linux/drivers/md/raid5-cache.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 */
  15#include <linux/kernel.h>
  16#include <linux/wait.h>
  17#include <linux/blkdev.h>
  18#include <linux/slab.h>
  19#include <linux/raid/md_p.h>
  20#include <linux/crc32c.h>
  21#include <linux/random.h>
  22#include <linux/kthread.h>
  23#include <linux/types.h>
  24#include "md.h"
  25#include "raid5.h"
  26#include "bitmap.h"
  27
  28/*
  29 * metadata/data stored in disk with 4k size unit (a block) regardless
  30 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  31 */
  32#define BLOCK_SECTORS (8)
  33
  34/*
  35 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
  36 *
  37 * In write through mode, the reclaim runs every log->max_free_space.
  38 * This can prevent the recovery scans for too long
  39 */
  40#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  41#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  42
  43/* wake up reclaim thread periodically */
  44#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
  45/* start flush with these full stripes */
  46#define R5C_FULL_STRIPE_FLUSH_BATCH 256
  47/* reclaim stripes in groups */
  48#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
  49
  50/*
  51 * We only need 2 bios per I/O unit to make progress, but ensure we
  52 * have a few more available to not get too tight.
  53 */
  54#define R5L_POOL_SIZE   4
  55
  56/*
  57 * r5c journal modes of the array: write-back or write-through.
  58 * write-through mode has identical behavior as existing log only
  59 * implementation.
  60 */
  61enum r5c_journal_mode {
  62        R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
  63        R5C_JOURNAL_MODE_WRITE_BACK = 1,
  64};
  65
  66static char *r5c_journal_mode_str[] = {"write-through",
  67                                       "write-back"};
  68/*
  69 * raid5 cache state machine
  70 *
  71 * With the RAID cache, each stripe works in two phases:
  72 *      - caching phase
  73 *      - writing-out phase
  74 *
  75 * These two phases are controlled by bit STRIPE_R5C_CACHING:
  76 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
  77 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
  78 *
  79 * When there is no journal, or the journal is in write-through mode,
  80 * the stripe is always in writing-out phase.
  81 *
  82 * For write-back journal, the stripe is sent to caching phase on write
  83 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
  84 * the write-out phase by clearing STRIPE_R5C_CACHING.
  85 *
  86 * Stripes in caching phase do not write the raid disks. Instead, all
  87 * writes are committed from the log device. Therefore, a stripe in
  88 * caching phase handles writes as:
  89 *      - write to log device
  90 *      - return IO
  91 *
  92 * Stripes in writing-out phase handle writes as:
  93 *      - calculate parity
  94 *      - write pending data and parity to journal
  95 *      - write data and parity to raid disks
  96 *      - return IO for pending writes
  97 */
  98
  99struct r5l_log {
 100        struct md_rdev *rdev;
 101
 102        u32 uuid_checksum;
 103
 104        sector_t device_size;           /* log device size, round to
 105                                         * BLOCK_SECTORS */
 106        sector_t max_free_space;        /* reclaim run if free space is at
 107                                         * this size */
 108
 109        sector_t last_checkpoint;       /* log tail. where recovery scan
 110                                         * starts from */
 111        u64 last_cp_seq;                /* log tail sequence */
 112
 113        sector_t log_start;             /* log head. where new data appends */
 114        u64 seq;                        /* log head sequence */
 115
 116        sector_t next_checkpoint;
 117
 118        struct mutex io_mutex;
 119        struct r5l_io_unit *current_io; /* current io_unit accepting new data */
 120
 121        spinlock_t io_list_lock;
 122        struct list_head running_ios;   /* io_units which are still running,
 123                                         * and have not yet been completely
 124                                         * written to the log */
 125        struct list_head io_end_ios;    /* io_units which have been completely
 126                                         * written to the log but not yet written
 127                                         * to the RAID */
 128        struct list_head flushing_ios;  /* io_units which are waiting for log
 129                                         * cache flush */
 130        struct list_head finished_ios;  /* io_units which settle down in log disk */
 131        struct bio flush_bio;
 132
 133        struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 134
 135        struct kmem_cache *io_kc;
 136        mempool_t *io_pool;
 137        struct bio_set *bs;
 138        mempool_t *meta_pool;
 139
 140        struct md_thread *reclaim_thread;
 141        unsigned long reclaim_target;   /* number of space that need to be
 142                                         * reclaimed.  if it's 0, reclaim spaces
 143                                         * used by io_units which are in
 144                                         * IO_UNIT_STRIPE_END state (eg, reclaim
 145                                         * dones't wait for specific io_unit
 146                                         * switching to IO_UNIT_STRIPE_END
 147                                         * state) */
 148        wait_queue_head_t iounit_wait;
 149
 150        struct list_head no_space_stripes; /* pending stripes, log has no space */
 151        spinlock_t no_space_stripes_lock;
 152
 153        bool need_cache_flush;
 154
 155        /* for r5c_cache */
 156        enum r5c_journal_mode r5c_journal_mode;
 157
 158        /* all stripes in r5cache, in the order of seq at sh->log_start */
 159        struct list_head stripe_in_journal_list;
 160
 161        spinlock_t stripe_in_journal_lock;
 162        atomic_t stripe_in_journal_count;
 163
 164        /* to submit async io_units, to fulfill ordering of flush */
 165        struct work_struct deferred_io_work;
 166        /* to disable write back during in degraded mode */
 167        struct work_struct disable_writeback_work;
 168
 169        /* to for chunk_aligned_read in writeback mode, details below */
 170        spinlock_t tree_lock;
 171        struct radix_tree_root big_stripe_tree;
 172};
 173
 174/*
 175 * Enable chunk_aligned_read() with write back cache.
 176 *
 177 * Each chunk may contain more than one stripe (for example, a 256kB
 178 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 179 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 180 * For each big_stripe, we count how many stripes of this big_stripe
 181 * are in the write back cache. These data are tracked in a radix tree
 182 * (big_stripe_tree). We use radix_tree item pointer as the counter.
 183 * r5c_tree_index() is used to calculate keys for the radix tree.
 184 *
 185 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 186 * big_stripe of each chunk in the tree. If this big_stripe is in the
 187 * tree, chunk_aligned_read() aborts. This look up is protected by
 188 * rcu_read_lock().
 189 *
 190 * It is necessary to remember whether a stripe is counted in
 191 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 192 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 193 * two flags are set, the stripe is counted in big_stripe_tree. This
 194 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 195 * r5c_try_caching_write(); and moving clear_bit of
 196 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 197 * r5c_finish_stripe_write_out().
 198 */
 199
 200/*
 201 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 202 * So it is necessary to left shift the counter by 2 bits before using it
 203 * as data pointer of the tree.
 204 */
 205#define R5C_RADIX_COUNT_SHIFT 2
 206
 207/*
 208 * calculate key for big_stripe_tree
 209 *
 210 * sect: align_bi->bi_iter.bi_sector or sh->sector
 211 */
 212static inline sector_t r5c_tree_index(struct r5conf *conf,
 213                                      sector_t sect)
 214{
 215        sector_t offset;
 216
 217        offset = sector_div(sect, conf->chunk_sectors);
 218        return sect;
 219}
 220
 221/*
 222 * an IO range starts from a meta data block and end at the next meta data
 223 * block. The io unit's the meta data block tracks data/parity followed it. io
 224 * unit is written to log disk with normal write, as we always flush log disk
 225 * first and then start move data to raid disks, there is no requirement to
 226 * write io unit with FLUSH/FUA
 227 */
 228struct r5l_io_unit {
 229        struct r5l_log *log;
 230
 231        struct page *meta_page; /* store meta block */
 232        int meta_offset;        /* current offset in meta_page */
 233
 234        struct bio *current_bio;/* current_bio accepting new data */
 235
 236        atomic_t pending_stripe;/* how many stripes not flushed to raid */
 237        u64 seq;                /* seq number of the metablock */
 238        sector_t log_start;     /* where the io_unit starts */
 239        sector_t log_end;       /* where the io_unit ends */
 240        struct list_head log_sibling; /* log->running_ios */
 241        struct list_head stripe_list; /* stripes added to the io_unit */
 242
 243        int state;
 244        bool need_split_bio;
 245        struct bio *split_bio;
 246
 247        unsigned int has_flush:1;      /* include flush request */
 248        unsigned int has_fua:1;        /* include fua request */
 249        unsigned int has_null_flush:1; /* include empty flush request */
 250        /*
 251         * io isn't sent yet, flush/fua request can only be submitted till it's
 252         * the first IO in running_ios list
 253         */
 254        unsigned int io_deferred:1;
 255
 256        struct bio_list flush_barriers;   /* size == 0 flush bios */
 257};
 258
 259/* r5l_io_unit state */
 260enum r5l_io_unit_state {
 261        IO_UNIT_RUNNING = 0,    /* accepting new IO */
 262        IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
 263                                 * don't accepting new bio */
 264        IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
 265        IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
 266};
 267
 268bool r5c_is_writeback(struct r5l_log *log)
 269{
 270        return (log != NULL &&
 271                log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 272}
 273
 274static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 275{
 276        start += inc;
 277        if (start >= log->device_size)
 278                start = start - log->device_size;
 279        return start;
 280}
 281
 282static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 283                                  sector_t end)
 284{
 285        if (end >= start)
 286                return end - start;
 287        else
 288                return end + log->device_size - start;
 289}
 290
 291static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 292{
 293        sector_t used_size;
 294
 295        used_size = r5l_ring_distance(log, log->last_checkpoint,
 296                                        log->log_start);
 297
 298        return log->device_size > used_size + size;
 299}
 300
 301static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 302                                    enum r5l_io_unit_state state)
 303{
 304        if (WARN_ON(io->state >= state))
 305                return;
 306        io->state = state;
 307}
 308
 309static void
 310r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
 311                              struct bio_list *return_bi)
 312{
 313        struct bio *wbi, *wbi2;
 314
 315        wbi = dev->written;
 316        dev->written = NULL;
 317        while (wbi && wbi->bi_iter.bi_sector <
 318               dev->sector + STRIPE_SECTORS) {
 319                wbi2 = r5_next_bio(wbi, dev->sector);
 320                if (!raid5_dec_bi_active_stripes(wbi)) {
 321                        md_write_end(conf->mddev);
 322                        bio_list_add(return_bi, wbi);
 323                }
 324                wbi = wbi2;
 325        }
 326}
 327
 328void r5c_handle_cached_data_endio(struct r5conf *conf,
 329          struct stripe_head *sh, int disks, struct bio_list *return_bi)
 330{
 331        int i;
 332
 333        for (i = sh->disks; i--; ) {
 334                if (sh->dev[i].written) {
 335                        set_bit(R5_UPTODATE, &sh->dev[i].flags);
 336                        r5c_return_dev_pending_writes(conf, &sh->dev[i],
 337                                                      return_bi);
 338                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 339                                        STRIPE_SECTORS,
 340                                        !test_bit(STRIPE_DEGRADED, &sh->state),
 341                                        0);
 342                }
 343        }
 344}
 345
 346/* Check whether we should flush some stripes to free up stripe cache */
 347void r5c_check_stripe_cache_usage(struct r5conf *conf)
 348{
 349        int total_cached;
 350
 351        if (!r5c_is_writeback(conf->log))
 352                return;
 353
 354        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 355                atomic_read(&conf->r5c_cached_full_stripes);
 356
 357        /*
 358         * The following condition is true for either of the following:
 359         *   - stripe cache pressure high:
 360         *          total_cached > 3/4 min_nr_stripes ||
 361         *          empty_inactive_list_nr > 0
 362         *   - stripe cache pressure moderate:
 363         *          total_cached > 1/2 min_nr_stripes
 364         */
 365        if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 366            atomic_read(&conf->empty_inactive_list_nr) > 0)
 367                r5l_wake_reclaim(conf->log, 0);
 368}
 369
 370/*
 371 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 372 * stripes in the cache
 373 */
 374void r5c_check_cached_full_stripe(struct r5conf *conf)
 375{
 376        if (!r5c_is_writeback(conf->log))
 377                return;
 378
 379        /*
 380         * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 381         * or a full stripe (chunk size / 4k stripes).
