linux/drivers/mtd/nand/mxc_nand.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37
  38#include <asm/mach/flash.h>
  39#include <linux/platform_data/mtd-mxc_nand.h>
  40
  41#define DRIVER_NAME "mxc_nand"
  42
  43/* Addresses for NFC registers */
  44#define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
  45#define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
  46#define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
  47#define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
  48#define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
  49#define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
  50#define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
  51#define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
  52#define NFC_V1_V2_WRPROT                (host->regs + 0x12)
  53#define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
  54#define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
  55#define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
  56#define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
  57#define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
  58#define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
  59#define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
  60#define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
  61#define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
  62#define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
  63#define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
  64#define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
  65#define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
  66
  67#define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
  68#define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
  69#define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
  70#define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
  71#define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
  72#define NFC_V1_V2_CONFIG1_RST           (1 << 6)
  73#define NFC_V1_V2_CONFIG1_CE            (1 << 7)
  74#define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
  75#define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
  76#define NFC_V2_CONFIG1_FP_INT           (1 << 11)
  77
  78#define NFC_V1_V2_CONFIG2_INT           (1 << 15)
  79
  80/*
  81 * Operation modes for the NFC. Valid for v1, v2 and v3
  82 * type controllers.
  83 */
  84#define NFC_CMD                         (1 << 0)
  85#define NFC_ADDR                        (1 << 1)
  86#define NFC_INPUT                       (1 << 2)
  87#define NFC_OUTPUT                      (1 << 3)
  88#define NFC_ID                          (1 << 4)
  89#define NFC_STATUS                      (1 << 5)
  90
  91#define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
  92#define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
  93
  94#define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
  95#define NFC_V3_CONFIG1_SP_EN            (1 << 0)
  96#define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
  97
  98#define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
  99
 100#define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
 101
 102#define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
 103#define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
 104#define NFC_V3_WRPROT_LOCK              (1 << 1)
 105#define NFC_V3_WRPROT_UNLOCK            (1 << 2)
 106#define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
 107
 108#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 109
 110#define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
 111#define NFC_V3_CONFIG2_PS_512                   (0 << 0)
 112#define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
 113#define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
 114#define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
 115#define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
 116#define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
 117#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
 118#define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
 119#define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
 120#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
 121#define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
 122#define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
 123#define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
 124
 125#define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
 126#define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
 127#define NFC_V3_CONFIG3_FW8                      (1 << 3)
 128#define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
 129#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
 130#define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
 131#define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
 132
 133#define NFC_V3_IPC                      (host->regs_ip + 0x2C)
 134#define NFC_V3_IPC_CREQ                 (1 << 0)
 135#define NFC_V3_IPC_INT                  (1 << 31)
 136
 137#define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
 138
 139struct mxc_nand_host;
 140
 141struct mxc_nand_devtype_data {
 142        void (*preset)(struct mtd_info *);
 143        void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 144        void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 145        void (*send_page)(struct mtd_info *, unsigned int);
 146        void (*send_read_id)(struct mxc_nand_host *);
 147        uint16_t (*get_dev_status)(struct mxc_nand_host *);
 148        int (*check_int)(struct mxc_nand_host *);
 149        void (*irq_control)(struct mxc_nand_host *, int);
 150        u32 (*get_ecc_status)(struct mxc_nand_host *);
 151        const struct mtd_ooblayout_ops *ooblayout;
 152        void (*select_chip)(struct mtd_info *mtd, int chip);
 153        int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 154                        u_char *read_ecc, u_char *calc_ecc);
 155        int (*setup_data_interface)(struct mtd_info *mtd,
 156                                    const struct nand_data_interface *conf,
 157                                    bool check_only);
 158
 159        /*
 160         * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 161         * (CONFIG1:INT_MSK is set). To handle this the driver uses
 162         * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 163         */
 164        int irqpending_quirk;
 165        int needs_ip;
 166
 167        size_t regs_offset;
 168        size_t spare0_offset;
 169        size_t axi_offset;
 170
 171        int spare_len;
 172        int eccbytes;
 173        int eccsize;
 174        int ppb_shift;
 175};
 176
 177struct mxc_nand_host {
 178        struct nand_chip        nand;
 179        struct device           *dev;
 180
 181        void __iomem            *spare0;
 182        void __iomem            *main_area0;
 183
 184        void __iomem            *base;
 185        void __iomem            *regs;
 186        void __iomem            *regs_axi;
 187        void __iomem            *regs_ip;
 188        int                     status_request;
 189        struct clk              *clk;
 190        int                     clk_act;
 191        int                     irq;
 192        int                     eccsize;
 193        int                     used_oobsize;
 194        int                     active_cs;
 195
 196        struct completion       op_completion;
 197
 198        uint8_t                 *data_buf;
 199        unsigned int            buf_start;
 200
 201        const struct mxc_nand_devtype_data *devtype_data;
 202        struct mxc_nand_platform_data pdata;
 203};
 204
 205static const char * const part_probes[] = {
 206        "cmdlinepart", "RedBoot", "ofpart", NULL };
 207
 208static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 209{
 210        int i;
 211        u32 *t = trg;
 212        const __iomem u32 *s = src;
 213
 214        for (i = 0; i < (size >> 2); i++)
 215                *t++ = __raw_readl(s++);
 216}
 217
 218static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
 219{
 220        int i;
 221        u16 *t = trg;
 222        const __iomem u16 *s = src;
 223
 224        /* We assume that src (IO) is always 32bit aligned */
 225        if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
 226                memcpy32_fromio(trg, src, size);
 227                return;
 228        }
 229
 230        for (i = 0; i < (size >> 1); i++)
 231                *t++ = __raw_readw(s++);
 232}
 233
 234static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
 235{
 236        /* __iowrite32_copy use 32bit size values so divide by 4 */
