linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1/* rc-main.c - Remote Controller core module
   2 *
   3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation version 2 of the License.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <media/rc-core.h>
  18#include <linux/atomic.h>
  19#include <linux/spinlock.h>
  20#include <linux/delay.h>
  21#include <linux/input.h>
  22#include <linux/leds.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/device.h>
  26#include <linux/module.h>
  27#include "rc-core-priv.h"
  28
  29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  30#define IR_TAB_MIN_SIZE 256
  31#define IR_TAB_MAX_SIZE 8192
  32#define RC_DEV_MAX      256
  33
  34/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  35#define IR_KEYPRESS_TIMEOUT 250
  36
  37/* Used to keep track of known keymaps */
  38static LIST_HEAD(rc_map_list);
  39static DEFINE_SPINLOCK(rc_map_lock);
  40static struct led_trigger *led_feedback;
  41
  42/* Used to keep track of rc devices */
  43static DEFINE_IDA(rc_ida);
  44
  45static struct rc_map_list *seek_rc_map(const char *name)
  46{
  47        struct rc_map_list *map = NULL;
  48
  49        spin_lock(&rc_map_lock);
  50        list_for_each_entry(map, &rc_map_list, list) {
  51                if (!strcmp(name, map->map.name)) {
  52                        spin_unlock(&rc_map_lock);
  53                        return map;
  54                }
  55        }
  56        spin_unlock(&rc_map_lock);
  57
  58        return NULL;
  59}
  60
  61struct rc_map *rc_map_get(const char *name)
  62{
  63
  64        struct rc_map_list *map;
  65
  66        map = seek_rc_map(name);
  67#ifdef CONFIG_MODULES
  68        if (!map) {
  69                int rc = request_module("%s", name);
  70                if (rc < 0) {
  71                        pr_err("Couldn't load IR keymap %s\n", name);
  72                        return NULL;
  73                }
  74                msleep(20);     /* Give some time for IR to register */
  75
  76                map = seek_rc_map(name);
  77        }
  78#endif
  79        if (!map) {
  80                pr_err("IR keymap %s not found\n", name);
  81                return NULL;
  82        }
  83
  84        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  85
  86        return &map->map;
  87}
  88EXPORT_SYMBOL_GPL(rc_map_get);
  89
  90int rc_map_register(struct rc_map_list *map)
  91{
  92        spin_lock(&rc_map_lock);
  93        list_add_tail(&map->list, &rc_map_list);
  94        spin_unlock(&rc_map_lock);
  95        return 0;
  96}
  97EXPORT_SYMBOL_GPL(rc_map_register);
  98
  99void rc_map_unregister(struct rc_map_list *map)
 100{
 101        spin_lock(&rc_map_lock);
 102        list_del(&map->list);
 103        spin_unlock(&rc_map_lock);
 104}
 105EXPORT_SYMBOL_GPL(rc_map_unregister);
 106
 107
 108static struct rc_map_table empty[] = {
 109        { 0x2a, KEY_COFFEE },
 110};
 111
 112static struct rc_map_list empty_map = {
 113        .map = {
 114                .scan    = empty,
 115                .size    = ARRAY_SIZE(empty),
 116                .rc_type = RC_TYPE_UNKNOWN,     /* Legacy IR type */
 117                .name    = RC_MAP_EMPTY,
 118        }
 119};
 120
 121/**
 122 * ir_create_table() - initializes a scancode table
 123 * @rc_map:     the rc_map to initialize
 124 * @name:       name to assign to the table
 125 * @rc_type:    ir type to assign to the new table
 126 * @size:       initial size of the table
 127 * @return:     zero on success or a negative error code
 128 *
 129 * This routine will initialize the rc_map and will allocate
 130 * memory to hold at least the specified number of elements.
 131 */
 132static int ir_create_table(struct rc_map *rc_map,
 133                           const char *name, u64 rc_type, size_t size)
 134{
 135        rc_map->name = kstrdup(name, GFP_KERNEL);
 136        if (!rc_map->name)
 137                return -ENOMEM;
 138        rc_map->rc_type = rc_type;
 139        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 140        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 141        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 142        if (!rc_map->scan) {
 143                kfree(rc_map->name);
 144                rc_map->name = NULL;
 145                return -ENOMEM;
 146        }
 147
 148        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 149                   rc_map->size, rc_map->alloc);
 150        return 0;
 151}
 152
 153/**
 154 * ir_free_table() - frees memory allocated by a scancode table
 155 * @rc_map:     the table whose mappings need to be freed
 156 *
 157 * This routine will free memory alloctaed for key mappings used by given
 158 * scancode table.
 159 */
 160static void ir_free_table(struct rc_map *rc_map)
 161{
 162        rc_map->size = 0;
 163        kfree(rc_map->name);
 164        rc_map->name = NULL;
 165        kfree(rc_map->scan);
 166        rc_map->scan = NULL;
 167}
 168
 169/**
 170 * ir_resize_table() - resizes a scancode table if necessary
 171 * @rc_map:     the rc_map to resize
 172 * @gfp_flags:  gfp flags to use when allocating memory
 173 * @return:     zero on success or a negative error code
 174 *
 175 * This routine will shrink the rc_map if it has lots of
 176 * unused entries and grow it if it is full.
 177 */
 178static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 179{
 180        unsigned int oldalloc = rc_map->alloc;
 181        unsigned int newalloc = oldalloc;
 182        struct rc_map_table *oldscan = rc_map->scan;
 183        struct rc_map_table *newscan;
 184
 185        if (rc_map->size == rc_map->len) {
 186                /* All entries in use -> grow keytable */
 187                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 188                        return -ENOMEM;
 189
 190                newalloc *= 2;
 191                IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 192        }
 193
 194        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 195                /* Less than 1/3 of entries in use -> shrink keytable */
 196                newalloc /= 2;
 197                IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 198        }
 199
 200        if (newalloc == oldalloc)
 201                return 0;
 202
 203        newscan = kmalloc(newalloc, gfp_flags);
 204        if (!newscan) {
 205                IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 206                return -ENOMEM;
 207        }
 208
 209        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 210        rc_map->scan = newscan;
 211        rc_map->alloc = newalloc;
 212        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 213        kfree(oldscan);
 214        return 0;
 215}
 216
 217/**
 218 * ir_update_mapping() - set a keycode in the scancode->keycode table
 219 * @dev:        the struct rc_dev device descriptor
 220 * @rc_map:     scancode table to be adjusted
 221 * @index:      index of the mapping that needs to be updated
 222 * @keycode:    the desired keycode
 223 * @return:     previous keycode assigned to the mapping
 224 *
 225 * This routine is used to update scancode->keycode mapping at given
 226 * position.
