linux/drivers/media/platform/ti-vpe/vpe.c
<<
>>
Prefs
   1/*
   2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
   3 *
   4 * Copyright (c) 2013 Texas Instruments Inc.
   5 * David Griego, <dagriego@biglakesoftware.com>
   6 * Dale Farnsworth, <dale@farnsworth.org>
   7 * Archit Taneja, <archit@ti.com>
   8 *
   9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
  10 * Pawel Osciak, <pawel@osciak.com>
  11 * Marek Szyprowski, <m.szyprowski@samsung.com>
  12 *
  13 * Based on the virtual v4l2-mem2mem example device
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License version 2 as published by
  17 * the Free Software Foundation
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/err.h>
  23#include <linux/fs.h>
  24#include <linux/interrupt.h>
  25#include <linux/io.h>
  26#include <linux/ioctl.h>
  27#include <linux/module.h>
  28#include <linux/of.h>
  29#include <linux/platform_device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sched.h>
  32#include <linux/slab.h>
  33#include <linux/videodev2.h>
  34#include <linux/log2.h>
  35#include <linux/sizes.h>
  36
  37#include <media/v4l2-common.h>
  38#include <media/v4l2-ctrls.h>
  39#include <media/v4l2-device.h>
  40#include <media/v4l2-event.h>
  41#include <media/v4l2-ioctl.h>
  42#include <media/v4l2-mem2mem.h>
  43#include <media/videobuf2-v4l2.h>
  44#include <media/videobuf2-dma-contig.h>
  45
  46#include "vpdma.h"
  47#include "vpdma_priv.h"
  48#include "vpe_regs.h"
  49#include "sc.h"
  50#include "csc.h"
  51
  52#define VPE_MODULE_NAME "vpe"
  53
  54/* minimum and maximum frame sizes */
  55#define MIN_W           32
  56#define MIN_H           32
  57#define MAX_W           2048
  58#define MAX_H           1184
  59
  60/* required alignments */
  61#define S_ALIGN         0       /* multiple of 1 */
  62#define H_ALIGN         1       /* multiple of 2 */
  63
  64/* flags that indicate a format can be used for capture/output */
  65#define VPE_FMT_TYPE_CAPTURE    (1 << 0)
  66#define VPE_FMT_TYPE_OUTPUT     (1 << 1)
  67
  68/* used as plane indices */
  69#define VPE_MAX_PLANES  2
  70#define VPE_LUMA        0
  71#define VPE_CHROMA      1
  72
  73/* per m2m context info */
  74#define VPE_MAX_SRC_BUFS        3       /* need 3 src fields to de-interlace */
  75
  76#define VPE_DEF_BUFS_PER_JOB    1       /* default one buffer per batch job */
  77
  78/*
  79 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
  80 * 3 output descriptors, and 10 control descriptors
  81 */
  82#define VPE_DESC_LIST_SIZE      (10 * VPDMA_DTD_DESC_SIZE +     \
  83                                        13 * VPDMA_CFD_CTD_DESC_SIZE)
  84
  85#define vpe_dbg(vpedev, fmt, arg...)    \
  86                dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
  87#define vpe_err(vpedev, fmt, arg...)    \
  88                dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
  89
  90struct vpe_us_coeffs {
  91        unsigned short  anchor_fid0_c0;
  92        unsigned short  anchor_fid0_c1;
  93        unsigned short  anchor_fid0_c2;
  94        unsigned short  anchor_fid0_c3;
  95        unsigned short  interp_fid0_c0;
  96        unsigned short  interp_fid0_c1;
  97        unsigned short  interp_fid0_c2;
  98        unsigned short  interp_fid0_c3;
  99        unsigned short  anchor_fid1_c0;
 100        unsigned short  anchor_fid1_c1;
 101        unsigned short  anchor_fid1_c2;
 102        unsigned short  anchor_fid1_c3;
 103        unsigned short  interp_fid1_c0;
 104        unsigned short  interp_fid1_c1;
 105        unsigned short  interp_fid1_c2;
 106        unsigned short  interp_fid1_c3;
 107};
 108
 109/*
 110 * Default upsampler coefficients
 111 */
 112static const struct vpe_us_coeffs us_coeffs[] = {
 113        {
 114                /* Coefficients for progressive input */
 115                0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
 116                0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
 117        },
 118        {
 119                /* Coefficients for Top Field Interlaced input */
 120                0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
 121                /* Coefficients for Bottom Field Interlaced input */
 122                0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
 123        },
 124};
 125
 126/*
 127 * the following registers are for configuring some of the parameters of the
 128 * motion and edge detection blocks inside DEI, these generally remain the same,
 129 * these could be passed later via userspace if some one needs to tweak these.
 130 */
 131struct vpe_dei_regs {
 132        unsigned long mdt_spacial_freq_thr_reg;         /* VPE_DEI_REG2 */
 133        unsigned long edi_config_reg;                   /* VPE_DEI_REG3 */
 134        unsigned long edi_lut_reg0;                     /* VPE_DEI_REG4 */
 135        unsigned long edi_lut_reg1;                     /* VPE_DEI_REG5 */
 136        unsigned long edi_lut_reg2;                     /* VPE_DEI_REG6 */
 137        unsigned long edi_lut_reg3;                     /* VPE_DEI_REG7 */
 138};
 139
 140/*
 141 * default expert DEI register values, unlikely to be modified.
 142 */
 143static const struct vpe_dei_regs dei_regs = {
 144        .mdt_spacial_freq_thr_reg = 0x020C0804u,
 145        .edi_config_reg = 0x0118100Cu,
 146        .edi_lut_reg0 = 0x08040200u,
 147        .edi_lut_reg1 = 0x1010100Cu,
 148        .edi_lut_reg2 = 0x10101010u,
 149        .edi_lut_reg3 = 0x10101010u,
 150};
 151
 152/*
 153 * The port_data structure contains per-port data.
 154 */
 155struct vpe_port_data {
 156        enum vpdma_channel channel;     /* VPDMA channel */
 157        u8      vb_index;               /* input frame f, f-1, f-2 index */
 158        u8      vb_part;                /* plane index for co-panar formats */
 159};
 160
 161/*
 162 * Define indices into the port_data tables
 163 */
 164#define VPE_PORT_LUMA1_IN       0
 165#define VPE_PORT_CHROMA1_IN     1
 166#define VPE_PORT_LUMA2_IN       2
 167#define VPE_PORT_CHROMA2_IN     3
 168#define VPE_PORT_LUMA3_IN       4
 169#define VPE_PORT_CHROMA3_IN     5
 170#define VPE_PORT_MV_IN          6
 171#define VPE_PORT_MV_OUT         7
 172#define VPE_PORT_LUMA_OUT       8
 173#define VPE_PORT_CHROMA_OUT     9
 174#define VPE_PORT_RGB_OUT        10
 175
 176static const struct vpe_port_data port_data[11] = {
 177        [VPE_PORT_LUMA1_IN] = {
 178                .channel        = VPE_CHAN_LUMA1_IN,
 179                .vb_index       = 0,
 180                .vb_part        = VPE_LUMA,
 181        },
 182        [VPE_PORT_CHROMA1_IN] = {
 183                .channel        = VPE_CHAN_CHROMA1_IN,
 184                .vb_index       = 0,
 185                .vb_part        = VPE_CHROMA,
 186        },
 187        [VPE_PORT_LUMA2_IN] = {
 188                .channel        = VPE_CHAN_LUMA2_IN,
 189                .vb_index       = 1,
 190                .vb_part        = VPE_LUMA,
 191        },
 192        [VPE_PORT_CHROMA2_IN] = {
 193                .channel        = VPE_CHAN_CHROMA2_IN,
 194                .vb_index       = 1,
 195                .vb_part        = VPE_CHROMA,
 196        },
 197        [VPE_PORT_LUMA3_IN] = {
 198                .channel        = VPE_CHAN_LUMA3_IN,
 199                .vb_index       = 2,
 200                .vb_part        = VPE_LUMA,
 201        },
 202        [VPE_PORT_CHROMA3_IN] = {
 203                .channel        = VPE_CHAN_CHROMA3_IN,
 204                .vb_index       = 2,
 205                .vb_part        = VPE_CHROMA,
 206        },
 207        [VPE_PORT_MV_IN] = {
 208                .channel        = VPE_CHAN_MV_IN,
 209        },
 210        [VPE_PORT_MV_OUT] = {
 211                .channel        = VPE_CHAN_MV_OUT,
 212        },
 213        [VPE_PORT_LUMA_OUT] = {
 214                .channel        = VPE_CHAN_LUMA_OUT,
 215                .vb_part        = VPE_LUMA,
 216        },
 217        [VPE_PORT_CHROMA_OUT] = {
 218                .channel        = VPE_CHAN_CHROMA_OUT,
 219                .vb_part        = VPE_CHROMA,
 220        },
 221        [VPE_PORT_RGB_OUT] = {
 222                .channel        = VPE_CHAN_RGB_OUT,
 223                .vb_part        = VPE_LUMA,
 224        },
 225};
 226
 227
 228/* driver info for each of the supported video formats */
 229struct vpe_fmt {
 230        char    *name;                  /* human-readable name */
 231        u32     fourcc;                 /* standard format identifier */
 232        u8      types;                  /* CAPTURE and/or OUTPUT */
 233        u8      coplanar;               /* set for unpacked Luma and Chroma */
 234        /* vpdma format info for each plane */
 235        struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
 236};
 237
 238static struct vpe_fmt vpe_formats[] = {
 239        {
 240                .name           = "NV16 YUV 422 co-planar",
 241                .fourcc         = V4L2_PIX_FMT_NV16,
 242                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 243                .coplanar       = 1,
 244                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
 245                                    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
 246                                  },
 247        },
 248        {
 249                .name           = "NV12 YUV 420 co-planar",
 250                .fourcc         = V4L2_PIX_FMT_NV12,
 251                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 252                .coplanar       = 1,
 253                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
 254                                    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
 255                                  },
 256        },
 257        {
 258                .name           = "YUYV 422 packed",
 259                .fourcc         = V4L2_PIX_FMT_YUYV,
 260                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 261                .coplanar       = 0,
 262                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
 263                                  },
 264        },
 265        {
 266                .name           = "UYVY 422 packed",
 267                .fourcc         = V4L2_PIX_FMT_UYVY,
 268                .types          = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
 269                .coplanar       = 0,
 270                .vpdma_fmt      = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
 271                                  },
 272        },
 273        {
 274                .name           = "RGB888 packed",
 275                .fourcc         = V4L2_PIX_FMT_RGB24,
 276                .types          = VPE_FMT_TYPE_CAPTURE,
 277                .coplanar       = 0,
 278                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
 279                                  },
 280        },
 281        {
 282                .name           = "ARGB32",
 283                .fourcc         = V4L2_PIX_FMT_RGB32,
 284                .types          = VPE_FMT_TYPE_CAPTURE,
 285                .coplanar       = 0,
 286                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
 287                                  },
 288        },
 289        {
 290                .name           = "BGR888 packed",
 291                .fourcc         = V4L2_PIX_FMT_BGR24,
 292                .types          = VPE_FMT_TYPE_CAPTURE,
 293                .coplanar       = 0,
 294                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
 295                                  },
 296        },
 297        {
 298                .name           = "ABGR32",
 299                .fourcc         = V4L2_PIX_FMT_BGR32,
 300                .types          = VPE_FMT_TYPE_CAPTURE,
 301                .coplanar       = 0,
 302                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
 303                                  },
 304        },
 305        {
 306                .name           = "RGB565",
 307                .fourcc         = V4L2_PIX_FMT_RGB565,
 308                .types          = VPE_FMT_TYPE_CAPTURE,
 309                .coplanar       = 0,
 310                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
 311                                  },
 312        },
 313        {
 314                .name           = "RGB5551",
 315                .fourcc         = V4L2_PIX_FMT_RGB555,
 316                .types          = VPE_FMT_TYPE_CAPTURE,
 317                .coplanar       = 0,
 318                .vpdma_fmt      = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
 319                                  },
 320        },
 321};
 322
 323/*
 324 * per-queue, driver-specific private data.