 237        __iowrite32_copy(trg, src, size / 4);
 238}
 239
 240static void memcpy16_toio(void __iomem *trg, const void *src, int size)
 241{
 242        int i;
 243        __iomem u16 *t = trg;
 244        const u16 *s = src;
 245
 246        /* We assume that trg (IO) is always 32bit aligned */
 247        if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
 248                memcpy32_toio(trg, src, size);
 249                return;
 250        }
 251
 252        for (i = 0; i < (size >> 1); i++)
 253                __raw_writew(*s++, t++);
 254}
 255
 256static int check_int_v3(struct mxc_nand_host *host)
 257{
 258        uint32_t tmp;
 259
 260        tmp = readl(NFC_V3_IPC);
 261        if (!(tmp & NFC_V3_IPC_INT))
 262                return 0;
 263
 264        tmp &= ~NFC_V3_IPC_INT;
 265        writel(tmp, NFC_V3_IPC);
 266
 267        return 1;
 268}
 269
 270static int check_int_v1_v2(struct mxc_nand_host *host)
 271{
 272        uint32_t tmp;
 273
 274        tmp = readw(NFC_V1_V2_CONFIG2);
 275        if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 276                return 0;
 277
 278        if (!host->devtype_data->irqpending_quirk)
 279                writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 280
 281        return 1;
 282}
 283
 284static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 285{
 286        uint16_t tmp;
 287
 288        tmp = readw(NFC_V1_V2_CONFIG1);
 289
 290        if (activate)
 291                tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 292        else
 293                tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 294
 295        writew(tmp, NFC_V1_V2_CONFIG1);
 296}
 297
 298static void irq_control_v3(struct mxc_nand_host *host, int activate)
 299{
 300        uint32_t tmp;
 301
 302        tmp = readl(NFC_V3_CONFIG2);
 303
 304        if (activate)
 305                tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 306        else
 307                tmp |= NFC_V3_CONFIG2_INT_MSK;
 308
 309        writel(tmp, NFC_V3_CONFIG2);
 310}
 311
 312static void irq_control(struct mxc_nand_host *host, int activate)
 313{
 314        if (host->devtype_data->irqpending_quirk) {
 315                if (activate)
 316                        enable_irq(host->irq);
 317                else
 318                        disable_irq_nosync(host->irq);
 319        } else {
 320                host->devtype_data->irq_control(host, activate);
 321        }
 322}
 323
 324static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 325{
 326        return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 327}
 328
 329static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 330{
 331        return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 332}
 333
 334static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 335{
 336        return readl(NFC_V3_ECC_STATUS_RESULT);
 337}
 338
 339static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 340{
 341        struct mxc_nand_host *host = dev_id;
 342
 343        if (!host->devtype_data->check_int(host))
 344                return IRQ_NONE;
 345
 346        irq_control(host, 0);
 347
 348        complete(&host->op_completion);
 349
 350        return IRQ_HANDLED;
 351}
 352
 353/* This function polls the NANDFC to wait for the basic operation to
 354 * complete by checking the INT bit of config2 register.
 355 */
 356static int wait_op_done(struct mxc_nand_host *host, int useirq)
 357{
 358        int ret = 0;
 359
 360        /*
 361         * If operation is already complete, don't bother to setup an irq or a
 362         * loop.
 363         */
 364        if (host->devtype_data->check_int(host))
 365                return 0;
 366
 367        if (useirq) {
 368                unsigned long timeout;
 369
 370                reinit_completion(&host->op_completion);
 371
 372                irq_control(host, 1);
 373
 374                timeout = wait_for_completion_timeout(&host->op_completion, HZ);
 375                if (!timeout && !host->devtype_data->check_int(host)) {
 376                        dev_dbg(host->dev, "timeout waiting for irq\n");
 377                        ret = -ETIMEDOUT;
 378                }
 379        } else {
 380                int max_retries = 8000;
 381                int done;
 382
 383                do {
 384                        udelay(1);
 385
 386                        done = host->devtype_data->check_int(host);
 387                        if (done)
 388                                break;
 389
 390                } while (--max_retries);
 391
 392                if (!done) {
 393                        dev_dbg(host->dev, "timeout polling for completion\n");
 394                        ret = -ETIMEDOUT;
 395                }
 396        }
 397
 398        WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
 399
 400        return ret;
 401}
 402
 403static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 404{
 405        /* fill command */
 406        writel(cmd, NFC_V3_FLASH_CMD);
 407
 408        /* send out command */
 409        writel(NFC_CMD, NFC_V3_LAUNCH);
 410
 411        /* Wait for operation to complete */
 412        wait_op_done(host, useirq);
 413}
 414
 415/* This function issues the specified command to the NAND device and
 416 * waits for completion. */
 417static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 418{
 419        pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 420
 421        writew(cmd, NFC_V1_V2_FLASH_CMD);
 422        writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 423
 424        if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 425                int max_retries = 100;
 426                /* Reset completion is indicated by NFC_CONFIG2 */
 427                /* being set to 0 */
 428                while (max_retries-- > 0) {
 429                        if (readw(NFC_V1_V2_CONFIG2) == 0) {
 430                                break;
 431                        }
 432                        udelay(1);
 433                }
 434                if (max_retries < 0)
 435                        pr_debug("%s: RESET failed\n", __func__);
 436        } else {
 437                /* Wait for operation to complete */
 438                wait_op_done(host, useirq);
 439        }
 440}
 441
 442static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 443{
 444        /* fill address */
 445        writel(addr, NFC_V3_FLASH_ADDR0);
 446
 447        /* send out address */
 448        writel(NFC_ADDR, NFC_V3_LAUNCH);
 449
 450        wait_op_done(host, 0);
 451}
 452
 453/* This function sends an address (or partial address) to the
 454 * NAND device. The address is used to select the source/destination for
 455 * a NAND command. */
 456static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 457{
 458        pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
 459
 460        writew(addr, NFC_V1_V2_FLASH_ADDR);
 461        writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 462
 463        /* Wait for operation to complete */
 464        wait_op_done(host, islast);
 465}
 466
 467static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 468{
 469        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 470        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 471        uint32_t tmp;
 472
 473        tmp = readl(NFC_V3_CONFIG1);
 474        tmp &= ~(7 << 4);
 475        writel(tmp, NFC_V3_CONFIG1);
 476
 477        /* transfer data from NFC ram to nand */
 478        writel(ops, NFC_V3_LAUNCH);
 479
 480        wait_op_done(host, false);
 481}
 482
 483static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 484{
 485        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 486        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 487
 488        /* NANDFC buffer 0 is used for page read/write */
 489        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 490
 491        writew(ops, NFC_V1_V2_CONFIG2);
 492
 493        /* Wait for operation to complete */
 494        wait_op_done(host, true);
 495}
 496
 497static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 498{
 499        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 500        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 501        int bufs, i;
 502
 503        if (mtd->writesize > 512)
 504                bufs = 4;
 505        else
 506                bufs = 1;
 507
 508        for (i = 0; i < bufs; i++) {
 509
 510                /* NANDFC buffer 0 is used for page read/write */
 511                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 512
 513                writew(ops, NFC_V1_V2_CONFIG2);
 514
 515                /* Wait for operation to complete */
 516                wait_op_done(host, true);