 382         */
 383        if (atomic_read(&conf->r5c_cached_full_stripes) >=
 384            min(R5C_FULL_STRIPE_FLUSH_BATCH,
 385                conf->chunk_sectors >> STRIPE_SHIFT))
 386                r5l_wake_reclaim(conf->log, 0);
 387}
 388
 389/*
 390 * Total log space (in sectors) needed to flush all data in cache
 391 *
 392 * To avoid deadlock due to log space, it is necessary to reserve log
 393 * space to flush critical stripes (stripes that occupying log space near
 394 * last_checkpoint). This function helps check how much log space is
 395 * required to flush all cached stripes.
 396 *
 397 * To reduce log space requirements, two mechanisms are used to give cache
 398 * flush higher priorities:
 399 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 400 *       stripes ALREADY in journal can be flushed w/o pending writes;
 401 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 402 *       can be delayed (r5l_add_no_space_stripe).
 403 *
 404 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 405 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 406 * pages of journal space. For stripes that has not passed 1, flushing it
 407 * requires (conf->raid_disks + 1) pages of journal space. There are at
 408 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 409 * required to flush all cached stripes (in pages) is:
 410 *
 411 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 412 *     (group_cnt + 1) * (raid_disks + 1)
 413 * or
 414 *     (stripe_in_journal_count) * (max_degraded + 1) +
 415 *     (group_cnt + 1) * (raid_disks - max_degraded)
 416 */
 417static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 418{
 419        struct r5l_log *log = conf->log;
 420
 421        if (!r5c_is_writeback(log))
 422                return 0;
 423
 424        return BLOCK_SECTORS *
 425                ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 426                 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 427}
 428
 429/*
 430 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 431 *
 432 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 433 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 434 * device is less than 2x of reclaim_required_space.
 435 */
 436static inline void r5c_update_log_state(struct r5l_log *log)
 437{
 438        struct r5conf *conf = log->rdev->mddev->private;
 439        sector_t free_space;
 440        sector_t reclaim_space;
 441        bool wake_reclaim = false;
 442
 443        if (!r5c_is_writeback(log))
 444                return;
 445
 446        free_space = r5l_ring_distance(log, log->log_start,
 447                                       log->last_checkpoint);
 448        reclaim_space = r5c_log_required_to_flush_cache(conf);
 449        if (free_space < 2 * reclaim_space)
 450                set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 451        else {
 452                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 453                        wake_reclaim = true;
 454                clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 455        }
 456        if (free_space < 3 * reclaim_space)
 457                set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 458        else
 459                clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 460
 461        if (wake_reclaim)
 462                r5l_wake_reclaim(log, 0);
 463}
 464
 465/*
 466 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 467 * This function should only be called in write-back mode.
 468 */
 469void r5c_make_stripe_write_out(struct stripe_head *sh)
 470{
 471        struct r5conf *conf = sh->raid_conf;
 472        struct r5l_log *log = conf->log;
 473
 474        BUG_ON(!r5c_is_writeback(log));
 475
 476        WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 477        clear_bit(STRIPE_R5C_CACHING, &sh->state);
 478
 479        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 480                atomic_inc(&conf->preread_active_stripes);
 481}
 482
 483static void r5c_handle_data_cached(struct stripe_head *sh)
 484{
 485        int i;
 486
 487        for (i = sh->disks; i--; )
 488                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 489                        set_bit(R5_InJournal, &sh->dev[i].flags);
 490                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 491                }
 492        clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 493}
 494
 495/*
 496 * this journal write must contain full parity,
 497 * it may also contain some data pages
 498 */
 499static void r5c_handle_parity_cached(struct stripe_head *sh)
 500{
 501        int i;
 502
 503        for (i = sh->disks; i--; )
 504                if (test_bit(R5_InJournal, &sh->dev[i].flags))
 505                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
 506}
 507
 508/*
 509 * Setting proper flags after writing (or flushing) data and/or parity to the
 510 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 511 */
 512static void r5c_finish_cache_stripe(struct stripe_head *sh)
 513{
 514        struct r5l_log *log = sh->raid_conf->log;
 515
 516        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 517                BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 518                /*
 519                 * Set R5_InJournal for parity dev[pd_idx]. This means
 520                 * all data AND parity in the journal. For RAID 6, it is
 521                 * NOT necessary to set the flag for dev[qd_idx], as the
 522                 * two parities are written out together.
 523                 */
 524                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 525        } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 526                r5c_handle_data_cached(sh);
 527        } else {
 528                r5c_handle_parity_cached(sh);
 529                set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 530        }
 531}
 532
 533static void r5l_io_run_stripes(struct r5l_io_unit *io)
 534{
 535        struct stripe_head *sh, *next;
 536
 537        list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 538                list_del_init(&sh->log_list);
 539
 540                r5c_finish_cache_stripe(sh);
 541
 542                set_bit(STRIPE_HANDLE, &sh->state);
 543                raid5_release_stripe(sh);
 544        }
 545}
 546
 547static void r5l_log_run_stripes(struct r5l_log *log)
 548{
 549        struct r5l_io_unit *io, *next;
 550
 551        assert_spin_locked(&log->io_list_lock);
 552
 553        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 554                /* don't change list order */
 555                if (io->state < IO_UNIT_IO_END)
 556                        break;
 557
 558                list_move_tail(&io->log_sibling, &log->finished_ios);
 559                r5l_io_run_stripes(io);
 560        }
 561}
 562
 563static void r5l_move_to_end_ios(struct r5l_log *log)
 564{
 565        struct r5l_io_unit *io, *next;
 566
 567        assert_spin_locked(&log->io_list_lock);
 568
 569        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 570                /* don't change list order */
 571                if (io->state < IO_UNIT_IO_END)
 572                        break;
 573                list_move_tail(&io->log_sibling, &log->io_end_ios);
 574        }
 575}
 576
 577static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 578static void r5l_log_endio(struct bio *bio)
 579{
 580        struct r5l_io_unit *io = bio->bi_private;
 581        struct r5l_io_unit *io_deferred;
 582        struct r5l_log *log = io->log;
 583        unsigned long flags;
 584
 585        if (bio->bi_error)
 586                md_error(log->rdev->mddev, log->rdev);
 587
 588        bio_put(bio);
 589        mempool_free(io->meta_page, log->meta_pool);
 590
 591        spin_lock_irqsave(&log->io_list_lock, flags);
 592        __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 593        if (log->need_cache_flush)
 594                r5l_move_to_end_ios(log);
 595        else
 596                r5l_log_run_stripes(log);
 597        if (!list_empty(&log->running_ios)) {
 598                /*
 599                 * FLUSH/FUA io_unit is deferred because of ordering, now we
 600                 * can dispatch it
 601                 */
 602                io_deferred = list_first_entry(&log->running_ios,
 603                                               struct r5l_io_unit, log_sibling);
 604                if (io_deferred->io_deferred)
 605                        schedule_work(&log->deferred_io_work);
 606        }
 607
 608        spin_unlock_irqrestore(&log->io_list_lock, flags);
 609
 610        if (log->need_cache_flush)
 611                md_wakeup_thread(log->rdev->mddev->thread);
 612
 613        if (io->has_null_flush) {
 614                struct bio *bi;
 615
 616                WARN_ON(bio_list_empty(&io->flush_barriers));
 617                while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 618                        bio_endio(bi);
 619                        atomic_dec(&io->pending_stripe);
 620                }
 621                if (atomic_read(&io->pending_stripe) == 0)
 622                        __r5l_stripe_write_finished(io);
 623        }
 624}
 625
 626static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 627{
 628        unsigned long flags;
 629
 630        spin_lock_irqsave(&log->io_list_lock, flags);
 631        __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 632        spin_unlock_irqrestore(&log->io_list_lock, flags);
 633
 634        if (io->has_flush)
 635                io->current_bio->bi_opf |= REQ_PREFLUSH;
 636        if (io->has_fua)
 637                io->current_bio->bi_opf |= REQ_FUA;
 638        submit_bio(io->current_bio);
 639
 640        if (!io->split_bio)
 641                return;
 642
 643        if (io->has_flush)
 644                io->split_bio->bi_opf |= REQ_PREFLUSH;
 645        if (io->has_fua)
 646                io->split_bio->bi_opf |= REQ_FUA;
 647        submit_bio(io->split_bio);
 648}
 649
 650/* deferred io_unit will be dispatched here */
 651static void r5l_submit_io_async(struct work_struct *work)
 652{
 653        struct r5l_log *log = container_of(work, struct r5l_log,
 654                                           deferred_io_work);
 655        struct r5l_io_unit *io = NULL;
 656        unsigned long flags;
 657
 658        spin_lock_irqsave(&log->io_list_lock, flags);
 659        if (!list_empty(&log->running_ios)) {
 660                io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 661                                      log_sibling);
 662                if (!io->io_deferred)
 663                        io = NULL;
 664                else
 665                        io->io_deferred = 0;
 666        }
 667        spin_unlock_irqrestore(&log->io_list_lock, flags);
 668        if (io)
 669                r5l_do_submit_io(log, io);
 670}
 671
 672static void r5c_disable_writeback_async(struct work_struct *work)
 673{
 674        struct r5l_log *log = container_of(work, struct r5l_log,
 675                                           disable_writeback_work);
 676        struct mddev *mddev = log->rdev->mddev;
 677
 678        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 679                return;
 680        pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 681                mdname(mddev));
 682        mddev_suspend(mddev);
 683        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 684        mddev_resume(mddev);
 685}
 686
 687static void r5l_submit_current_io(struct r5l_log *log)
 688{
 689        struct r5l_io_unit *io = log->current_io;
 690        struct bio *bio;
 691        struct r5l_meta_block *block;
 692        unsigned long flags;
 693        u32 crc;
 694        bool do_submit = true;
 695
 696        if (!io)
 697                return;
 698
 699        block = page_address(io->meta_page);
 700        block->meta_size = cpu_to_le32(io->meta_offset);
 701        crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 702        block->checksum = cpu_to_le32(crc);
 703        bio = io->current_bio;
 704
 705        log->current_io = NULL;
 706        spin_lock_irqsave(&log->io_list_lock, flags);
 707        if (io->has_flush || io->has_fua) {
 708                if (io != list_first_entry(&log->running_ios,
 709                                           struct r5l_io_unit, log_sibling)) {
 710                        io->io_deferred = 1;
 711                        do_submit = false;
 712                }
 713        }
 714        spin_unlock_irqrestore(&log->io_list_lock, flags);
 715        if (do_submit)
 716                r5l_do_submit_io(log, io);
 717}
 718
 719static struct bio *r5l_bio_alloc(struct r5l_log *log)
 720{
 721        struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
 722
 723        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 724        bio->bi_bdev = log->rdev->bdev;
 725        bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 726
 727        return bio;
 728}
 729
 730static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 731{
 732        log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 733
 734        r5c_update_log_state(log);
 735        /*
 736         * If we filled up the log device start from the beginning again,
 737         * which will require a new bio.