 227 */
 228static unsigned int ir_update_mapping(struct rc_dev *dev,
 229                                      struct rc_map *rc_map,
 230                                      unsigned int index,
 231                                      unsigned int new_keycode)
 232{
 233        int old_keycode = rc_map->scan[index].keycode;
 234        int i;
 235
 236        /* Did the user wish to remove the mapping? */
 237        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 238                IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 239                           index, rc_map->scan[index].scancode);
 240                rc_map->len--;
 241                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 242                        (rc_map->len - index) * sizeof(struct rc_map_table));
 243        } else {
 244                IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 245                           index,
 246                           old_keycode == KEY_RESERVED ? "New" : "Replacing",
 247                           rc_map->scan[index].scancode, new_keycode);
 248                rc_map->scan[index].keycode = new_keycode;
 249                __set_bit(new_keycode, dev->input_dev->keybit);
 250        }
 251
 252        if (old_keycode != KEY_RESERVED) {
 253                /* A previous mapping was updated... */
 254                __clear_bit(old_keycode, dev->input_dev->keybit);
 255                /* ... but another scancode might use the same keycode */
 256                for (i = 0; i < rc_map->len; i++) {
 257                        if (rc_map->scan[i].keycode == old_keycode) {
 258                                __set_bit(old_keycode, dev->input_dev->keybit);
 259                                break;
 260                        }
 261                }
 262
 263                /* Possibly shrink the keytable, failure is not a problem */
 264                ir_resize_table(rc_map, GFP_ATOMIC);
 265        }
 266
 267        return old_keycode;
 268}
 269
 270/**
 271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 272 * @dev:        the struct rc_dev device descriptor
 273 * @rc_map:     scancode table to be searched
 274 * @scancode:   the desired scancode
 275 * @resize:     controls whether we allowed to resize the table to
 276 *              accommodate not yet present scancodes
 277 * @return:     index of the mapping containing scancode in question
 278 *              or -1U in case of failure.
 279 *
 280 * This routine is used to locate given scancode in rc_map.
 281 * If scancode is not yet present the routine will allocate a new slot
 282 * for it.
 283 */
 284static unsigned int ir_establish_scancode(struct rc_dev *dev,
 285                                          struct rc_map *rc_map,
 286                                          unsigned int scancode,
 287                                          bool resize)
 288{
 289        unsigned int i;
 290
 291        /*
 292         * Unfortunately, some hardware-based IR decoders don't provide
 293         * all bits for the complete IR code. In general, they provide only
 294         * the command part of the IR code. Yet, as it is possible to replace
 295         * the provided IR with another one, it is needed to allow loading
 296         * IR tables from other remotes. So, we support specifying a mask to
 297         * indicate the valid bits of the scancodes.
 298         */
 299        if (dev->scancode_mask)
 300                scancode &= dev->scancode_mask;
 301
 302        /* First check if we already have a mapping for this ir command */
 303        for (i = 0; i < rc_map->len; i++) {
 304                if (rc_map->scan[i].scancode == scancode)
 305                        return i;
 306
 307                /* Keytable is sorted from lowest to highest scancode */
 308                if (rc_map->scan[i].scancode >= scancode)
 309                        break;
 310        }
 311
 312        /* No previous mapping found, we might need to grow the table */
 313        if (rc_map->size == rc_map->len) {
 314                if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 315                        return -1U;
 316        }
 317
 318        /* i is the proper index to insert our new keycode */
 319        if (i < rc_map->len)
 320                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 321                        (rc_map->len - i) * sizeof(struct rc_map_table));
 322        rc_map->scan[i].scancode = scancode;
 323        rc_map->scan[i].keycode = KEY_RESERVED;
 324        rc_map->len++;
 325
 326        return i;
 327}
 328
 329/**
 330 * ir_setkeycode() - set a keycode in the scancode->keycode table
 331 * @idev:       the struct input_dev device descriptor
 332 * @scancode:   the desired scancode
 333 * @keycode:    result
 334 * @return:     -EINVAL if the keycode could not be inserted, otherwise zero.
 335 *
 336 * This routine is used to handle evdev EVIOCSKEY ioctl.
 337 */
 338static int ir_setkeycode(struct input_dev *idev,
 339                         const struct input_keymap_entry *ke,
 340                         unsigned int *old_keycode)
 341{
 342        struct rc_dev *rdev = input_get_drvdata(idev);
 343        struct rc_map *rc_map = &rdev->rc_map;
 344        unsigned int index;
 345        unsigned int scancode;
 346        int retval = 0;
 347        unsigned long flags;
 348
 349        spin_lock_irqsave(&rc_map->lock, flags);
 350
 351        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 352                index = ke->index;
 353                if (index >= rc_map->len) {
 354                        retval = -EINVAL;
 355                        goto out;
 356                }
 357        } else {
 358                retval = input_scancode_to_scalar(ke, &scancode);
 359                if (retval)
 360                        goto out;
 361
 362                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 363                if (index >= rc_map->len) {
 364                        retval = -ENOMEM;
 365                        goto out;
 366                }
 367        }
 368
 369        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 370
 371out:
 372        spin_unlock_irqrestore(&rc_map->lock, flags);
 373        return retval;
 374}
 375
 376/**
 377 * ir_setkeytable() - sets several entries in the scancode->keycode table
 378 * @dev:        the struct rc_dev device descriptor
 379 * @to:         the struct rc_map to copy entries to
 380 * @from:       the struct rc_map to copy entries from
 381 * @return:     -ENOMEM if all keycodes could not be inserted, otherwise zero.
 382 *
 383 * This routine is used to handle table initialization.
 384 */
 385static int ir_setkeytable(struct rc_dev *dev,
 386                          const struct rc_map *from)
 387{
 388        struct rc_map *rc_map = &dev->rc_map;
 389        unsigned int i, index;
 390        int rc;
 391
 392        rc = ir_create_table(rc_map, from->name,
 393                             from->rc_type, from->size);
 394        if (rc)
 395                return rc;
 396
 397        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 398                   rc_map->size, rc_map->alloc);
 399
 400        for (i = 0; i < from->size; i++) {
 401                index = ir_establish_scancode(dev, rc_map,
 402                                              from->scan[i].scancode, false);
 403                if (index >= rc_map->len) {
 404                        rc = -ENOMEM;
 405                        break;
 406                }
 407
 408                ir_update_mapping(dev, rc_map, index,
 409                                  from->scan[i].keycode);
 410        }
 411
 412        if (rc)
 413                ir_free_table(rc_map);
 414
 415        return rc;
 416}
 417
 418/**
 419 * ir_lookup_by_scancode() - locate mapping by scancode
 420 * @rc_map:     the struct rc_map to search
 421 * @scancode:   scancode to look for in the table
 422 * @return:     index in the table, -1U if not found
 423 *
 424 * This routine performs binary search in RC keykeymap table for
 425 * given scancode.
 426 */
 427static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 428                                          unsigned int scancode)
 429{
 430        int start = 0;
 431        int end = rc_map->len - 1;
 432        int mid;
 433
 434        while (start <= end) {
 435                mid = (start + end) / 2;
 436                if (rc_map->scan[mid].scancode < scancode)
 437                        start = mid + 1;
 438                else if (rc_map->scan[mid].scancode > scancode)
 439                        end = mid - 1;
 440                else
 441                        return mid;
 442        }
 443
 444        return -1U;
 445}
 446
 447/**
 448 * ir_getkeycode() - get a keycode from the scancode->keycode table
 449 * @idev:       the struct input_dev device descriptor
 450 * @scancode:   the desired scancode
 451 * @keycode:    used to return the keycode, if found, or KEY_RESERVED
 452 * @return:     always returns zero.
 453 *
 454 * This routine is used to handle evdev EVIOCGKEY ioctl.
 455 */
 456static int ir_getkeycode(struct input_dev *idev,
 457                         struct input_keymap_entry *ke)
 458{
 459        struct rc_dev *rdev = input_get_drvdata(idev);
 460        struct rc_map *rc_map = &rdev->rc_map;
 461        struct rc_map_table *entry;
 462        unsigned long flags;
 463        unsigned int index;
 464        unsigned int scancode;
 465        int retval;
 466
 467        spin_lock_irqsave(&rc_map->lock, flags);
 468
 469        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 470                index = ke->index;
 471        } else {
 472                retval = input_scancode_to_scalar(ke, &scancode);
 473                if (retval)
 474                        goto out;
 475
 476                index = ir_lookup_by_scancode(rc_map, scancode);
 477        }
 478
 479        if (index < rc_map->len) {
 480                entry = &rc_map->scan[index];
 481
 482                ke->index = index;
 483                ke->keycode = entry->keycode;
 484                ke->len = sizeof(entry->scancode);
 485                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 486
 487        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 488                /*
 489                 * We do not really know the valid range of scancodes
 490                 * so let's respond with KEY_RESERVED to anything we
 491                 * do not have mapping for [yet].
