nr;
2978        }
2979
2980 skipped:
2981        max_sector = mddev->dev_sectors;
2982        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2983            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2984                max_sector = mddev->resync_max_sectors;
2985        if (sector_nr >= max_sector) {
2986                /* If we aborted, we need to abort the
2987                 * sync on the 'current' bitmap chucks (there can
2988                 * be several when recovering multiple devices).
2989                 * as we may have started syncing it but not finished.
2990                 * We can find the current address in
2991                 * mddev->curr_resync, but for recovery,
2992                 * we need to convert that to several
2993                 * virtual addresses.
2994                 */
2995                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2996                        end_reshape(conf);
2997                        close_sync(conf);
2998                        return 0;
2999                }
3000
3001                if (mddev->curr_resync < max_sector) { /* aborted */
3002                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3003                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3004                                                &sync_blocks, 1);
3005                        else for (i = 0; i < conf->geo.raid_disks; i++) {
3006                                sector_t sect =
3007                                        raid10_find_virt(conf, mddev->curr_resync, i);
3008                                bitmap_end_sync(mddev->bitmap, sect,
3009                                                &sync_blocks, 1);
3010                        }
3011                } else {
3012                        /* completed sync */
3013                        if ((!mddev->bitmap || conf->fullsync)
3014                            && conf->have_replacement
3015                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3016                                /* Completed a full sync so the replacements
3017                                 * are now fully recovered.
3018                                 */
3019                                rcu_read_lock();
3020                                for (i = 0; i < conf->geo.raid_disks; i++) {
3021                                        struct md_rdev *rdev =
3022                                                rcu_dereference(conf->mirrors[i].replacement);
3023                                        if (rdev)
3024                                                rdev->recovery_offset = MaxSector;
3025                                }
3026                                rcu_read_unlock();
3027                        }
3028                        conf->fullsync = 0;
3029                }
3030                bitmap_close_sync(mddev->bitmap);
3031                close_sync(conf);
3032                *skipped = 1;
3033                return sectors_skipped;
3034        }
3035
3036        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3037                return reshape_request(mddev, sector_nr, skipped);
3038
3039        if (chunks_skipped >= conf->geo.raid_disks) {
3040                /* if there has been nothing to do on any drive,
3041                 * then there is nothing to do at all..
3042                 */
3043                *skipped = 1;
3044                return (max_sector - sector_nr) + sectors_skipped;
3045        }
3046
3047        if (max_sector > mddev->resync_max)
3048                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3049
3050        /* make sure whole request will fit in a chunk - if chunks
3051         * are meaningful
3052         */
3053        if (conf->geo.near_copies < conf->geo.raid_disks &&
3054            max_sector > (sector_nr | chunk_mask))
3055                max_sector = (sector_nr | chunk_mask) + 1;
3056
3057        /*
3058         * If there is non-resync activity waiting for a turn, then let it
3059         * though before starting on this new sync request.
3060         */
3061        if (conf->nr_waiting)
3062                schedule_timeout_uninterruptible(1);
3063
3064        /* Again, very different code for resync and recovery.
3065         * Both must result in an r10bio with a list of bios that
3066         * have bi_end_io, bi_sector, bi_bdev set,
3067         * and bi_private set to the r10bio.
3068         * For recovery, we may actually create several r10bios
3069         * with 2 bios in each, that correspond to the bios in the main one.
3070         * In this case, the subordinate r10bios link back through a
3071         * borrowed master_bio pointer, and the counter in the master
3072         * includes a ref from each subordinate.
3073         */
3074        /* First, we decide what to do and set ->bi_end_io
3075         * To end_sync_read if we want to read, and
3076         * end_sync_write if we will want to write.
3077         */
3078
3079        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3080        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3081                /* recovery... the complicated one */
3082                int j;
3083                r10_bio = NULL;
3084
3085                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3086                        int still_degraded;
3087                        struct r10bio *rb2;
3088                        sector_t sect;
3089                        int must_sync;
3090                        int any_working;
3091                        struct raid10_info *mirror = &conf->mirrors[i];
3092                        struct md_rdev *mrdev, *mreplace;
3093
3094                        rcu_read_lock();
3095                        mrdev = rcu_dereference(mirror->rdev);
3096                        mreplace = rcu_dereference(mirror->replacement);
3097
3098                        if ((mrdev == NULL ||
3099                             test_bit(Faulty, &mrdev->flags) ||
3100                             test_bit(In_sync, &mrdev->flags)) &&
3101                            (mreplace == NULL ||
3102                             test_bit(Faulty, &mreplace->flags))) {
3103                                rcu_read_unlock();
3104                                continue;
3105                        }
3106
3107                        still_degraded = 0;
3108                        /* want to reconstruct this device */
3109                        rb2 = r10_bio;
3110                        sect = raid10_find_virt(conf, sector_nr, i);
3111                        if (sect >= mddev->resync_max_sectors) {
3112                                /* last stripe is not complete - don't
3113                                 * try to recover this sector.
3114                                 */
3115                                rcu_read_unlock();
3116                                continue;
3117                        }
3118                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3119                                mreplace = NULL;
3120                        /* Unless we are doing a full sync, or a replacement
3121                         * we only need to recover the block if it is set in
3122                         * the bitmap
3123                         */
3124                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3125                                                      &sync_blocks, 1);
3126                        if (sync_blocks < max_sync)
3127                                max_sync = sync_blocks;
3128                        if (!must_sync &&
3129                            mreplace == NULL &&
3130                            !conf->fullsync) {
3131                                /* yep, skip the sync_blocks here, but don't assume
3132                                 * that there will never be anything to do here
3133                                 */
3134                                chunks_skipped = -1;
3135                                rcu_read_unlock();
3136                                continue;
3137                        }
3138                        atomic_inc(&mrdev->nr_pending);
3139                        if (mreplace)
3140                                atomic_inc(&mreplace->nr_pending);
3141                        rcu_read_unlock();
3142
3143                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3144                        r10_bio->state = 0;
3145                        raise_barrier(conf, rb2 != NULL);
3146                        atomic_set(&r10_bio->remaining, 0);
3147
3148                        r10_bio->master_bio = (struct bio*)rb2;
3149                        if (rb2)
3150                                atomic_inc(&rb2->remaining);
3151                        r10_bio->mddev = mddev;
3152                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3153                        r10_bio->sector = sect;
3154
3155                        raid10_find_phys(conf, r10_bio);
3156
3157                        /* Need to check if the array will still be
3158                         * degraded
3159                         */
3160                        rcu_read_lock();
3161                        for (j = 0; j < conf->geo.raid_disks; j++) {
3162                                struct md_rdev *rdev = rcu_dereference(
3163                                        conf->mirrors[j].rdev);
3164                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3165                                        still_degraded = 1;
3166                                        break;
3167                                }
3168                        }
3169
3170                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3171                                                      &sync_blocks, still_degraded);
3172
3173                        any_working = 0;
3174                        for (j=0; j<conf->copies;j++) {
3175                                int k;
3176                                int d = r10_bio->devs[j].devnum;
3177                                sector_t from_addr, to_addr;
3178                                struct md_rdev *rdev =
3179                                        rcu_dereference(conf->mirrors[d].rdev);
3180                                sector_t sector, first_bad;
3181                                int bad_sectors;
3182                                if (!rdev ||
3183                                    !test_bit(In_sync, &rdev->flags))
3184                                        continue;
3185                                /* This is where we read from */
3186                                any_working = 1;
3187                                sector = r10_bio->devs[j].addr;
3188
3189                                if (is_badblock(rdev, sector, max_sync,
3190                                                &first_bad, &bad_sectors)) {
3191                                        if (first_bad > sector)
3192                                                max_sync = first_bad - sector;
3193                                        else {
3194                                                bad_sectors -= (sector
3195                                                                - first_bad);
3196                                                if (max_sync > bad_sectors)
3197                                                        max_sync = bad_sectors;
3198                                                continue;
3199                                        }
3200                                }
3201                                bio = r10_bio->devs[0].bio;
3202                                bio_reset(bio);
3203                                bio->bi_next = biolist;
3204                                biolist = bio;
3205                                bio->bi_private = r10_bio;
3206                                bio->bi_end_io = end_sync_read;
3207                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3208                                if (test_bit(FailFast, &rdev->flags))
3209                                        bio->bi_opf |= MD_FAILFAST;
3210                                from_addr = r10_bio->devs[j].addr;
3211                                bio->bi_iter.bi_sector = from_addr +
3212                                        rdev->data_offset;
3213                                bio->bi_bdev = rdev->bdev;
3214                                atomic_inc(&rdev->nr_pending);
3215                                /* and we write to 'i' (if not in_sync) */
3216
3217                                for (k=0; k<conf->copies; k++)
3218                                        if (r10_bio->devs[k].devnum == i)
3219                                                break;
3220                                BUG_ON(k == conf->copies);
3221                                to_addr = r10_bio->devs[k].addr;
3222                                r10_bio->devs[0].devnum = d;
3223                                r10_bio->devs[0].addr = from_addr;
3224                                r10_bio->devs[1].devnum = i;
3225                                r10_bio->devs[1].addr = to_addr;
3226
3227                                if (!test_bit(In_sync, &mrdev->flags)) {
3228                                        bio = r10_bio->devs[1].bio;
3229                                        bio_reset(bio);
3230                                        bio->bi_next = biolist;
3231                                        biolist = bio;
3232                                        bio->bi_private = r10_bio;
3233                                        bio->bi_end_io = end_sync_write;
3234                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3235                                        bio->bi_iter.bi_sector = to_addr
3236                                                + mrdev->data_offset;
3237                                        bio->bi_bdev = mrdev->bdev;
3238                                        atomic_inc(&r10_bio->remaining);
3239                                } else
3240                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3241
3242                                /* and maybe write to replacement */
3243                                bio = r10_bio->devs[1].repl_bio;
3244                                if (bio)
3245                                        bio->bi_end_io = NULL;
3246                                /* Note: if mreplace != NULL, then bio
3247                                 * cannot be NULL as r10buf_pool_alloc will
3248                                 * have allocated it.