 325 * there is one source queue and one destination queue for each m2m context.
 326 */
 327struct vpe_q_data {
 328        unsigned int            width;                          /* frame width */
 329        unsigned int            height;                         /* frame height */
 330        unsigned int            nplanes;                        /* Current number of planes */
 331        unsigned int            bytesperline[VPE_MAX_PLANES];   /* bytes per line in memory */
 332        enum v4l2_colorspace    colorspace;
 333        enum v4l2_field         field;                          /* supported field value */
 334        unsigned int            flags;
 335        unsigned int            sizeimage[VPE_MAX_PLANES];      /* image size in memory */
 336        struct v4l2_rect        c_rect;                         /* crop/compose rectangle */
 337        struct vpe_fmt          *fmt;                           /* format info */
 338};
 339
 340/* vpe_q_data flag bits */
 341#define Q_DATA_FRAME_1D                 BIT(0)
 342#define Q_DATA_MODE_TILED               BIT(1)
 343#define Q_DATA_INTERLACED_ALTERNATE     BIT(2)
 344#define Q_DATA_INTERLACED_SEQ_TB        BIT(3)
 345
 346#define Q_IS_INTERLACED         (Q_DATA_INTERLACED_ALTERNATE | \
 347                                Q_DATA_INTERLACED_SEQ_TB)
 348
 349enum {
 350        Q_DATA_SRC = 0,
 351        Q_DATA_DST = 1,
 352};
 353
 354/* find our format description corresponding to the passed v4l2_format */
 355static struct vpe_fmt *find_format(struct v4l2_format *f)
 356{
 357        struct vpe_fmt *fmt;
 358        unsigned int k;
 359
 360        for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
 361                fmt = &vpe_formats[k];
 362                if (fmt->fourcc == f->fmt.pix.pixelformat)
 363                        return fmt;
 364        }
 365
 366        return NULL;
 367}
 368
 369/*
 370 * there is one vpe_dev structure in the driver, it is shared by
 371 * all instances.
 372 */
 373struct vpe_dev {
 374        struct v4l2_device      v4l2_dev;
 375        struct video_device     vfd;
 376        struct v4l2_m2m_dev     *m2m_dev;
 377
 378        atomic_t                num_instances;  /* count of driver instances */
 379        dma_addr_t              loaded_mmrs;    /* shadow mmrs in device */
 380        struct mutex            dev_mutex;
 381        spinlock_t              lock;
 382
 383        int                     irq;
 384        void __iomem            *base;
 385        struct resource         *res;
 386
 387        struct vpdma_data       vpdma_data;
 388        struct vpdma_data       *vpdma;         /* vpdma data handle */
 389        struct sc_data          *sc;            /* scaler data handle */
 390        struct csc_data         *csc;           /* csc data handle */
 391};
 392
 393/*
 394 * There is one vpe_ctx structure for each m2m context.
 395 */
 396struct vpe_ctx {
 397        struct v4l2_fh          fh;
 398        struct vpe_dev          *dev;
 399        struct v4l2_ctrl_handler hdl;
 400
 401        unsigned int            field;                  /* current field */
 402        unsigned int            sequence;               /* current frame/field seq */
 403        unsigned int            aborting;               /* abort after next irq */
 404
 405        unsigned int            bufs_per_job;           /* input buffers per batch */
 406        unsigned int            bufs_completed;         /* bufs done in this batch */
 407
 408        struct vpe_q_data       q_data[2];              /* src & dst queue data */
 409        struct vb2_v4l2_buffer  *src_vbs[VPE_MAX_SRC_BUFS];
 410        struct vb2_v4l2_buffer  *dst_vb;
 411
 412        dma_addr_t              mv_buf_dma[2];          /* dma addrs of motion vector in/out bufs */
 413        void                    *mv_buf[2];             /* virtual addrs of motion vector bufs */
 414        size_t                  mv_buf_size;            /* current motion vector buffer size */
 415        struct vpdma_buf        mmr_adb;                /* shadow reg addr/data block */
 416        struct vpdma_buf        sc_coeff_h;             /* h coeff buffer */
 417        struct vpdma_buf        sc_coeff_v;             /* v coeff buffer */
 418        struct vpdma_desc_list  desc_list;              /* DMA descriptor list */
 419
 420        bool                    deinterlacing;          /* using de-interlacer */
 421        bool                    load_mmrs;              /* have new shadow reg values */
 422
 423        unsigned int            src_mv_buf_selector;
 424};
 425
 426
 427/*
 428 * M2M devices get 2 queues.
 429 * Return the queue given the type.
 430 */
 431static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
 432                                     enum v4l2_buf_type type)
 433{
 434        switch (type) {
 435        case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
 436        case V4L2_BUF_TYPE_VIDEO_OUTPUT:
 437                return &ctx->q_data[Q_DATA_SRC];
 438        case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
 439        case V4L2_BUF_TYPE_VIDEO_CAPTURE:
 440                return &ctx->q_data[Q_DATA_DST];
 441        default:
 442                return NULL;
 443        }
 444        return NULL;
 445}
 446
 447static u32 read_reg(struct vpe_dev *dev, int offset)
 448{
 449        return ioread32(dev->base + offset);
 450}
 451
 452static void write_reg(struct vpe_dev *dev, int offset, u32 value)
 453{
 454        iowrite32(value, dev->base + offset);
 455}
 456
 457/* register field read/write helpers */
 458static int get_field(u32 value, u32 mask, int shift)
 459{
 460        return (value & (mask << shift)) >> shift;
 461}
 462
 463static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
 464{
 465        return get_field(read_reg(dev, offset), mask, shift);
 466}
 467
 468static void write_field(u32 *valp, u32 field, u32 mask, int shift)
 469{
 470        u32 val = *valp;
 471
 472        val &= ~(mask << shift);
 473        val |= (field & mask) << shift;
 474        *valp = val;
 475}
 476
 477static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
 478                u32 mask, int shift)
 479{
 480        u32 val = read_reg(dev, offset);
 481
 482        write_field(&val, field, mask, shift);
 483
 484        write_reg(dev, offset, val);
 485}
 486
 487/*
 488 * DMA address/data block for the shadow registers
 489 */
 490struct vpe_mmr_adb {
 491        struct vpdma_adb_hdr    out_fmt_hdr;
 492        u32                     out_fmt_reg[1];
 493        u32                     out_fmt_pad[3];
 494        struct vpdma_adb_hdr    us1_hdr;
 495        u32                     us1_regs[8];
 496        struct vpdma_adb_hdr    us2_hdr;
 497        u32                     us2_regs[8];
 498        struct vpdma_adb_hdr    us3_hdr;
 499        u32                     us3_regs[8];
 500        struct vpdma_adb_hdr    dei_hdr;
 501        u32                     dei_regs[8];
 502        struct vpdma_adb_hdr    sc_hdr0;
 503        u32                     sc_regs0[7];
 504        u32                     sc_pad0[1];
 505        struct vpdma_adb_hdr    sc_hdr8;
 506        u32                     sc_regs8[6];
 507        u32                     sc_pad8[2];
 508        struct vpdma_adb_hdr    sc_hdr17;
 509        u32                     sc_regs17[9];
 510        u32                     sc_pad17[3];
 511        struct vpdma_adb_hdr    csc_hdr;
 512        u32                     csc_regs[6];
 513        u32                     csc_pad[2];
 514};
 515
 516#define GET_OFFSET_TOP(ctx, obj, reg)   \
 517        ((obj)->res->start - ctx->dev->res->start + reg)
 518
 519#define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)   \
 520        VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
 521/*
 522 * Set the headers for all of the address/data block structures.
 523 */
 524static void init_adb_hdrs(struct vpe_ctx *ctx)
 525{
 526        VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
 527        VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
 528        VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
 529        VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
 530        VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
 531        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
 532                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
 533        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
 534                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
 535        VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
 536                GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
 537        VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
 538                GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
 539};
 540
 541/*
 542 * Allocate or re-allocate the motion vector DMA buffers
 543 * There are two buffers, one for input and one for output.
 544 * However, the roles are reversed after each field is processed.
 545 * In other words, after each field is processed, the previous
 546 * output (dst) MV buffer becomes the new input (src) MV buffer.
 547 */
 548static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
 549{
 550        struct device *dev = ctx->dev->v4l2_dev.dev;
 551
 552        if (ctx->mv_buf_size == size)
 553                return 0;
 554
 555        if (ctx->mv_buf[0])
 556                dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
 557                        ctx->mv_buf_dma[0]);
 558
 559        if (ctx->mv_buf[1])
 560                dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
 561                        ctx->mv_buf_dma[1]);
 562
 563        if (size == 0)
 564                return 0;
 565
 566        ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
 567                                GFP_KERNEL);
 568        if (!ctx->mv_buf[0]) {
 569                vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
 570                return -ENOMEM;
 571        }
 572
 573        ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
 574                                GFP_KERNEL);
 575        if (!ctx->mv_buf[1]) {
 576                vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
 577                dma_free_coherent(dev, size, ctx->mv_buf[0],
 578                        ctx->mv_buf_dma[0]);
 579
 580                return -ENOMEM;
 581        }
 582
 583        ctx->mv_buf_size = size;
 584        ctx->src_mv_buf_selector = 0;
 585
 586        return 0;
 587}
 588
 589static void free_mv_buffers(struct vpe_ctx *ctx)
 590{
 591        realloc_mv_buffers(ctx, 0);
 592}
 593
 594/*
 595 * While de-interlacing, we keep the two most recent input buffers
 596 * around.  This function frees those two buffers when we have
 597 * finished processing the current stream.