 492                 */
 493                ke->index = index;
 494                ke->keycode = KEY_RESERVED;
 495        } else {
 496                retval = -EINVAL;
 497                goto out;
 498        }
 499
 500        retval = 0;
 501
 502out:
 503        spin_unlock_irqrestore(&rc_map->lock, flags);
 504        return retval;
 505}
 506
 507/**
 508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 509 * @dev:        the struct rc_dev descriptor of the device
 510 * @scancode:   the scancode to look for
 511 * @return:     the corresponding keycode, or KEY_RESERVED
 512 *
 513 * This routine is used by drivers which need to convert a scancode to a
 514 * keycode. Normally it should not be used since drivers should have no
 515 * interest in keycodes.
 516 */
 517u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 518{
 519        struct rc_map *rc_map = &dev->rc_map;
 520        unsigned int keycode;
 521        unsigned int index;
 522        unsigned long flags;
 523
 524        spin_lock_irqsave(&rc_map->lock, flags);
 525
 526        index = ir_lookup_by_scancode(rc_map, scancode);
 527        keycode = index < rc_map->len ?
 528                        rc_map->scan[index].keycode : KEY_RESERVED;
 529
 530        spin_unlock_irqrestore(&rc_map->lock, flags);
 531
 532        if (keycode != KEY_RESERVED)
 533                IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 534                           dev->input_name, scancode, keycode);
 535
 536        return keycode;
 537}
 538EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 539
 540/**
 541 * ir_do_keyup() - internal function to signal the release of a keypress
 542 * @dev:        the struct rc_dev descriptor of the device
 543 * @sync:       whether or not to call input_sync
 544 *
 545 * This function is used internally to release a keypress, it must be
 546 * called with keylock held.
 547 */
 548static void ir_do_keyup(struct rc_dev *dev, bool sync)
 549{
 550        if (!dev->keypressed)
 551                return;
 552
 553        IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 554        input_report_key(dev->input_dev, dev->last_keycode, 0);
 555        led_trigger_event(led_feedback, LED_OFF);
 556        if (sync)
 557                input_sync(dev->input_dev);
 558        dev->keypressed = false;
 559}
 560
 561/**
 562 * rc_keyup() - signals the release of a keypress
 563 * @dev:        the struct rc_dev descriptor of the device
 564 *
 565 * This routine is used to signal that a key has been released on the
 566 * remote control.
 567 */
 568void rc_keyup(struct rc_dev *dev)
 569{
 570        unsigned long flags;
 571
 572        spin_lock_irqsave(&dev->keylock, flags);
 573        ir_do_keyup(dev, true);
 574        spin_unlock_irqrestore(&dev->keylock, flags);
 575}
 576EXPORT_SYMBOL_GPL(rc_keyup);
 577
 578/**
 579 * ir_timer_keyup() - generates a keyup event after a timeout
 580 * @cookie:     a pointer to the struct rc_dev for the device
 581 *
 582 * This routine will generate a keyup event some time after a keydown event
 583 * is generated when no further activity has been detected.
 584 */
 585static void ir_timer_keyup(unsigned long cookie)
 586{
 587        struct rc_dev *dev = (struct rc_dev *)cookie;
 588        unsigned long flags;
 589
 590        /*
 591         * ir->keyup_jiffies is used to prevent a race condition if a
 592         * hardware interrupt occurs at this point and the keyup timer
 593         * event is moved further into the future as a result.
 594         *
 595         * The timer will then be reactivated and this function called
 596         * again in the future. We need to exit gracefully in that case
 597         * to allow the input subsystem to do its auto-repeat magic or
 598         * a keyup event might follow immediately after the keydown.
 599         */
 600        spin_lock_irqsave(&dev->keylock, flags);
 601        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 602                ir_do_keyup(dev, true);
 603        spin_unlock_irqrestore(&dev->keylock, flags);
 604}
 605
 606/**
 607 * rc_repeat() - signals that a key is still pressed
 608 * @dev:        the struct rc_dev descriptor of the device
 609 *
 610 * This routine is used by IR decoders when a repeat message which does
 611 * not include the necessary bits to reproduce the scancode has been
 612 * received.
 613 */
 614void rc_repeat(struct rc_dev *dev)
 615{
 616        unsigned long flags;
 617
 618        spin_lock_irqsave(&dev->keylock, flags);
 619
 620        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 621        input_sync(dev->input_dev);
 622
 623        if (!dev->keypressed)
 624                goto out;
 625
 626        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 627        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 628
 629out:
 630        spin_unlock_irqrestore(&dev->keylock, flags);
 631}
 632EXPORT_SYMBOL_GPL(rc_repeat);
 633
 634/**
 635 * ir_do_keydown() - internal function to process a keypress
 636 * @dev:        the struct rc_dev descriptor of the device
 637 * @protocol:   the protocol of the keypress
 638 * @scancode:   the scancode of the keypress
 639 * @keycode:    the keycode of the keypress
 640 * @toggle:     the toggle value of the keypress
 641 *
 642 * This function is used internally to register a keypress, it must be
 643 * called with keylock held.
 644 */
 645static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
 646                          u32 scancode, u32 keycode, u8 toggle)
 647{
 648        bool new_event = (!dev->keypressed               ||
 649                          dev->last_protocol != protocol ||
 650                          dev->last_scancode != scancode ||
 651                          dev->last_toggle   != toggle);
 652
 653        if (new_event && dev->keypressed)
 654                ir_do_keyup(dev, false);
 655
 656        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 657
 658        if (new_event && keycode != KEY_RESERVED) {
 659                /* Register a keypress */
 660                dev->keypressed = true;
 661                dev->last_protocol = protocol;
 662                dev->last_scancode = scancode;
 663                dev->last_toggle = toggle;
 664                dev->last_keycode = keycode;
 665
 666                IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 667                           dev->input_name, keycode, protocol, scancode);
 668                input_report_key(dev->input_dev, keycode, 1);
 669
 670                led_trigger_event(led_feedback, LED_FULL);
 671        }
 672
 673        input_sync(dev->input_dev);
 674}
 675
 676/**
 677 * rc_keydown() - generates input event for a key press
 678 * @dev:        the struct rc_dev descriptor of the device
 679 * @protocol:   the protocol for the keypress
 680 * @scancode:   the scancode for the keypress
 681 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 682 *              support toggle values, this should be set to zero)
 683 *
 684 * This routine is used to signal that a key has been pressed on the
 685 * remote control.
 686 */
 687void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
 688{
 689        unsigned long flags;
 690        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 691
 692        spin_lock_irqsave(&dev->keylock, flags);
 693        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 694
 695        if (dev->keypressed) {
 696                dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 697                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 698        }
 699        spin_unlock_irqrestore(&dev->keylock, flags);
 700}
 701EXPORT_SYMBOL_GPL(rc_keydown);
 702
 703/**
 704 * rc_keydown_notimeout() - generates input event for a key press without
 705 *                          an automatic keyup event at a later time
 706 * @dev:        the struct rc_dev descriptor of the device
 707 * @protocol:   the protocol for the keypress
 708 * @scancode:   the scancode for the keypress
 709 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 710 *              support toggle values, this should be set to zero)
 711 *
 712 * This routine is used to signal that a key has been pressed on the
 713 * remote control. The driver must manually call rc_keyup() at a later stage.