3249                                 * So the second test here is pointless.
3250                                 * But it keeps semantic-checkers happy, and
3251                                 * this comment keeps human reviewers
3252                                 * happy.
3253                                 */
3254                                if (mreplace == NULL || bio == NULL ||
3255                                    test_bit(Faulty, &mreplace->flags))
3256                                        break;
3257                                bio_reset(bio);
3258                                bio->bi_next = biolist;
3259                                biolist = bio;
3260                                bio->bi_private = r10_bio;
3261                                bio->bi_end_io = end_sync_write;
3262                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3263                                bio->bi_iter.bi_sector = to_addr +
3264                                        mreplace->data_offset;
3265                                bio->bi_bdev = mreplace->bdev;
3266                                atomic_inc(&r10_bio->remaining);
3267                                break;
3268                        }
3269                        rcu_read_unlock();
3270                        if (j == conf->copies) {
3271                                /* Cannot recover, so abort the recovery or
3272                                 * record a bad block */
3273                                if (any_working) {
3274                                        /* problem is that there are bad blocks
3275                                         * on other device(s)
3276                                         */
3277                                        int k;
3278                                        for (k = 0; k < conf->copies; k++)
3279                                                if (r10_bio->devs[k].devnum == i)
3280                                                        break;
3281                                        if (!test_bit(In_sync,
3282                                                      &mrdev->flags)
3283                                            && !rdev_set_badblocks(
3284                                                    mrdev,
3285                                                    r10_bio->devs[k].addr,
3286                                                    max_sync, 0))
3287                                                any_working = 0;
3288                                        if (mreplace &&
3289                                            !rdev_set_badblocks(
3290                                                    mreplace,
3291                                                    r10_bio->devs[k].addr,
3292                                                    max_sync, 0))
3293                                                any_working = 0;
3294                                }
3295                                if (!any_working)  {
3296                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3297                                                              &mddev->recovery))
3298                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3299                                                       mdname(mddev));
3300                                        mirror->recovery_disabled
3301                                                = mddev->recovery_disabled;
3302                                }
3303                                put_buf(r10_bio);
3304                                if (rb2)
3305                                        atomic_dec(&rb2->remaining);
3306                                r10_bio = rb2;
3307                                rdev_dec_pending(mrdev, mddev);
3308                                if (mreplace)
3309                                        rdev_dec_pending(mreplace, mddev);
3310                                break;
3311                        }
3312                        rdev_dec_pending(mrdev, mddev);
3313                        if (mreplace)
3314                                rdev_dec_pending(mreplace, mddev);
3315                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3316                                /* Only want this if there is elsewhere to
3317                                 * read from. 'j' is currently the first
3318                                 * readable copy.
3319                                 */
3320                                int targets = 1;
3321                                for (; j < conf->copies; j++) {
3322                                        int d = r10_bio->devs[j].devnum;
3323                                        if (conf->mirrors[d].rdev &&
3324                                            test_bit(In_sync,
3325                                                      &conf->mirrors[d].rdev->flags))
3326                                                targets++;
3327                                }
3328                                if (targets == 1)
3329                                        r10_bio->devs[0].bio->bi_opf
3330                                                &= ~MD_FAILFAST;
3331                        }
3332                }
3333                if (biolist == NULL) {
3334                        while (r10_bio) {
3335                                struct r10bio *rb2 = r10_bio;
3336                                r10_bio = (struct r10bio*) rb2->master_bio;
3337                                rb2->master_bio = NULL;
3338                                put_buf(rb2);
3339                        }
3340                        goto giveup;
3341                }
3342        } else {
3343                /* resync. Schedule a read for every block at this virt offset */
3344                int count = 0;
3345
3346                bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3347
3348                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3349                                       &sync_blocks, mddev->degraded) &&
3350                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3351                                                 &mddev->recovery)) {
3352                        /* We can skip this block */
3353                        *skipped = 1;
3354                        return sync_blocks + sectors_skipped;
3355                }
3356                if (sync_blocks < max_sync)
3357                        max_sync = sync_blocks;
3358                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3359                r10_bio->state = 0;
3360
3361                r10_bio->mddev = mddev;
3362                atomic_set(&r10_bio->remaining, 0);
3363                raise_barrier(conf, 0);
3364                conf->next_resync = sector_nr;
3365
3366                r10_bio->master_bio = NULL;
3367                r10_bio->sector = sector_nr;
3368                set_bit(R10BIO_IsSync, &r10_bio->state);
3369                raid10_find_phys(conf, r10_bio);
3370                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3371
3372                for (i = 0; i < conf->copies; i++) {
3373                        int d = r10_bio->devs[i].devnum;
3374                        sector_t first_bad, sector;
3375                        int bad_sectors;
3376                        struct md_rdev *rdev;
3377
3378                        if (r10_bio->devs[i].repl_bio)
3379                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3380
3381                        bio = r10_bio->devs[i].bio;
3382                        bio_reset(bio);
3383                        bio->bi_error = -EIO;
3384                        rcu_read_lock();
3385                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3386                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3387                                rcu_read_unlock();
3388                                continue;
3389                        }
3390                        sector = r10_bio->devs[i].addr;
3391                        if (is_badblock(rdev, sector, max_sync,
3392                                        &first_bad, &bad_sectors)) {
3393                                if (first_bad > sector)
3394                                        max_sync = first_bad - sector;
3395                                else {
3396                                        bad_sectors -= (sector - first_bad);
3397                                        if (max_sync > bad_sectors)
3398                                                max_sync = bad_sectors;
3399                                        rcu_read_unlock();
3400                                        continue;
3401                                }
3402                        }
3403                        atomic_inc(&rdev->nr_pending);
3404                        atomic_inc(&r10_bio->remaining);
3405                        bio->bi_next = biolist;
3406                        biolist = bio;
3407                        bio->bi_private = r10_bio;
3408                        bio->bi_end_io = end_sync_read;
3409                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3410                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3411                                bio->bi_opf |= MD_FAILFAST;
3412                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413                        bio->bi_bdev = rdev->bdev;