 598 */
 599static void free_vbs(struct vpe_ctx *ctx)
 600{
 601        struct vpe_dev *dev = ctx->dev;
 602        unsigned long flags;
 603
 604        if (ctx->src_vbs[2] == NULL)
 605                return;
 606
 607        spin_lock_irqsave(&dev->lock, flags);
 608        if (ctx->src_vbs[2]) {
 609                v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
 610                if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
 611                        v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
 612                ctx->src_vbs[2] = NULL;
 613                ctx->src_vbs[1] = NULL;
 614        }
 615        spin_unlock_irqrestore(&dev->lock, flags);
 616}
 617
 618/*
 619 * Enable or disable the VPE clocks
 620 */
 621static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
 622{
 623        u32 val = 0;
 624
 625        if (on)
 626                val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
 627        write_reg(dev, VPE_CLK_ENABLE, val);
 628}
 629
 630static void vpe_top_reset(struct vpe_dev *dev)
 631{
 632
 633        write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
 634                VPE_DATA_PATH_CLK_RESET_SHIFT);
 635
 636        usleep_range(100, 150);
 637
 638        write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
 639                VPE_DATA_PATH_CLK_RESET_SHIFT);
 640}
 641
 642static void vpe_top_vpdma_reset(struct vpe_dev *dev)
 643{
 644        write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
 645                VPE_VPDMA_CLK_RESET_SHIFT);
 646
 647        usleep_range(100, 150);
 648
 649        write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
 650                VPE_VPDMA_CLK_RESET_SHIFT);
 651}
 652
 653/*
 654 * Load the correct of upsampler coefficients into the shadow MMRs
 655 */
 656static void set_us_coefficients(struct vpe_ctx *ctx)
 657{
 658        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 659        struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
 660        u32 *us1_reg = &mmr_adb->us1_regs[0];
 661        u32 *us2_reg = &mmr_adb->us2_regs[0];
 662        u32 *us3_reg = &mmr_adb->us3_regs[0];
 663        const unsigned short *cp, *end_cp;
 664
 665        cp = &us_coeffs[0].anchor_fid0_c0;
 666
 667        if (s_q_data->flags & Q_IS_INTERLACED)          /* interlaced */
 668                cp += sizeof(us_coeffs[0]) / sizeof(*cp);
 669
 670        end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
 671
 672        while (cp < end_cp) {
 673                write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
 674                write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
 675                *us2_reg++ = *us1_reg;
 676                *us3_reg++ = *us1_reg++;
 677        }
 678        ctx->load_mmrs = true;
 679}
 680
 681/*
 682 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
 683 */
 684static void set_cfg_modes(struct vpe_ctx *ctx)
 685{
 686        struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
 687        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 688        u32 *us1_reg0 = &mmr_adb->us1_regs[0];
 689        u32 *us2_reg0 = &mmr_adb->us2_regs[0];
 690        u32 *us3_reg0 = &mmr_adb->us3_regs[0];
 691        int cfg_mode = 1;
 692
 693        /*
 694         * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
 695         * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
 696         */
 697
 698        if (fmt->fourcc == V4L2_PIX_FMT_NV12)
 699                cfg_mode = 0;
 700
 701        write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 702        write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 703        write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
 704
 705        ctx->load_mmrs = true;
 706}
 707
 708static void set_line_modes(struct vpe_ctx *ctx)
 709{
 710        struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
 711        int line_mode = 1;
 712
 713        if (fmt->fourcc == V4L2_PIX_FMT_NV12)
 714                line_mode = 0;          /* double lines to line buffer */
 715
 716        /* regs for now */
 717        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
 718        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
 719        vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
 720
 721        /* frame start for input luma */
 722        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 723                VPE_CHAN_LUMA1_IN);
 724        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 725                VPE_CHAN_LUMA2_IN);
 726        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 727                VPE_CHAN_LUMA3_IN);
 728
 729        /* frame start for input chroma */
 730        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 731                VPE_CHAN_CHROMA1_IN);
 732        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 733                VPE_CHAN_CHROMA2_IN);
 734        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 735                VPE_CHAN_CHROMA3_IN);
 736
 737        /* frame start for MV in client */
 738        vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
 739                VPE_CHAN_MV_IN);
 740}
 741
 742/*
 743 * Set the shadow registers that are modified when the source
 744 * format changes.
 745 */
 746static void set_src_registers(struct vpe_ctx *ctx)
 747{
 748        set_us_coefficients(ctx);
 749}
 750
 751/*
 752 * Set the shadow registers that are modified when the destination
 753 * format changes.
 754 */
 755static void set_dst_registers(struct vpe_ctx *ctx)
 756{
 757        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 758        enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
 759        struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
 760        u32 val = 0;
 761
 762        if (clrspc == V4L2_COLORSPACE_SRGB) {
 763                val |= VPE_RGB_OUT_SELECT;
 764                vpdma_set_bg_color(ctx->dev->vpdma,
 765                        (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
 766        } else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
 767                val |= VPE_COLOR_SEPARATE_422;
 768
 769        /*
 770         * the source of CHR_DS and CSC is always the scaler, irrespective of
 771         * whether it's used or not
 772         */
 773        val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
 774
 775        if (fmt->fourcc != V4L2_PIX_FMT_NV12)
 776                val |= VPE_DS_BYPASS;
 777
 778        mmr_adb->out_fmt_reg[0] = val;
 779
 780        ctx->load_mmrs = true;
 781}
 782
 783/*
 784 * Set the de-interlacer shadow register values
 785 */
 786static void set_dei_regs(struct vpe_ctx *ctx)
 787{
 788        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 789        struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
 790        unsigned int src_h = s_q_data->c_rect.height;
 791        unsigned int src_w = s_q_data->c_rect.width;
 792        u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
 793        bool deinterlace = true;
 794        u32 val = 0;
 795
 796        /*
 797         * according to TRM, we should set DEI in progressive bypass mode when
 798         * the input content is progressive, however, DEI is bypassed correctly
 799         * for both progressive and interlace content in interlace bypass mode.
 800         * It has been recommended not to use progressive bypass mode.
 801         */
 802        if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
 803                deinterlace = false;
 804                val = VPE_DEI_INTERLACE_BYPASS;
 805        }
 806
 807        src_h = deinterlace ? src_h * 2 : src_h;
 808
 809        val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
 810                (src_w << VPE_DEI_WIDTH_SHIFT) |
 811                VPE_DEI_FIELD_FLUSH;
 812
 813        *dei_mmr0 = val;
 814
 815        ctx->load_mmrs = true;
 816}
 817
 818static void set_dei_shadow_registers(struct vpe_ctx *ctx)
 819{
 820        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 821        u32 *dei_mmr = &mmr_adb->dei_regs[0];
 822        const struct vpe_dei_regs *cur = &dei_regs;
 823
 824        dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
 825        dei_mmr[3]  = cur->edi_config_reg;
 826        dei_mmr[4]  = cur->edi_lut_reg0;
 827        dei_mmr[5]  = cur->edi_lut_reg1;
 828        dei_mmr[6]  = cur->edi_lut_reg2;
 829        dei_mmr[7]  = cur->edi_lut_reg3;
 830
 831        ctx->load_mmrs = true;
 832}
 833
 834static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
 835{
 836        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 837        u32 *edi_config_reg = &mmr_adb->dei_regs[3];
 838
 839        if (mode & 0x2)
 840                write_field(edi_config_reg, 1, 1, 2);   /* EDI_ENABLE_3D */
 841
 842        if (mode & 0x3)
 843                write_field(edi_config_reg, 1, 1, 3);   /* EDI_CHROMA_3D  */
 844
 845        write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
 846                VPE_EDI_INP_MODE_SHIFT);
 847
 848        ctx->load_mmrs = true;
 849}
 850
 851/*
 852 * Set the shadow registers whose values are modified when either the
 853 * source or destination format is changed.