 714 */
 715void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
 716                          u32 scancode, u8 toggle)
 717{
 718        unsigned long flags;
 719        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 720
 721        spin_lock_irqsave(&dev->keylock, flags);
 722        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 723        spin_unlock_irqrestore(&dev->keylock, flags);
 724}
 725EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 726
 727/**
 728 * rc_validate_filter() - checks that the scancode and mask are valid and
 729 *                        provides sensible defaults
 730 * @dev:        the struct rc_dev descriptor of the device
 731 * @filter:     the scancode and mask
 732 * @return:     0 or -EINVAL if the filter is not valid
 733 */
 734static int rc_validate_filter(struct rc_dev *dev,
 735                              struct rc_scancode_filter *filter)
 736{
 737        static u32 masks[] = {
 738                [RC_TYPE_RC5] = 0x1f7f,
 739                [RC_TYPE_RC5X_20] = 0x1f7f3f,
 740                [RC_TYPE_RC5_SZ] = 0x2fff,
 741                [RC_TYPE_SONY12] = 0x1f007f,
 742                [RC_TYPE_SONY15] = 0xff007f,
 743                [RC_TYPE_SONY20] = 0x1fff7f,
 744                [RC_TYPE_JVC] = 0xffff,
 745                [RC_TYPE_NEC] = 0xffff,
 746                [RC_TYPE_NECX] = 0xffffff,
 747                [RC_TYPE_NEC32] = 0xffffffff,
 748                [RC_TYPE_SANYO] = 0x1fffff,
 749                [RC_TYPE_RC6_0] = 0xffff,
 750                [RC_TYPE_RC6_6A_20] = 0xfffff,
 751                [RC_TYPE_RC6_6A_24] = 0xffffff,
 752                [RC_TYPE_RC6_6A_32] = 0xffffffff,
 753                [RC_TYPE_RC6_MCE] = 0xffff7fff,
 754                [RC_TYPE_SHARP] = 0x1fff,
 755        };
 756        u32 s = filter->data;
 757        enum rc_type protocol = dev->wakeup_protocol;
 758
 759        switch (protocol) {
 760        case RC_TYPE_NECX:
 761                if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
 762                        return -EINVAL;
 763                break;
 764        case RC_TYPE_NEC32:
 765                if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
 766                        return -EINVAL;
 767                break;
 768        case RC_TYPE_RC6_MCE:
 769                if ((s & 0xffff0000) != 0x800f0000)
 770                        return -EINVAL;
 771                break;
 772        case RC_TYPE_RC6_6A_32:
 773                if ((s & 0xffff0000) == 0x800f0000)
 774                        return -EINVAL;
 775                break;
 776        default:
 777                break;
 778        }
 779
 780        filter->data &= masks[protocol];
 781        filter->mask &= masks[protocol];
 782
 783        /*
 784         * If we have to raw encode the IR for wakeup, we cannot have a mask
 785         */
 786        if (dev->encode_wakeup &&
 787            filter->mask != 0 && filter->mask != masks[protocol])
 788                return -EINVAL;
 789
 790        return 0;
 791}
 792
 793int rc_open(struct rc_dev *rdev)
 794{
 795        int rval = 0;
 796
 797        if (!rdev)
 798                return -EINVAL;
 799
 800        mutex_lock(&rdev->lock);
 801
 802        if (!rdev->users++ && rdev->open != NULL)
 803                rval = rdev->open(rdev);
 804
 805        if (rval)
 806                rdev->users--;
 807
 808        mutex_unlock(&rdev->lock);
 809
 810        return rval;
 811}
 812EXPORT_SYMBOL_GPL(rc_open);
 813
 814static int ir_open(struct input_dev *idev)
 815{
 816        struct rc_dev *rdev = input_get_drvdata(idev);
 817
 818        return rc_open(rdev);
 819}
 820
 821void rc_close(struct rc_dev *rdev)
 822{
 823        if (rdev) {
 824                mutex_lock(&rdev->lock);
 825
 826                if (!--rdev->users && rdev->close != NULL)
 827                        rdev->close(rdev);
 828
 829                mutex_unlock(&rdev->lock);
 830        }
 831}
 832EXPORT_SYMBOL_GPL(rc_close);
 833
 834static void ir_close(struct input_dev *idev)
 835{
 836        struct rc_dev *rdev = input_get_drvdata(idev);
 837        rc_close(rdev);
 838}
 839
 840/* class for /sys/class/rc */
 841static char *rc_devnode(struct device *dev, umode_t *mode)
 842{
 843        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 844}
 845
 846static struct class rc_class = {
 847        .name           = "rc",
 848        .devnode        = rc_devnode,
 849};
 850
 851/*
 852 * These are the protocol textual descriptions that are
 853 * used by the sysfs protocols file. Note that the order
 854 * of the entries is relevant.
 855 */
 856static const struct {
 857        u64     type;
 858        const char      *name;
 859        const char      *module_name;
 860} proto_names[] = {
 861        { RC_BIT_NONE,          "none",         NULL                    },
 862        { RC_BIT_OTHER,         "other",        NULL                    },
 863        { RC_BIT_UNKNOWN,       "unknown",      NULL                    },
 864        { RC_BIT_RC5 |
 865          RC_BIT_RC5X_20,       "rc-5",         "ir-rc5-decoder"        },
 866        { RC_BIT_NEC |
 867          RC_BIT_NECX |
 868          RC_BIT_NEC32,         "nec",          "ir-nec-decoder"        },
 869        { RC_BIT_RC6_0 |
 870          RC_BIT_RC6_6A_20 |
 871          RC_BIT_RC6_6A_24 |
 872          RC_BIT_RC6_6A_32 |
 873          RC_BIT_RC6_MCE,       "rc-6",         "ir-rc6-decoder"        },
 874        { RC_BIT_JVC,           "jvc",          "ir-jvc-decoder"        },
 875        { RC_BIT_SONY12 |
 876          RC_BIT_SONY15 |
 877          RC_BIT_SONY20,        "sony",         "ir-sony-decoder"       },
 878        { RC_BIT_RC5_SZ,        "rc-5-sz",      "ir-rc5-decoder"        },
 879        { RC_BIT_SANYO,         "sanyo",        "ir-sanyo-decoder"      },
 880        { RC_BIT_SHARP,         "sharp",        "ir-sharp-decoder"      },
 881        { RC_BIT_MCE_KBD,       "mce_kbd",      "ir-mce_kbd-decoder"    },
 882        { RC_BIT_XMP,           "xmp",          "ir-xmp-decoder"        },
 883        { RC_BIT_CEC,           "cec",          NULL                    },
 884};
 885
 886/**
 887 * struct rc_filter_attribute - Device attribute relating to a filter type.
 888 * @attr:       Device attribute.
 889 * @type:       Filter type.
 890 * @mask:       false for filter value, true for filter mask.
 891 */
 892struct rc_filter_attribute {
 893        struct device_attribute         attr;
 894        enum rc_filter_type             type;
 895        bool                            mask;
 896};
 897#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 898
 899#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
 900        struct rc_filter_attribute dev_attr_##_name = {                 \
 901                .attr = __ATTR(_name, _mode, _show, _store),            \
 902                .type = (_type),                                        \
 903                .mask = (_mask),                                        \
 904        }
 905
 906static bool lirc_is_present(void)
 907{
 908#if defined(CONFIG_LIRC_MODULE)
 909        struct module *lirc;
 910
 911        mutex_lock(&module_mutex);
 912        lirc = find_module("lirc_dev");
 913        mutex_unlock(&module_mutex);
 914
 915        return lirc ? true : false;
 916#elif defined(CONFIG_LIRC)
 917        return true;
 918#else
 919        return false;
 920#endif
 921}
 922
 923/**
 924 * show_protocols() - shows the current IR protocol(s)
 925 * @device:     the device descriptor
 926 * @mattr:      the device attribute struct
 927 * @buf:        a pointer to the output buffer
 928 *
 929 * This routine is a callback routine for input read the IR protocol type(s).