3414                        count++;
3415
3416                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3417                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3418                                rcu_read_unlock();
3419                                continue;
3420                        }
3421                        atomic_inc(&rdev->nr_pending);
3422                        rcu_read_unlock();
3423
3424                        /* Need to set up for writing to the replacement */
3425                        bio = r10_bio->devs[i].repl_bio;
3426                        bio_reset(bio);
3427                        bio->bi_error = -EIO;
3428
3429                        sector = r10_bio->devs[i].addr;
3430                        bio->bi_next = biolist;
3431                        biolist = bio;
3432                        bio->bi_private = r10_bio;
3433                        bio->bi_end_io = end_sync_write;
3434                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3435                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3436                                bio->bi_opf |= MD_FAILFAST;
3437                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3438                        bio->bi_bdev = rdev->bdev;
3439                        count++;
3440                }
3441
3442                if (count < 2) {
3443                        for (i=0; i<conf->copies; i++) {
3444                                int d = r10_bio->devs[i].devnum;
3445                                if (r10_bio->devs[i].bio->bi_end_io)
3446                                        rdev_dec_pending(conf->mirrors[d].rdev,
3447                                                         mddev);
3448                                if (r10_bio->devs[i].repl_bio &&
3449                                    r10_bio->devs[i].repl_bio->bi_end_io)
3450                                        rdev_dec_pending(
3451                                                conf->mirrors[d].replacement,
3452                                                mddev);
3453                        }
3454                        put_buf(r10_bio);
3455                        biolist = NULL;
3456                        goto giveup;
3457                }
3458        }
3459
3460        nr_sectors = 0;
3461        if (sector_nr + max_sync < max_sector)
3462                max_sector = sector_nr + max_sync;
3463        do {
3464                struct page *page;
3465                int len = PAGE_SIZE;
3466                if (sector_nr + (len>>9) > max_sector)
3467                        len = (max_sector - sector_nr) << 9;
3468                if (len == 0)
3469                        break;
3470                for (bio= biolist ; bio ; bio=bio->bi_next) {
3471                        struct bio *bio2;
3472                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3473                        if (bio_add_page(bio, page, len, 0))
3474                                continue;
3475
3476                        /* stop here */
3477                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3478                        for (bio2 = biolist;
3479                             bio2 && bio2 != bio;
3480                             bio2 = bio2->bi_next) {
3481                                /* remove last page from this bio */
3482                                bio2->bi_vcnt--;
3483                                bio2->bi_iter.bi_size -= len;
3484                                bio_clear_flag(bio2, BIO_SEG_VALID);
3485                        }
3486                        goto bio_full;
3487                }
3488                nr_sectors += len>>9;
3489                sector_nr += len>>9;
3490        } while (biolist->bi_vcnt < RESYNC_PAGES);
3491 bio_full:
3492        r10_bio->sectors = nr_sectors;
3493
3494        while (biolist) {
3495                bio = biolist;
3496                biolist = biolist->bi_next;
3497
3498                bio->bi_next = NULL;
3499                r10_bio = bio->bi_private;
3500                r10_bio->sectors = nr_sectors;
3501
3502                if (bio->bi_end_io == end_sync_read) {
3503                        md_sync_acct(bio->bi_bdev, nr_sectors);
3504                        bio->bi_error = 0;
3505                        generic_make_request(bio);
3506                }
3507        }
3508
3509        if (sectors_skipped)
3510                /* pretend they weren't skipped, it makes
3511                 * no important difference in this case
3512                 */
3513                md_done_sync(mddev, sectors_skipped, 1);
3514
3515        return sectors_skipped + nr_sectors;
3516 giveup:
3517        /* There is nowhere to write, so all non-sync
3518         * drives must be failed or in resync, all drives
3519         * have a bad block, so try the next chunk...
3520         */
3521        if (sector_nr + max_sync < max_sector)
3522                max_sector = sector_nr + max_sync;
3523
3524        sectors_skipped += (max_sector - sector_nr);
3525        chunks_skipped ++;
3526        sector_nr = max_sector;
3527        goto skipped;
3528}
3529
3530static sector_t
3531raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3532{
3533        sector_t size;
3534        struct r10conf *conf = mddev->private;
3535
3536        if (!raid_disks)
3537                raid_disks = min(conf->geo.raid_disks,
3538                                 conf->prev.raid_disks);
3539        if (!sectors)
3540                sectors = conf->dev_sectors;
3541
3542        size = sectors >> conf->geo.chunk_shift;
3543        sector_div(size, conf->geo.far_copies);
3544        size = size * raid_disks;
3545        sector_div(size, conf->geo.near_copies);
3546
3547        return size << conf->geo.chunk_shift;
3548}
3549
3550static void calc_sectors(struct r10conf *conf, sector_t size)
3551{
3552        /* Calculate the number of sectors-per-device that will
3553         * actually be used, and set conf->dev_sectors and
3554         * conf->stride
3555         */
3556
3557        size = size >> conf->geo.chunk_shift;
3558        sector_div(size, conf->geo.far_copies);
3559        size = size * conf->geo.raid_disks;
3560        sector_div(size, conf->geo.near_copies);
3561        /* 'size' is now the number of chunks in the array */
3562        /* calculate "used chunks per device" */
3563        size = size * conf->copies;
3564
3565        /* We need to round up when dividing by raid_disks to
3566         * get the stride size.
3567         */
3568        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3569
3570        conf->dev_sectors = size << conf->geo.chunk_shift;
3571
3572        if (conf->geo.far_offset)
3573                conf->geo.stride = 1 << conf->geo.chunk_shift;
3574        else {
3575                sector_div(size, conf->geo.far_copies);
3576                conf->geo.stride = size << conf->geo.chunk_shift;
3577        }
3578}
3579
3580enum geo_type {geo_new, geo_old, geo_start};
3581static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3582{
3583        int nc, fc, fo;
3584        int layout, chunk, disks;
3585        switch (new) {
3586        case geo_old:
3587                layout = mddev->layout;
3588                chunk = mddev->chunk_sectors;
3589                disks = mddev->raid_disks - mddev->delta_disks;
3590                break;
3591        case geo_new:
3592                layout = mddev->new_layout;
3593                chunk = mddev->new_chunk_sectors;
3594                disks = mddev->raid_disks;
3595                break;
3596        default: /* avoid 'may be unused' warnings */
3597        case geo_start: /* new when starting reshape - raid_disks not
3598                         * updated yet. */
3599                layout = mddev->new_layout;
3600                chunk = mddev->new_chunk_sectors;
3601                disks = mddev->raid_disks + mddev->delta_disks;
3602                break;
3603        }
3604        if (layout >> 19)
3605                return -1;
3606        if (chunk < (PAGE_SIZE >> 9) ||
3607            !is_power_of_2(chunk))
3608                return -2;
3609        nc = layout & 255;
3610        fc = (layout >> 8) & 255;
3611        fo = layout & (1<<16);
3612        geo->raid_disks = disks;
3613        geo->near_copies = nc;
3614        geo->far_copies = fc;
3615        geo->far_offset = fo;
3616        switch (layout >> 17) {
3617        case 0: /* original layout.  simple but not always optimal */
3618                geo->far_set_size = disks;
3619                break;
3620        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3621                 * actually using this, but leave code here just in case.*/
3622                geo->far_set_size = disks/fc;
3623                WARN(geo->far_set_size < fc,
3624                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3625                break;
3626        case 2: /* "improved" layout fixed to match documentation */
3627                geo->far_set_size = fc * nc;
3628                break;
3629        default: /* Not a valid layout */
3630                return -1;
3631        }
3632        geo->chunk_mask = chunk - 1;
3633        geo->chunk_shift = ffz(~chunk);
3634        return nc*fc;
3635}
3636
3637static struct r10conf *setup_conf(struct mddev *mddev)
3638{