 854 */
 855static int set_srcdst_params(struct vpe_ctx *ctx)
 856{
 857        struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
 858        struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
 859        struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
 860        unsigned int src_w = s_q_data->c_rect.width;
 861        unsigned int src_h = s_q_data->c_rect.height;
 862        unsigned int dst_w = d_q_data->c_rect.width;
 863        unsigned int dst_h = d_q_data->c_rect.height;
 864        size_t mv_buf_size;
 865        int ret;
 866
 867        ctx->sequence = 0;
 868        ctx->field = V4L2_FIELD_TOP;
 869
 870        if ((s_q_data->flags & Q_IS_INTERLACED) &&
 871                        !(d_q_data->flags & Q_IS_INTERLACED)) {
 872                int bytes_per_line;
 873                const struct vpdma_data_format *mv =
 874                        &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
 875
 876                /*
 877                 * we make sure that the source image has a 16 byte aligned
 878                 * stride, we need to do the same for the motion vector buffer
 879                 * by aligning it's stride to the next 16 byte boundry. this
 880                 * extra space will not be used by the de-interlacer, but will
 881                 * ensure that vpdma operates correctly
 882                 */
 883                bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
 884                                        VPDMA_STRIDE_ALIGN);
 885                mv_buf_size = bytes_per_line * s_q_data->height;
 886
 887                ctx->deinterlacing = true;
 888                src_h <<= 1;
 889        } else {
 890                ctx->deinterlacing = false;
 891                mv_buf_size = 0;
 892        }
 893
 894        free_vbs(ctx);
 895        ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
 896
 897        ret = realloc_mv_buffers(ctx, mv_buf_size);
 898        if (ret)
 899                return ret;
 900
 901        set_cfg_modes(ctx);
 902        set_dei_regs(ctx);
 903
 904        csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
 905                s_q_data->colorspace, d_q_data->colorspace);
 906
 907        sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
 908        sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
 909
 910        sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
 911                &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
 912                src_w, src_h, dst_w, dst_h);
 913
 914        return 0;
 915}
 916
 917/*
 918 * Return the vpe_ctx structure for a given struct file
 919 */
 920static struct vpe_ctx *file2ctx(struct file *file)
 921{
 922        return container_of(file->private_data, struct vpe_ctx, fh);
 923}
 924
 925/*
 926 * mem2mem callbacks
 927 */
 928
 929/**
 930 * job_ready() - check whether an instance is ready to be scheduled to run
 931 */
 932static int job_ready(void *priv)
 933{
 934        struct vpe_ctx *ctx = priv;
 935
 936        /*
 937         * This check is needed as this might be called directly from driver
 938         * When called by m2m framework, this will always satisfy, but when
 939         * called from vpe_irq, this might fail. (src stream with zero buffers)
 940         */
 941        if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
 942                v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
 943                return 0;
 944
 945        return 1;
 946}
 947
 948static void job_abort(void *priv)
 949{
 950        struct vpe_ctx *ctx = priv;
 951
 952        /* Will cancel the transaction in the next interrupt handler */
 953        ctx->aborting = 1;
 954}
 955
 956/*
 957 * Lock access to the device
 958 */
 959static void vpe_lock(void *priv)
 960{
 961        struct vpe_ctx *ctx = priv;
 962        struct vpe_dev *dev = ctx->dev;
 963        mutex_lock(&dev->dev_mutex);
 964}
 965
 966static void vpe_unlock(void *priv)
 967{
 968        struct vpe_ctx *ctx = priv;
 969        struct vpe_dev *dev = ctx->dev;
 970        mutex_unlock(&dev->dev_mutex);
 971}
 972
 973static void vpe_dump_regs(struct vpe_dev *dev)
 974{
 975#define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
 976
 977        vpe_dbg(dev, "VPE Registers:\n");
 978
 979        DUMPREG(PID);
 980        DUMPREG(SYSCONFIG);
 981        DUMPREG(INT0_STATUS0_RAW);
 982        DUMPREG(INT0_STATUS0);
 983        DUMPREG(INT0_ENABLE0);
 984        DUMPREG(INT0_STATUS1_RAW);
 985        DUMPREG(INT0_STATUS1);
 986        DUMPREG(INT0_ENABLE1);
 987        DUMPREG(CLK_ENABLE);
 988        DUMPREG(CLK_RESET);
 989        DUMPREG(CLK_FORMAT_SELECT);
 990        DUMPREG(CLK_RANGE_MAP);
 991        DUMPREG(US1_R0);
 992        DUMPREG(US1_R1);
 993        DUMPREG(US1_R2);
 994        DUMPREG(US1_R3);
 995        DUMPREG(US1_R4);
 996        DUMPREG(US1_R5);
 997        DUMPREG(US1_R6);
 998        DUMPREG(US1_R7);
 999        DUMPREG(US2_R0);
1000        DUMPREG(US2_R1);
1001        DUMPREG(US2_R2);
1002        DUMPREG(US2_R3);
1003        DUMPREG(US2_R4);
1004        DUMPREG(US2_R5);
1005        DUMPREG(US2_R6);
1006        DUMPREG(US2_R7);
1007        DUMPREG(US3_R0);
1008        DUMPREG(US3_R1);
1009        DUMPREG(US3_R2);
1010        DUMPREG(US3_R3);
1011        DUMPREG(US3_R4);
1012        DUMPREG(US3_R5);
1013        DUMPREG(US3_R6);
1014        DUMPREG(US3_R7);
1015        DUMPREG(DEI_FRAME_SIZE);
1016        DUMPREG(MDT_BYPASS);
1017        DUMPREG(MDT_SF_THRESHOLD);
1018        DUMPREG(EDI_CONFIG);
1019        DUMPREG(DEI_EDI_LUT_R0);
1020        DUMPREG(DEI_EDI_LUT_R1);
1021        DUMPREG(DEI_EDI_LUT_R2);
1022        DUMPREG(DEI_EDI_LUT_R3);
1023        DUMPREG(DEI_FMD_WINDOW_R0);
1024        DUMPREG(DEI_FMD_WINDOW_R1);
1025        DUMPREG(DEI_FMD_CONTROL_R0);
1026        DUMPREG(DEI_FMD_CONTROL_R1);
1027        DUMPREG(DEI_FMD_STATUS_R0);
1028        DUMPREG(DEI_FMD_STATUS_R1);
1029        DUMPREG(DEI_FMD_STATUS_R2);
1030#undef DUMPREG
1031
1032        sc_dump_regs(dev->sc);
1033        csc_dump_regs(dev->csc);
1034}
1035
1036static void add_out_dtd(struct vpe_ctx *ctx, int port)
1037{
1038        struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1039        const struct vpe_port_data *p_data = &port_data[port];
1040        struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1041        struct vpe_fmt *fmt = q_data->fmt;
1042        const struct vpdma_data_format *vpdma_fmt;
1043        int mv_buf_selector = !ctx->src_mv_buf_selector;
1044        dma_addr_t dma_addr;
1045        u32 flags = 0;
1046        u32 offset = 0;
1047
1048        if (port == VPE_PORT_MV_OUT) {
1049                vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1050                dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1051                q_data = &ctx->q_data[Q_DATA_SRC];
1052        } else {
1053                /* to incorporate interleaved formats */
1054                int plane = fmt->coplanar ? p_data->vb_part : 0;
1055
1056                vpdma_fmt = fmt->vpdma_fmt[plane];
1057                /*
1058                 * If we are using a single plane buffer and
1059                 * we need to set a separate vpdma chroma channel.
1060                 */
1061                if (q_data->nplanes == 1 && plane) {
1062                        dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1063                        /* Compute required offset */
1064                        offset = q_data->bytesperline[0] * q_data->height;
1065                } else {
1066                        dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1067                        /* Use address as is, no offset */
1068                        offset = 0;
1069                }
1070                if (!dma_addr) {
1071                        vpe_err(ctx->dev,
1072                                "acquiring output buffer(%d) dma_addr failed\n",
1073                                port);
1074                        return;
1075                }
1076                /* Apply the offset */
1077                dma_addr += offset;
1078        }
1079
1080        if (q_data->flags & Q_DATA_FRAME_1D)
1081                flags |= VPDMA_DATA_FRAME_1D;
1082        if (q_data->flags & Q_DATA_MODE_TILED)
1083                flags |= VPDMA_DATA_MODE_TILED;
1084
1085        vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1086                           MAX_W, MAX_H);
1087
1088        vpdma_add_out_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1089                          vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1090                          MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1091}
1092
1093static void add_in_dtd(struct vpe_ctx *ctx, int port)
1094{
1095        struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1096        const struct vpe_port_data *p_data = &port_data[port];
1097        struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1098        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1099        struct vpe_fmt *fmt = q_data->fmt;
1100        const struct vpdma_data_format *vpdma_fmt;
1101        int mv_buf_selector = ctx->src_mv_buf_selector;
1102        int field = vbuf->field == V4L2_FIELD_BOTTOM;
1103        int frame_width, frame_height;
1104        dma_addr_t dma_addr;
1105        u32 flags = 0;
1106        u32 offset = 0;
1107
1108        if (port == VPE_PORT_MV_IN) {
1109                vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1110                dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1111        } else {
1112                /* to incorporate interleaved formats */
1113                int plane = fmt->coplanar ? p_data->vb_part : 0;
1114
1115                vpdma_fmt = fmt->vpdma_fmt[plane];
1116                /*
1117                 * If we are using a single plane buffer and
1118                 * we need to set a separate vpdma chroma channel.
1119                 */
1120                if (q_data->nplanes == 1 && plane) {
1121                        dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1122                        /* Compute required offset */
1123                        offset = q_data->bytesperline[0] * q_data->height;
1124                } else {
1125                        dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1126                        /* Use address as is, no offset */
1127                        offset = 0;
1128                }
1129                if (!dma_addr) {
1130                        vpe_err(ctx->dev,
1131                                "acquiring output buffer(%d) dma_addr failed\n",
1132                                port);
1133                        return;
1134                }
1135                /* Apply the offset */
1136                dma_addr += offset;
1137
1138                if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
1139                        /*
1140                         * Use top or bottom field from same vb alternately
1141                         * f,f-1,f-2 = TBT when seq is even
1142                         * f,f-1,f-2 = BTB when seq is odd
1143                         */
1144                        field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
1145
1146                        if (field) {
1147                                /*
1148                                 * bottom field of a SEQ_TB buffer
1149                                 * Skip the top field data by
1150                                 */
1151                                int height = q_data->height / 2;
1152                                int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1153                                                1 : (vpdma_fmt->depth >> 3);
1154                                if (plane)
1155                                        height /= 2;
1156                                dma_addr += q_data->width * height * bpp;
1157                        }
1158                }
1159        }
1160
1161        if (q_data->flags & Q_DATA_FRAME_1D)
1162                flags |= VPDMA_DATA_FRAME_1D;
1163        if (q_data->flags & Q_DATA_MODE_TILED)
1164                flags |= VPDMA_DATA_MODE_TILED;
1165
1166        frame_width = q_data->c_rect.width;
1167        frame_height = q_data->c_rect.height;
1168
1169        if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1170                frame_height /= 2;
1171
1172        vpdma_add_in_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1173                vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width,
1174                frame_height, 0, 0);
1175}
1176
1177/*
1178 * Enable the expected IRQ sources
1179 */
1180static void enable_irqs(struct vpe_ctx *ctx)
1181{
1182        write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1183        write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1184                                VPE_DS1_UV_ERROR_INT);
1185
1186        vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1187}
1188
1189static void disable_irqs(struct vpe_ctx *ctx)
1190{
1191        write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1192        write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1193
1194        vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1195}
1196
1197/* device_run() - prepares and starts the device
1198 *
1199 * This function is only called when both the source and destination
1200 * buffers are in place.