 930 * it is trigged by reading /sys/class/rc/rc?/protocols.
 931 * It returns the protocol names of supported protocols.
 932 * Enabled protocols are printed in brackets.
 933 *
 934 * dev->lock is taken to guard against races between device
 935 * registration, store_protocols and show_protocols.
 936 */
 937static ssize_t show_protocols(struct device *device,
 938                              struct device_attribute *mattr, char *buf)
 939{
 940        struct rc_dev *dev = to_rc_dev(device);
 941        u64 allowed, enabled;
 942        char *tmp = buf;
 943        int i;
 944
 945        /* Device is being removed */
 946        if (!dev)
 947                return -EINVAL;
 948
 949        if (!atomic_read(&dev->initialized))
 950                return -ERESTARTSYS;
 951
 952        mutex_lock(&dev->lock);
 953
 954        enabled = dev->enabled_protocols;
 955        allowed = dev->allowed_protocols;
 956        if (dev->raw && !allowed)
 957                allowed = ir_raw_get_allowed_protocols();
 958
 959        mutex_unlock(&dev->lock);
 960
 961        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
 962                   __func__, (long long)allowed, (long long)enabled);
 963
 964        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 965                if (allowed & enabled & proto_names[i].type)
 966                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 967                else if (allowed & proto_names[i].type)
 968                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
 969
 970                if (allowed & proto_names[i].type)
 971                        allowed &= ~proto_names[i].type;
 972        }
 973
 974        if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
 975                tmp += sprintf(tmp, "[lirc] ");
 976
 977        if (tmp != buf)
 978                tmp--;
 979        *tmp = '\n';
 980
 981        return tmp + 1 - buf;
 982}
 983
 984/**
 985 * parse_protocol_change() - parses a protocol change request
 986 * @protocols:  pointer to the bitmask of current protocols
 987 * @buf:        pointer to the buffer with a list of changes
 988 *
 989 * Writing "+proto" will add a protocol to the protocol mask.
 990 * Writing "-proto" will remove a protocol from protocol mask.
 991 * Writing "proto" will enable only "proto".
 992 * Writing "none" will disable all protocols.
 993 * Returns the number of changes performed or a negative error code.
 994 */
 995static int parse_protocol_change(u64 *protocols, const char *buf)
 996{
 997        const char *tmp;
 998        unsigned count = 0;
 999        bool enable, disable;
1000        u64 mask;
1001        int i;
1002
1003        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1004                if (!*tmp)
1005                        break;
1006
1007                if (*tmp == '+') {
1008                        enable = true;
1009                        disable = false;
1010                        tmp++;
1011                } else if (*tmp == '-') {
1012                        enable = false;
1013                        disable = true;
1014                        tmp++;
1015                } else {
1016                        enable = false;
1017                        disable = false;
1018                }
1019
1020                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1021                        if (!strcasecmp(tmp, proto_names[i].name)) {
1022                                mask = proto_names[i].type;
1023                                break;
1024                        }
1025                }
1026
1027                if (i == ARRAY_SIZE(proto_names)) {
1028                        if (!strcasecmp(tmp, "lirc"))
1029                                mask = 0;
1030                        else {
1031                                IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1032                                return -EINVAL;
1033                        }
1034                }
1035
1036                count++;
1037
1038                if (enable)
1039                        *protocols |= mask;
1040                else if (disable)
1041                        *protocols &= ~mask;
1042                else
1043                        *protocols = mask;
1044        }
1045
1046        if (!count) {
1047                IR_dprintk(1, "Protocol not specified\n");
1048                return -EINVAL;
1049        }
1050
1051        return count;
1052}
1053
1054static void ir_raw_load_modules(u64 *protocols)
1055{
1056        u64 available;
1057        int i, ret;
1058
1059        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1060                if (proto_names[i].type == RC_BIT_NONE ||
1061                    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1062                        continue;
1063
1064                available = ir_raw_get_allowed_protocols();
1065                if (!(*protocols & proto_names[i].type & ~available))
1066                        continue;
1067
1068                if (!proto_names[i].module_name) {
1069                        pr_err("Can't enable IR protocol %s\n",
1070                               proto_names[i].name);
1071                        *protocols &= ~proto_names[i].type;
1072                        continue;
1073                }
1074
1075                ret = request_module("%s", proto_names[i].module_name);
1076                if (ret < 0) {
1077                        pr_err("Couldn't load IR protocol module %s\n",
1078                               proto_names[i].module_name);
1079                        *protocols &= ~proto_names[i].type;
1080                        continue;
1081                }
1082                msleep(20);
1083                available = ir_raw_get_allowed_protocols();
1084                if (!(*protocols & proto_names[i].type & ~available))
1085                        continue;
1086
1087                pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1088                       proto_names[i].module_name,
1089                       proto_names[i].name);
1090                *protocols &= ~proto_names[i].type;
1091        }
1092}
1093
1094/**
1095 * store_protocols() - changes the current/wakeup IR protocol(s)
1096 * @device:     the device descriptor
1097 * @mattr:      the device attribute struct
1098 * @buf:        a pointer to the input buffer
1099 * @len:        length of the input buffer
1100 *
1101 * This routine is for changing the IR protocol type.
1102 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1103 * See parse_protocol_change() for the valid commands.
1104 * Returns @len on success or a negative error code.
1105 *
1106 * dev->lock is taken to guard against races between device
1107 * registration, store_protocols and show_protocols.
1108 */
1109static ssize_t store_protocols(struct device *device,
1110                               struct device_attribute *mattr,
1111                               const char *buf, size_t len)
1112{
1113        struct rc_dev *dev = to_rc_dev(device);
1114        u64 *current_protocols;
1115        struct rc_scancode_filter *filter;
1116        u64 old_protocols, new_protocols;
1117        ssize_t rc;
1118
1119        /* Device is being removed */
1120        if (!dev)
1121                return -EINVAL;
1122
1123        if (!atomic_read(&dev->initialized))
1124                return -ERESTARTSYS;
1125
1126        IR_dprintk(1, "Normal protocol change requested\n");
1127        current_protocols = &dev->enabled_protocols;
1128        filter = &dev->scancode_filter;
1129
1130        if (!dev->change_protocol) {
1131                IR_dprintk(1, "Protocol switching not supported\n");
1132                return -EINVAL;
1133        }
1134
1135        mutex_lock(&dev->lock);
1136
1137        old_protocols = *current_protocols;
1138        new_protocols = old_protocols;
1139        rc = parse_protocol_change(&new_protocols, buf);
1140        if (rc < 0)
1141                goto out;
1142
1143        rc = dev->change_protocol(dev, &new_protocols);
1144        if (rc < 0) {
1145                IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1146                           (long long)new_protocols);
1147                goto out;
1148        }
1149
1150        if (dev->driver_type == RC_DRIVER_IR_RAW)
1151                ir_raw_load_modules(&new_protocols);
1152
1153        if (new_protocols != old_protocols) {
1154                *current_protocols = new_protocols;
1155                IR_dprintk(1, "Protocols changed to 0x%llx\n",
1156                           (long long)new_protocols);
1157        }
1158
1159        /*
1160         * If a protocol change was attempted the filter may need updating, even
1161         * if the actual protocol mask hasn't changed (since the driver may have
1162         * cleared the filter).