 738         *
 739         * Note: for this to work properly the log size needs to me a multiple
 740         * of BLOCK_SECTORS.
 741         */
 742        if (log->log_start == 0)
 743                io->need_split_bio = true;
 744
 745        io->log_end = log->log_start;
 746}
 747
 748static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 749{
 750        struct r5l_io_unit *io;
 751        struct r5l_meta_block *block;
 752
 753        io = mempool_alloc(log->io_pool, GFP_ATOMIC);
 754        if (!io)
 755                return NULL;
 756        memset(io, 0, sizeof(*io));
 757
 758        io->log = log;
 759        INIT_LIST_HEAD(&io->log_sibling);
 760        INIT_LIST_HEAD(&io->stripe_list);
 761        bio_list_init(&io->flush_barriers);
 762        io->state = IO_UNIT_RUNNING;
 763
 764        io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
 765        block = page_address(io->meta_page);
 766        clear_page(block);
 767        block->magic = cpu_to_le32(R5LOG_MAGIC);
 768        block->version = R5LOG_VERSION;
 769        block->seq = cpu_to_le64(log->seq);
 770        block->position = cpu_to_le64(log->log_start);
 771
 772        io->log_start = log->log_start;
 773        io->meta_offset = sizeof(struct r5l_meta_block);
 774        io->seq = log->seq++;
 775
 776        io->current_bio = r5l_bio_alloc(log);
 777        io->current_bio->bi_end_io = r5l_log_endio;
 778        io->current_bio->bi_private = io;
 779        bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 780
 781        r5_reserve_log_entry(log, io);
 782
 783        spin_lock_irq(&log->io_list_lock);
 784        list_add_tail(&io->log_sibling, &log->running_ios);
 785        spin_unlock_irq(&log->io_list_lock);
 786
 787        return io;
 788}
 789
 790static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 791{
 792        if (log->current_io &&
 793            log->current_io->meta_offset + payload_size > PAGE_SIZE)
 794                r5l_submit_current_io(log);
 795
 796        if (!log->current_io) {
 797                log->current_io = r5l_new_meta(log);
 798                if (!log->current_io)
 799                        return -ENOMEM;
 800        }
 801
 802        return 0;
 803}
 804
 805static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 806                                    sector_t location,
 807                                    u32 checksum1, u32 checksum2,
 808                                    bool checksum2_valid)
 809{
 810        struct r5l_io_unit *io = log->current_io;
 811        struct r5l_payload_data_parity *payload;
 812
 813        payload = page_address(io->meta_page) + io->meta_offset;
 814        payload->header.type = cpu_to_le16(type);
 815        payload->header.flags = cpu_to_le16(0);
 816        payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 817                                    (PAGE_SHIFT - 9));
 818        payload->location = cpu_to_le64(location);
 819        payload->checksum[0] = cpu_to_le32(checksum1);
 820        if (checksum2_valid)
 821                payload->checksum[1] = cpu_to_le32(checksum2);
 822
 823        io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 824                sizeof(__le32) * (1 + !!checksum2_valid);
 825}
 826
 827static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 828{
 829        struct r5l_io_unit *io = log->current_io;
 830
 831        if (io->need_split_bio) {
 832                BUG_ON(io->split_bio);
 833                io->split_bio = io->current_bio;
 834                io->current_bio = r5l_bio_alloc(log);
 835                bio_chain(io->current_bio, io->split_bio);
 836                io->need_split_bio = false;
 837        }
 838
 839        if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 840                BUG();
 841
 842        r5_reserve_log_entry(log, io);
 843}
 844
 845static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 846                           int data_pages, int parity_pages)
 847{
 848        int i;
 849        int meta_size;
 850        int ret;
 851        struct r5l_io_unit *io;
 852
 853        meta_size =
 854                ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 855                 * data_pages) +
 856                sizeof(struct r5l_payload_data_parity) +
 857                sizeof(__le32) * parity_pages;
 858
 859        ret = r5l_get_meta(log, meta_size);
 860        if (ret)
 861                return ret;
 862
 863        io = log->current_io;
 864
 865        if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 866                io->has_flush = 1;
 867
 868        for (i = 0; i < sh->disks; i++) {
 869                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 870                    test_bit(R5_InJournal, &sh->dev[i].flags))
 871                        continue;
 872                if (i == sh->pd_idx || i == sh->qd_idx)
 873                        continue;
 874                if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 875                    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 876                        io->has_fua = 1;
 877                        /*
 878                         * we need to flush journal to make sure recovery can
 879                         * reach the data with fua flag
 880                         */
 881                        io->has_flush = 1;
 882                }
 883                r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 884                                        raid5_compute_blocknr(sh, i, 0),
 885                                        sh->dev[i].log_checksum, 0, false);
 886                r5l_append_payload_page(log, sh->dev[i].page);
 887        }
 888
 889        if (parity_pages == 2) {
 890                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 891                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 892                                        sh->dev[sh->qd_idx].log_checksum, true);
 893                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 894                r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 895        } else if (parity_pages == 1) {
 896                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 897                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 898                                        0, false);
 899                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 900        } else  /* Just writing data, not parity, in caching phase */
 901                BUG_ON(parity_pages != 0);
 902
 903        list_add_tail(&sh->log_list, &io->stripe_list);
 904        atomic_inc(&io->pending_stripe);
 905        sh->log_io = io;
 906
 907        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 908                return 0;
 909
 910        if (sh->log_start == MaxSector) {
 911                BUG_ON(!list_empty(&sh->r5c));
 912                sh->log_start = io->log_start;
 913                spin_lock_irq(&log->stripe_in_journal_lock);
 914                list_add_tail(&sh->r5c,
 915                              &log->stripe_in_journal_list);
 916                spin_unlock_irq(&log->stripe_in_journal_lock);
 917                atomic_inc(&log->stripe_in_journal_count);
 918        }
 919        return 0;
 920}
 921
 922/* add stripe to no_space_stripes, and then wake up reclaim */
 923static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 924                                           struct stripe_head *sh)
 925{
 926        spin_lock(&log->no_space_stripes_lock);
 927        list_add_tail(&sh->log_list, &log->no_space_stripes);
 928        spin_unlock(&log->no_space_stripes_lock);
 929}
 930
 931/*
 932 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 933 * data from log to raid disks), so we shouldn't wait for reclaim here
 934 */
 935int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 936{
 937        struct r5conf *conf = sh->raid_conf;
 938        int write_disks = 0;
 939        int data_pages, parity_pages;
 940        int reserve;
 941        int i;
 942        int ret = 0;
 943        bool wake_reclaim = false;
 944
 945        if (!log)
 946                return -EAGAIN;
 947        /* Don't support stripe batch */
 948        if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 949            test_bit(STRIPE_SYNCING, &sh->state)) {
 950                /* the stripe is written to log, we start writing it to raid */
 951                clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 952                return -EAGAIN;
 953        }
 954
 955        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 956
 957        for (i = 0; i < sh->disks; i++) {
 958                void *addr;
 959
 960                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 961                    test_bit(R5_InJournal, &sh->dev[i].flags))
 962                        continue;
 963
 964                write_disks++;
 965                /* checksum is already calculated in last run */
 966                if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
 967                        continue;
 968                addr = kmap_atomic(sh->dev[i].page);
 969                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 970                                                    addr, PAGE_SIZE);
 971                kunmap_atomic(addr);
 972        }
 973        parity_pages = 1 + !!(sh->qd_idx >= 0);
 974        data_pages = write_disks - parity_pages;
 975
 976        set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 977        /*
 978         * The stripe must enter state machine again to finish the write, so
 979         * don't delay.
 980         */
 981        clear_bit(STRIPE_DELAYED, &sh->state);
 982        atomic_inc(&sh->count);
 983
 984        mutex_lock(&log->io_mutex);
 985        /* meta + data */
 986        reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 987
 988        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 989                if (!r5l_has_free_space(log, reserve)) {
 990                        r5l_add_no_space_stripe(log, sh);
 991                        wake_reclaim = true;
 992                } else {
 993                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 994                        if (ret) {
 995                                spin_lock_irq(&log->io_list_lock);
 996                                list_add_tail(&sh->log_list,
 997                                              &log->no_mem_stripes);
 998                                spin_unlock_irq(&log->io_list_lock);
 999                        }
1000                }
1001        } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1002                /*
1003                 * log space critical, do not process stripes that are
1004                 * not in cache yet (sh->log_start == MaxSector).