1201 */
1202static void device_run(void *priv)
1203{
1204        struct vpe_ctx *ctx = priv;
1205        struct sc_data *sc = ctx->dev->sc;
1206        struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1207        struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1208
1209        if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
1210                ctx->sequence % 2 == 0) {
1211                /* When using SEQ_TB buffers, When using it first time,
1212                 * No need to remove the buffer as the next field is present
1213                 * in the same buffer. (so that job_ready won't fail)
1214                 * It will be removed when using bottom field
1215                 */
1216                ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1217                WARN_ON(ctx->src_vbs[0] == NULL);
1218        } else {
1219                ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1220                WARN_ON(ctx->src_vbs[0] == NULL);
1221        }
1222
1223        ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1224        WARN_ON(ctx->dst_vb == NULL);
1225
1226        if (ctx->deinterlacing) {
1227
1228                if (ctx->src_vbs[2] == NULL) {
1229                        ctx->src_vbs[2] = ctx->src_vbs[0];
1230                        WARN_ON(ctx->src_vbs[2] == NULL);
1231                        ctx->src_vbs[1] = ctx->src_vbs[0];
1232                        WARN_ON(ctx->src_vbs[1] == NULL);
1233                }
1234
1235                /*
1236                 * we have output the first 2 frames through line average, we
1237                 * now switch to EDI de-interlacer
1238                 */
1239                if (ctx->sequence == 2)
1240                        config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1241        }
1242
1243        /* config descriptors */
1244        if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1245                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1246                vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1247
1248                set_line_modes(ctx);
1249
1250                ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1251                ctx->load_mmrs = false;
1252        }
1253
1254        if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1255                        sc->load_coeff_h) {
1256                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1257                vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1258                        &ctx->sc_coeff_h, 0);
1259
1260                sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1261                sc->load_coeff_h = false;
1262        }
1263
1264        if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1265                        sc->load_coeff_v) {
1266                vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1267                vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1268                        &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1269
1270                sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1271                sc->load_coeff_v = false;
1272        }
1273
1274        /* output data descriptors */
1275        if (ctx->deinterlacing)
1276                add_out_dtd(ctx, VPE_PORT_MV_OUT);
1277
1278        if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1279                add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1280        } else {
1281                add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1282                if (d_q_data->fmt->coplanar)
1283                        add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1284        }
1285
1286        /* input data descriptors */
1287        if (ctx->deinterlacing) {
1288                add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1289                add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1290
1291                add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1292                add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1293        }
1294
1295        add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1296        add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1297
1298        if (ctx->deinterlacing)
1299                add_in_dtd(ctx, VPE_PORT_MV_IN);
1300
1301        /* sync on channel control descriptors for input ports */
1302        vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1303        vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1304
1305        if (ctx->deinterlacing) {
1306                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1307                        VPE_CHAN_LUMA2_IN);
1308                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1309                        VPE_CHAN_CHROMA2_IN);
1310
1311                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1312                        VPE_CHAN_LUMA3_IN);
1313                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1314                        VPE_CHAN_CHROMA3_IN);
1315
1316                vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1317        }
1318
1319        /* sync on channel control descriptors for output ports */
1320        if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1321                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1322                        VPE_CHAN_RGB_OUT);
1323        } else {
1324                vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1325                        VPE_CHAN_LUMA_OUT);
1326                if (d_q_data->fmt->coplanar)
1327                        vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1328                                VPE_CHAN_CHROMA_OUT);
1329        }
1330
1331        if (ctx->deinterlacing)
1332                vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1333
1334        enable_irqs(ctx);
1335
1336        vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1337        vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1338}
1339
1340static void dei_error(struct vpe_ctx *ctx)
1341{
1342        dev_warn(ctx->dev->v4l2_dev.dev,
1343                "received DEI error interrupt\n");
1344}
1345
1346static void ds1_uv_error(struct vpe_ctx *ctx)
1347{
1348        dev_warn(ctx->dev->v4l2_dev.dev,
1349                "received downsampler error interrupt\n");
1350}
1351
1352static irqreturn_t vpe_irq(int irq_vpe, void *data)
1353{
1354        struct vpe_dev *dev = (struct vpe_dev *)data;
1355        struct vpe_ctx *ctx;
1356        struct vpe_q_data *d_q_data;
1357        struct vb2_v4l2_buffer *s_vb, *d_vb;
1358        unsigned long flags;
1359        u32 irqst0, irqst1;
1360        bool list_complete = false;
1361
1362        irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1363        if (irqst0) {
1364                write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1365                vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1366        }
1367
1368        irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1369        if (irqst1) {
1370                write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1371                vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1372        }
1373
1374        ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1375        if (!ctx) {
1376                vpe_err(dev, "instance released before end of transaction\n");
1377                goto handled;
1378        }
1379
1380        if (irqst1) {
1381                if (irqst1 & VPE_DEI_ERROR_INT) {
1382                        irqst1 &= ~VPE_DEI_ERROR_INT;
1383                        dei_error(ctx);
1384                }
1385                if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1386                        irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1387                        ds1_uv_error(ctx);
1388                }
1389        }
1390
1391        if (irqst0) {
1392                if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1393                        vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1394
1395                irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1396                list_complete = true;
1397        }
1398
1399        if (irqst0 | irqst1) {
1400                dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1401                        irqst0, irqst1);
1402        }
1403
1404        /*
1405         * Setup next operation only when list complete IRQ occurs
1406         * otherwise, skip the following code
1407         */
1408        if (!list_complete)
1409                goto handled;
1410
1411        disable_irqs(ctx);
1412
1413        vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1414        vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1415        vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1416        vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1417
1418        vpdma_reset_desc_list(&ctx->desc_list);
1419
1420         /* the previous dst mv buffer becomes the next src mv buffer */
1421        ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1422
1423        if (ctx->aborting)
1424                goto finished;
1425
1426        s_vb = ctx->src_vbs[0];
1427        d_vb = ctx->dst_vb;
1428
1429        d_vb->flags = s_vb->flags;
1430        d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1431
1432        if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1433                d_vb->timecode = s_vb->timecode;
1434
1435        d_vb->sequence = ctx->sequence;
1436
1437        d_q_data = &ctx->q_data[Q_DATA_DST];
1438        if (d_q_data->flags & Q_IS_INTERLACED) {
1439                d_vb->field = ctx->field;
1440                if (ctx->field == V4L2_FIELD_BOTTOM) {
1441                        ctx->sequence++;
1442                        ctx->field = V4L2_FIELD_TOP;
1443                } else {
1444                        WARN_ON(ctx->field != V4L2_FIELD_TOP);
1445                        ctx->field = V4L2_FIELD_BOTTOM;
1446                }
1447        } else {
1448                d_vb->field = V4L2_FIELD_NONE;
1449                ctx->sequence++;
1450        }
1451
1452        if (ctx->deinterlacing) {
1453                /*
1454                 * Allow source buffer to be dequeued only if it won't be used
1455                 * in the next iteration. All vbs are initialized to first
1456                 * buffer and we are shifting buffers every iteration, for the
1457                 * first two iterations, no buffer will be dequeued.
1458                 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1459                 * field when deinterlacing is enabled
1460                 */
1461                if (ctx->src_vbs[2] != ctx->src_vbs[1])
1462                        s_vb = ctx->src_vbs[2];
1463                else
1464                        s_vb = NULL;
1465        }
1466
1467        spin_lock_irqsave(&dev->lock, flags);
1468
1469        if (s_vb)
1470                v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1471
1472        v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1473
1474        spin_unlock_irqrestore(&dev->lock, flags);
1475
1476        if (ctx->deinterlacing) {
1477                ctx->src_vbs[2] = ctx->src_vbs[1];
1478                ctx->src_vbs[1] = ctx->src_vbs[0];
1479        }
1480
1481        /*
1482         * Since the vb2_buf_done has already been called fir therse
1483         * buffer we can now NULL them out so that we won't try
1484         * to clean out stray pointer later on.
1485        */
1486        ctx->src_vbs[0] = NULL;
1487        ctx->dst_vb = NULL;
1488
1489        ctx->bufs_completed++;
1490        if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1491                device_run(ctx);
1492                goto handled;
1493        }
1494
1495finished:
1496        vpe_dbg(ctx->dev, "finishing transaction\n");
1497        ctx->bufs_completed = 0;
1498        v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1499handled:
1500        return IRQ_HANDLED;
1501}
1502
1503/*
1504 * video ioctls
1505 */
1506static int vpe_querycap(struct file *file, void *priv,
1507                        struct v4l2_capability *cap)
1508{
1509        strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
1510        strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1511        snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1512                VPE_MODULE_NAME);
1513        cap->device_caps  = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1514        cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1515        return 0;
1516}
1517
1518static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1519{
1520        int i, index;
1521        struct vpe_fmt *fmt = NULL;
1522
1523        index = 0;
1524        for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1525                if (vpe_formats[i].types & type) {
1526                        if (index == f->index) {
1527                                fmt = &vpe_formats[i];
1528                                break;
1529                        }
1530                        index++;
1531                }
1532        }
1533
1534        if (!fmt)
1535                return -EINVAL;
1536
1537        strncpy(f->description, fmt->name, sizeof(f->description) - 1);
1538        f->pixelformat = fmt->fourcc;
1539        return 0;
1540}
1541
1542static int vpe_enum_fmt(struct file *file, void *priv,
1543                                struct v4l2_fmtdesc *f)
1544{
1545        if (V4L2_TYPE_IS_OUTPUT(f->type))
1546                return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1547
1548        return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1549}
1550
1551static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1552{
1553        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1554        struct vpe_ctx *ctx = file2ctx(file);
1555        struct vb2_queue *vq;
1556        struct vpe_q_data *q_data;
1557        int i;
1558
1559        vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1560        if (!vq)
1561                return -EINVAL;
1562
1563        q_data = get_q_data(ctx, f->type);
1564
1565        pix->width = q_data->width;
1566        pix->height = q_data->height;
1567        pix->pixelformat = q_data->fmt->fourcc;
1568        pix->field = q_data->field;
1569
1570        if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1571                pix->colorspace = q_data->colorspace;
1572        } else {
1573                struct vpe_q_data *s_q_data;
1574
1575                /* get colorspace from the source queue */
1576                s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1577
1578                pix->colorspace = s_q_data->colorspace;
1579        }
1580
1581        pix->num_planes = q_data->nplanes;
1582
1583        for (i = 0; i < pix->num_planes; i++) {
1584                pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1585                pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1586        }
1587
1588        return 0;
1589}
1590
1591static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1592                       struct vpe_fmt *fmt, int type)
1593{
1594        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1595        struct v4l2_plane_pix_format *plane_fmt;
1596        unsigned int w_align;
1597        int i, depth, depth_bytes, height;
1598
1599        if (!fmt || !(fmt->types & type)) {
1600                vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1601                        pix->pixelformat);
1602                return -EINVAL;
1603        }
1604
1605        if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
1606                        && pix->field != V4L2_FIELD_SEQ_TB)
1607                pix->field = V4L2_FIELD_NONE;
1608
1609        depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1610
1611        /*
1612         * the line stride should 16 byte aligned for VPDMA to work, based on
1613         * the bytes per pixel, figure out how much the width should be aligned
1614         * to make sure line stride is 16 byte aligned
1615         */
1616        depth_bytes = depth >> 3;
1617
1618        if (depth_bytes == 3) {
1619                /*
1620                 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1621                 * really help in ensuring line stride is 16 byte aligned
1622                 */
1623                w_align = 4;
1624        } else {
1625                /*
1626                 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1627                 * can ensure a line stride alignment of 16 bytes. For example,
1628                 * if bpp is 2, then the line stride can be 16 byte aligned if
1629                 * the width is 8 byte aligned
1630                 */
1631
1632                /*
1633                 * HACK: using order_base_2() here causes lots of asm output
1634                 * errors with smatch, on i386:
1635                 * ./arch/x86/include/asm/bitops.h:457:22:
1636                 *               warning: asm output is not an lvalue
1637                 * Perhaps some gcc optimization is doing the wrong thing
1638                 * there.