1163         * Try setting the same filter with the new protocol (if any).
1164         * Fall back to clearing the filter.
1165         */
1166        if (dev->s_filter && filter->mask) {
1167                if (new_protocols)
1168                        rc = dev->s_filter(dev, filter);
1169                else
1170                        rc = -1;
1171
1172                if (rc < 0) {
1173                        filter->data = 0;
1174                        filter->mask = 0;
1175                        dev->s_filter(dev, filter);
1176                }
1177        }
1178
1179        rc = len;
1180
1181out:
1182        mutex_unlock(&dev->lock);
1183        return rc;
1184}
1185
1186/**
1187 * show_filter() - shows the current scancode filter value or mask
1188 * @device:     the device descriptor
1189 * @attr:       the device attribute struct
1190 * @buf:        a pointer to the output buffer
1191 *
1192 * This routine is a callback routine to read a scancode filter value or mask.
1193 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1194 * It prints the current scancode filter value or mask of the appropriate filter
1195 * type in hexadecimal into @buf and returns the size of the buffer.
1196 *
1197 * Bits of the filter value corresponding to set bits in the filter mask are
1198 * compared against input scancodes and non-matching scancodes are discarded.
1199 *
1200 * dev->lock is taken to guard against races between device registration,
1201 * store_filter and show_filter.
1202 */
1203static ssize_t show_filter(struct device *device,
1204                           struct device_attribute *attr,
1205                           char *buf)
1206{
1207        struct rc_dev *dev = to_rc_dev(device);
1208        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1209        struct rc_scancode_filter *filter;
1210        u32 val;
1211
1212        /* Device is being removed */
1213        if (!dev)
1214                return -EINVAL;
1215
1216        if (!atomic_read(&dev->initialized))
1217                return -ERESTARTSYS;
1218
1219        mutex_lock(&dev->lock);
1220
1221        if (fattr->type == RC_FILTER_NORMAL)
1222                filter = &dev->scancode_filter;
1223        else
1224                filter = &dev->scancode_wakeup_filter;
1225
1226        if (fattr->mask)
1227                val = filter->mask;
1228        else
1229                val = filter->data;
1230        mutex_unlock(&dev->lock);
1231
1232        return sprintf(buf, "%#x\n", val);
1233}
1234
1235/**
1236 * store_filter() - changes the scancode filter value
1237 * @device:     the device descriptor
1238 * @attr:       the device attribute struct
1239 * @buf:        a pointer to the input buffer
1240 * @len:        length of the input buffer
1241 *
1242 * This routine is for changing a scancode filter value or mask.
1243 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1244 * Returns -EINVAL if an invalid filter value for the current protocol was
1245 * specified or if scancode filtering is not supported by the driver, otherwise
1246 * returns @len.
1247 *
1248 * Bits of the filter value corresponding to set bits in the filter mask are
1249 * compared against input scancodes and non-matching scancodes are discarded.
1250 *
1251 * dev->lock is taken to guard against races between device registration,
1252 * store_filter and show_filter.
1253 */
1254static ssize_t store_filter(struct device *device,
1255                            struct device_attribute *attr,
1256                            const char *buf, size_t len)
1257{
1258        struct rc_dev *dev = to_rc_dev(device);
1259        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1260        struct rc_scancode_filter new_filter, *filter;
1261        int ret;
1262        unsigned long val;
1263        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1264
1265        /* Device is being removed */
1266        if (!dev)
1267                return -EINVAL;
1268
1269        if (!atomic_read(&dev->initialized))
1270                return -ERESTARTSYS;
1271
1272        ret = kstrtoul(buf, 0, &val);
1273        if (ret < 0)
1274                return ret;
1275
1276        if (fattr->type == RC_FILTER_NORMAL) {
1277                set_filter = dev->s_filter;
1278                filter = &dev->scancode_filter;
1279        } else {
1280                set_filter = dev->s_wakeup_filter;
1281                filter = &dev->scancode_wakeup_filter;
1282        }
1283
1284        if (!set_filter)
1285                return -EINVAL;
1286
1287        mutex_lock(&dev->lock);
1288
1289        new_filter = *filter;
1290        if (fattr->mask)
1291                new_filter.mask = val;
1292        else
1293                new_filter.data = val;
1294
1295        if (fattr->type == RC_FILTER_WAKEUP) {
1296                /*
1297                 * Refuse to set a filter unless a protocol is enabled
1298                 * and the filter is valid for that protocol
1299                 */
1300                if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1301                        ret = rc_validate_filter(dev, &new_filter);
1302                else
1303                        ret = -EINVAL;
1304
1305                if (ret != 0)
1306                        goto unlock;
1307        }
1308
1309        if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1310            val) {
1311                /* refuse to set a filter unless a protocol is enabled */
1312                ret = -EINVAL;
1313                goto unlock;
1314        }
1315
1316        ret = set_filter(dev, &new_filter);
1317        if (ret < 0)
1318                goto unlock;
1319
1320        *filter = new_filter;
1321
1322unlock:
1323        mutex_unlock(&dev->lock);
1324        return (ret < 0) ? ret : len;
1325}
1326
1327/*
1328 * This is the list of all variants of all protocols, which is used by
1329 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1330 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1331 *
1332 * For wakeup we need to know the exact protocol variant so the hardware
1333 * can be programmed exactly what to expect.
1334 */
1335static const char * const proto_variant_names[] = {
1336        [RC_TYPE_UNKNOWN] = "unknown",
1337        [RC_TYPE_OTHER] = "other",
1338        [RC_TYPE_RC5] = "rc-5",
1339        [RC_TYPE_RC5X_20] = "rc-5x-20",
1340        [RC_TYPE_RC5_SZ] = "rc-5-sz",
1341        [RC_TYPE_JVC] = "jvc",
1342        [RC_TYPE_SONY12] = "sony-12",
1343        [RC_TYPE_SONY15] = "sony-15",
1344        [RC_TYPE_SONY20] = "sony-20",
1345        [RC_TYPE_NEC] = "nec",
1346        [RC_TYPE_NECX] = "nec-x",
1347        [RC_TYPE_NEC32] = "nec-32",
1348        [RC_TYPE_SANYO] = "sanyo",
1349        [RC_TYPE_MCE_KBD] = "mce_kbd",
1350        [RC_TYPE_RC6_0] = "rc-6-0",
1351        [RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1352        [RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1353        [RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1354        [RC_TYPE_RC6_MCE] = "rc-6-mce",
1355        [RC_TYPE_SHARP] = "sharp",
1356        [RC_TYPE_XMP] = "xmp",
1357        [RC_TYPE_CEC] = "cec",
1358};
1359
1360/**
1361 * show_wakeup_protocols() - shows the wakeup IR protocol
1362 * @device:     the device descriptor
1363 * @mattr:      the device attribute struct
1364 * @buf:        a pointer to the output buffer
1365 *
1366 * This routine is a callback routine for input read the IR protocol type(s).
1367 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1368 * It returns the protocol names of supported protocols.
1369 * The enabled protocols are printed in brackets.
1370 *
1371 * dev->lock is taken to guard against races between device
1372 * registration, store_protocols and show_protocols.