1005                 */
1006                if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1007                    sh->log_start == MaxSector) {
1008                        r5l_add_no_space_stripe(log, sh);
1009                        wake_reclaim = true;
1010                        reserve = 0;
1011                } else if (!r5l_has_free_space(log, reserve)) {
1012                        if (sh->log_start == log->last_checkpoint)
1013                                BUG();
1014                        else
1015                                r5l_add_no_space_stripe(log, sh);
1016                } else {
1017                        ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1018                        if (ret) {
1019                                spin_lock_irq(&log->io_list_lock);
1020                                list_add_tail(&sh->log_list,
1021                                              &log->no_mem_stripes);
1022                                spin_unlock_irq(&log->io_list_lock);
1023                        }
1024                }
1025        }
1026
1027        mutex_unlock(&log->io_mutex);
1028        if (wake_reclaim)
1029                r5l_wake_reclaim(log, reserve);
1030        return 0;
1031}
1032
1033void r5l_write_stripe_run(struct r5l_log *log)
1034{
1035        if (!log)
1036                return;
1037        mutex_lock(&log->io_mutex);
1038        r5l_submit_current_io(log);
1039        mutex_unlock(&log->io_mutex);
1040}
1041
1042int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1043{
1044        if (!log)
1045                return -ENODEV;
1046
1047        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048                /*
1049                 * in write through (journal only)
1050                 * we flush log disk cache first, then write stripe data to
1051                 * raid disks. So if bio is finished, the log disk cache is
1052                 * flushed already. The recovery guarantees we can recovery
1053                 * the bio from log disk, so we don't need to flush again
1054                 */
1055                if (bio->bi_iter.bi_size == 0) {
1056                        bio_endio(bio);
1057                        return 0;
1058                }
1059                bio->bi_opf &= ~REQ_PREFLUSH;
1060        } else {
1061                /* write back (with cache) */
1062                if (bio->bi_iter.bi_size == 0) {
1063                        mutex_lock(&log->io_mutex);
1064                        r5l_get_meta(log, 0);
1065                        bio_list_add(&log->current_io->flush_barriers, bio);
1066                        log->current_io->has_flush = 1;
1067                        log->current_io->has_null_flush = 1;
1068                        atomic_inc(&log->current_io->pending_stripe);
1069                        r5l_submit_current_io(log);
1070                        mutex_unlock(&log->io_mutex);
1071                        return 0;
1072                }
1073        }
1074        return -EAGAIN;
1075}
1076
1077/* This will run after log space is reclaimed */
1078static void r5l_run_no_space_stripes(struct r5l_log *log)
1079{
1080        struct stripe_head *sh;
1081
1082        spin_lock(&log->no_space_stripes_lock);
1083        while (!list_empty(&log->no_space_stripes)) {
1084                sh = list_first_entry(&log->no_space_stripes,
1085                                      struct stripe_head, log_list);
1086                list_del_init(&sh->log_list);
1087                set_bit(STRIPE_HANDLE, &sh->state);
1088                raid5_release_stripe(sh);
1089        }
1090        spin_unlock(&log->no_space_stripes_lock);
1091}
1092
1093/*
1094 * calculate new last_checkpoint
1095 * for write through mode, returns log->next_checkpoint
1096 * for write back, returns log_start of first sh in stripe_in_journal_list
1097 */
1098static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1099{
1100        struct stripe_head *sh;
1101        struct r5l_log *log = conf->log;
1102        sector_t new_cp;
1103        unsigned long flags;
1104
1105        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1106                return log->next_checkpoint;
1107
1108        spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1109        if (list_empty(&conf->log->stripe_in_journal_list)) {
1110                /* all stripes flushed */
1111                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1112                return log->next_checkpoint;
1113        }
1114        sh = list_first_entry(&conf->log->stripe_in_journal_list,
1115                              struct stripe_head, r5c);
1116        new_cp = sh->log_start;
1117        spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1118        return new_cp;
1119}
1120
1121static sector_t r5l_reclaimable_space(struct r5l_log *log)
1122{
1123        struct r5conf *conf = log->rdev->mddev->private;
1124
1125        return r5l_ring_distance(log, log->last_checkpoint,
1126                                 r5c_calculate_new_cp(conf));
1127}
1128
1129static void r5l_run_no_mem_stripe(struct r5l_log *log)
1130{
1131        struct stripe_head *sh;
1132
1133        assert_spin_locked(&log->io_list_lock);
1134
1135        if (!list_empty(&log->no_mem_stripes)) {
1136                sh = list_first_entry(&log->no_mem_stripes,
1137                                      struct stripe_head, log_list);
1138                list_del_init(&sh->log_list);
1139                set_bit(STRIPE_HANDLE, &sh->state);
1140                raid5_release_stripe(sh);
1141        }
1142}
1143
1144static bool r5l_complete_finished_ios(struct r5l_log *log)
1145{
1146        struct r5l_io_unit *io, *next;
1147        bool found = false;
1148
1149        assert_spin_locked(&log->io_list_lock);
1150
1151        list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1152                /* don't change list order */
1153                if (io->state < IO_UNIT_STRIPE_END)
1154                        break;
1155
1156                log->next_checkpoint = io->log_start;
1157
1158                list_del(&io->log_sibling);
1159                mempool_free(io, log->io_pool);
1160                r5l_run_no_mem_stripe(log);
1161
1162                found = true;
1163        }
1164
1165        return found;
1166}
1167
1168static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1169{
1170        struct r5l_log *log = io->log;
1171        struct r5conf *conf = log->rdev->mddev->private;
1172        unsigned long flags;
1173
1174        spin_lock_irqsave(&log->io_list_lock, flags);
1175        __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1176
1177        if (!r5l_complete_finished_ios(log)) {
1178                spin_unlock_irqrestore(&log->io_list_lock, flags);
1179                return;
1180        }
1181
1182        if (r5l_reclaimable_space(log) > log->max_free_space ||
1183            test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1184                r5l_wake_reclaim(log, 0);
1185
1186        spin_unlock_irqrestore(&log->io_list_lock, flags);
1187        wake_up(&log->iounit_wait);
1188}
1189
1190void r5l_stripe_write_finished(struct stripe_head *sh)
1191{
1192        struct r5l_io_unit *io;
1193
1194        io = sh->log_io;
1195        sh->log_io = NULL;
1196
1197        if (io && atomic_dec_and_test(&io->pending_stripe))
1198                __r5l_stripe_write_finished(io);
1199}
1200
1201static void r5l_log_flush_endio(struct bio *bio)
1202{
1203        struct r5l_log *log = container_of(bio, struct r5l_log,
1204                flush_bio);
1205        unsigned long flags;
1206        struct r5l_io_unit *io;
1207
1208        if (bio->bi_error)
1209                md_error(log->rdev->mddev, log->rdev);
1210
1211        spin_lock_irqsave(&log->io_list_lock, flags);
1212        list_for_each_entry(io, &log->flushing_ios, log_sibling)
1213                r5l_io_run_stripes(io);
1214        list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1215        spin_unlock_irqrestore(&log->io_list_lock, flags);
1216}
1217
1218/*
1219 * Starting dispatch IO to raid.
1220 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1221 * broken meta in the middle of a log causes recovery can't find meta at the
1222 * head of log. If operations require meta at the head persistent in log, we
1223 * must make sure meta before it persistent in log too. A case is:
1224 *
1225 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1226 * data/parity must be persistent in log before we do the write to raid disks.
1227 *
1228 * The solution is we restrictly maintain io_unit list order. In this case, we
1229 * only write stripes of an io_unit to raid disks till the io_unit is the first
1230 * one whose data/parity is in log.
1231 */
1232void r5l_flush_stripe_to_raid(struct r5l_log *log)
1233{
1234        bool do_flush;
1235
1236        if (!log || !log->need_cache_flush)
1237                return;
1238
1239        spin_lock_irq(&log->io_list_lock);
1240        /* flush bio is running */
1241        if (!list_empty(&log->flushing_ios)) {
1242                spin_unlock_irq(&log->io_list_lock);
1243                return;
1244        }
1245        list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1246        do_flush = !list_empty(&log->flushing_ios);
1247        spin_unlock_irq(&log->io_list_lock);
1248
1249        if (!do_flush)
1250                return;
1251        bio_reset(&log->flush_bio);
1252        log->flush_bio.bi_bdev = log->rdev->bdev;
1253        log->flush_bio.bi_end_io = r5l_log_flush_endio;
1254        log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1255        submit_bio(&log->flush_bio);
1256}
1257
1258static void r5l_write_super(struct r5l_log *log, sector_t cp);
1259static void r5l_write_super_and_discard_space(struct r5l_log *log,
1260        sector_t end)
1261{
1262        struct block_device *bdev = log->rdev->bdev;
1263        struct mddev *mddev;
1264
1265        r5l_write_super(log, end);
1266
1267        if (!blk_queue_discard(bdev_get_queue(bdev)))
1268                return;
1269
1270        mddev = log->rdev->mddev;
1271        /*
1272         * Discard could zero data, so before discard we must make sure
1273         * superblock is updated to new log tail. Updating superblock (either
1274         * directly call md_update_sb() or depend on md thread) must hold
1275         * reconfig mutex. On the other hand, raid5_quiesce is called with
1276         * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1277         * for all IO finish, hence waitting for reclaim thread, while reclaim
1278         * thread is calling this function and waitting for reconfig mutex. So
1279         * there is a deadlock. We workaround this issue with a trylock.
1280         * FIXME: we could miss discard if we can't take reconfig mutex
1281         */
1282        set_mask_bits(&mddev->sb_flags, 0,
1283                BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1284        if (!mddev_trylock(mddev))
1285                return;
1286        md_update_sb(mddev, 1);
1287        mddev_unlock(mddev);
1288
1289        /* discard IO error really doesn't matter, ignore it */
1290        if (log->last_checkpoint < end) {
1291                blkdev_issue_discard(bdev,
1292                                log->last_checkpoint + log->rdev->data_offset,
1293                                end - log->last_checkpoint, GFP_NOIO, 0);
1294        } else {
1295                blkdev_issue_discard(bdev,
1296                                log->last_checkpoint + log->rdev->data_offset,
1297                                log->device_size - log->last_checkpoint,
1298                                GFP_NOIO, 0);
1299                blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1300                                GFP_NOIO, 0);
1301        }
1302}
1303
1304/*
1305 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1306 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1307 *
1308 * must hold conf->device_lock
1309 */
1310static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1311{
1312        BUG_ON(list_empty(&sh->lru));
1313        BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1314        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1315
1316        /*
1317         * The stripe is not ON_RELEASE_LIST, so it is safe to call
1318         * raid5_release_stripe() while holding conf->device_lock
1319         */
1320        BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1321        assert_spin_locked(&conf->device_lock);
1322
1323        list_del_init(&sh->lru);
1324        atomic_inc(&sh->count);
1325
1326        set_bit(STRIPE_HANDLE, &sh->state);
1327        atomic_inc(&conf->active_stripes);
1328        r5c_make_stripe_write_out(sh);
1329
1330        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1331                atomic_inc(&conf->r5c_flushing_partial_stripes);
1332        else
1333                atomic_inc(&conf->r5c_flushing_full_stripes);
1334        raid5_release_stripe(sh);
1335}
1336
1337/*
1338 * if num == 0, flush all full stripes
1339 * if num > 0, flush all full stripes. If less than num full stripes are
1340 *             flushed, flush some partial stripes until totally num stripes are
1341 *             flushed or there is no more cached stripes.
1342 */
1343void r5c_flush_cache(struct r5conf *conf, int num)
1344{
1345        int count;
1346        struct stripe_head *sh, *next;
1347
1348        assert_spin_locked(&conf->device_lock);
1349        if (!conf->log)
1350                return;
1351
1352        count = 0;
1353        list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1354                r5c_flush_stripe(conf, sh);
1355                count++;
1356        }
1357
1358        if (count >= num)
1359                return;
1360        list_for_each_entry_safe(sh, next,
1361                                 &conf->r5c_partial_stripe_list, lru) {
1362                r5c_flush_stripe(conf, sh);
1363                if (++count >= num)
1364                        break;
1365        }
1366}
1367
1368static void r5c_do_reclaim(struct r5conf *conf)
1369{
1370        struct r5l_log *log = conf->log;
1371        struct stripe_head *sh;
1372        int count = 0;
1373        unsigned long flags;
1374        int total_cached;
1375        int stripes_to_flush;
1376        int flushing_partial, flushing_full;
1377
1378        if (!r5c_is_writeback(log))
1379                return;
1380
1381        flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1382        flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1383        total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1384                atomic_read(&conf->r5c_cached_full_stripes) -
1385                flushing_full - flushing_partial;
1386
1387        if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1388            atomic_read(&conf->empty_inactive_list_nr) > 0)
1389                /*
1390                 * if stripe cache pressure high, flush all full stripes and
1391                 * some partial stripes
1392                 */
1393                stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1394        else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1395                 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1396                 R5C_FULL_STRIPE_FLUSH_BATCH)
1397                /*
1398                 * if stripe cache pressure moderate, or if there is many full
1399                 * stripes,flush all full stripes
1400                 */
1401                stripes_to_flush = 0;
1402        else
1403                /* no need to flush */
1404                stripes_to_flush = -1;
1405
1406        if (stripes_to_flush >= 0) {
1407                spin_lock_irqsave(&conf->device_lock, flags);
1408                r5c_flush_cache(conf, stripes_to_flush);
1409                spin_unlock_irqrestore(&conf->device_lock, flags);
1410        }
1411
1412        /* if log space is tight, flush stripes on stripe_in_journal_list */
1413        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1414                spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1415                spin_lock(&conf->device_lock);
1416                list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1417                        /*
1418                         * stripes on stripe_in_journal_list could be in any
1419                         * state of the stripe_cache state machine. In this
1420                         * case, we only want to flush stripe on
1421                         * r5c_cached_full/partial_stripes. The following
1422                         * condition makes sure the stripe is on one of the
1423                         * two lists.