1639                 * Let's get rid of them by doing the calculus on two steps
1640                 */
1641                w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1642                w_align = ilog2(w_align);
1643        }
1644
1645        v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1646                              &pix->height, MIN_H, MAX_H, H_ALIGN,
1647                              S_ALIGN);
1648
1649        if (!pix->num_planes)
1650                pix->num_planes = fmt->coplanar ? 2 : 1;
1651        else if (pix->num_planes > 1 && !fmt->coplanar)
1652                pix->num_planes = 1;
1653
1654        pix->pixelformat = fmt->fourcc;
1655
1656        /*
1657         * For the actual image parameters, we need to consider the field
1658         * height of the image for SEQ_TB buffers.
1659         */
1660        if (pix->field == V4L2_FIELD_SEQ_TB)
1661                height = pix->height / 2;
1662        else
1663                height = pix->height;
1664
1665        if (!pix->colorspace) {
1666                if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1667                                fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1668                                fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1669                                fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1670                        pix->colorspace = V4L2_COLORSPACE_SRGB;
1671                } else {
1672                        if (height > 1280)      /* HD */
1673                                pix->colorspace = V4L2_COLORSPACE_REC709;
1674                        else                    /* SD */
1675                                pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1676                }
1677        }
1678
1679        memset(pix->reserved, 0, sizeof(pix->reserved));
1680        for (i = 0; i < pix->num_planes; i++) {
1681                plane_fmt = &pix->plane_fmt[i];
1682                depth = fmt->vpdma_fmt[i]->depth;
1683
1684                if (i == VPE_LUMA)
1685                        plane_fmt->bytesperline = (pix->width * depth) >> 3;
1686                else
1687                        plane_fmt->bytesperline = pix->width;
1688
1689                if (pix->num_planes == 1 && fmt->coplanar)
1690                        depth += fmt->vpdma_fmt[VPE_CHROMA]->depth;
1691                plane_fmt->sizeimage =
1692                                (pix->height * pix->width * depth) >> 3;
1693
1694                memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1695        }
1696
1697        return 0;
1698}
1699
1700static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1701{
1702        struct vpe_ctx *ctx = file2ctx(file);
1703        struct vpe_fmt *fmt = find_format(f);
1704
1705        if (V4L2_TYPE_IS_OUTPUT(f->type))
1706                return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1707        else
1708                return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1709}
1710
1711static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1712{
1713        struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1714        struct v4l2_plane_pix_format *plane_fmt;
1715        struct vpe_q_data *q_data;
1716        struct vb2_queue *vq;
1717        int i;
1718
1719        vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1720        if (!vq)
1721                return -EINVAL;
1722
1723        if (vb2_is_busy(vq)) {
1724                vpe_err(ctx->dev, "queue busy\n");
1725                return -EBUSY;
1726        }
1727
1728        q_data = get_q_data(ctx, f->type);
1729        if (!q_data)
1730                return -EINVAL;
1731
1732        q_data->fmt             = find_format(f);
1733        q_data->width           = pix->width;
1734        q_data->height          = pix->height;
1735        q_data->colorspace      = pix->colorspace;
1736        q_data->field           = pix->field;
1737        q_data->nplanes         = pix->num_planes;
1738
1739        for (i = 0; i < pix->num_planes; i++) {
1740                plane_fmt = &pix->plane_fmt[i];
1741
1742                q_data->bytesperline[i] = plane_fmt->bytesperline;
1743                q_data->sizeimage[i]    = plane_fmt->sizeimage;
1744        }
1745
1746        q_data->c_rect.left     = 0;
1747        q_data->c_rect.top      = 0;
1748        q_data->c_rect.width    = q_data->width;
1749        q_data->c_rect.height   = q_data->height;
1750
1751        if (q_data->field == V4L2_FIELD_ALTERNATE)
1752                q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1753        else if (q_data->field == V4L2_FIELD_SEQ_TB)
1754                q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1755        else
1756                q_data->flags &= ~Q_IS_INTERLACED;
1757
1758        /* the crop height is halved for the case of SEQ_TB buffers */
1759        if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1760                q_data->c_rect.height /= 2;
1761
1762        vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1763                f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1764                q_data->bytesperline[VPE_LUMA]);
1765        if (q_data->nplanes == 2)
1766                vpe_dbg(ctx->dev, " bpl_uv %d\n",
1767                        q_data->bytesperline[VPE_CHROMA]);
1768
1769        return 0;
1770}
1771
1772static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1773{
1774        int ret;
1775        struct vpe_ctx *ctx = file2ctx(file);
1776
1777        ret = vpe_try_fmt(file, priv, f);
1778        if (ret)
1779                return ret;
1780
1781        ret = __vpe_s_fmt(ctx, f);
1782        if (ret)
1783                return ret;
1784
1785        if (V4L2_TYPE_IS_OUTPUT(f->type))
1786                set_src_registers(ctx);
1787        else
1788                set_dst_registers(ctx);
1789
1790        return set_srcdst_params(ctx);
1791}
1792
1793static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1794{
1795        struct vpe_q_data *q_data;
1796        int height;
1797
1798        if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1799            (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1800                return -EINVAL;
1801
1802        q_data = get_q_data(ctx, s->type);
1803        if (!q_data)
1804                return -EINVAL;
1805
1806        switch (s->target) {
1807        case V4L2_SEL_TGT_COMPOSE:
1808                /*
1809                 * COMPOSE target is only valid for capture buffer type, return
1810                 * error for output buffer type
1811                 */
1812                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1813                        return -EINVAL;
1814                break;
1815        case V4L2_SEL_TGT_CROP:
1816                /*
1817                 * CROP target is only valid for output buffer type, return
1818                 * error for capture buffer type
1819                 */
1820                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1821                        return -EINVAL;
1822                break;
1823        /*
1824         * bound and default crop/compose targets are invalid targets to
1825         * try/set
1826         */
1827        default:
1828                return -EINVAL;
1829        }
1830
1831        /*
1832         * For SEQ_TB buffers, crop height should be less than the height of
1833         * the field height, not the buffer height
1834         */
1835        if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1836                height = q_data->height / 2;
1837        else
1838                height = q_data->height;
1839
1840        if (s->r.top < 0 || s->r.left < 0) {
1841                vpe_err(ctx->dev, "negative values for top and left\n");
1842                s->r.top = s->r.left = 0;
1843        }
1844
1845        v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1846                &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1847
1848        /* adjust left/top if cropping rectangle is out of bounds */
1849        if (s->r.left + s->r.width > q_data->width)
1850                s->r.left = q_data->width - s->r.width;
1851        if (s->r.top + s->r.height > q_data->height)
1852                s->r.top = q_data->height - s->r.height;
1853
1854        return 0;
1855}
1856
1857static int vpe_g_selection(struct file *file, void *fh,
1858                struct v4l2_selection *s)
1859{
1860        struct vpe_ctx *ctx = file2ctx(file);
1861        struct vpe_q_data *q_data;
1862        bool use_c_rect = false;
1863
1864        if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1865            (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1866                return -EINVAL;
1867
1868        q_data = get_q_data(ctx, s->type);
1869        if (!q_data)
1870                return -EINVAL;
1871
1872        switch (s->target) {
1873        case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1874        case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1875                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1876                        return -EINVAL;
1877                break;
1878        case V4L2_SEL_TGT_CROP_BOUNDS:
1879        case V4L2_SEL_TGT_CROP_DEFAULT:
1880                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1881                        return -EINVAL;
1882                break;
1883        case V4L2_SEL_TGT_COMPOSE:
1884                if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1885                        return -EINVAL;
1886                use_c_rect = true;
1887                break;
1888        case V4L2_SEL_TGT_CROP:
1889                if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1890                        return -EINVAL;
1891                use_c_rect = true;
1892                break;
1893        default:
1894                return -EINVAL;
1895        }
1896
1897        if (use_c_rect) {
1898                /*
1899                 * for CROP/COMPOSE target type, return c_rect params from the
1900                 * respective buffer type
1901                 */
1902                s->r = q_data->c_rect;
1903        } else {
1904                /*
1905                 * for DEFAULT/BOUNDS target type, return width and height from
1906                 * S_FMT of the respective buffer type
1907                 */
1908                s->r.left = 0;
1909                s->r.top = 0;
1910                s->r.width = q_data->width;
1911                s->r.height = q_data->height;
1912        }
1913
1914        return 0;
1915}
1916
1917
1918static int vpe_s_selection(struct file *file, void *fh,
1919                struct v4l2_selection *s)
1920{
1921        struct vpe_ctx *ctx = file2ctx(file);
1922        struct vpe_q_data *q_data;
1923        struct v4l2_selection sel = *s;
1924        int ret;
1925
1926        ret = __vpe_try_selection(ctx, &sel);
1927        if (ret)
1928                return ret;
1929
1930        q_data = get_q_data(ctx, sel.type);
1931        if (!q_data)
1932                return -EINVAL;
1933
1934        if ((q_data->c_rect.left == sel.r.left) &&
1935                        (q_data->c_rect.top == sel.r.top) &&
1936                        (q_data->c_rect.width == sel.r.width) &&
1937                        (q_data->c_rect.height == sel.r.height)) {
1938                vpe_dbg(ctx->dev,
1939                        "requested crop/compose values are already set\n");
1940                return 0;
1941        }
1942
1943        q_data->c_rect = sel.r;
1944
1945        return set_srcdst_params(ctx);
1946}
1947
1948/*