 517        }
 518}
 519
 520static void send_read_id_v3(struct mxc_nand_host *host)
 521{
 522        /* Read ID into main buffer */
 523        writel(NFC_ID, NFC_V3_LAUNCH);
 524
 525        wait_op_done(host, true);
 526
 527        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 528}
 529
 530/* Request the NANDFC to perform a read of the NAND device ID. */
 531static void send_read_id_v1_v2(struct mxc_nand_host *host)
 532{
 533        /* NANDFC buffer 0 is used for device ID output */
 534        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 535
 536        writew(NFC_ID, NFC_V1_V2_CONFIG2);
 537
 538        /* Wait for operation to complete */
 539        wait_op_done(host, true);
 540
 541        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 542}
 543
 544static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 545{
 546        writew(NFC_STATUS, NFC_V3_LAUNCH);
 547        wait_op_done(host, true);
 548
 549        return readl(NFC_V3_CONFIG1) >> 16;
 550}
 551
 552/* This function requests the NANDFC to perform a read of the
 553 * NAND device status and returns the current status. */
 554static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 555{
 556        void __iomem *main_buf = host->main_area0;
 557        uint32_t store;
 558        uint16_t ret;
 559
 560        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 561
 562        /*
 563         * The device status is stored in main_area0. To
 564         * prevent corruption of the buffer save the value
 565         * and restore it afterwards.
 566         */
 567        store = readl(main_buf);
 568
 569        writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 570        wait_op_done(host, true);
 571
 572        ret = readw(main_buf);
 573
 574        writel(store, main_buf);
 575
 576        return ret;
 577}
 578
 579/* This functions is used by upper layer to checks if device is ready */
 580static int mxc_nand_dev_ready(struct mtd_info *mtd)
 581{
 582        /*
 583         * NFC handles R/B internally. Therefore, this function
 584         * always returns status as ready.
 585         */
 586        return 1;
 587}
 588
 589static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 590{
 591        /*
 592         * If HW ECC is enabled, we turn it on during init. There is
 593         * no need to enable again here.
 594         */
 595}
 596
 597static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 598                                 u_char *read_ecc, u_char *calc_ecc)
 599{
 600        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 601        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 602
 603        /*
 604         * 1-Bit errors are automatically corrected in HW.  No need for
 605         * additional correction.  2-Bit errors cannot be corrected by
 606         * HW ECC, so we need to return failure
 607         */
 608        uint16_t ecc_status = get_ecc_status_v1(host);
 609
 610        if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 611                pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 612                return -EBADMSG;
 613        }
 614
 615        return 0;
 616}
 617
 618static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 619                                 u_char *read_ecc, u_char *calc_ecc)
 620{
 621        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 622        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 623        u32 ecc_stat, err;
 624        int no_subpages = 1;
 625        int ret = 0;
 626        u8 ecc_bit_mask, err_limit;
 627
 628        ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 629        err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 630
 631        no_subpages = mtd->writesize >> 9;
 632
 633        ecc_stat = host->devtype_data->get_ecc_status(host);
 634
 635        do {
 636                err = ecc_stat & ecc_bit_mask;
 637                if (err > err_limit) {
 638                        printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
 639                        return -EBADMSG;
 640                } else {
 641                        ret += err;
 642                }
 643                ecc_stat >>= 4;
 644        } while (--no_subpages);
 645
 646        pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
 647
 648        return ret;
 649}
 650
 651static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 652                                  u_char *ecc_code)
 653{
 654        return 0;
 655}
 656
 657static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 658{
 659        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 660        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 661        uint8_t ret;
 662
 663        /* Check for status request */
 664        if (host->status_request)
 665                return host->devtype_data->get_dev_status(host) & 0xFF;
 666
 667        if (nand_chip->options & NAND_BUSWIDTH_16) {
 668                /* only take the lower byte of each word */
 669                ret = *(uint16_t *)(host->data_buf + host->buf_start);
 670
 671                host->buf_start += 2;
 672        } else {
 673                ret = *(uint8_t *)(host->data_buf + host->buf_start);
 674                host->buf_start++;
 675        }
 676
 677        pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
 678        return ret;
 679}
 680
 681static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 682{
 683        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 684        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 685        uint16_t ret;
 686
 687        ret = *(uint16_t *)(host->data_buf + host->buf_start);
 688        host->buf_start += 2;
 689
 690        return ret;
 691}
 692
 693/* Write data of length len to buffer buf. The data to be
 694 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 695 * Operation by the NFC, the data is written to NAND Flash */
 696static void mxc_nand_write_buf(struct mtd_info *mtd,
 697                                const u_char *buf, int len)
 698{
 699        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 700        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 701        u16 col = host->buf_start;
 702        int n = mtd->oobsize + mtd->writesize - col;
 703
 704        n = min(n, len);
 705
 706        memcpy(host->data_buf + col, buf, n);
 707
 708        host->buf_start += n;
 709}
 710
 711/* Read the data buffer from the NAND Flash. To read the data from NAND
 712 * Flash first the data output cycle is initiated by the NFC, which copies
 713 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 714 */
 715static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 716{
 717        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 718        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 719        u16 col = host->buf_start;
 720        int n = mtd->oobsize + mtd->writesize - col;
 721
 722        n = min(n, len);
 723
 724        memcpy(buf, host->data_buf + col, n);
 725
 726        host->buf_start += n;
 727}
 728
 729/* This function is used by upper layer for select and
 730 * deselect of the NAND chip */
 731static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
 732{
 733        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 734        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 735
 736        if (chip == -1) {
 737                /* Disable the NFC clock */
 738                if (host->clk_act) {
 739                        clk_disable_unprepare(host->clk);
 740                        host->clk_act = 0;
 741                }
 742                return;
 743        }
 744
 745        if (!host->clk_act) {
 746                /* Enable the NFC clock */
 747                clk_prepare_enable(host->clk);
 748                host->clk_act = 1;
 749        }
 750}
 751
 752static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
 753{
 754        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 755        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 756
 757        if (chip == -1) {
 758                /* Disable the NFC clock */
 759                if (host->clk_act) {
 760                        clk_disable_unprepare(host->clk);
 761                        host->clk_act = 0;
 762                }
 763                return;
 764        }
 765
 766        if (!host->clk_act) {
 767                /* Enable the NFC clock */
 768                clk_prepare_enable(host->clk);
 769                host->clk_act = 1;
 770        }
 771
 772        host->active_cs = chip;
 773        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 774}
 775
 776/*
 777 * The controller splits a page into data chunks of 512 bytes + partial oob.