1424                         */
1425                        if (!list_empty(&sh->lru) &&
1426                            !test_bit(STRIPE_HANDLE, &sh->state) &&
1427                            atomic_read(&sh->count) == 0) {
1428                                r5c_flush_stripe(conf, sh);
1429                                if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1430                                        break;
1431                        }
1432                }
1433                spin_unlock(&conf->device_lock);
1434                spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1435        }
1436
1437        if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1438                r5l_run_no_space_stripes(log);
1439
1440        md_wakeup_thread(conf->mddev->thread);
1441}
1442
1443static void r5l_do_reclaim(struct r5l_log *log)
1444{
1445        struct r5conf *conf = log->rdev->mddev->private;
1446        sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1447        sector_t reclaimable;
1448        sector_t next_checkpoint;
1449        bool write_super;
1450
1451        spin_lock_irq(&log->io_list_lock);
1452        write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1453                reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1454        /*
1455         * move proper io_unit to reclaim list. We should not change the order.
1456         * reclaimable/unreclaimable io_unit can be mixed in the list, we
1457         * shouldn't reuse space of an unreclaimable io_unit
1458         */
1459        while (1) {
1460                reclaimable = r5l_reclaimable_space(log);
1461                if (reclaimable >= reclaim_target ||
1462                    (list_empty(&log->running_ios) &&
1463                     list_empty(&log->io_end_ios) &&
1464                     list_empty(&log->flushing_ios) &&
1465                     list_empty(&log->finished_ios)))
1466                        break;
1467
1468                md_wakeup_thread(log->rdev->mddev->thread);
1469                wait_event_lock_irq(log->iounit_wait,
1470                                    r5l_reclaimable_space(log) > reclaimable,
1471                                    log->io_list_lock);
1472        }
1473
1474        next_checkpoint = r5c_calculate_new_cp(conf);
1475        spin_unlock_irq(&log->io_list_lock);
1476
1477        if (reclaimable == 0 || !write_super)
1478                return;
1479
1480        /*
1481         * write_super will flush cache of each raid disk. We must write super
1482         * here, because the log area might be reused soon and we don't want to
1483         * confuse recovery
1484         */
1485        r5l_write_super_and_discard_space(log, next_checkpoint);
1486
1487        mutex_lock(&log->io_mutex);
1488        log->last_checkpoint = next_checkpoint;
1489        r5c_update_log_state(log);
1490        mutex_unlock(&log->io_mutex);
1491
1492        r5l_run_no_space_stripes(log);
1493}
1494
1495static void r5l_reclaim_thread(struct md_thread *thread)
1496{
1497        struct mddev *mddev = thread->mddev;
1498        struct r5conf *conf = mddev->private;
1499        struct r5l_log *log = conf->log;
1500
1501        if (!log)
1502                return;
1503        r5c_do_reclaim(conf);
1504        r5l_do_reclaim(log);
1505}
1506
1507void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1508{
1509        unsigned long target;
1510        unsigned long new = (unsigned long)space; /* overflow in theory */
1511
1512        if (!log)
1513                return;
1514        do {
1515                target = log->reclaim_target;
1516                if (new < target)
1517                        return;
1518        } while (cmpxchg(&log->reclaim_target, target, new) != target);
1519        md_wakeup_thread(log->reclaim_thread);
1520}
1521
1522void r5l_quiesce(struct r5l_log *log, int state)
1523{
1524        struct mddev *mddev;
1525        if (!log || state == 2)
1526                return;
1527        if (state == 0)
1528                kthread_unpark(log->reclaim_thread->tsk);
1529        else if (state == 1) {
1530                /* make sure r5l_write_super_and_discard_space exits */
1531                mddev = log->rdev->mddev;
1532                wake_up(&mddev->sb_wait);
1533                kthread_park(log->reclaim_thread->tsk);
1534                r5l_wake_reclaim(log, MaxSector);
1535                r5l_do_reclaim(log);
1536        }
1537}
1538
1539bool r5l_log_disk_error(struct r5conf *conf)
1540{
1541        struct r5l_log *log;
1542        bool ret;
1543        /* don't allow write if journal disk is missing */
1544        rcu_read_lock();
1545        log = rcu_dereference(conf->log);
1546
1547        if (!log)
1548                ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1549        else
1550                ret = test_bit(Faulty, &log->rdev->flags);
1551        rcu_read_unlock();
1552        return ret;
1553}
1554
1555struct r5l_recovery_ctx {
1556        struct page *meta_page;         /* current meta */
1557        sector_t meta_total_blocks;     /* total size of current meta and data */
1558        sector_t pos;                   /* recovery position */
1559        u64 seq;                        /* recovery position seq */
1560        int data_parity_stripes;        /* number of data_parity stripes */
1561        int data_only_stripes;          /* number of data_only stripes */
1562        struct list_head cached_list;
1563};
1564
1565static int r5l_recovery_read_meta_block(struct r5l_log *log,
1566                                        struct r5l_recovery_ctx *ctx)
1567{
1568        struct page *page = ctx->meta_page;
1569        struct r5l_meta_block *mb;
1570        u32 crc, stored_crc;
1571
1572        if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1573                          false))
1574                return -EIO;
1575
1576        mb = page_address(page);
1577        stored_crc = le32_to_cpu(mb->checksum);
1578        mb->checksum = 0;
1579
1580        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1581            le64_to_cpu(mb->seq) != ctx->seq ||
1582            mb->version != R5LOG_VERSION ||
1583            le64_to_cpu(mb->position) != ctx->pos)
1584                return -EINVAL;
1585
1586        crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1587        if (stored_crc != crc)
1588                return -EINVAL;
1589
1590        if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1591                return -EINVAL;
1592
1593        ctx->meta_total_blocks = BLOCK_SECTORS;
1594
1595        return 0;
1596}
1597
1598static void
1599r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1600                                     struct page *page,
1601                                     sector_t pos, u64 seq)
1602{
1603        struct r5l_meta_block *mb;
1604
1605        mb = page_address(page);
1606        clear_page(mb);
1607        mb->magic = cpu_to_le32(R5LOG_MAGIC);
1608        mb->version = R5LOG_VERSION;
1609        mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1610        mb->seq = cpu_to_le64(seq);
1611        mb->position = cpu_to_le64(pos);
1612}
1613
1614static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1615                                          u64 seq)
1616{
1617        struct page *page;
1618        struct r5l_meta_block *mb;
1619
1620        page = alloc_page(GFP_KERNEL);
1621        if (!page)
1622                return -ENOMEM;
1623        r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1624        mb = page_address(page);
1625        mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1626                                             mb, PAGE_SIZE));
1627        if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1628                          REQ_FUA, false)) {
1629                __free_page(page);
1630                return -EIO;
1631        }
1632        __free_page(page);
1633        return 0;
1634}
1635
1636/*
1637 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1638 * to mark valid (potentially not flushed) data in the journal.
1639 *
1640 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1641 * so there should not be any mismatch here.
1642 */
1643static void r5l_recovery_load_data(struct r5l_log *log,
1644                                   struct stripe_head *sh,
1645                                   struct r5l_recovery_ctx *ctx,
1646                                   struct r5l_payload_data_parity *payload,
1647                                   sector_t log_offset)
1648{
1649        struct mddev *mddev = log->rdev->mddev;
1650        struct r5conf *conf = mddev->private;
1651        int dd_idx;
1652
1653        raid5_compute_sector(conf,
1654                             le64_to_cpu(payload->location), 0,
1655                             &dd_idx, sh);
1656        sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1657                     sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1658        sh->dev[dd_idx].log_checksum =
1659                le32_to_cpu(payload->checksum[0]);
1660        ctx->meta_total_blocks += BLOCK_SECTORS;
1661
1662        set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1663        set_bit(STRIPE_R5C_CACHING, &sh->state);
1664}
1665
1666static void r5l_recovery_load_parity(struct r5l_log *log,
1667                                     struct stripe_head *sh,
1668                                     struct r5l_recovery_ctx *ctx,
1669                                     struct r5l_payload_data_parity *payload,
1670                                     sector_t log_offset)
1671{
1672        struct mddev *mddev = log->rdev->mddev;
1673        struct r5conf *conf = mddev->private;
1674
1675        ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1676        sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1677                     sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1678        sh->dev[sh->pd_idx].log_checksum =
1679                le32_to_cpu(payload->checksum[0]);
1680        set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1681
1682        if (sh->qd_idx >= 0) {
1683                sync_page_io(log->rdev,
1684                             r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1685                             PAGE_SIZE, sh->dev[sh->qd_idx].page,
1686                             REQ_OP_READ, 0, false);
1687                sh->dev[sh->qd_idx].log_checksum =
1688                        le32_to_cpu(payload->checksum[1]);
1689                set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1690        }
1691        clear_bit(STRIPE_R5C_CACHING, &sh->state);
1692}
1693
1694static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1695{
1696        int i;
1697
1698        sh->state = 0;
1699        sh->log_start = MaxSector;
1700        for (i = sh->disks; i--; )
1701                sh->dev[i].flags = 0;
1702}
1703
1704static void
1705r5l_recovery_replay_one_stripe(struct r5conf *conf,
1706                               struct stripe_head *sh,
1707                               struct r5l_recovery_ctx *ctx)
1708{
1709        struct md_rdev *rdev, *rrdev;
1710        int disk_index;
1711        int data_count = 0;
1712
1713        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1714                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1715                        continue;
1716                if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1717                        continue;
1718                data_count++;
1719        }
1720
1721        /*
1722         * stripes that only have parity must have been flushed
1723         * before the crash that we are now recovering from, so
1724         * there is nothing more to recovery.