1949 * defines number of buffers/frames a context can process with VPE before
1950 * switching to a different context. default value is 1 buffer per context
1951 */
1952#define V4L2_CID_VPE_BUFS_PER_JOB               (V4L2_CID_USER_TI_VPE_BASE + 0)
1953
1954static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1955{
1956        struct vpe_ctx *ctx =
1957                container_of(ctrl->handler, struct vpe_ctx, hdl);
1958
1959        switch (ctrl->id) {
1960        case V4L2_CID_VPE_BUFS_PER_JOB:
1961                ctx->bufs_per_job = ctrl->val;
1962                break;
1963
1964        default:
1965                vpe_err(ctx->dev, "Invalid control\n");
1966                return -EINVAL;
1967        }
1968
1969        return 0;
1970}
1971
1972static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1973        .s_ctrl = vpe_s_ctrl,
1974};
1975
1976static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1977        .vidioc_querycap                = vpe_querycap,
1978
1979        .vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
1980        .vidioc_g_fmt_vid_cap_mplane    = vpe_g_fmt,
1981        .vidioc_try_fmt_vid_cap_mplane  = vpe_try_fmt,
1982        .vidioc_s_fmt_vid_cap_mplane    = vpe_s_fmt,
1983
1984        .vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
1985        .vidioc_g_fmt_vid_out_mplane    = vpe_g_fmt,
1986        .vidioc_try_fmt_vid_out_mplane  = vpe_try_fmt,
1987        .vidioc_s_fmt_vid_out_mplane    = vpe_s_fmt,
1988
1989        .vidioc_g_selection             = vpe_g_selection,
1990        .vidioc_s_selection             = vpe_s_selection,
1991
1992        .vidioc_reqbufs                 = v4l2_m2m_ioctl_reqbufs,
1993        .vidioc_querybuf                = v4l2_m2m_ioctl_querybuf,
1994        .vidioc_qbuf                    = v4l2_m2m_ioctl_qbuf,
1995        .vidioc_dqbuf                   = v4l2_m2m_ioctl_dqbuf,
1996        .vidioc_expbuf                  = v4l2_m2m_ioctl_expbuf,
1997        .vidioc_streamon                = v4l2_m2m_ioctl_streamon,
1998        .vidioc_streamoff               = v4l2_m2m_ioctl_streamoff,
1999
2000        .vidioc_subscribe_event         = v4l2_ctrl_subscribe_event,
2001        .vidioc_unsubscribe_event       = v4l2_event_unsubscribe,
2002};
2003
2004/*
2005 * Queue operations
2006 */
2007static int vpe_queue_setup(struct vb2_queue *vq,
2008                           unsigned int *nbuffers, unsigned int *nplanes,
2009                           unsigned int sizes[], struct device *alloc_devs[])
2010{
2011        int i;
2012        struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
2013        struct vpe_q_data *q_data;
2014
2015        q_data = get_q_data(ctx, vq->type);
2016
2017        *nplanes = q_data->nplanes;
2018
2019        for (i = 0; i < *nplanes; i++)
2020                sizes[i] = q_data->sizeimage[i];
2021
2022        vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2023                sizes[VPE_LUMA]);
2024        if (q_data->nplanes == 2)
2025                vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2026
2027        return 0;
2028}
2029
2030static int vpe_buf_prepare(struct vb2_buffer *vb)
2031{
2032        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2033        struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2034        struct vpe_q_data *q_data;
2035        int i, num_planes;
2036
2037        vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2038
2039        q_data = get_q_data(ctx, vb->vb2_queue->type);
2040        num_planes = q_data->nplanes;
2041
2042        if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2043                if (!(q_data->flags & Q_IS_INTERLACED)) {
2044                        vbuf->field = V4L2_FIELD_NONE;
2045                } else {
2046                        if (vbuf->field != V4L2_FIELD_TOP &&
2047                            vbuf->field != V4L2_FIELD_BOTTOM &&
2048                            vbuf->field != V4L2_FIELD_SEQ_TB)
2049                                return -EINVAL;
2050                }
2051        }
2052
2053        for (i = 0; i < num_planes; i++) {
2054                if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
2055                        vpe_err(ctx->dev,
2056                                "data will not fit into plane (%lu < %lu)\n",
2057                                vb2_plane_size(vb, i),
2058                                (long) q_data->sizeimage[i]);
2059                        return -EINVAL;
2060                }
2061        }
2062
2063        for (i = 0; i < num_planes; i++)
2064                vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
2065
2066        return 0;
2067}
2068
2069static void vpe_buf_queue(struct vb2_buffer *vb)
2070{
2071        struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2072        struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2073
2074        v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2075}
2076
2077static int check_srcdst_sizes(struct vpe_ctx *ctx)
2078{
2079        struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
2080        struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
2081        unsigned int src_w = s_q_data->c_rect.width;
2082        unsigned int src_h = s_q_data->c_rect.height;
2083        unsigned int dst_w = d_q_data->c_rect.width;
2084        unsigned int dst_h = d_q_data->c_rect.height;
2085
2086        if (src_w == dst_w && src_h == dst_h)
2087                return 0;
2088
2089        if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2090            src_w <= SC_MAX_PIXEL_WIDTH &&
2091            dst_h <= SC_MAX_PIXEL_HEIGHT &&
2092            dst_w <= SC_MAX_PIXEL_WIDTH)
2093                return 0;
2094
2095        return -1;
2096}
2097
2098static void vpe_return_all_buffers(struct vpe_ctx *ctx,  struct vb2_queue *q,
2099                                   enum vb2_buffer_state state)
2100{
2101        struct vb2_v4l2_buffer *vb;
2102        unsigned long flags;
2103
2104        for (;;) {
2105                if (V4L2_TYPE_IS_OUTPUT(q->type))
2106                        vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2107                else
2108                        vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2109                if (!vb)
2110                        break;
2111                spin_lock_irqsave(&ctx->dev->lock, flags);
2112                v4l2_m2m_buf_done(vb, state);
2113                spin_unlock_irqrestore(&ctx->dev->lock, flags);
2114        }
2115
2116        /*
2117         * Cleanup the in-transit vb2 buffers that have been
2118         * removed from their respective queue already but for
2119         * which procecessing has not been completed yet.
2120         */
2121        if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2122                spin_lock_irqsave(&ctx->dev->lock, flags);
2123
2124                if (ctx->src_vbs[2])
2125                        v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2126
2127                if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2128                        v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2129
2130                if (ctx->src_vbs[0] &&
2131                    (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2132                    (ctx->src_vbs[0] != ctx->src_vbs[2]))
2133                        v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2134
2135                ctx->src_vbs[2] = NULL;
2136                ctx->src_vbs[1] = NULL;
2137                ctx->src_vbs[0] = NULL;
2138
2139                spin_unlock_irqrestore(&ctx->dev->lock, flags);
2140        } else {
2141                if (ctx->dst_vb) {
2142                        spin_lock_irqsave(&ctx->dev->lock, flags);
2143
2144                        v4l2_m2m_buf_done(ctx->dst_vb, state);
2145                        ctx->dst_vb = NULL;
2146                        spin_unlock_irqrestore(&ctx->dev->lock, flags);
2147                }
2148        }
2149}
2150
2151static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2152{
2153        struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2154
2155        /* Check any of the size exceed maximum scaling sizes */
2156        if (check_srcdst_sizes(ctx)) {
2157                vpe_err(ctx->dev,
2158                        "Conversion setup failed, check source and destination parameters\n"
2159                        );
2160                vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2161                return -EINVAL;
2162        }
2163
2164        if (ctx->deinterlacing)
2165                config_edi_input_mode(ctx, 0x0);
2166
2167        if (ctx->sequence != 0)
2168                set_srcdst_params(ctx);
2169
2170        return 0;
2171}
2172
2173static void vpe_stop_streaming(struct vb2_queue *q)
2174{
2175        struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2176
2177        vpe_dump_regs(ctx->dev);
2178        vpdma_dump_regs(ctx->dev->vpdma);
2179
2180        vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2181}
2182
2183static const struct vb2_ops vpe_qops = {
2184        .queue_setup     = vpe_queue_setup,
2185        .buf_prepare     = vpe_buf_prepare,
2186        .buf_queue       = vpe_buf_queue,
2187        .wait_prepare    = vb2_ops_wait_prepare,
2188        .wait_finish     = vb2_ops_wait_finish,
2189        .start_streaming = vpe_start_streaming,
2190        .stop_streaming  = vpe_stop_streaming,
2191};
2192
2193static int queue_init(void *priv, struct vb2_queue *src_vq,
2194                      struct vb2_queue *dst_vq)
2195{
2196        struct vpe_ctx *ctx = priv;
2197        struct vpe_dev *dev = ctx->dev;
2198        int ret;
2199
2200        memset(src_vq, 0, sizeof(*src_vq));
2201        src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2202        src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2203        src_vq->drv_priv = ctx;
2204        src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2205        src_vq->ops = &vpe_qops;
2206        src_vq->mem_ops = &vb2_dma_contig_memops;
2207        src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2208        src_vq->lock = &dev->dev_mutex;
2209        src_vq->dev = dev->v4l2_dev.dev;
2210
2211        ret = vb2_queue_init(src_vq);
2212        if (ret)
2213                return ret;
2214
2215        memset(dst_vq, 0, sizeof(*dst_vq));
2216        dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2217        dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2218        dst_vq->drv_priv = ctx;
2219        dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2220        dst_vq->ops = &vpe_qops;
2221        dst_vq->mem_ops = &vb2_dma_contig_memops;
2222        dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2223        dst_vq->lock = &dev->dev_mutex;
2224        dst_vq->dev = dev->v4l2_dev.dev;
2225
2226        return vb2_queue_init(dst_vq);
2227}
2228
2229static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2230        .ops = &vpe_ctrl_ops,
2231        .id = V4L2_CID_VPE_BUFS_PER_JOB,
2232        .name = "Buffers Per Transaction",
2233        .type = V4L2_CTRL_TYPE_INTEGER,
2234        .def = VPE_DEF_BUFS_PER_JOB,
2235        .min = 1,
2236        .max = VIDEO_MAX_FRAME,
2237        .step = 1,
2238};
2239
2240/*
2241 * File operations
2242 */
2243static int vpe_open(struct file *file)
2244{
2245        struct vpe_dev *dev = video_drvdata(file);
2246        struct vpe_q_data *s_q_data;
2247        struct v4l2_ctrl_handler *hdl;
2248        struct vpe_ctx *ctx;
2249        int ret;
2250
2251        vpe_dbg(dev, "vpe_open\n");
2252
2253        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2254        if (!ctx)
2255                return -ENOMEM;