3639        struct r10conf *conf = NULL;
3640        int err = -EINVAL;
3641        struct geom geo;
3642        int copies;
3643
3644        copies = setup_geo(&geo, mddev, geo_new);
3645
3646        if (copies == -2) {
3647                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3648                        mdname(mddev), PAGE_SIZE);
3649                goto out;
3650        }
3651
3652        if (copies < 2 || copies > mddev->raid_disks) {
3653                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3654                        mdname(mddev), mddev->new_layout);
3655                goto out;
3656        }
3657
3658        err = -ENOMEM;
3659        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3660        if (!conf)
3661                goto out;
3662
3663        /* FIXME calc properly */
3664        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3665                                                            max(0,-mddev->delta_disks)),
3666                                GFP_KERNEL);
3667        if (!conf->mirrors)
3668                goto out;
3669
3670        conf->tmppage = alloc_page(GFP_KERNEL);
3671        if (!conf->tmppage)
3672                goto out;
3673
3674        conf->geo = geo;
3675        conf->copies = copies;
3676        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3677                                           r10bio_pool_free, conf);
3678        if (!conf->r10bio_pool)
3679                goto out;
3680
3681        calc_sectors(conf, mddev->dev_sectors);
3682        if (mddev->reshape_position == MaxSector) {
3683                conf->prev = conf->geo;
3684                conf->reshape_progress = MaxSector;
3685        } else {
3686                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3687                        err = -EINVAL;
3688                        goto out;
3689                }
3690                conf->reshape_progress = mddev->reshape_position;
3691                if (conf->prev.far_offset)
3692                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3693                else
3694                        /* far_copies must be 1 */
3695                        conf->prev.stride = conf->dev_sectors;
3696        }
3697        conf->reshape_safe = conf->reshape_progress;
3698        spin_lock_init(&conf->device_lock);
3699        INIT_LIST_HEAD(&conf->retry_list);
3700        INIT_LIST_HEAD(&conf->bio_end_io_list);
3701
3702        spin_lock_init(&conf->resync_lock);
3703        init_waitqueue_head(&conf->wait_barrier);
3704        atomic_set(&conf->nr_pending, 0);
3705
3706        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707        if (!conf->thread)
3708                goto out;
3709
3710        conf->mddev = mddev;
3711        return conf;
3712
3713 out:
3714        if (conf) {
3715                mempool_destroy(conf->r10bio_pool);
3716                kfree(conf->mirrors);
3717                safe_put_page(conf->tmppage);
3718                kfree(conf);
3719        }
3720        return ERR_PTR(err);
3721}
3722
3723static int raid10_run(struct mddev *mddev)
3724{
3725        struct r10conf *conf;
3726        int i, disk_idx, chunk_size;
3727        struct raid10_info *disk;
3728        struct md_rdev *rdev;
3729        sector_t size;
3730        sector_t min_offset_diff = 0;
3731        int first = 1;
3732        bool discard_supported = false;
3733
3734        if (mddev->private == NULL) {
3735                conf = setup_conf(mddev);
3736                if (IS_ERR(conf))
3737                        return PTR_ERR(conf);
3738                mddev->private = conf;
3739        }
3740        conf = mddev->private;
3741        if (!conf)
3742                goto out;
3743
3744        mddev->thread = conf->thread;
3745        conf->thread = NULL;
3746
3747        chunk_size = mddev->chunk_sectors << 9;
3748        if (mddev->queue) {
3749                blk_queue_max_discard_sectors(mddev->queue,
3750                                              mddev->chunk_sectors);
3751                blk_queue_max_write_same_sectors(mddev->queue, 0);
3752                blk_queue_io_min(mddev->queue, chunk_size);
3753                if (conf->geo.raid_disks % conf->geo.near_copies)
3754                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3755                else
3756                        blk_queue_io_opt(mddev->queue, chunk_size *
3757                                         (conf->geo.raid_disks / conf->geo.near_copies));
3758        }
3759
3760        rdev_for_each(rdev, mddev) {
3761                long long diff;
3762                struct request_queue *q;
3763
3764                disk_idx = rdev->raid_disk;
3765                if (disk_idx < 0)
3766                        continue;
3767                if (disk_idx >= conf->geo.raid_disks &&
3768                    disk_idx >= conf->prev.raid_disks)
3769                        continue;
3770                disk = conf->mirrors + disk_idx;
3771
3772                if (test_bit(Replacement, &rdev->flags)) {
3773                        if (disk->replacement)
3774                                goto out_free_conf;
3775                        disk->replacement = rdev;
3776                } else {
3777                        if (disk->rdev)
3778                                goto out_free_conf;
3779                        disk->rdev = rdev;
3780                }
3781                q = bdev_get_queue(rdev->bdev);
3782                diff = (rdev->new_data_offset - rdev->data_offset);
3783                if (!mddev->reshape_backwards)
3784                        diff = -diff;
3785                if (diff < 0)
3786                        diff = 0;
3787                if (first || diff < min_offset_diff)
3788                        min_offset_diff = diff;
3789
3790                if (mddev->gendisk)
3791                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3792                                          rdev->data_offset << 9);
3793
3794                disk->head_position = 0;
3795
3796                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3797                        discard_supported = true;
3798        }
3799
3800        if (mddev->queue) {
3801                if (discard_supported)
3802                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3803                                                mddev->queue);
3804                else
3805                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3806                                                  mddev->queue);
3807        }
3808        /* need to check that every block has at least one working mirror */
3809        if (!enough(conf, -1)) {
3810                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3811                       mdname(mddev));
3812                goto out_free_conf;
3813        }
3814
3815        if (conf->reshape_progress != MaxSector) {
3816                /* must ensure that shape change is supported */
3817                if (conf->geo.far_copies != 1 &&
3818                    conf->geo.far_offset == 0)
3819                        goto out_free_conf;
3820                if (conf->prev.far_copies != 1 &&
3821                    conf->prev.far_offset == 0)
3822                        goto out_free_conf;
3823        }
3824
3825        mddev->degraded = 0;
3826        for (i = 0;
3827             i < conf->geo.raid_disks
3828                     || i < conf->prev.raid_disks;
3829             i++) {
3830
3831                disk = conf->mirrors + i;
3832
3833                if (!disk->rdev && disk->replacement) {
3834                        /* The replacement is all we have - use it */
3835                        disk->rdev = disk->replacement;
3836                        disk->replacement = NULL;
3837                        clear_bit(Replacement, &disk->rdev->flags);
3838                }
3839
3840                if (!disk->rdev ||
3841                    !test_bit(In_sync, &disk->rdev->flags)) {
3842                        disk->head_position = 0;
3843                        mddev->degraded++;
3844                        if (disk->rdev &&
3845                            disk->rdev->saved_raid_disk < 0)
3846                                conf->fullsync = 1;
3847                }
3848                disk->recovery_disabled = mddev->recovery_disabled - 1;
3849        }
3850
3851        if (mddev->recovery_cp != MaxSector)
3852                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3853                          mdname(mddev));
3854        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3855                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3856                conf->geo.raid_disks);
3857        /*
3858         * Ok, everything is just fine now
3859         */
3860        mddev->dev_sectors = conf->dev_sectors;
3861        size = raid10_size(mddev, 0, 0);
3862        md_set_array_sectors(mddev, size);
3863        mddev->resync_max_sectors = size;
3864        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3865
3866        if (mddev->queue) {
3867                int stripe = conf->geo.raid_disks *
3868                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3869
3870                /* Calculate max read-ahead size.
3871                 * We need to readahead at least twice a whole stripe....
3872                 * maybe...