1725         */
1726        if (data_count == 0)
1727                goto out;
1728
1729        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1730                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1731                        continue;
1732
1733                /* in case device is broken */
1734                rcu_read_lock();
1735                rdev = rcu_dereference(conf->disks[disk_index].rdev);
1736                if (rdev) {
1737                        atomic_inc(&rdev->nr_pending);
1738                        rcu_read_unlock();
1739                        sync_page_io(rdev, sh->sector, PAGE_SIZE,
1740                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1741                                     false);
1742                        rdev_dec_pending(rdev, rdev->mddev);
1743                        rcu_read_lock();
1744                }
1745                rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1746                if (rrdev) {
1747                        atomic_inc(&rrdev->nr_pending);
1748                        rcu_read_unlock();
1749                        sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1750                                     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1751                                     false);
1752                        rdev_dec_pending(rrdev, rrdev->mddev);
1753                        rcu_read_lock();
1754                }
1755                rcu_read_unlock();
1756        }
1757        ctx->data_parity_stripes++;
1758out:
1759        r5l_recovery_reset_stripe(sh);
1760}
1761
1762static struct stripe_head *
1763r5c_recovery_alloc_stripe(struct r5conf *conf,
1764                          sector_t stripe_sect)
1765{
1766        struct stripe_head *sh;
1767
1768        sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1769        if (!sh)
1770                return NULL;  /* no more stripe available */
1771
1772        r5l_recovery_reset_stripe(sh);
1773
1774        return sh;
1775}
1776
1777static struct stripe_head *
1778r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1779{
1780        struct stripe_head *sh;
1781
1782        list_for_each_entry(sh, list, lru)
1783                if (sh->sector == sect)
1784                        return sh;
1785        return NULL;
1786}
1787
1788static void
1789r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1790                          struct r5l_recovery_ctx *ctx)
1791{
1792        struct stripe_head *sh, *next;
1793
1794        list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1795                r5l_recovery_reset_stripe(sh);
1796                list_del_init(&sh->lru);
1797                raid5_release_stripe(sh);
1798        }
1799}
1800
1801static void
1802r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1803                            struct r5l_recovery_ctx *ctx)
1804{
1805        struct stripe_head *sh, *next;
1806
1807        list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1808                if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1809                        r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1810                        list_del_init(&sh->lru);
1811                        raid5_release_stripe(sh);
1812                }
1813}
1814
1815/* if matches return 0; otherwise return -EINVAL */
1816static int
1817r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1818                                  sector_t log_offset, __le32 log_checksum)
1819{
1820        void *addr;
1821        u32 checksum;
1822
1823        sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1824                     page, REQ_OP_READ, 0, false);
1825        addr = kmap_atomic(page);
1826        checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1827        kunmap_atomic(addr);
1828        return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1829}
1830
1831/*
1832 * before loading data to stripe cache, we need verify checksum for all data,
1833 * if there is mismatch for any data page, we drop all data in the mata block
1834 */
1835static int
1836r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1837                                         struct r5l_recovery_ctx *ctx)
1838{
1839        struct mddev *mddev = log->rdev->mddev;
1840        struct r5conf *conf = mddev->private;
1841        struct r5l_meta_block *mb = page_address(ctx->meta_page);
1842        sector_t mb_offset = sizeof(struct r5l_meta_block);
1843        sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1844        struct page *page;
1845        struct r5l_payload_data_parity *payload;
1846
1847        page = alloc_page(GFP_KERNEL);
1848        if (!page)
1849                return -ENOMEM;
1850
1851        while (mb_offset < le32_to_cpu(mb->meta_size)) {
1852                payload = (void *)mb + mb_offset;
1853
1854                if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1855                        if (r5l_recovery_verify_data_checksum(
1856                                    log, page, log_offset,
1857                                    payload->checksum[0]) < 0)
1858                                goto mismatch;
1859                } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1860                        if (r5l_recovery_verify_data_checksum(
1861                                    log, page, log_offset,
1862                                    payload->checksum[0]) < 0)
1863                                goto mismatch;
1864                        if (conf->max_degraded == 2 && /* q for RAID 6 */
1865                            r5l_recovery_verify_data_checksum(
1866                                    log, page,
1867                                    r5l_ring_add(log, log_offset,
1868                                                 BLOCK_SECTORS),
1869                                    payload->checksum[1]) < 0)
1870                                goto mismatch;
1871                } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1872                        goto mismatch;
1873
1874                log_offset = r5l_ring_add(log, log_offset,
1875                                          le32_to_cpu(payload->size));
1876
1877                mb_offset += sizeof(struct r5l_payload_data_parity) +
1878                        sizeof(__le32) *
1879                        (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1880        }
1881
1882        put_page(page);
1883        return 0;
1884
1885mismatch:
1886        put_page(page);
1887        return -EINVAL;
1888}
1889
1890/*
1891 * Analyze all data/parity pages in one meta block
1892 * Returns:
1893 * 0 for success
1894 * -EINVAL for unknown playload type
1895 * -EAGAIN for checksum mismatch of data page
1896 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1897 */
1898static int
1899r5c_recovery_analyze_meta_block(struct r5l_log *log,
1900                                struct r5l_recovery_ctx *ctx,
1901                                struct list_head *cached_stripe_list)
1902{
1903        struct mddev *mddev = log->rdev->mddev;
1904        struct r5conf *conf = mddev->private;
1905        struct r5l_meta_block *mb;
1906        struct r5l_payload_data_parity *payload;
1907        int mb_offset;
1908        sector_t log_offset;
1909        sector_t stripe_sect;
1910        struct stripe_head *sh;
1911        int ret;
1912
1913        /*
1914         * for mismatch in data blocks, we will drop all data in this mb, but
1915         * we will still read next mb for other data with FLUSH flag, as
1916         * io_unit could finish out of order.
1917         */
1918        ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1919        if (ret == -EINVAL)
1920                return -EAGAIN;
1921        else if (ret)
1922                return ret;   /* -ENOMEM duo to alloc_page() failed */
1923
1924        mb = page_address(ctx->meta_page);
1925        mb_offset = sizeof(struct r5l_meta_block);
1926        log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1927
1928        while (mb_offset < le32_to_cpu(mb->meta_size)) {
1929                int dd;
1930
1931                payload = (void *)mb + mb_offset;
1932                stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1933                        raid5_compute_sector(
1934                                conf, le64_to_cpu(payload->location), 0, &dd,
1935                                NULL)
1936                        : le64_to_cpu(payload->location);
1937
1938                sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1939                                                stripe_sect);
1940
1941                if (!sh) {
1942                        sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
1943                        /*
1944                         * cannot get stripe from raid5_get_active_stripe
1945                         * try replay some stripes
1946                         */
1947                        if (!sh) {
1948                                r5c_recovery_replay_stripes(
1949                                        cached_stripe_list, ctx);
1950                                sh = r5c_recovery_alloc_stripe(
1951                                        conf, stripe_sect);
1952                        }
1953                        if (!sh) {
1954                                pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1955                                        mdname(mddev),
1956                                        conf->min_nr_stripes * 2);
1957                                raid5_set_cache_size(mddev,
1958                                                     conf->min_nr_stripes * 2);
1959                                sh = r5c_recovery_alloc_stripe(conf,
1960                                                               stripe_sect);
1961                        }
1962                        if (!sh) {
1963                                pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1964                                       mdname(mddev));
1965                                return -ENOMEM;
1966                        }
1967                        list_add_tail(&sh->lru, cached_stripe_list);
1968                }
1969
1970                if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1971                        if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1972                            test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1973                                r5l_recovery_replay_one_stripe(conf, sh, ctx);
1974                                list_move_tail(&sh->lru, cached_stripe_list);
1975                        }
1976                        r5l_recovery_load_data(log, sh, ctx, payload,
1977                                               log_offset);
1978                } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1979                        r5l_recovery_load_parity(log, sh, ctx, payload,
1980                                                 log_offset);
1981                else
1982                        return -EINVAL;
1983
1984                log_offset = r5l_ring_add(log, log_offset,
1985                                          le32_to_cpu(payload->size));
1986
1987                mb_offset += sizeof(struct r5l_payload_data_parity) +
1988                        sizeof(__le32) *
1989                        (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1990        }
1991
1992        return 0;
1993}
1994
1995/*
1996 * Load the stripe into cache. The stripe will be written out later by
1997 * the stripe cache state machine.
1998 */
1999static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2000                                         struct stripe_head *sh)
2001{
2002        struct r5dev *dev;
2003        int i;
2004
2005        for (i = sh->disks; i--; ) {
2006                dev = sh->dev + i;
2007                if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2008                        set_bit(R5_InJournal, &dev->flags);
2009                        set_bit(R5_UPTODATE, &dev->flags);
2010                }
2011        }
2012}
2013
2014/*
2015 * Scan through the log for all to-be-flushed data
2016 *
2017 * For stripes with data and parity, namely Data-Parity stripe
2018 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2019 *
2020 * For stripes with only data, namely Data-Only stripe
2021 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2022 *
2023 * For a stripe, if we see data after parity, we should discard all previous
2024 * data and parity for this stripe, as these data are already flushed to
2025 * the array.
2026 *
2027 * At the end of the scan, we return the new journal_tail, which points to
2028 * first data-only stripe on the journal device, or next invalid meta block.
2029 */
2030static int r5c_recovery_flush_log(struct r5l_log *log,
2031                                  struct r5l_recovery_ctx *ctx)
2032{
2033        struct stripe_head *sh;
2034        int ret = 0;
2035
2036        /* scan through the log */
2037        while (1) {
2038                if (r5l_recovery_read_meta_block(log, ctx))
2039                        break;
2040
2041                ret = r5c_recovery_analyze_meta_block(log, ctx,
2042                                                      &ctx->cached_list);
2043                /*
2044                 * -EAGAIN means mismatch in data block, in this case, we still
2045                 * try scan the next metablock
2046                 */
2047                if (ret && ret != -EAGAIN)
2048                        break;   /* ret == -EINVAL or -ENOMEM */
2049                ctx->seq++;
2050                ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2051        }
2052
2053        if (ret == -ENOMEM) {
2054                r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2055                return ret;
2056        }
2057
2058        /* replay data-parity stripes */
2059        r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2060
2061        /* load data-only stripes to stripe cache */
2062        list_for_each_entry(sh, &ctx->cached_list, lru) {
2063                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2064                r5c_recovery_load_one_stripe(log, sh);
2065                ctx->data_only_stripes++;
2066        }
2067
2068        return 0;
2069}
2070
2071/*
2072 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2073 * log will start here. but we can't let superblock point to last valid
2074 * meta block. The log might looks like:
2075 * | meta 1| meta 2| meta 3|
2076 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2077 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2078 * happens again, new recovery will start from meta 1. Since meta 2n is
2079 * valid now, recovery will think meta 3 is valid, which is wrong.
2080 * The solution is we create a new meta in meta2 with its seq == meta
2081 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2082 * will not think meta 3 is a valid meta, because its seq doesn't match
2083 */
2084
2085/*
2086 * Before recovery, the log looks like the following
2087 *
2088 *   ---------------------------------------------
2089 *   |           valid log        | invalid log  |
2090 *   ---------------------------------------------
2091 *   ^
2092 *   |- log->last_checkpoint
2093 *   |- log->last_cp_seq
2094 *
2095 * Now we scan through the log until we see invalid entry
2096 *
2097 *   ---------------------------------------------
2098 *   |           valid log        | invalid log  |
2099 *   ---------------------------------------------
2100 *   ^                            ^
2101 *   |- log->last_checkpoint      |- ctx->pos
2102 *   |- log->last_cp_seq          |- ctx->seq
2103 *
2104 * From this point, we need to increase seq number by 10 to avoid
2105 * confusing next recovery.
2106 *
2107 *   ---------------------------------------------
2108 *   |           valid log        | invalid log  |
2109 *   ---------------------------------------------
2110 *   ^                              ^
2111 *   |- log->last_checkpoint        |- ctx->pos+1
2112 *   |- log->last_cp_seq            |- ctx->seq+10001
2113 *
2114 * However, it is not safe to start the state machine yet, because data only
2115 * parities are not yet secured in RAID. To save these data only parities, we
2116 * rewrite them from seq+11.
2117 *
2118 *   -----------------------------------------------------------------
2119 *   |           valid log        | data only stripes | invalid log  |
2120 *   -----------------------------------------------------------------
2121 *   ^                                                ^
2122 *   |- log->last_checkpoint                          |- ctx->pos+n
2123 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2124 *
2125 * If failure happens again during this process, the recovery can safe start
2126 * again from log->last_checkpoint.
2127 *
2128 * Once data only stripes are rewritten to journal, we move log_tail
2129 *
2130 *   -----------------------------------------------------------------
2131 *   |     old log        |    data only stripes    | invalid log  |
2132 *   -----------------------------------------------------------------
2133 *                        ^                         ^
2134 *                        |- log->last_checkpoint   |- ctx->pos+n
2135 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2136 *
2137 * Then we can safely start the state machine. If failure happens from this
2138 * point on, the recovery will start from new log->last_checkpoint.