 778 * There are writesize / 512 such chunks, the size of the partial oob parts is
 779 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
 780 * contains additionally the byte lost by rounding (if any).
 781 * This function handles the needed shuffling between host->data_buf (which
 782 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
 783 * spare) and the NFC buffer.
 784 */
 785static void copy_spare(struct mtd_info *mtd, bool bfrom)
 786{
 787        struct nand_chip *this = mtd_to_nand(mtd);
 788        struct mxc_nand_host *host = nand_get_controller_data(this);
 789        u16 i, oob_chunk_size;
 790        u16 num_chunks = mtd->writesize / 512;
 791
 792        u8 *d = host->data_buf + mtd->writesize;
 793        u8 __iomem *s = host->spare0;
 794        u16 sparebuf_size = host->devtype_data->spare_len;
 795
 796        /* size of oob chunk for all but possibly the last one */
 797        oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
 798
 799        if (bfrom) {
 800                for (i = 0; i < num_chunks - 1; i++)
 801                        memcpy16_fromio(d + i * oob_chunk_size,
 802                                        s + i * sparebuf_size,
 803                                        oob_chunk_size);
 804
 805                /* the last chunk */
 806                memcpy16_fromio(d + i * oob_chunk_size,
 807                                s + i * sparebuf_size,
 808                                host->used_oobsize - i * oob_chunk_size);
 809        } else {
 810                for (i = 0; i < num_chunks - 1; i++)
 811                        memcpy16_toio(&s[i * sparebuf_size],
 812                                      &d[i * oob_chunk_size],
 813                                      oob_chunk_size);
 814
 815                /* the last chunk */
 816                memcpy16_toio(&s[i * sparebuf_size],
 817                              &d[i * oob_chunk_size],
 818                              host->used_oobsize - i * oob_chunk_size);
 819        }
 820}
 821
 822/*
 823 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
 824 * the upper layers perform a read/write buf operation, the saved column address
 825 * is used to index into the full page. So usually this function is called with
 826 * column == 0 (unless no column cycle is needed indicated by column == -1)
 827 */
 828static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 829{
 830        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 831        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 832
 833        /* Write out column address, if necessary */
 834        if (column != -1) {
 835                host->devtype_data->send_addr(host, column & 0xff,
 836                                              page_addr == -1);
 837                if (mtd->writesize > 512)
 838                        /* another col addr cycle for 2k page */
 839                        host->devtype_data->send_addr(host,
 840                                                      (column >> 8) & 0xff,
 841                                                      false);
 842        }
 843
 844        /* Write out page address, if necessary */
 845        if (page_addr != -1) {
 846                /* paddr_0 - p_addr_7 */
 847                host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 848
 849                if (mtd->writesize > 512) {
 850                        if (mtd->size >= 0x10000000) {
 851                                /* paddr_8 - paddr_15 */
 852                                host->devtype_data->send_addr(host,
 853                                                (page_addr >> 8) & 0xff,
 854                                                false);
 855                                host->devtype_data->send_addr(host,
 856                                                (page_addr >> 16) & 0xff,
 857                                                true);
 858                        } else
 859                                /* paddr_8 - paddr_15 */
 860                                host->devtype_data->send_addr(host,
 861                                                (page_addr >> 8) & 0xff, true);
 862                } else {
 863                        /* One more address cycle for higher density devices */
 864                        if (mtd->size >= 0x4000000) {
 865                                /* paddr_8 - paddr_15 */
 866                                host->devtype_data->send_addr(host,
 867                                                (page_addr >> 8) & 0xff,
 868                                                false);
 869                                host->devtype_data->send_addr(host,
 870                                                (page_addr >> 16) & 0xff,
 871                                                true);
 872                        } else
 873                                /* paddr_8 - paddr_15 */
 874                                host->devtype_data->send_addr(host,
 875                                                (page_addr >> 8) & 0xff, true);
 876                }
 877        }
 878}
 879
 880static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
 881                                struct mtd_oob_region *oobregion)
 882{
 883        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 884
 885        if (section >= nand_chip->ecc.steps)
 886                return -ERANGE;
 887
 888        oobregion->offset = (section * 16) + 6;
 889        oobregion->length = nand_chip->ecc.bytes;
 890
 891        return 0;
 892}
 893
 894static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
 895                                 struct mtd_oob_region *oobregion)
 896{
 897        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 898
 899        if (section > nand_chip->ecc.steps)
 900                return -ERANGE;
 901
 902        if (!section) {
 903                if (mtd->writesize <= 512) {
 904                        oobregion->offset = 0;
 905                        oobregion->length = 5;
 906                } else {
 907                        oobregion->offset = 2;
 908                        oobregion->length = 4;
 909                }
 910        } else {
 911                oobregion->offset = ((section - 1) * 16) +
 912                                    nand_chip->ecc.bytes + 6;
 913                if (section < nand_chip->ecc.steps)
 914                        oobregion->length = (section * 16) + 6 -
 915                                            oobregion->offset;
 916                else
 917                        oobregion->length = mtd->oobsize - oobregion->offset;
 918        }
 919
 920        return 0;
 921}
 922
 923static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
 924        .ecc = mxc_v1_ooblayout_ecc,
 925        .free = mxc_v1_ooblayout_free,
 926};
 927
 928static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
 929                                struct mtd_oob_region *oobregion)
 930{
 931        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 932        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 933
 934        if (section >= nand_chip->ecc.steps)
 935                return -ERANGE;
 936
 937        oobregion->offset = (section * stepsize) + 7;
 938        oobregion->length = nand_chip->ecc.bytes;
 939
 940        return 0;
 941}
 942
 943static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
 944                                 struct mtd_oob_region *oobregion)
 945{
 946        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 947        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 948
 949        if (section >= nand_chip->ecc.steps)
 950                return -ERANGE;
 951
 952        if (!section) {
 953                if (mtd->writesize <= 512) {
 954                        oobregion->offset = 0;
 955                        oobregion->length = 5;
 956                } else {
 957                        oobregion->offset = 2;
 958                        oobregion->length = 4;
 959                }
 960        } else {
 961                oobregion->offset = section * stepsize;
 962                oobregion->length = 7;
 963        }
 964
 965        return 0;
 966}
 967
 968static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
 969        .ecc = mxc_v2_ooblayout_ecc,
 970        .free = mxc_v2_ooblayout_free,
 971};
 972
 973/*
 974 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 975 * on how much oob the nand chip has. For 8bit ecc we need at least
 976 * 26 bytes of oob data per 512 byte block.