3873                 */
3874                stripe /= conf->geo.near_copies;
3875                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3876                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3877        }
3878
3879        if (md_integrity_register(mddev))
3880                goto out_free_conf;
3881
3882        if (conf->reshape_progress != MaxSector) {
3883                unsigned long before_length, after_length;
3884
3885                before_length = ((1 << conf->prev.chunk_shift) *
3886                                 conf->prev.far_copies);
3887                after_length = ((1 << conf->geo.chunk_shift) *
3888                                conf->geo.far_copies);
3889
3890                if (max(before_length, after_length) > min_offset_diff) {
3891                        /* This cannot work */
3892                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3893                        goto out_free_conf;
3894                }
3895                conf->offset_diff = min_offset_diff;
3896
3897                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3898                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3899                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3900                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3901                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3902                                                        "reshape");
3903        }
3904
3905        return 0;
3906
3907out_free_conf:
3908        md_unregister_thread(&mddev->thread);
3909        mempool_destroy(conf->r10bio_pool);
3910        safe_put_page(conf->tmppage);
3911        kfree(conf->mirrors);
3912        kfree(conf);
3913        mddev->private = NULL;
3914out:
3915        return -EIO;
3916}
3917
3918static void raid10_free(struct mddev *mddev, void *priv)
3919{
3920        struct r10conf *conf = priv;
3921
3922        mempool_destroy(conf->r10bio_pool);
3923        safe_put_page(conf->tmppage);
3924        kfree(conf->mirrors);
3925        kfree(conf->mirrors_old);
3926        kfree(conf->mirrors_new);
3927        kfree(conf);
3928}
3929
3930static void raid10_quiesce(struct mddev *mddev, int state)
3931{
3932        struct r10conf *conf = mddev->private;
3933
3934        switch(state) {
3935        case 1:
3936                raise_barrier(conf, 0);
3937                break;
3938        case 0:
3939                lower_barrier(conf);
3940                break;
3941        }
3942}
3943
3944static int raid10_resize(struct mddev *mddev, sector_t sectors)
3945{
3946        /* Resize of 'far' arrays is not supported.
3947         * For 'near' and 'offset' arrays we can set the
3948         * number of sectors used to be an appropriate multiple
3949         * of the chunk size.
3950         * For 'offset', this is far_copies*chunksize.
3951         * For 'near' the multiplier is the LCM of
3952         * near_copies and raid_disks.
3953         * So if far_copies > 1 && !far_offset, fail.
3954         * Else find LCM(raid_disks, near_copy)*far_copies and
3955         * multiply by chunk_size.  Then round to this number.
3956         * This is mostly done by raid10_size()
3957         */
3958        struct r10conf *conf = mddev->private;
3959        sector_t oldsize, size;
3960
3961        if (mddev->reshape_position != MaxSector)
3962                return -EBUSY;
3963
3964        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3965                return -EINVAL;
3966
3967        oldsize = raid10_size(mddev, 0, 0);
3968        size = raid10_size(mddev, sectors, 0);
3969        if (mddev->external_size &&
3970            mddev->array_sectors > size)
3971                return -EINVAL;
3972        if (mddev->bitmap) {
3973                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3974                if (ret)
3975                        return ret;
3976        }
3977        md_set_array_sectors(mddev, size);
3978        if (sectors > mddev->dev_sectors &&
3979            mddev->recovery_cp > oldsize) {
3980                mddev->recovery_cp = oldsize;
3981                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3982        }
3983        calc_sectors(conf, sectors);
3984        mddev->dev_sectors = conf->dev_sectors;
3985        mddev->resync_max_sectors = size;
3986        return 0;
3987}
3988
3989static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3990{
3991        struct md_rdev *rdev;
3992        struct r10conf *conf;
3993
3994        if (mddev->degraded > 0) {
3995                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3996                        mdname(mddev));
3997                return ERR_PTR(-EINVAL);
3998        }
3999        sector_div(size, devs);
4000
4001        /* Set new parameters */
4002        mddev->new_level = 10;
4003        /* new layout: far_copies = 1, near_copies = 2 */
4004        mddev->new_layout = (1<<8) + 2;
4005        mddev->new_chunk_sectors = mddev->chunk_sectors;
4006        mddev->delta_disks = mddev->raid_disks;
4007        mddev->raid_disks *= 2;
4008        /* make sure it will be not marked as dirty */
4009        mddev->recovery_cp = MaxSector;
4010        mddev->dev_sectors = size;
4011
4012        conf = setup_conf(mddev);
4013        if (!IS_ERR(conf)) {
4014                rdev_for_each(rdev, mddev)
4015                        if (rdev->raid_disk >= 0) {
4016                                rdev->new_raid_disk = rdev->raid_disk * 2;
4017                                rdev->sectors = size;
4018                        }
4019                conf->barrier = 1;
4020        }
4021
4022        return conf;
4023}
4024
4025static void *raid10_takeover(struct mddev *mddev)
4026{
4027        struct r0conf *raid0_conf;
4028
4029        /* raid10 can take over:
4030         *  raid0 - providing it has only two drives
4031         */
4032        if (mddev->level == 0) {
4033                /* for raid0 takeover only one zone is supported */
4034                raid0_conf = mddev->private;
4035                if (raid0_conf->nr_strip_zones > 1) {
4036                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4037                                mdname(mddev));
4038                        return ERR_PTR(-EINVAL);
4039                }
4040                return raid10_takeover_raid0(mddev,
4041                        raid0_conf->strip_zone->zone_end,
4042                        raid0_conf->strip_zone->nb_dev);
4043        }
4044        return ERR_PTR(-EINVAL);
4045}
4046
4047static int raid10_check_reshape(struct mddev *mddev)
4048{
4049        /* Called when there is a request to change
4050         * - layout (to ->new_layout)
4051         * - chunk size (to ->new_chunk_sectors)
4052         * - raid_disks (by delta_disks)
4053         * or when trying to restart a reshape that was ongoing.
4054         *
4055         * We need to validate the request and possibly allocate
4056         * space if that might be an issue later.
4057         *
4058         * Currently we reject any reshape of a 'far' mode array,
4059         * allow chunk size to change if new is generally acceptable,
4060         * allow raid_disks to increase, and allow
4061         * a switch between 'near' mode and 'offset' mode.
4062         */
4063        struct r10conf *conf = mddev->private;
4064        struct geom geo;
4065
4066        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4067                return -EINVAL;
4068
4069        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4070                /* mustn't change number of copies */
4071                return -EINVAL;
4072        if (geo.far_copies > 1 && !geo.far_offset)
4073                /* Cannot switch to 'far' mode */
4074                return -EINVAL;
4075
4076        if (mddev->array_sectors & geo.chunk_mask)
4077                        /* not factor of array size */
4078                        return -EINVAL;
4079
4080        if (!enough(conf, -1))
4081                return -EINVAL;
4082
4083        kfree(conf->mirrors_new);
4084        conf->mirrors_new = NULL;
4085        if (mddev->delta_disks > 0) {
4086                /* allocate new 'mirrors' list */
4087                conf->mirrors_new = kzalloc(
4088                        sizeof(struct raid10_info)
4089                        *(mddev->raid_disks +
4090                          mddev->delta_disks),
4091                        GFP_KERNEL);
4092                if (!conf->mirrors_new)
4093                        return -ENOMEM;
4094        }
4095        return 0;
4096}
4097
4098/*
4099 * Need to check if array has failed when deciding whether to:
4100 *  - start an array
4101 *  - remove non-faulty devices
4102 *  - add a spare
4103 *  - allow a reshape
4104 * This determination is simple when no reshape is happening.
4105 * However if there is a reshape, we need to carefully check
4106 * both the before and after sections.
4107 * This is because some failed devices may only affect one
4108 * of the two sections, and some non-in_sync devices may
4109 * be insync in the section most affected by failed devices.
4110 */
4111static int calc_degraded(struct r10conf *conf)
4112{
4113        int degraded, degraded2;
4114        int i;
4115
4116        rcu_read_lock();
4117        degraded = 0;
4118        /* 'prev' section first */
4119        for (i = 0; i < conf->prev.raid_disks; i++) {
4120                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4121                if (!rdev || test_bit(Faulty, &rdev->flags))
4122                        degraded++;
4123                else if (!test_bit(In_sync, &rdev->flags))
4124                        /* When we can reduce the number of devices in
4125                         * an array, this might not contribute to
4126                         * 'degraded'.  It does now.
4127                         */
4128                        degraded++;
4129        }
4130        rcu_read_unlock();
4131        if (conf->geo.raid_disks == conf->prev.raid_disks)
4132                return degraded;
4133        rcu_read_lock();
4134        degraded2 = 0;
4135        for (i = 0; i < conf->geo.raid_disks; i++) {
4136                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4137                if (!rdev || test_bit(Faulty, &rdev->flags))
4138                        degraded2++;
4139                else if (!test_bit(In_sync, &rdev->flags)) {
4140                        /* If reshape is increasing the number of devices,
4141                         * this section has already been recovered, so
4142                         * it doesn't contribute to degraded.
4143                         * else it does.