2139 */
2140static int
2141r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2142                                       struct r5l_recovery_ctx *ctx)
2143{
2144        struct stripe_head *sh;
2145        struct mddev *mddev = log->rdev->mddev;
2146        struct page *page;
2147        sector_t next_checkpoint = MaxSector;
2148
2149        page = alloc_page(GFP_KERNEL);
2150        if (!page) {
2151                pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2152                       mdname(mddev));
2153                return -ENOMEM;
2154        }
2155
2156        WARN_ON(list_empty(&ctx->cached_list));
2157
2158        list_for_each_entry(sh, &ctx->cached_list, lru) {
2159                struct r5l_meta_block *mb;
2160                int i;
2161                int offset;
2162                sector_t write_pos;
2163
2164                WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2165                r5l_recovery_create_empty_meta_block(log, page,
2166                                                     ctx->pos, ctx->seq);
2167                mb = page_address(page);
2168                offset = le32_to_cpu(mb->meta_size);
2169                write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2170
2171                for (i = sh->disks; i--; ) {
2172                        struct r5dev *dev = &sh->dev[i];
2173                        struct r5l_payload_data_parity *payload;
2174                        void *addr;
2175
2176                        if (test_bit(R5_InJournal, &dev->flags)) {
2177                                payload = (void *)mb + offset;
2178                                payload->header.type = cpu_to_le16(
2179                                        R5LOG_PAYLOAD_DATA);
2180                                payload->size = BLOCK_SECTORS;
2181                                payload->location = cpu_to_le64(
2182                                        raid5_compute_blocknr(sh, i, 0));
2183                                addr = kmap_atomic(dev->page);
2184                                payload->checksum[0] = cpu_to_le32(
2185                                        crc32c_le(log->uuid_checksum, addr,
2186                                                  PAGE_SIZE));
2187                                kunmap_atomic(addr);
2188                                sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2189                                             dev->page, REQ_OP_WRITE, 0, false);
2190                                write_pos = r5l_ring_add(log, write_pos,
2191                                                         BLOCK_SECTORS);
2192                                offset += sizeof(__le32) +
2193                                        sizeof(struct r5l_payload_data_parity);
2194
2195                        }
2196                }
2197                mb->meta_size = cpu_to_le32(offset);
2198                mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2199                                                     mb, PAGE_SIZE));
2200                sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2201                             REQ_OP_WRITE, REQ_FUA, false);
2202                sh->log_start = ctx->pos;
2203                list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2204                atomic_inc(&log->stripe_in_journal_count);
2205                ctx->pos = write_pos;
2206                ctx->seq += 1;
2207                next_checkpoint = sh->log_start;
2208        }
2209        log->next_checkpoint = next_checkpoint;
2210        __free_page(page);
2211        return 0;
2212}
2213
2214static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2215                                                 struct r5l_recovery_ctx *ctx)
2216{
2217        struct mddev *mddev = log->rdev->mddev;
2218        struct r5conf *conf = mddev->private;
2219        struct stripe_head *sh, *next;
2220
2221        if (ctx->data_only_stripes == 0)
2222                return;
2223
2224        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2225
2226        list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2227                r5c_make_stripe_write_out(sh);
2228                set_bit(STRIPE_HANDLE, &sh->state);
2229                list_del_init(&sh->lru);
2230                raid5_release_stripe(sh);
2231        }
2232
2233        md_wakeup_thread(conf->mddev->thread);
2234        /* reuse conf->wait_for_quiescent in recovery */
2235        wait_event(conf->wait_for_quiescent,
2236                   atomic_read(&conf->active_stripes) == 0);
2237
2238        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2239}
2240
2241static int r5l_recovery_log(struct r5l_log *log)
2242{
2243        struct mddev *mddev = log->rdev->mddev;
2244        struct r5l_recovery_ctx ctx;
2245        int ret;
2246        sector_t pos;
2247
2248        ctx.pos = log->last_checkpoint;
2249        ctx.seq = log->last_cp_seq;
2250        ctx.meta_page = alloc_page(GFP_KERNEL);
2251        ctx.data_only_stripes = 0;
2252        ctx.data_parity_stripes = 0;
2253        INIT_LIST_HEAD(&ctx.cached_list);
2254
2255        if (!ctx.meta_page)
2256                return -ENOMEM;
2257
2258        ret = r5c_recovery_flush_log(log, &ctx);
2259        __free_page(ctx.meta_page);
2260
2261        if (ret)
2262                return ret;
2263
2264        pos = ctx.pos;
2265        ctx.seq += 10000;
2266
2267
2268        if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2269                pr_debug("md/raid:%s: starting from clean shutdown\n",
2270                         mdname(mddev));
2271        else
2272                pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2273                         mdname(mddev), ctx.data_only_stripes,
2274                         ctx.data_parity_stripes);
2275
2276        if (ctx.data_only_stripes == 0) {
2277                log->next_checkpoint = ctx.pos;
2278                r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq++);
2279                ctx.pos = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
2280        } else if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2281                pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2282                       mdname(mddev));
2283                return -EIO;
2284        }
2285
2286        log->log_start = ctx.pos;
2287        log->seq = ctx.seq;
2288        log->last_checkpoint = pos;
2289        r5l_write_super(log, pos);
2290
2291        r5c_recovery_flush_data_only_stripes(log, &ctx);
2292        return 0;
2293}
2294
2295static void r5l_write_super(struct r5l_log *log, sector_t cp)
2296{
2297        struct mddev *mddev = log->rdev->mddev;
2298
2299        log->rdev->journal_tail = cp;
2300        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2301}
2302
2303static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2304{
2305        struct r5conf *conf = mddev->private;
2306        int ret;
2307
2308        if (!conf->log)
2309                return 0;
2310
2311        switch (conf->log->r5c_journal_mode) {
2312        case R5C_JOURNAL_MODE_WRITE_THROUGH:
2313                ret = snprintf(
2314                        page, PAGE_SIZE, "[%s] %s\n",
2315                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2316                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2317                break;
2318        case R5C_JOURNAL_MODE_WRITE_BACK:
2319                ret = snprintf(
2320                        page, PAGE_SIZE, "%s [%s]\n",
2321                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2322                        r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2323                break;
2324        default:
2325                ret = 0;
2326        }
2327        return ret;
2328}
2329
2330static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2331                                      const char *page, size_t length)
2332{
2333        struct r5conf *conf = mddev->private;
2334        struct r5l_log *log = conf->log;
2335        int val = -1, i;
2336        int len = length;
2337
2338        if (!log)
2339                return -ENODEV;
2340
2341        if (len && page[len - 1] == '\n')
2342                len -= 1;
2343        for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2344                if (strlen(r5c_journal_mode_str[i]) == len &&
2345                    strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2346                        val = i;
2347                        break;
2348                }
2349        if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2350            val > R5C_JOURNAL_MODE_WRITE_BACK)
2351                return -EINVAL;
2352
2353        if (raid5_calc_degraded(conf) > 0 &&
2354            val == R5C_JOURNAL_MODE_WRITE_BACK)
2355                return -EINVAL;
2356
2357        mddev_suspend(mddev);
2358        conf->log->r5c_journal_mode = val;
2359        mddev_resume(mddev);
2360
2361        pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2362                 mdname(mddev), val, r5c_journal_mode_str[val]);
2363        return length;
2364}
2365
2366struct md_sysfs_entry
2367r5c_journal_mode = __ATTR(journal_mode, 0644,
2368                          r5c_journal_mode_show, r5c_journal_mode_store);
2369
2370/*
2371 * Try handle write operation in caching phase. This function should only
2372 * be called in write-back mode.
2373 *
2374 * If all outstanding writes can be handled in caching phase, returns 0
2375 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2376 * and returns -EAGAIN
2377 */
2378int r5c_try_caching_write(struct r5conf *conf,
2379                          struct stripe_head *sh,
2380                          struct stripe_head_state *s,
2381                          int disks)
2382{
2383        struct r5l_log *log = conf->log;
2384        int i;
2385        struct r5dev *dev;
2386        int to_cache = 0;
2387        void **pslot;
2388        sector_t tree_index;
2389        int ret;
2390        uintptr_t refcount;
2391
2392        BUG_ON(!r5c_is_writeback(log));
2393
2394        if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2395                /*
2396                 * There are two different scenarios here:
2397                 *  1. The stripe has some data cached, and it is sent to
2398                 *     write-out phase for reclaim
2399                 *  2. The stripe is clean, and this is the first write
2400                 *
2401                 * For 1, return -EAGAIN, so we continue with
2402                 * handle_stripe_dirtying().
2403                 *
2404                 * For 2, set STRIPE_R5C_CACHING and continue with caching
2405                 * write.
2406                 */
2407
2408                /* case 1: anything injournal or anything in written */
2409                if (s->injournal > 0 || s->written > 0)
2410                        return -EAGAIN;
2411                /* case 2 */
2412                set_bit(STRIPE_R5C_CACHING, &sh->state);
2413        }
2414
2415        /*
2416         * When run in degraded mode, array is set to write-through mode.
2417         * This check helps drain pending write safely in the transition to
2418         * write-through mode.
2419         */
2420        if (s->failed) {
2421                r5c_make_stripe_write_out(sh);
2422                return -EAGAIN;
2423        }
2424
2425        for (i = disks; i--; ) {
2426                dev = &sh->dev[i];
2427                /* if non-overwrite, use writing-out phase */
2428                if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2429                    !test_bit(R5_InJournal, &dev->flags)) {
2430                        r5c_make_stripe_write_out(sh);
2431                        return -EAGAIN;
2432                }
2433        }
2434
2435        /* if the stripe is not counted in big_stripe_tree, add it now */
2436        if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2437            !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2438                tree_index = r5c_tree_index(conf, sh->sector);
2439                spin_lock(&log->tree_lock);
2440                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2441                                               tree_index);
2442                if (pslot) {
2443                        refcount = (uintptr_t)radix_tree_deref_slot_protected(
2444                                pslot, &log->tree_lock) >>
2445                                R5C_RADIX_COUNT_SHIFT;
2446                        radix_tree_replace_slot(
2447                                &log->big_stripe_tree, pslot,
2448                                (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2449                } else {
2450                        /*
2451                         * this radix_tree_insert can fail safely, so no
2452                         * need to call radix_tree_preload()
2453                         */
2454                        ret = radix_tree_insert(
2455                                &log->big_stripe_tree, tree_index,
2456                                (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2457                        if (ret) {
2458                                spin_unlock(&log->tree_lock);
2459                                r5c_make_stripe_write_out(sh);
2460                                return -EAGAIN;
2461                        }
2462                }
2463                spin_unlock(&log->tree_lock);
2464
2465                /*
2466                 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2467                 * counted in the radix tree
2468                 */
2469                set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2470                atomic_inc(&conf->r5c_cached_partial_stripes);
2471        }
2472
2473        for (i = disks; i--; ) {
2474                dev = &sh->dev[i];
2475                if (dev->towrite) {
2476                        set_bit(R5_Wantwrite, &dev->flags);
2477                        set_bit(R5_Wantdrain, &dev->flags);
2478                        set_bit(R5_LOCKED, &dev->flags);
2479                        to_cache++;
2480                }
2481        }
2482
2483        if (to_cache) {
2484                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2485                /*
2486                 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2487                 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2488                 * r5c_handle_data_cached()
2489                 */
2490                set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2491        }
2492
2493        return 0;
2494}
2495
2496/*
2497 * free extra pages (orig_page) we allocated for prexor
2498 */
2499void r5c_release_extra_page(struct stripe_head *sh)
2500{
2501        struct r5conf *conf = sh->raid_conf;
2502        int i;
2503        bool using_disk_info_extra_page;
2504
2505        using_disk_info_extra_page =
2506                sh->dev[0].orig_page == conf->disks[0].extra_page;
2507
2508        for (i = sh->disks; i--; )
2509                if (sh->dev[i].page != sh->dev[i].orig_page) {
2510                        struct page *p = sh->dev[i].orig_page;
2511
2512                        sh->dev[i].orig_page = sh->dev[i].page;
2513                        clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2514
2515                        if (!using_disk_info_extra_page)
2516                                put_page(p);
2517                }
2518
2519        if (using_disk_info_extra_page) {
2520                clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2521                md_wakeup_thread(conf->mddev->thread);
2522        }
2523}
2524
2525void r5c_use_extra_page(struct stripe_head *sh)
2526{
2527        struct r5conf *conf = sh->raid_conf;
2528        int i;
2529        struct r5dev *dev;
2530
2531        for (i = sh->disks; i--; ) {
2532                dev = &sh->dev[i];
2533                if (dev->orig_page != dev->page)
2534                        put_page(dev->orig_page);
2535                dev->orig_page = conf->disks[i].extra_page;
2536        }
2537}
2538
2539/*
2540 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2541 * stripe is committed to RAID disks.