1373 */
1374static ssize_t show_wakeup_protocols(struct device *device,
1375                                     struct device_attribute *mattr,
1376                                     char *buf)
1377{
1378        struct rc_dev *dev = to_rc_dev(device);
1379        u64 allowed;
1380        enum rc_type enabled;
1381        char *tmp = buf;
1382        int i;
1383
1384        /* Device is being removed */
1385        if (!dev)
1386                return -EINVAL;
1387
1388        if (!atomic_read(&dev->initialized))
1389                return -ERESTARTSYS;
1390
1391        mutex_lock(&dev->lock);
1392
1393        allowed = dev->allowed_wakeup_protocols;
1394        enabled = dev->wakeup_protocol;
1395
1396        mutex_unlock(&dev->lock);
1397
1398        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1399                   __func__, (long long)allowed, enabled);
1400
1401        for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1402                if (allowed & (1ULL << i)) {
1403                        if (i == enabled)
1404                                tmp += sprintf(tmp, "[%s] ",
1405                                                proto_variant_names[i]);
1406                        else
1407                                tmp += sprintf(tmp, "%s ",
1408                                                proto_variant_names[i]);
1409                }
1410        }
1411
1412        if (tmp != buf)
1413                tmp--;
1414        *tmp = '\n';
1415
1416        return tmp + 1 - buf;
1417}
1418
1419/**
1420 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1421 * @device:     the device descriptor
1422 * @mattr:      the device attribute struct
1423 * @buf:        a pointer to the input buffer
1424 * @len:        length of the input buffer
1425 *
1426 * This routine is for changing the IR protocol type.
1427 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1428 * Returns @len on success or a negative error code.
1429 *
1430 * dev->lock is taken to guard against races between device
1431 * registration, store_protocols and show_protocols.
1432 */
1433static ssize_t store_wakeup_protocols(struct device *device,
1434                                      struct device_attribute *mattr,
1435                                      const char *buf, size_t len)
1436{
1437        struct rc_dev *dev = to_rc_dev(device);
1438        enum rc_type protocol;
1439        ssize_t rc;
1440        u64 allowed;
1441        int i;
1442
1443        /* Device is being removed */
1444        if (!dev)
1445                return -EINVAL;
1446
1447        if (!atomic_read(&dev->initialized))
1448                return -ERESTARTSYS;
1449
1450        mutex_lock(&dev->lock);
1451
1452        allowed = dev->allowed_wakeup_protocols;
1453
1454        if (sysfs_streq(buf, "none")) {
1455                protocol = RC_TYPE_UNKNOWN;
1456        } else {
1457                for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1458                        if ((allowed & (1ULL << i)) &&
1459                            sysfs_streq(buf, proto_variant_names[i])) {
1460                                protocol = i;
1461                                break;
1462                        }
1463                }
1464
1465                if (i == ARRAY_SIZE(proto_variant_names)) {
1466                        rc = -EINVAL;
1467                        goto out;
1468                }
1469
1470                if (dev->encode_wakeup) {
1471                        u64 mask = 1ULL << protocol;
1472
1473                        ir_raw_load_modules(&mask);
1474                        if (!mask) {
1475                                rc = -EINVAL;
1476                                goto out;
1477                        }
1478                }
1479        }
1480
1481        if (dev->wakeup_protocol != protocol) {
1482                dev->wakeup_protocol = protocol;
1483                IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1484
1485                if (protocol == RC_TYPE_RC6_MCE)
1486                        dev->scancode_wakeup_filter.data = 0x800f0000;
1487                else
1488                        dev->scancode_wakeup_filter.data = 0;
1489                dev->scancode_wakeup_filter.mask = 0;
1490
1491                rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1492                if (rc == 0)
1493                        rc = len;
1494        } else {
1495                rc = len;
1496        }
1497
1498out:
1499        mutex_unlock(&dev->lock);
1500        return rc;
1501}
1502
1503static void rc_dev_release(struct device *device)
1504{
1505        struct rc_dev *dev = to_rc_dev(device);
1506
1507        kfree(dev);
1508}
1509
1510#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1511        do {                                                            \
1512                int err = add_uevent_var(env, fmt, val);                \
1513                if (err)                                                \
1514                        return err;                                     \
1515        } while (0)
1516
1517static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1518{
1519        struct rc_dev *dev = to_rc_dev(device);
1520
1521        if (dev->rc_map.name)
1522                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1523        if (dev->driver_name)
1524                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1525
1526        return 0;
1527}
1528
1529/*
1530 * Static device attribute struct with the sysfs attributes for IR's
1531 */
1532static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1533static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1534                   store_wakeup_protocols);
1535static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1536                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1537static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1538                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1539static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1540                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1541static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1542                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1543
1544static struct attribute *rc_dev_protocol_attrs[] = {
1545        &dev_attr_protocols.attr,
1546        NULL,
1547};
1548
1549static struct attribute_group rc_dev_protocol_attr_grp = {
1550        .attrs  = rc_dev_protocol_attrs,
1551};
1552
1553static struct attribute *rc_dev_filter_attrs[] = {
1554        &dev_attr_filter.attr.attr,
1555        &dev_attr_filter_mask.attr.attr,
1556        NULL,
1557};
1558
1559static struct attribute_group rc_dev_filter_attr_grp = {
1560        .attrs  = rc_dev_filter_attrs,
1561};
1562
1563static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1564        &dev_attr_wakeup_filter.attr.attr,
1565        &dev_attr_wakeup_filter_mask.attr.attr,
1566        &dev_attr_wakeup_protocols.attr,
1567        NULL,
1568};
1569
1570static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1571        .attrs  = rc_dev_wakeup_filter_attrs,
1572};
1573
1574static struct device_type rc_dev_type = {
1575        .release        = rc_dev_release,
1576        .uevent         = rc_dev_uevent,
1577};
1578
1579struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1580{
1581        struct rc_dev *dev;
1582
1583        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1584        if (!dev)
1585                return NULL;
1586
1587        if (type != RC_DRIVER_IR_RAW_TX) {
1588                dev->input_dev = input_allocate_device();
1589                if (!dev->input_dev) {
1590                        kfree(dev);
1591                        return NULL;
1592                }
1593
1594                dev->input_dev->getkeycode = ir_getkeycode;
1595                dev->input_dev->setkeycode = ir_setkeycode;
1596                input_set_drvdata(dev->input_dev, dev);
1597
1598                setup_timer(&dev->timer_keyup, ir_timer_keyup,
1599                            (unsigned long)dev);
1600
1601                spin_lock_init(&dev->rc_map.lock);
1602                spin_lock_init(&dev->keylock);
1603        }
1604        mutex_init(&dev->lock);
1605
1606        dev->dev.type = &rc_dev_type;
1607        dev->dev.class = &rc_class;
1608        device_initialize(&dev->dev);
1609
1610        dev->driver_type = type;
1611
1612        __module_get(THIS_MODULE);
1613        return dev;
1614}
1615EXPORT_SYMBOL_GPL(rc_allocate_device);
1616
1617void rc_free_device(struct rc_dev *dev)
1618{
1619        if (!dev)
1620                return;
1621
1622        input_free_device(dev->input_dev);
1623
1624        put_device(&dev->dev);
1625
1626        /* kfree(dev) will be called by the callback function
1627           rc_dev_release() */
1628
1629        module_put(THIS_MODULE);
1630}
1631EXPORT_SYMBOL_GPL(rc_free_device);
1632
1633static void devm_rc_alloc_release(struct device *dev, void *res)
1634{
1635        rc_free_device(*(struct rc_dev **)res);
1636}
1637
1638struct rc_dev *devm_rc_allocate_device(struct device *dev,
1639                                       enum rc_driver_type type)
1640{
1641        struct rc_dev **dr, *rc;
1642
1643        dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1644        if (!dr)
1645                return NULL;
1646
1647        rc = rc_allocate_device(type);
1648        if (!rc) {
1649                devres_free(dr);
1650                return NULL;
1651        }
1652
1653        rc->dev.parent = dev;
1654        rc->managed_alloc = true;
1655        *dr = rc;
1656        devres_add(dev, dr);
1657
1658        return rc;
1659}
1660EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1661
1662static int rc_setup_rx_device(struct rc_dev *dev)
1663{
1664        int rc;
1665        struct rc_map *rc_map;
1666        u64 rc_type;
1667
1668        if (!dev->map_name)
1669                return -EINVAL;
1670
1671        rc_map = rc_map_get(dev->map_name);
1672        if (!rc_map)
1673                rc_map = rc_map_get(RC_MAP_EMPTY);
1674        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1675                return -EINVAL;
1676
1677        rc = ir_setkeytable(dev, rc_map);
1678        if (rc)
1679                return rc;
1680
1681        rc_type = BIT_ULL(rc_map->rc_type);
1682
1683        if (dev->change_protocol) {
1684                rc = dev->change_protocol(dev, &rc_type);
1685                if (rc < 0)
1686                        goto out_table;
1687                dev->enabled_protocols = rc_type;
1688        }
1689
1690        if (dev->driver_type == RC_DRIVER_IR_RAW)
1691                ir_raw_load_modules(&rc_type);
1692
1693        set_bit(EV_KEY, dev->input_dev->evbit);
1694        set_bit(EV_REP, dev->input_dev->evbit);
1695        set_bit(EV_MSC, dev->input_dev->evbit);
1696        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1697        if (dev->open)
1698                dev->input_dev->open = ir_open;
1699        if (dev->close)
1700                dev->input_dev->close = ir_close;
1701
1702        /*
1703         * Default delay of 250ms is too short for some protocols, especially
1704         * since the timeout is currently set to 250ms. Increase it to 500ms,
1705         * to avoid wrong repetition of the keycodes. Note that this must be
1706         * set after the call to input_register_device().