4144                         */
4145                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4146                                degraded2++;
4147                }
4148        }
4149        rcu_read_unlock();
4150        if (degraded2 > degraded)
4151                return degraded2;
4152        return degraded;
4153}
4154
4155static int raid10_start_reshape(struct mddev *mddev)
4156{
4157        /* A 'reshape' has been requested. This commits
4158         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4159         * This also checks if there are enough spares and adds them
4160         * to the array.
4161         * We currently require enough spares to make the final
4162         * array non-degraded.  We also require that the difference
4163         * between old and new data_offset - on each device - is
4164         * enough that we never risk over-writing.
4165         */
4166
4167        unsigned long before_length, after_length;
4168        sector_t min_offset_diff = 0;
4169        int first = 1;
4170        struct geom new;
4171        struct r10conf *conf = mddev->private;
4172        struct md_rdev *rdev;
4173        int spares = 0;
4174        int ret;
4175
4176        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4177                return -EBUSY;
4178
4179        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4180                return -EINVAL;
4181
4182        before_length = ((1 << conf->prev.chunk_shift) *
4183                         conf->prev.far_copies);
4184        after_length = ((1 << conf->geo.chunk_shift) *
4185                        conf->geo.far_copies);
4186
4187        rdev_for_each(rdev, mddev) {
4188                if (!test_bit(In_sync, &rdev->flags)
4189                    && !test_bit(Faulty, &rdev->flags))
4190                        spares++;
4191                if (rdev->raid_disk >= 0) {
4192                        long long diff = (rdev->new_data_offset
4193                                          - rdev->data_offset);
4194                        if (!mddev->reshape_backwards)
4195                                diff = -diff;
4196                        if (diff < 0)
4197                                diff = 0;
4198                        if (first || diff < min_offset_diff)
4199                                min_offset_diff = diff;
4200                }
4201        }
4202
4203        if (max(before_length, after_length) > min_offset_diff)
4204                return -EINVAL;
4205
4206        if (spares < mddev->delta_disks)
4207                return -EINVAL;
4208
4209        conf->offset_diff = min_offset_diff;
4210        spin_lock_irq(&conf->device_lock);
4211        if (conf->mirrors_new) {
4212                memcpy(conf->mirrors_new, conf->mirrors,
4213                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4214                smp_mb();
4215                kfree(conf->mirrors_old);
4216                conf->mirrors_old = conf->mirrors;
4217                conf->mirrors = conf->mirrors_new;
4218                conf->mirrors_new = NULL;
4219        }
4220        setup_geo(&conf->geo, mddev, geo_start);
4221        smp_mb();
4222        if (mddev->reshape_backwards) {
4223                sector_t size = raid10_size(mddev, 0, 0);
4224                if (size < mddev->array_sectors) {
4225                        spin_unlock_irq(&conf->device_lock);
4226                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4227                                mdname(mddev));
4228                        return -EINVAL;
4229                }
4230                mddev->resync_max_sectors = size;
4231                conf->reshape_progress = size;
4232        } else
4233                conf->reshape_progress = 0;
4234        conf->reshape_safe = conf->reshape_progress;
4235        spin_unlock_irq(&conf->device_lock);
4236
4237        if (mddev->delta_disks && mddev->bitmap) {
4238                ret = bitmap_resize(mddev->bitmap,
4239                                    raid10_size(mddev, 0,
4240                                                conf->geo.raid_disks),
4241                                    0, 0);
4242                if (ret)
4243                        goto abort;
4244        }
4245        if (mddev->delta_disks > 0) {
4246                rdev_for_each(rdev, mddev)
4247                        if (rdev->raid_disk < 0 &&
4248                            !test_bit(Faulty, &rdev->flags)) {
4249                                if (raid10_add_disk(mddev, rdev) == 0) {
4250                                        if (rdev->raid_disk >=
4251                                            conf->prev.raid_disks)
4252                                                set_bit(In_sync, &rdev->flags);
4253                                        else
4254                                                rdev->recovery_offset = 0;
4255
4256                                        if (sysfs_link_rdev(mddev, rdev))
4257                                                /* Failure here  is OK */;
4258                                }
4259                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4260                                   && !test_bit(Faulty, &rdev->flags)) {
4261                                /* This is a spare that was manually added */
4262                                set_bit(In_sync, &rdev->flags);
4263                        }
4264        }
4265        /* When a reshape changes the number of devices,
4266         * ->degraded is measured against the larger of the
4267         * pre and  post numbers.
4268         */
4269        spin_lock_irq(&conf->device_lock);
4270        mddev->degraded = calc_degraded(conf);
4271        spin_unlock_irq(&conf->device_lock);
4272        mddev->raid_disks = conf->geo.raid_disks;
4273        mddev->reshape_position = conf->reshape_progress;
4274        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4275
4276        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4277        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4278        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4279        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4280        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4281
4282        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4283                                                "reshape");
4284        if (!mddev->sync_thread) {
4285                ret = -EAGAIN;
4286                goto abort;
4287        }
4288        conf->reshape_checkpoint = jiffies;
4289        md_wakeup_thread(mddev->sync_thread);
4290        md_new_event(mddev);
4291        return 0;
4292
4293abort:
4294        mddev->recovery = 0;
4295        spin_lock_irq(&conf->device_lock);
4296        conf->geo = conf->prev;
4297        mddev->raid_disks = conf->geo.raid_disks;
4298        rdev_for_each(rdev, mddev)
4299                rdev->new_data_offset = rdev->data_offset;
4300        smp_wmb();
4301        conf->reshape_progress = MaxSector;
4302        conf->reshape_safe = MaxSector;
4303        mddev->reshape_position = MaxSector;
4304        spin_unlock_irq(&conf->device_lock);
4305        return ret;
4306}
4307
4308/* Calculate the last device-address that could contain
4309 * any block from the chunk that includes the array-address 's'
4310 * and report the next address.
4311 * i.e. the address returned will be chunk-aligned and after
4312 * any data that is in the chunk containing 's'.
4313 */
4314static sector_t last_dev_address(sector_t s, struct geom *geo)
4315{
4316        s = (s | geo->chunk_mask) + 1;
4317        s >>= geo->chunk_shift;
4318        s *= geo->near_copies;
4319        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4320        s *= geo->far_copies;
4321        s <<= geo->chunk_shift;
4322        return s;
4323}
4324
4325/* Calculate the first device-address that could contain
4326 * any block from the chunk that includes the array-address 's'.
4327 * This too will be the start of a chunk
4328 */
4329static sector_t first_dev_address(sector_t s, struct geom *geo)
4330{
4331        s >>= geo->chunk_shift;
4332        s *= geo->near_copies;
4333        sector_div(s, geo->raid_disks);
4334        s *= geo->far_copies;
4335        s <<= geo->chunk_shift;
4336        return s;
4337}
4338
4339static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4340                                int *skipped)
4341{
4342        /* We simply copy at most one chunk (smallest of old and new)
4343         * at a time, possibly less if that exceeds RESYNC_PAGES,
4344         * or we hit a bad block or something.
4345         * This might mean we pause for normal IO in the middle of
4346         * a chunk, but that is not a problem as mddev->reshape_position
4347         * can record any location.
4348         *
4349         * If we will want to write to a location that isn't
4350         * yet recorded as 'safe' (i.e. in metadata on disk) then
4351         * we need to flush all reshape requests and update the metadata.
4352         *
4353         * When reshaping forwards (e.g. to more devices), we interpret
4354         * 'safe' as the earliest block which might not have been copied
4355         * down yet.  We divide this by previous stripe size and multiply
4356         * by previous stripe length to get lowest device offset that we
4357         * cannot write to yet.
4358         * We interpret 'sector_nr' as an address that we want to write to.
4359         * From this we use last_device_address() to find where we might
4360         * write to, and first_device_address on the  'safe' position.
4361         * If this 'next' write position is after the 'safe' position,
4362         * we must update the metadata to increase the 'safe' position.
4363         *
4364         * When reshaping backwards, we round in the opposite direction
4365         * and perform the reverse test:  next write position must not be
4366         * less than current safe position.