 977 */
 978static int get_eccsize(struct mtd_info *mtd)
 979{
 980        int oobbytes_per_512 = 0;
 981
 982        oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 983
 984        if (oobbytes_per_512 < 26)
 985                return 4;
 986        else
 987                return 8;
 988}
 989
 990static void preset_v1(struct mtd_info *mtd)
 991{
 992        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 993        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 994        uint16_t config1 = 0;
 995
 996        if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
 997                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 998
 999        if (!host->devtype_data->irqpending_quirk)
1000                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1001
1002        host->eccsize = 1;
1003
1004        writew(config1, NFC_V1_V2_CONFIG1);
1005        /* preset operation */
1006
1007        /* Unlock the internal RAM Buffer */
1008        writew(0x2, NFC_V1_V2_CONFIG);
1009
1010        /* Blocks to be unlocked */
1011        writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1012        writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1013
1014        /* Unlock Block Command for given address range */
1015        writew(0x4, NFC_V1_V2_WRPROT);
1016}
1017
1018static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
1019                                        const struct nand_data_interface *conf,
1020                                        bool check_only)
1021{
1022        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1024        int tRC_min_ns, tRC_ps, ret;
1025        unsigned long rate, rate_round;
1026        const struct nand_sdr_timings *timings;
1027        u16 config1;
1028
1029        timings = nand_get_sdr_timings(conf);
1030        if (IS_ERR(timings))
1031                return -ENOTSUPP;
1032
1033        config1 = readw(NFC_V1_V2_CONFIG1);
1034
1035        tRC_min_ns = timings->tRC_min / 1000;
1036        rate = 1000000000 / tRC_min_ns;
1037
1038        /*
1039         * For tRC < 30ns we have to use EDO mode. In this case the controller
1040         * does one access per clock cycle. Otherwise the controller does one
1041         * access in two clock cycles, thus we have to double the rate to the
1042         * controller.
1043         */
1044        if (tRC_min_ns < 30) {
1045                rate_round = clk_round_rate(host->clk, rate);
1046                config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1047                tRC_ps = 1000000000 / (rate_round / 1000);
1048        } else {
1049                rate *= 2;
1050                rate_round = clk_round_rate(host->clk, rate);
1051                config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1052                tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1053        }
1054
1055        /*
1056         * The timing values compared against are from the i.MX25 Automotive
1057         * datasheet, Table 50. NFC Timing Parameters
1058         */
1059        if (timings->tCLS_min > tRC_ps - 1000 ||
1060            timings->tCLH_min > tRC_ps - 2000 ||
1061            timings->tCS_min > tRC_ps - 1000 ||
1062            timings->tCH_min > tRC_ps - 2000 ||
1063            timings->tWP_min > tRC_ps - 1500 ||
1064            timings->tALS_min > tRC_ps ||
1065            timings->tALH_min > tRC_ps - 3000 ||
1066            timings->tDS_min > tRC_ps ||
1067            timings->tDH_min > tRC_ps - 5000 ||
1068            timings->tWC_min > 2 * tRC_ps ||
1069            timings->tWH_min > tRC_ps - 2500 ||
1070            timings->tRR_min > 6 * tRC_ps ||
1071            timings->tRP_min > 3 * tRC_ps / 2 ||
1072            timings->tRC_min > 2 * tRC_ps ||
1073            timings->tREH_min > (tRC_ps / 2) - 2500) {
1074                dev_dbg(host->dev, "Timing out of bounds\n");
1075                return -EINVAL;
1076        }
1077
1078        if (check_only)
1079                return 0;
1080
1081        ret = clk_set_rate(host->clk, rate);
1082        if (ret)
1083                return ret;
1084
1085        writew(config1, NFC_V1_V2_CONFIG1);
1086
1087        dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1088                config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1089                "normal");
1090
1091        return 0;
1092}
1093
1094static void preset_v2(struct mtd_info *mtd)
1095{
1096        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1097        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1098        uint16_t config1 = 0;
1099
1100        config1 |= NFC_V2_CONFIG1_FP_INT;
1101
1102        if (!host->devtype_data->irqpending_quirk)
1103                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1104
1105        if (mtd->writesize) {
1106                uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1107
1108                if (nand_chip->ecc.mode == NAND_ECC_HW)
1109                        config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1110
1111                host->eccsize = get_eccsize(mtd);
1112                if (host->eccsize == 4)
1113                        config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1114
1115                config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1116        } else {
1117                host->eccsize = 1;
1118        }
1119
1120        writew(config1, NFC_V1_V2_CONFIG1);
1121        /* preset operation */
1122
1123        /* Unlock the internal RAM Buffer */
1124        writew(0x2, NFC_V1_V2_CONFIG);
1125
1126        /* Blocks to be unlocked */
1127        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1128        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1129        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1130        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1131        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1132        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1133        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1134        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1135
1136        /* Unlock Block Command for given address range */
1137        writew(0x4, NFC_V1_V2_WRPROT);
1138}
1139
1140static void preset_v3(struct mtd_info *mtd)
1141{
1142        struct nand_chip *chip = mtd_to_nand(mtd);
1143        struct mxc_nand_host *host = nand_get_controller_data(chip);
1144        uint32_t config2, config3;