1707         */
1708        dev->input_dev->rep[REP_DELAY] = 500;
1709
1710        /*
1711         * As a repeat event on protocols like RC-5 and NEC take as long as
1712         * 110/114ms, using 33ms as a repeat period is not the right thing
1713         * to do.
1714         */
1715        dev->input_dev->rep[REP_PERIOD] = 125;
1716
1717        dev->input_dev->dev.parent = &dev->dev;
1718        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1719        dev->input_dev->phys = dev->input_phys;
1720        dev->input_dev->name = dev->input_name;
1721
1722        /* rc_open will be called here */
1723        rc = input_register_device(dev->input_dev);
1724        if (rc)
1725                goto out_table;
1726
1727        return 0;
1728
1729out_table:
1730        ir_free_table(&dev->rc_map);
1731
1732        return rc;
1733}
1734
1735static void rc_free_rx_device(struct rc_dev *dev)
1736{
1737        if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
1738                return;
1739
1740        ir_free_table(&dev->rc_map);
1741
1742        input_unregister_device(dev->input_dev);
1743        dev->input_dev = NULL;
1744}
1745
1746int rc_register_device(struct rc_dev *dev)
1747{
1748        static bool raw_init; /* 'false' default value, raw decoders loaded? */
1749        const char *path;
1750        int attr = 0;
1751        int minor;
1752        int rc;
1753
1754        if (!dev)
1755                return -EINVAL;
1756
1757        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1758        if (minor < 0)
1759                return minor;
1760
1761        dev->minor = minor;
1762        dev_set_name(&dev->dev, "rc%u", dev->minor);
1763        dev_set_drvdata(&dev->dev, dev);
1764        atomic_set(&dev->initialized, 0);
1765
1766        dev->dev.groups = dev->sysfs_groups;
1767        if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1768                dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1769        if (dev->s_filter)
1770                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1771        if (dev->s_wakeup_filter)
1772                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1773        dev->sysfs_groups[attr++] = NULL;
1774
1775        rc = device_add(&dev->dev);
1776        if (rc)
1777                goto out_unlock;
1778
1779        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1780        dev_info(&dev->dev, "%s as %s\n",
1781                dev->input_name ?: "Unspecified device", path ?: "N/A");
1782        kfree(path);
1783
1784        if (dev->driver_type == RC_DRIVER_IR_RAW ||
1785            dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1786                if (!raw_init) {
1787                        request_module_nowait("ir-lirc-codec");
1788                        raw_init = true;
1789                }
1790                rc = ir_raw_event_register(dev);
1791                if (rc < 0)
1792                        goto out_dev;
1793        }
1794
1795        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1796                rc = rc_setup_rx_device(dev);
1797                if (rc)
1798                        goto out_raw;
1799        }
1800
1801        /* Allow the RC sysfs nodes to be accessible */
1802        atomic_set(&dev->initialized, 1);
1803
1804        IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1805                   dev->minor,
1806                   dev->driver_name ? dev->driver_name : "unknown");
1807
1808        return 0;
1809
1810out_raw:
1811        ir_raw_event_unregister(dev);
1812out_dev:
1813        device_del(&dev->dev);
1814out_unlock:
1815        ida_simple_remove(&rc_ida, minor);
1816        return rc;
1817}
1818EXPORT_SYMBOL_GPL(rc_register_device);
1819
1820static void devm_rc_release(struct device *dev, void *res)
1821{
1822        rc_unregister_device(*(struct rc_dev **)res);
1823}
1824
1825int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1826{
1827        struct rc_dev **dr;
1828        int ret;
1829
1830        dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1831        if (!dr)
1832                return -ENOMEM;
1833
1834        ret = rc_register_device(dev);
1835        if (ret) {
1836                devres_free(dr);
1837                return ret;
1838        }
1839
1840        *dr = dev;
1841        devres_add(parent, dr);
1842
1843        return 0;
1844}
1845EXPORT_SYMBOL_GPL(devm_rc_register_device);
1846
1847void rc_unregister_device(struct rc_dev *dev)
1848{
1849        if (!dev)
1850                return;
1851
1852        del_timer_sync(&dev->timer_keyup);
1853
1854        if (dev->driver_type == RC_DRIVER_IR_RAW)
1855                ir_raw_event_unregister(dev);
1856
1857        rc_free_rx_device(dev);
1858
1859        device_del(&dev->dev);
1860
1861        ida_simple_remove(&rc_ida, dev->minor);
1862
1863        if (!dev->managed_alloc)
1864                rc_free_device(dev);
1865}
1866
1867EXPORT_SYMBOL_GPL(rc_unregister_device);
1868
1869/*
1870 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1871 */
1872
1873static int __init rc_core_init(void)
1874{
1875        int rc = class_register(&rc_class);
1876        if (rc) {
1877                pr_err("rc_core: unable to register rc class\n");
1878                return rc;
1879        }
1880
1881        led_trigger_register_simple("rc-feedback", &led_feedback);
1882        rc_map_register(&empty_map);
1883
1884        return 0;
1885}
1886
1887static void __exit rc_core_exit(void)
1888{
1889        class_unregister(&rc_class);
1890        led_trigger_unregister_simple(led_feedback);
1891        rc_map_unregister(&empty_map);
1892}
1893
1894subsys_initcall(rc_core_init);
1895module_exit(rc_core_exit);
1896
1897int rc_core_debug;    /* ir_debug level (0,1,2) */
1898EXPORT_SYMBOL_GPL(rc_core_debug);
1899module_param_named(debug, rc_core_debug, int, 0644);
1900
1901MODULE_AUTHOR("Mauro Carvalho Chehab");
1902MODULE_LICENSE("GPL");
1903