2256
2257        ctx->dev = dev;
2258
2259        if (mutex_lock_interruptible(&dev->dev_mutex)) {
2260                ret = -ERESTARTSYS;
2261                goto free_ctx;
2262        }
2263
2264        ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2265                        VPDMA_LIST_TYPE_NORMAL);
2266        if (ret != 0)
2267                goto unlock;
2268
2269        ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2270        if (ret != 0)
2271                goto free_desc_list;
2272
2273        ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2274        if (ret != 0)
2275                goto free_mmr_adb;
2276
2277        ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2278        if (ret != 0)
2279                goto free_sc_h;
2280
2281        init_adb_hdrs(ctx);
2282
2283        v4l2_fh_init(&ctx->fh, video_devdata(file));
2284        file->private_data = &ctx->fh;
2285
2286        hdl = &ctx->hdl;
2287        v4l2_ctrl_handler_init(hdl, 1);
2288        v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2289        if (hdl->error) {
2290                ret = hdl->error;
2291                goto exit_fh;
2292        }
2293        ctx->fh.ctrl_handler = hdl;
2294        v4l2_ctrl_handler_setup(hdl);
2295
2296        s_q_data = &ctx->q_data[Q_DATA_SRC];
2297        s_q_data->fmt = &vpe_formats[2];
2298        s_q_data->width = 1920;
2299        s_q_data->height = 1080;
2300        s_q_data->nplanes = 1;
2301        s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2302                        s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2303        s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2304                        s_q_data->height);
2305        s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2306        s_q_data->field = V4L2_FIELD_NONE;
2307        s_q_data->c_rect.left = 0;
2308        s_q_data->c_rect.top = 0;
2309        s_q_data->c_rect.width = s_q_data->width;
2310        s_q_data->c_rect.height = s_q_data->height;
2311        s_q_data->flags = 0;
2312
2313        ctx->q_data[Q_DATA_DST] = *s_q_data;
2314
2315        set_dei_shadow_registers(ctx);
2316        set_src_registers(ctx);
2317        set_dst_registers(ctx);
2318        ret = set_srcdst_params(ctx);
2319        if (ret)
2320                goto exit_fh;
2321
2322        ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2323
2324        if (IS_ERR(ctx->fh.m2m_ctx)) {
2325                ret = PTR_ERR(ctx->fh.m2m_ctx);
2326                goto exit_fh;
2327        }
2328
2329        v4l2_fh_add(&ctx->fh);
2330
2331        /*
2332         * for now, just report the creation of the first instance, we can later
2333         * optimize the driver to enable or disable clocks when the first
2334         * instance is created or the last instance released
2335         */
2336        if (atomic_inc_return(&dev->num_instances) == 1)
2337                vpe_dbg(dev, "first instance created\n");
2338
2339        ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2340
2341        ctx->load_mmrs = true;
2342
2343        vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2344                ctx, ctx->fh.m2m_ctx);
2345
2346        mutex_unlock(&dev->dev_mutex);
2347
2348        return 0;
2349exit_fh:
2350        v4l2_ctrl_handler_free(hdl);
2351        v4l2_fh_exit(&ctx->fh);
2352        vpdma_free_desc_buf(&ctx->sc_coeff_v);
2353free_sc_h:
2354        vpdma_free_desc_buf(&ctx->sc_coeff_h);
2355free_mmr_adb:
2356        vpdma_free_desc_buf(&ctx->mmr_adb);
2357free_desc_list:
2358        vpdma_free_desc_list(&ctx->desc_list);
2359unlock:
2360        mutex_unlock(&dev->dev_mutex);
2361free_ctx:
2362        kfree(ctx);
2363        return ret;
2364}
2365
2366static int vpe_release(struct file *file)
2367{
2368        struct vpe_dev *dev = video_drvdata(file);
2369        struct vpe_ctx *ctx = file2ctx(file);
2370
2371        vpe_dbg(dev, "releasing instance %p\n", ctx);
2372
2373        mutex_lock(&dev->dev_mutex);
2374        free_mv_buffers(ctx);
2375        vpdma_free_desc_list(&ctx->desc_list);
2376        vpdma_free_desc_buf(&ctx->mmr_adb);
2377
2378        vpdma_free_desc_buf(&ctx->sc_coeff_v);
2379        vpdma_free_desc_buf(&ctx->sc_coeff_h);
2380
2381        v4l2_fh_del(&ctx->fh);
2382        v4l2_fh_exit(&ctx->fh);
2383        v4l2_ctrl_handler_free(&ctx->hdl);
2384        v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2385
2386        kfree(ctx);
2387
2388        /*
2389         * for now, just report the release of the last instance, we can later
2390         * optimize the driver to enable or disable clocks when the first
2391         * instance is created or the last instance released
2392         */
2393        if (atomic_dec_return(&dev->num_instances) == 0)
2394                vpe_dbg(dev, "last instance released\n");
2395
2396        mutex_unlock(&dev->dev_mutex);
2397
2398        return 0;
2399}
2400
2401static const struct v4l2_file_operations vpe_fops = {
2402        .owner          = THIS_MODULE,
2403        .open           = vpe_open,
2404        .release        = vpe_release,
2405        .poll           = v4l2_m2m_fop_poll,
2406        .unlocked_ioctl = video_ioctl2,
2407        .mmap           = v4l2_m2m_fop_mmap,
2408};
2409
2410static struct video_device vpe_videodev = {
2411        .name           = VPE_MODULE_NAME,
2412        .fops           = &vpe_fops,
2413        .ioctl_ops      = &vpe_ioctl_ops,
2414        .minor          = -1,
2415        .release        = video_device_release_empty,
2416        .vfl_dir        = VFL_DIR_M2M,
2417};
2418
2419static struct v4l2_m2m_ops m2m_ops = {
2420        .device_run     = device_run,
2421        .job_ready      = job_ready,
2422        .job_abort      = job_abort,
2423        .lock           = vpe_lock,
2424        .unlock         = vpe_unlock,
2425};
2426
2427static int vpe_runtime_get(struct platform_device *pdev)
2428{
2429        int r;
2430
2431        dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2432
2433        r = pm_runtime_get_sync(&pdev->dev);
2434        WARN_ON(r < 0);
2435        return r < 0 ? r : 0;
2436}
2437
2438static void vpe_runtime_put(struct platform_device *pdev)
2439{
2440
2441        int r;
2442
2443        dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2444
2445        r = pm_runtime_put_sync(&pdev->dev);
2446        WARN_ON(r < 0 && r != -ENOSYS);
2447}
2448
2449static void vpe_fw_cb(struct platform_device *pdev)
2450{
2451        struct vpe_dev *dev = platform_get_drvdata(pdev);
2452        struct video_device *vfd;
2453        int ret;
2454
2455        vfd = &dev->vfd;
2456        *vfd = vpe_videodev;
2457        vfd->lock = &dev->dev_mutex;
2458        vfd->v4l2_dev = &dev->v4l2_dev;
2459
2460        ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2461        if (ret) {
2462                vpe_err(dev, "Failed to register video device\n");
2463
2464                vpe_set_clock_enable(dev, 0);
2465                vpe_runtime_put(pdev);
2466                pm_runtime_disable(&pdev->dev);
2467                v4l2_m2m_release(dev->m2m_dev);
2468                v4l2_device_unregister(&dev->v4l2_dev);
2469
2470                return;
2471        }
2472
2473        video_set_drvdata(vfd, dev);
2474        snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
2475        dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2476                vfd->num);
2477}
2478
2479static int vpe_probe(struct platform_device *pdev)
2480{
2481        struct vpe_dev *dev;
2482        int ret, irq, func;
2483
2484        dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2485        if (!dev)
2486                return -ENOMEM;
2487
2488        spin_lock_init(&dev->lock);
2489
2490        ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2491        if (ret)
2492                return ret;
2493
2494        atomic_set(&dev->num_instances, 0);
2495        mutex_init(&dev->dev_mutex);
2496
2497        dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2498                        "vpe_top");
2499        /*
2500         * HACK: we get resource info from device tree in the form of a list of
2501         * VPE sub blocks, the driver currently uses only the base of vpe_top
2502         * for register access, the driver should be changed later to access
2503         * registers based on the sub block base addresses
2504         */
2505        dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2506        if (!dev->base) {
2507                ret = -ENOMEM;
2508                goto v4l2_dev_unreg;
2509        }
2510
2511        irq = platform_get_irq(pdev, 0);
2512        ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2513                        dev);
2514        if (ret)
2515                goto v4l2_dev_unreg;
2516
2517        platform_set_drvdata(pdev, dev);
2518
2519        dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2520        if (IS_ERR(dev->m2m_dev)) {
2521                vpe_err(dev, "Failed to init mem2mem device\n");
2522                ret = PTR_ERR(dev->m2m_dev);
2523                goto v4l2_dev_unreg;
2524        }
2525
2526        pm_runtime_enable(&pdev->dev);
2527
2528        ret = vpe_runtime_get(pdev);
2529        if (ret)
2530                goto rel_m2m;
2531
2532        /* Perform clk enable followed by reset */
2533        vpe_set_clock_enable(dev, 1);
2534
2535        vpe_top_reset(dev);
2536
2537        func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2538                VPE_PID_FUNC_SHIFT);
2539        vpe_dbg(dev, "VPE PID function %x\n", func);
2540
2541        vpe_top_vpdma_reset(dev);
2542
2543        dev->sc = sc_create(pdev, "sc");
2544        if (IS_ERR(dev->sc)) {
2545                ret = PTR_ERR(dev->sc);
2546                goto runtime_put;
2547        }
2548
2549        dev->csc = csc_create(pdev, "csc");
2550        if (IS_ERR(dev->csc)) {
2551                ret = PTR_ERR(dev->csc);
2552                goto runtime_put;
2553        }
2554
2555        dev->vpdma = &dev->vpdma_data;
2556        ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2557        if (ret)
2558                goto runtime_put;
2559
2560        return 0;
2561
2562runtime_put:
2563        vpe_runtime_put(pdev);
2564rel_m2m:
2565        pm_runtime_disable(&pdev->dev);
2566        v4l2_m2m_release(dev->m2m_dev);
2567v4l2_dev_unreg:
2568        v4l2_device_unregister(&dev->v4l2_dev);
2569
2570        return ret;
2571}
2572
2573static int vpe_remove(struct platform_device *pdev)
2574{
2575        struct vpe_dev *dev = platform_get_drvdata(pdev);
2576
2577        v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2578
2579        v4l2_m2m_release(dev->m2m_dev);
2580        video_unregister_device(&dev->vfd);
2581        v4l2_device_unregister(&dev->v4l2_dev);
2582
2583        vpe_set_clock_enable(dev, 0);
2584        vpe_runtime_put(pdev);
2585        pm_runtime_disable(&pdev->dev);
2586
2587        return 0;
2588}
2589
2590#if defined(CONFIG_OF)
2591static const struct of_device_id vpe_of_match[] = {
2592        {
2593                .compatible = "ti,vpe",
2594        },
2595        {},
2596};
2597MODULE_DEVICE_TABLE(of, vpe_of_match);
2598#endif
2599
2600static struct platform_driver vpe_pdrv = {
2601        .probe          = vpe_probe,
2602        .remove         = vpe_remove,
2603        .driver         = {
2604                .name   = VPE_MODULE_NAME,
2605                .of_match_table = of_match_ptr(vpe_of_match),
2606        },
2607};
2608
2609module_platform_driver(vpe_pdrv);
2610
2611MODULE_DESCRIPTION("TI VPE driver");
2612MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2613MODULE_LICENSE("GPL");
2614