1145        int i, addr_phases;
1146
1147        writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1148        writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1149
1150        /* Unlock the internal RAM Buffer */
1151        writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1152                        NFC_V3_WRPROT);
1153
1154        /* Blocks to be unlocked */
1155        for (i = 0; i < NAND_MAX_CHIPS; i++)
1156                writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1157
1158        writel(0, NFC_V3_IPC);
1159
1160        config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1161                NFC_V3_CONFIG2_2CMD_PHASES |
1162                NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1163                NFC_V3_CONFIG2_ST_CMD(0x70) |
1164                NFC_V3_CONFIG2_INT_MSK |
1165                NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1166
1167        addr_phases = fls(chip->pagemask) >> 3;
1168
1169        if (mtd->writesize == 2048) {
1170                config2 |= NFC_V3_CONFIG2_PS_2048;
1171                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1172        } else if (mtd->writesize == 4096) {
1173                config2 |= NFC_V3_CONFIG2_PS_4096;
1174                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1175        } else {
1176                config2 |= NFC_V3_CONFIG2_PS_512;
1177                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1178        }
1179
1180        if (mtd->writesize) {
1181                if (chip->ecc.mode == NAND_ECC_HW)
1182                        config2 |= NFC_V3_CONFIG2_ECC_EN;
1183
1184                config2 |= NFC_V3_CONFIG2_PPB(
1185                                ffs(mtd->erasesize / mtd->writesize) - 6,
1186                                host->devtype_data->ppb_shift);
1187                host->eccsize = get_eccsize(mtd);
1188                if (host->eccsize == 8)
1189                        config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1190        }
1191
1192        writel(config2, NFC_V3_CONFIG2);
1193
1194        config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1195                        NFC_V3_CONFIG3_NO_SDMA |
1196                        NFC_V3_CONFIG3_RBB_MODE |
1197                        NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1198                        NFC_V3_CONFIG3_ADD_OP(0);
1199
1200        if (!(chip->options & NAND_BUSWIDTH_16))
1201                config3 |= NFC_V3_CONFIG3_FW8;
1202
1203        writel(config3, NFC_V3_CONFIG3);
1204
1205        writel(0, NFC_V3_DELAY_LINE);
1206}
1207
1208/* Used by the upper layer to write command to NAND Flash for
1209 * different operations to be carried out on NAND Flash */
1210static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1211                                int column, int page_addr)
1212{
1213        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1214        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1215
1216        pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1217              command, column, page_addr);
1218
1219        /* Reset command state information */
1220        host->status_request = false;
1221
1222        /* Command pre-processing step */
1223        switch (command) {
1224        case NAND_CMD_RESET:
1225                host->devtype_data->preset(mtd);
1226                host->devtype_data->send_cmd(host, command, false);
1227                break;
1228
1229        case NAND_CMD_STATUS:
1230                host->buf_start = 0;
1231                host->status_request = true;
1232
1233                host->devtype_data->send_cmd(host, command, true);
1234                WARN_ONCE(column != -1 || page_addr != -1,
1235                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1236                          command, column, page_addr);
1237                mxc_do_addr_cycle(mtd, column, page_addr);
1238                break;
1239
1240        case NAND_CMD_READ0:
1241        case NAND_CMD_READOOB:
1242                if (command == NAND_CMD_READ0)
1243                        host->buf_start = column;
1244                else
1245                        host->buf_start = column + mtd->writesize;
1246
1247                command = NAND_CMD_READ0; /* only READ0 is valid */
1248
1249                host->devtype_data->send_cmd(host, command, false);
1250                WARN_ONCE(column < 0,
1251                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1252                          command, column, page_addr);
1253                mxc_do_addr_cycle(mtd, 0, page_addr);
1254
1255                if (mtd->writesize > 512)
1256                        host->devtype_data->send_cmd(host,
1257                                        NAND_CMD_READSTART, true);
1258
1259                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1260
1261                memcpy32_fromio(host->data_buf, host->main_area0,
1262                                mtd->writesize);
1263                copy_spare(mtd, true);
1264                break;
1265
1266        case NAND_CMD_SEQIN:
1267                if (column >= mtd->writesize)
1268                        /* call ourself to read a page */
1269                        mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1270
1271                host->buf_start = column;
1272
1273                host->devtype_data->send_cmd(host, command, false);
1274                WARN_ONCE(column < -1,
1275                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1276                          command, column, page_addr);
1277                mxc_do_addr_cycle(mtd, 0, page_addr);
1278                break;
1279
1280        case NAND_CMD_PAGEPROG:
1281                memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1282                copy_spare(mtd, false);
1283                host->devtype_data->send_page(mtd, NFC_INPUT);
1284                host->devtype_data->send_cmd(host, command, true);
1285                WARN_ONCE(column != -1 || page_addr != -1,
1286                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1287                          command, column, page_addr);
1288                mxc_do_addr_cycle(mtd, column, page_addr);
1289                break;
1290
1291        case NAND_CMD_READID:
1292                host->devtype_data->send_cmd(host, command, true);
1293                mxc_do_addr_cycle(mtd, column, page_addr);