2542 */
2543void r5c_finish_stripe_write_out(struct r5conf *conf,
2544                                 struct stripe_head *sh,
2545                                 struct stripe_head_state *s)
2546{
2547        struct r5l_log *log = conf->log;
2548        int i;
2549        int do_wakeup = 0;
2550        sector_t tree_index;
2551        void **pslot;
2552        uintptr_t refcount;
2553
2554        if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2555                return;
2556
2557        WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2558        clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2559
2560        if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2561                return;
2562
2563        for (i = sh->disks; i--; ) {
2564                clear_bit(R5_InJournal, &sh->dev[i].flags);
2565                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2566                        do_wakeup = 1;
2567        }
2568
2569        /*
2570         * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2571         * We updated R5_InJournal, so we also update s->injournal.
2572         */
2573        s->injournal = 0;
2574
2575        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2576                if (atomic_dec_and_test(&conf->pending_full_writes))
2577                        md_wakeup_thread(conf->mddev->thread);
2578
2579        if (do_wakeup)
2580                wake_up(&conf->wait_for_overlap);
2581
2582        spin_lock_irq(&log->stripe_in_journal_lock);
2583        list_del_init(&sh->r5c);
2584        spin_unlock_irq(&log->stripe_in_journal_lock);
2585        sh->log_start = MaxSector;
2586
2587        atomic_dec(&log->stripe_in_journal_count);
2588        r5c_update_log_state(log);
2589
2590        /* stop counting this stripe in big_stripe_tree */
2591        if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2592            test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2593                tree_index = r5c_tree_index(conf, sh->sector);
2594                spin_lock(&log->tree_lock);
2595                pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2596                                               tree_index);
2597                BUG_ON(pslot == NULL);
2598                refcount = (uintptr_t)radix_tree_deref_slot_protected(
2599                        pslot, &log->tree_lock) >>
2600                        R5C_RADIX_COUNT_SHIFT;
2601                if (refcount == 1)
2602                        radix_tree_delete(&log->big_stripe_tree, tree_index);
2603                else
2604                        radix_tree_replace_slot(
2605                                &log->big_stripe_tree, pslot,
2606                                (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2607                spin_unlock(&log->tree_lock);
2608        }
2609
2610        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2611                BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2612                atomic_dec(&conf->r5c_flushing_partial_stripes);
2613                atomic_dec(&conf->r5c_cached_partial_stripes);
2614        }
2615
2616        if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2617                BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2618                atomic_dec(&conf->r5c_flushing_full_stripes);
2619                atomic_dec(&conf->r5c_cached_full_stripes);
2620        }
2621}
2622
2623int
2624r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2625               struct stripe_head_state *s)
2626{
2627        struct r5conf *conf = sh->raid_conf;
2628        int pages = 0;
2629        int reserve;
2630        int i;
2631        int ret = 0;
2632
2633        BUG_ON(!log);
2634
2635        for (i = 0; i < sh->disks; i++) {
2636                void *addr;
2637
2638                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2639                        continue;
2640                addr = kmap_atomic(sh->dev[i].page);
2641                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2642                                                    addr, PAGE_SIZE);
2643                kunmap_atomic(addr);
2644                pages++;
2645        }
2646        WARN_ON(pages == 0);
2647
2648        /*
2649         * The stripe must enter state machine again to call endio, so
2650         * don't delay.
2651         */
2652        clear_bit(STRIPE_DELAYED, &sh->state);
2653        atomic_inc(&sh->count);
2654
2655        mutex_lock(&log->io_mutex);
2656        /* meta + data */
2657        reserve = (1 + pages) << (PAGE_SHIFT - 9);
2658
2659        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2660            sh->log_start == MaxSector)
2661                r5l_add_no_space_stripe(log, sh);
2662        else if (!r5l_has_free_space(log, reserve)) {
2663                if (sh->log_start == log->last_checkpoint)
2664                        BUG();
2665                else
2666                        r5l_add_no_space_stripe(log, sh);
2667        } else {
2668                ret = r5l_log_stripe(log, sh, pages, 0);
2669                if (ret) {
2670                        spin_lock_irq(&log->io_list_lock);
2671                        list_add_tail(&sh->log_list, &log->no_mem_stripes);
2672                        spin_unlock_irq(&log->io_list_lock);
2673                }
2674        }
2675
2676        mutex_unlock(&log->io_mutex);
2677        return 0;
2678}
2679
2680/* check whether this big stripe is in write back cache. */
2681bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2682{
2683        struct r5l_log *log = conf->log;
2684        sector_t tree_index;
2685        void *slot;
2686
2687        if (!log)
2688                return false;
2689
2690        WARN_ON_ONCE(!rcu_read_lock_held());
2691        tree_index = r5c_tree_index(conf, sect);
2692        slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2693        return slot != NULL;
2694}
2695
2696static int r5l_load_log(struct r5l_log *log)
2697{
2698        struct md_rdev *rdev = log->rdev;
2699        struct page *page;
2700        struct r5l_meta_block *mb;
2701        sector_t cp = log->rdev->journal_tail;
2702        u32 stored_crc, expected_crc;
2703        bool create_super = false;
2704        int ret = 0;
2705
2706        /* Make sure it's valid */
2707        if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2708                cp = 0;
2709        page = alloc_page(GFP_KERNEL);
2710        if (!page)
2711                return -ENOMEM;
2712
2713        if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2714                ret = -EIO;
2715                goto ioerr;
2716        }
2717        mb = page_address(page);
2718
2719        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2720            mb->version != R5LOG_VERSION) {
2721                create_super = true;
2722                goto create;
2723        }
2724        stored_crc = le32_to_cpu(mb->checksum);
2725        mb->checksum = 0;
2726        expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2727        if (stored_crc != expected_crc) {
2728                create_super = true;
2729                goto create;
2730        }
2731        if (le64_to_cpu(mb->position) != cp) {
2732                create_super = true;
2733                goto create;
2734        }
2735create:
2736        if (create_super) {
2737                log->last_cp_seq = prandom_u32();
2738                cp = 0;
2739                r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2740                /*
2741                 * Make sure super points to correct address. Log might have
2742                 * data very soon. If super hasn't correct log tail address,
2743                 * recovery can't find the log
2744                 */
2745                r5l_write_super(log, cp);
2746        } else
2747                log->last_cp_seq = le64_to_cpu(mb->seq);
2748
2749        log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2750        log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2751        if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2752                log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2753        log->last_checkpoint = cp;
2754
2755        __free_page(page);
2756
2757        if (create_super) {
2758                log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2759                log->seq = log->last_cp_seq + 1;
2760                log->next_checkpoint = cp;
2761        } else
2762                ret = r5l_recovery_log(log);
2763
2764        r5c_update_log_state(log);
2765        return ret;
2766ioerr:
2767        __free_page(page);
2768        return ret;
2769}
2770
2771void r5c_update_on_rdev_error(struct mddev *mddev)
2772{
2773        struct r5conf *conf = mddev->private;
2774        struct r5l_log *log = conf->log;
2775
2776        if (!log)
2777                return;
2778
2779        if (raid5_calc_degraded(conf) > 0 &&
2780            conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2781                schedule_work(&log->disable_writeback_work);
2782}
2783
2784int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2785{
2786        struct request_queue *q = bdev_get_queue(rdev->bdev);
2787        struct r5l_log *log;
2788
2789        if (PAGE_SIZE != 4096)
2790                return -EINVAL;
2791
2792        /*
2793         * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2794         * raid_disks r5l_payload_data_parity.
2795         *
2796         * Write journal and cache does not work for very big array
2797         * (raid_disks > 203)
2798         */
2799        if (sizeof(struct r5l_meta_block) +
2800            ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2801             conf->raid_disks) > PAGE_SIZE) {
2802                pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2803                       mdname(conf->mddev), conf->raid_disks);
2804                return -EINVAL;
2805        }
2806
2807        log = kzalloc(sizeof(*log), GFP_KERNEL);
2808        if (!log)
2809                return -ENOMEM;
2810        log->rdev = rdev;
2811
2812        log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2813
2814        log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2815                                       sizeof(rdev->mddev->uuid));
2816
2817        mutex_init(&log->io_mutex);
2818
2819        spin_lock_init(&log->io_list_lock);
2820        INIT_LIST_HEAD(&log->running_ios);
2821        INIT_LIST_HEAD(&log->io_end_ios);
2822        INIT_LIST_HEAD(&log->flushing_ios);
2823        INIT_LIST_HEAD(&log->finished_ios);
2824        bio_init(&log->flush_bio, NULL, 0);
2825
2826        log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2827        if (!log->io_kc)
2828                goto io_kc;
2829
2830        log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2831        if (!log->io_pool)
2832                goto io_pool;
2833
2834        log->bs = bioset_create(R5L_POOL_SIZE, 0);
2835        if (!log->bs)
2836                goto io_bs;
2837
2838        log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2839        if (!log->meta_pool)
2840                goto out_mempool;
2841
2842        spin_lock_init(&log->tree_lock);
2843        INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
2844
2845        log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2846                                                 log->rdev->mddev, "reclaim");
2847        if (!log->reclaim_thread)
2848                goto reclaim_thread;
2849        log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2850
2851        init_waitqueue_head(&log->iounit_wait);
2852
2853        INIT_LIST_HEAD(&log->no_mem_stripes);
2854
2855        INIT_LIST_HEAD(&log->no_space_stripes);
2856        spin_lock_init(&log->no_space_stripes_lock);
2857
2858        INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2859        INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
2860
2861        log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2862        INIT_LIST_HEAD(&log->stripe_in_journal_list);
2863        spin_lock_init(&log->stripe_in_journal_lock);
2864        atomic_set(&log->stripe_in_journal_count, 0);
2865
2866        rcu_assign_pointer(conf->log, log);
2867
2868        if (r5l_load_log(log))
2869                goto error;
2870
2871        set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2872        return 0;
2873
2874error:
2875        rcu_assign_pointer(conf->log, NULL);
2876        md_unregister_thread(&log->reclaim_thread);
2877reclaim_thread:
2878        mempool_destroy(log->meta_pool);
2879out_mempool:
2880        bioset_free(log->bs);
2881io_bs:
2882        mempool_destroy(log->io_pool);
2883io_pool:
2884        kmem_cache_destroy(log->io_kc);
2885io_kc:
2886        kfree(log);
2887        return -EINVAL;
2888}
2889
2890void r5l_exit_log(struct r5l_log *log)
2891{
2892        flush_work(&log->disable_writeback_work);
2893        md_unregister_thread(&log->reclaim_thread);
2894        mempool_destroy(log->meta_pool);
2895        bioset_free(log->bs);
2896        mempool_destroy(log->io_pool);
2897        kmem_cache_destroy(log->io_kc);
2898        kfree(log);
2899}
2900