4367         *
4368         * In all this the minimum difference in data offsets
4369         * (conf->offset_diff - always positive) allows a bit of slack,
4370         * so next can be after 'safe', but not by more than offset_diff
4371         *
4372         * We need to prepare all the bios here before we start any IO
4373         * to ensure the size we choose is acceptable to all devices.
4374         * The means one for each copy for write-out and an extra one for
4375         * read-in.
4376         * We store the read-in bio in ->master_bio and the others in
4377         * ->devs[x].bio and ->devs[x].repl_bio.
4378         */
4379        struct r10conf *conf = mddev->private;
4380        struct r10bio *r10_bio;
4381        sector_t next, safe, last;
4382        int max_sectors;
4383        int nr_sectors;
4384        int s;
4385        struct md_rdev *rdev;
4386        int need_flush = 0;
4387        struct bio *blist;
4388        struct bio *bio, *read_bio;
4389        int sectors_done = 0;
4390
4391        if (sector_nr == 0) {
4392                /* If restarting in the middle, skip the initial sectors */
4393                if (mddev->reshape_backwards &&
4394                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4395                        sector_nr = (raid10_size(mddev, 0, 0)
4396                                     - conf->reshape_progress);
4397                } else if (!mddev->reshape_backwards &&
4398                           conf->reshape_progress > 0)
4399                        sector_nr = conf->reshape_progress;
4400                if (sector_nr) {
4401                        mddev->curr_resync_completed = sector_nr;
4402                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4403                        *skipped = 1;
4404                        return sector_nr;
4405                }
4406        }
4407
4408        /* We don't use sector_nr to track where we are up to
4409         * as that doesn't work well for ->reshape_backwards.
4410         * So just use ->reshape_progress.
4411         */
4412        if (mddev->reshape_backwards) {
4413                /* 'next' is the earliest device address that we might
4414                 * write to for this chunk in the new layout
4415                 */
4416                next = first_dev_address(conf->reshape_progress - 1,
4417                                         &conf->geo);
4418
4419                /* 'safe' is the last device address that we might read from
4420                 * in the old layout after a restart
4421                 */
4422                safe = last_dev_address(conf->reshape_safe - 1,
4423                                        &conf->prev);
4424
4425                if (next + conf->offset_diff < safe)
4426                        need_flush = 1;
4427
4428                last = conf->reshape_progress - 1;
4429                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4430                                               & conf->prev.chunk_mask);
4431                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4432                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4433        } else {
4434                /* 'next' is after the last device address that we
4435                 * might write to for this chunk in the new layout
4436                 */
4437                next = last_dev_address(conf->reshape_progress, &conf->geo);
4438
4439                /* 'safe' is the earliest device address that we might
4440                 * read from in the old layout after a restart
4441                 */
4442                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4443
4444                /* Need to update metadata if 'next' might be beyond 'safe'
4445                 * as that would possibly corrupt data
4446                 */
4447                if (next > safe + conf->offset_diff)
4448                        need_flush = 1;
4449
4450                sector_nr = conf->reshape_progress;
4451                last  = sector_nr | (conf->geo.chunk_mask
4452                                     & conf->prev.chunk_mask);
4453
4454                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4455                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4456        }
4457
4458        if (need_flush ||
4459            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4460                /* Need to update reshape_position in metadata */
4461                wait_barrier(conf);
4462                mddev->reshape_position = conf->reshape_progress;
4463                if (mddev->reshape_backwards)
4464                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4465                                - conf->reshape_progress;
4466                else
4467                        mddev->curr_resync_completed = conf->reshape_progress;
4468                conf->reshape_checkpoint = jiffies;
4469                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4470                md_wakeup_thread(mddev->thread);
4471                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4472                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4473                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4474                        allow_barrier(conf);
4475                        return sectors_done;
4476                }
4477                conf->reshape_safe = mddev->reshape_position;
4478                allow_barrier(conf);
4479        }
4480
4481read_more:
4482        /* Now schedule reads for blocks from sector_nr to last */
4483        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4484        r10_bio->state = 0;
4485        raise_barrier(conf, sectors_done != 0);
4486        atomic_set(&r10_bio->remaining, 0);
4487        r10_bio->mddev = mddev;
4488        r10_bio->sector = sector_nr;
4489        set_bit(R10BIO_IsReshape, &r10_bio->state);
4490        r10_bio->sectors = last - sector_nr + 1;
4491        rdev = read_balance(conf, r10_bio, &max_sectors);
4492        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4493
4494        if (!rdev) {
4495                /* Cannot read from here, so need to record bad blocks
4496                 * on all the target devices.
4497                 */
4498                // FIXME
4499                mempool_free(r10_bio, conf->r10buf_pool);
4500                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4501                return sectors_done;
4502        }
4503
4504        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4505
4506        read_bio->bi_bdev = rdev->bdev;
4507        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4508                               + rdev->data_offset);
4509        read_bio->bi_private = r10_bio;
4510        read_bio->bi_end_io = end_sync_read;
4511        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4512        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4513        read_bio->bi_error = 0;
4514        read_bio->bi_vcnt = 0;
4515        read_bio->bi_iter.bi_size = 0;
4516        r10_bio->master_bio = read_bio;
4517        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4518
4519        /* Now find the locations in the new layout */
4520        __raid10_find_phys(&conf->geo, r10_bio);
4521
4522        blist = read_bio;
4523        read_bio->bi_next = NULL;
4524
4525        rcu_read_lock();
4526        for (s = 0; s < conf->copies*2; s++) {
4527                struct bio *b;
4528                int d = r10_bio->devs[s/2].devnum;
4529                struct md_rdev *rdev2;
4530                if (s&1) {
4531                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4532                        b = r10_bio->devs[s/2].repl_bio;
4533                } else {
4534                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4535                        b = r10_bio->devs[s/2].bio;
4536                }
4537                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4538                        continue;
4539
4540                bio_reset(b);
4541                b->bi_bdev = rdev2->bdev;
4542                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4543                        rdev2->new_data_offset;
4544                b->bi_private = r10_bio;
4545                b->bi_end_io = end_reshape_write;
4546                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4547                b->bi_next = blist;
4548                blist = b;
4549        }
4550
4551        /* Now add as many pages as possible to all of these bios. */
4552
4553        nr_sectors = 0;
4554        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4555                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4556                int len = (max_sectors - s) << 9;
4557                if (len > PAGE_SIZE)
4558                        len = PAGE_SIZE;
4559                for (bio = blist; bio ; bio = bio->bi_next) {
4560                        struct bio *bio2;
4561                        if (bio_add_page(bio, page, len, 0))
4562                                continue;
4563
4564                        /* Didn't fit, must stop */
4565                        for (bio2 = blist;
4566                             bio2 && bio2 != bio;
4567                             bio2 = bio2->bi_next) {
4568                                /* Remove last page from this bio */
4569                                bio2->bi_vcnt--;
4570                                bio2->bi_iter.bi_size -= len;
4571                                bio_clear_flag(bio2, BIO_SEG_VALID);
4572                        }
4573                        goto bio_full;
4574                }
4575                sector_nr += len >> 9;
4576                nr_sectors += len >> 9;
4577        }
4578bio_full:
4579        rcu_read_unlock();
4580        r10_bio->sectors = nr_sectors;
4581
4582        /* Now submit the read */
4583        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4584        atomic_inc(&r10_bio->remaining);
4585        read_bio->bi_next = NULL;
4586        generic_make_request(read_bio);
4587        sector_nr += nr_sectors;
4588        sectors_done += nr_sectors;
4589        if (sector_nr <= last)
4590                goto read_more;
4591
4592        /* Now that we have done the whole section we can
4593         * update reshape_progress
4594         */
4595        if (mddev->reshape_backwards)
4596                conf->reshape_progress -= sectors_done;
4597        else
4598                conf->reshape_progress += sectors_done;
4599
4600        return sectors_done;
4601}
4602
4603static void end_reshape_request(struct r10bio *r10_bio);
4604static int handle_reshape_read_error(struct mddev *mddev,
4605                                     struct r10bio *r10_bio);
4606static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4607{
4608        /* Reshape read completed.  Hopefully we have a block
4609         * to write out.