1294                host->devtype_data->send_read_id(host);
1295                host->buf_start = 0;
1296                break;
1297
1298        case NAND_CMD_ERASE1:
1299        case NAND_CMD_ERASE2:
1300                host->devtype_data->send_cmd(host, command, false);
1301                WARN_ONCE(column != -1,
1302                          "Unexpected column value (cmd=%u, col=%d)\n",
1303                          command, column);
1304                mxc_do_addr_cycle(mtd, column, page_addr);
1305
1306                break;
1307        case NAND_CMD_PARAM:
1308                host->devtype_data->send_cmd(host, command, false);
1309                mxc_do_addr_cycle(mtd, column, page_addr);
1310                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1311                memcpy32_fromio(host->data_buf, host->main_area0, 512);
1312                host->buf_start = 0;
1313                break;
1314        default:
1315                WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1316                          command);
1317                break;
1318        }
1319}
1320
1321static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1322                                      struct nand_chip *chip, int addr,
1323                                      u8 *subfeature_param)
1324{
1325        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1326        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1327        int i;
1328
1329        if (!chip->onfi_version ||
1330            !(le16_to_cpu(chip->onfi_params.opt_cmd)
1331              & ONFI_OPT_CMD_SET_GET_FEATURES))
1332                return -EINVAL;
1333
1334        host->buf_start = 0;
1335
1336        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1337                chip->write_byte(mtd, subfeature_param[i]);
1338
1339        memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1340        host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1341        mxc_do_addr_cycle(mtd, addr, -1);
1342        host->devtype_data->send_page(mtd, NFC_INPUT);
1343
1344        return 0;
1345}
1346
1347static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1348                                      struct nand_chip *chip, int addr,
1349                                      u8 *subfeature_param)
1350{
1351        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1352        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1353        int i;
1354
1355        if (!chip->onfi_version ||
1356            !(le16_to_cpu(chip->onfi_params.opt_cmd)
1357              & ONFI_OPT_CMD_SET_GET_FEATURES))
1358                return -EINVAL;
1359
1360        host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1361        mxc_do_addr_cycle(mtd, addr, -1);
1362        host->devtype_data->send_page(mtd, NFC_OUTPUT);
1363        memcpy32_fromio(host->data_buf, host->main_area0, 512);
1364        host->buf_start = 0;
1365
1366        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1367                *subfeature_param++ = chip->read_byte(mtd);
1368
1369        return 0;
1370}
1371
1372/*
1373 * The generic flash bbt decriptors overlap with our ecc
1374 * hardware, so define some i.MX specific ones.
1375 */
1376static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1377static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1378
1379static struct nand_bbt_descr bbt_main_descr = {
1380        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1381            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1382        .offs = 0,
1383        .len = 4,
1384        .veroffs = 4,
1385        .maxblocks = 4,
1386        .pattern = bbt_pattern,
1387};
1388
1389static struct nand_bbt_descr bbt_mirror_descr = {
1390        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1391            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1392        .offs = 0,
1393        .len = 4,
1394        .veroffs = 4,
1395        .maxblocks = 4,
1396        .pattern = mirror_pattern,
1397};
1398
1399/* v1 + irqpending_quirk: i.MX21 */
1400static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1401        .preset = preset_v1,
1402        .send_cmd = send_cmd_v1_v2,
1403        .send_addr = send_addr_v1_v2,
1404        .send_page = send_page_v1,
1405        .send_read_id = send_read_id_v1_v2,
1406        .get_dev_status = get_dev_status_v1_v2,
1407        .check_int = check_int_v1_v2,
1408        .irq_control = irq_control_v1_v2,
1409        .get_ecc_status = get_ecc_status_v1,
1410        .ooblayout = &mxc_v1_ooblayout_ops,
1411        .select_chip = mxc_nand_select_chip_v1_v3,
1412        .correct_data = mxc_nand_correct_data_v1,
1413        .irqpending_quirk = 1,
1414        .needs_ip = 0,
1415        .regs_offset = 0xe00,
1416        .spare0_offset = 0x800,
1417        .spare_len = 16,
1418        .eccbytes = 3,
1419        .eccsize = 1,
1420};
1421
1422/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1423static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1424        .preset = preset_v1,
1425        .send_cmd = send_cmd_v1_v2,
1426        .send_addr = send_addr_v1_v2,
1427        .send_page = send_page_v1,
1428        .send_read_id = send_read_id_v1_v2,
1429        .get_dev_status = get_dev_status_v1_v2,
1430        .check_int = check_int_v1_v2,
1431        .irq_control = irq_control_v1_v2,
1432        .get_ecc_status = get_ecc_status_v1,
1433        .ooblayout = &mxc_v1_ooblayout_ops,
1434        .select_chip = mxc_nand_select_chip_v1_v3,
1435        .correct_data = mxc_nand_correct_data_v1,
1436        .irqpending_quirk = 0,
1437        .needs_ip = 0,
1438        .regs_offset = 0xe00,
1439        .spare0_offset = 0x800,
1440        .axi_offset = 0,
1441        .spare_len = 16,
1442        .eccbytes = 3,
1443        .eccsize = 1,
1444};
1445
1446/* v21: i.MX25, i.MX35 */
1447static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1448        .preset = preset_v2,
1449        .send_cmd = send_cmd_v1_v2,
1450        .send_addr = send_addr_v1_v2,
1451        .send_page = send_page_v2,
1452        .send_read_id = send_read_id_v1_v2,
1453        .get_dev_status = get_dev_status_v1_v2,
1454        .check_int = check_int_v1_v2,
1455        .irq_control = irq_control_v1_v2,
1456        .get_ecc_status = get_ecc_status_v2,
1457        .ooblayout = &mxc_v2_ooblayout_ops,
1458        .select_chip = mxc_nand_select_chip_v2,
1459        .correct_data = mxc_nand_correct_data_v2_v3,