4610         * If we got a read error then we do sync 1-page reads from
4611         * elsewhere until we find the data - or give up.
4612         */
4613        struct r10conf *conf = mddev->private;
4614        int s;
4615
4616        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4617                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4618                        /* Reshape has been aborted */
4619                        md_done_sync(mddev, r10_bio->sectors, 0);
4620                        return;
4621                }
4622
4623        /* We definitely have the data in the pages, schedule the
4624         * writes.
4625         */
4626        atomic_set(&r10_bio->remaining, 1);
4627        for (s = 0; s < conf->copies*2; s++) {
4628                struct bio *b;
4629                int d = r10_bio->devs[s/2].devnum;
4630                struct md_rdev *rdev;
4631                rcu_read_lock();
4632                if (s&1) {
4633                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4634                        b = r10_bio->devs[s/2].repl_bio;
4635                } else {
4636                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4637                        b = r10_bio->devs[s/2].bio;
4638                }
4639                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4640                        rcu_read_unlock();
4641                        continue;
4642                }
4643                atomic_inc(&rdev->nr_pending);
4644                rcu_read_unlock();
4645                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4646                atomic_inc(&r10_bio->remaining);
4647                b->bi_next = NULL;
4648                generic_make_request(b);
4649        }
4650        end_reshape_request(r10_bio);
4651}
4652
4653static void end_reshape(struct r10conf *conf)
4654{
4655        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4656                return;
4657
4658        spin_lock_irq(&conf->device_lock);
4659        conf->prev = conf->geo;
4660        md_finish_reshape(conf->mddev);
4661        smp_wmb();
4662        conf->reshape_progress = MaxSector;
4663        conf->reshape_safe = MaxSector;
4664        spin_unlock_irq(&conf->device_lock);
4665
4666        /* read-ahead size must cover two whole stripes, which is
4667         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4668         */
4669        if (conf->mddev->queue) {
4670                int stripe = conf->geo.raid_disks *
4671                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4672                stripe /= conf->geo.near_copies;
4673                if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4674                        conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4675        }
4676        conf->fullsync = 0;
4677}
4678
4679static int handle_reshape_read_error(struct mddev *mddev,
4680                                     struct r10bio *r10_bio)
4681{
4682        /* Use sync reads to get the blocks from somewhere else */
4683        int sectors = r10_bio->sectors;
4684        struct r10conf *conf = mddev->private;
4685        struct {
4686                struct r10bio r10_bio;
4687                struct r10dev devs[conf->copies];
4688        } on_stack;
4689        struct r10bio *r10b = &on_stack.r10_bio;
4690        int slot = 0;
4691        int idx = 0;
4692        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4693
4694        r10b->sector = r10_bio->sector;
4695        __raid10_find_phys(&conf->prev, r10b);
4696
4697        while (sectors) {
4698                int s = sectors;
4699                int success = 0;
4700                int first_slot = slot;
4701
4702                if (s > (PAGE_SIZE >> 9))
4703                        s = PAGE_SIZE >> 9;
4704
4705                rcu_read_lock();
4706                while (!success) {
4707                        int d = r10b->devs[slot].devnum;
4708                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4709                        sector_t addr;
4710                        if (rdev == NULL ||
4711                            test_bit(Faulty, &rdev->flags) ||
4712                            !test_bit(In_sync, &rdev->flags))
4713                                goto failed;
4714
4715                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4716                        atomic_inc(&rdev->nr_pending);
4717                        rcu_read_unlock();
4718                        success = sync_page_io(rdev,
4719                                               addr,
4720                                               s << 9,
4721                                               bvec[idx].bv_page,
4722                                               REQ_OP_READ, 0, false);
4723                        rdev_dec_pending(rdev, mddev);
4724                        rcu_read_lock();
4725                        if (success)
4726                                break;
4727                failed:
4728                        slot++;
4729                        if (slot >= conf->copies)
4730                                slot = 0;
4731                        if (slot == first_slot)
4732                                break;
4733                }
4734                rcu_read_unlock();
4735                if (!success) {
4736                        /* couldn't read this block, must give up */
4737                        set_bit(MD_RECOVERY_INTR,
4738                                &mddev->recovery);
4739                        return -EIO;
4740                }
4741                sectors -= s;
4742                idx++;
4743        }
4744        return 0;
4745}
4746
4747static void end_reshape_write(struct bio *bio)
4748{
4749        struct r10bio *r10_bio = bio->bi_private;
4750        struct mddev *mddev = r10_bio->mddev;
4751        struct r10conf *conf = mddev->private;
4752        int d;
4753        int slot;
4754        int repl;
4755        struct md_rdev *rdev = NULL;
4756
4757        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4758        if (repl)
4759                rdev = conf->mirrors[d].replacement;
4760        if (!rdev) {
4761                smp_mb();
4762                rdev = conf->mirrors[d].rdev;
4763        }
4764
4765        if (bio->bi_error) {
4766                /* FIXME should record badblock */
4767                md_error(mddev, rdev);
4768        }
4769
4770        rdev_dec_pending(rdev, mddev);
4771        end_reshape_request(r10_bio);
4772}
4773
4774static void end_reshape_request(struct r10bio *r10_bio)
4775{
4776        if (!atomic_dec_and_test(&r10_bio->remaining))
4777                return;
4778        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4779        bio_put(r10_bio->master_bio);
4780        put_buf(r10_bio);
4781}
4782
4783static void raid10_finish_reshape(struct mddev *mddev)
4784{
4785        struct r10conf *conf = mddev->private;
4786
4787        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4788                return;
4789
4790        if (mddev->delta_disks > 0) {
4791                sector_t size = raid10_size(mddev, 0, 0);
4792                md_set_array_sectors(mddev, size);
4793                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4794                        mddev->recovery_cp = mddev->resync_max_sectors;
4795                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4796                }
4797                mddev->resync_max_sectors = size;
4798                if (mddev->queue) {
4799                        set_capacity(mddev->gendisk, mddev->array_sectors);
4800                        revalidate_disk(mddev->gendisk);
4801                }
4802        } else {
4803                int d;
4804                rcu_read_lock();
4805                for (d = conf->geo.raid_disks ;
4806                     d < conf->geo.raid_disks - mddev->delta_disks;
4807                     d++) {
4808                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4809                        if (rdev)
4810                                clear_bit(In_sync, &rdev->flags);
4811                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4812                        if (rdev)
4813                                clear_bit(In_sync, &rdev->flags);
4814                }
4815                rcu_read_unlock();
4816        }
4817        mddev->layout = mddev->new_layout;
4818        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4819        mddev->reshape_position = MaxSector;
4820        mddev->delta_disks = 0;
4821        mddev->reshape_backwards = 0;
4822}
4823
4824static struct md_personality raid10_personality =
4825{
4826        .name           = "raid10",
4827        .level          = 10,
4828        .owner          = THIS_MODULE,
4829        .make_request   = raid10_make_request,
4830        .run            = raid10_run,
4831        .free           = raid10_free,
4832        .status         = raid10_status,
4833        .error_handler  = raid10_error,
4834        .hot_add_disk   = raid10_add_disk,
4835        .hot_remove_disk= raid10_remove_disk,
4836        .spare_active   = raid10_spare_active,
4837        .sync_request   = raid10_sync_request,
4838        .quiesce        = raid10_quiesce,
4839        .size           = raid10_size,
4840        .resize         = raid10_resize,
4841        .takeover       = raid10_takeover,
4842        .check_reshape  = raid10_check_reshape,
4843        .start_reshape  = raid10_start_reshape,
4844        .finish_reshape = raid10_finish_reshape,
4845        .congested      = raid10_congested,
4846};
4847
4848static int __init raid_init(void)
4849{
4850        return register_md_personality(&raid10_personality);
4851}
4852
4853static void raid_exit(void)
4854{
4855        unregister_md_personality(&raid10_personality);
4856}
4857
4858module_init(raid_init);
4859module_exit(raid_exit);
4860MODULE_LICENSE("GPL");
4861MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4862MODULE_ALIAS("md-personality-9"); /* RAID10 */
4863MODULE_ALIAS("md-raid10");
4864MODULE_ALIAS("md-level-10");
4865
4866module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4867