1460        .setup_data_interface = mxc_nand_v2_setup_data_interface,
1461        .irqpending_quirk = 0,
1462        .needs_ip = 0,
1463        .regs_offset = 0x1e00,
1464        .spare0_offset = 0x1000,
1465        .axi_offset = 0,
1466        .spare_len = 64,
1467        .eccbytes = 9,
1468        .eccsize = 0,
1469};
1470
1471/* v3.2a: i.MX51 */
1472static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1473        .preset = preset_v3,
1474        .send_cmd = send_cmd_v3,
1475        .send_addr = send_addr_v3,
1476        .send_page = send_page_v3,
1477        .send_read_id = send_read_id_v3,
1478        .get_dev_status = get_dev_status_v3,
1479        .check_int = check_int_v3,
1480        .irq_control = irq_control_v3,
1481        .get_ecc_status = get_ecc_status_v3,
1482        .ooblayout = &mxc_v2_ooblayout_ops,
1483        .select_chip = mxc_nand_select_chip_v1_v3,
1484        .correct_data = mxc_nand_correct_data_v2_v3,
1485        .irqpending_quirk = 0,
1486        .needs_ip = 1,
1487        .regs_offset = 0,
1488        .spare0_offset = 0x1000,
1489        .axi_offset = 0x1e00,
1490        .spare_len = 64,
1491        .eccbytes = 0,
1492        .eccsize = 0,
1493        .ppb_shift = 7,
1494};
1495
1496/* v3.2b: i.MX53 */
1497static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1498        .preset = preset_v3,
1499        .send_cmd = send_cmd_v3,
1500        .send_addr = send_addr_v3,
1501        .send_page = send_page_v3,
1502        .send_read_id = send_read_id_v3,
1503        .get_dev_status = get_dev_status_v3,
1504        .check_int = check_int_v3,
1505        .irq_control = irq_control_v3,
1506        .get_ecc_status = get_ecc_status_v3,
1507        .ooblayout = &mxc_v2_ooblayout_ops,
1508        .select_chip = mxc_nand_select_chip_v1_v3,
1509        .correct_data = mxc_nand_correct_data_v2_v3,
1510        .irqpending_quirk = 0,
1511        .needs_ip = 1,
1512        .regs_offset = 0,
1513        .spare0_offset = 0x1000,
1514        .axi_offset = 0x1e00,
1515        .spare_len = 64,
1516        .eccbytes = 0,
1517        .eccsize = 0,
1518        .ppb_shift = 8,
1519};
1520
1521static inline int is_imx21_nfc(struct mxc_nand_host *host)
1522{
1523        return host->devtype_data == &imx21_nand_devtype_data;
1524}
1525
1526static inline int is_imx27_nfc(struct mxc_nand_host *host)
1527{
1528        return host->devtype_data == &imx27_nand_devtype_data;
1529}
1530
1531static inline int is_imx25_nfc(struct mxc_nand_host *host)
1532{
1533        return host->devtype_data == &imx25_nand_devtype_data;
1534}
1535
1536static inline int is_imx51_nfc(struct mxc_nand_host *host)
1537{
1538        return host->devtype_data == &imx51_nand_devtype_data;
1539}
1540
1541static inline int is_imx53_nfc(struct mxc_nand_host *host)
1542{
1543        return host->devtype_data == &imx53_nand_devtype_data;
1544}
1545
1546static const struct platform_device_id mxcnd_devtype[] = {
1547        {
1548                .name = "imx21-nand",
1549                .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1550        }, {
1551                .name = "imx27-nand",
1552                .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1553        }, {
1554                .name = "imx25-nand",
1555                .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1556        }, {
1557                .name = "imx51-nand",
1558                .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1559        }, {
1560                .name = "imx53-nand",
1561                .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1562        }, {
1563                /* sentinel */
1564        }
1565};
1566MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1567
1568#ifdef CONFIG_OF
1569static const struct of_device_id mxcnd_dt_ids[] = {
1570        {
1571                .compatible = "fsl,imx21-nand",
1572                .data = &imx21_nand_devtype_data,
1573        }, {
1574                .compatible = "fsl,imx27-nand",
1575                .data = &imx27_nand_devtype_data,
1576        }, {
1577                .compatible = "fsl,imx25-nand",
1578                .data = &imx25_nand_devtype_data,
1579        }, {
1580                .compatible = "fsl,imx51-nand",
1581                .data = &imx51_nand_devtype_data,
1582        }, {
1583                .compatible = "fsl,imx53-nand",
1584                .data = &imx53_nand_devtype_data,
1585        },
1586        { /* sentinel */ }
1587};
1588MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1589
1590static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1591{
1592        struct device_node *np = host->dev->of_node;
1593        const struct of_device_id *of_id =
1594                of_match_device(mxcnd_dt_ids, host->dev);
1595
1596        if (!np)
1597                return 1;
1598
1599        host->devtype_data = of_id->data;
1600
1601        return 0;
1602}
1603#else
1604static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1605{
1606        return 1;
1607}
1608#endif
1609
1610static int mxcnd_probe(struct platform_device *pdev)
1611{
1612        struct nand_chip *this;
1613        struct mtd_info *mtd;
1614        struct mxc_nand_host *host;
1615        struct resource *res;
1616        int err = 0;
1617
1618        /* Allocate memory for MTD device structure and private data */
1619        host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1620                        GFP_KERNEL);
1621        if (!host)
1622                return -ENOMEM;
1623
1624        /* allocate a temporary buffer for the nand_scan_ident() */
1625        host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1626        if (!host->data_buf)
1627                return -ENOMEM;
1628
1629        host->dev = &pdev->dev;
1630        /* structures must be linked */
1631        this = &host->nand;
1632        mtd = nand_to_mtd(this);
1633        mtd->dev.parent = &pdev->dev;
1634        mtd->name = DRIVER_NAME;
1635
1636        /* 50 us command delay time */
1637        this->chip_delay = 5;
1638
1639        nand_set_controller_data(this, host);
1640        nand_set_flash_node(this, pdev->dev.of_node),
1641        this->dev_ready = mxc_nand_dev_ready;
1642        this->cmdfunc = mxc_nand_command;
1643        this->read_byte = mxc_nand_read_byte;
1644        this->read_word = mxc_nand_read_word;
1645        this->write_buf = mxc_nand_write_buf;
1646        this->read_buf = mxc_nand_read_buf;
1647        this->onfi_set_features = mxc_nand_onfi_set_features;
1648        this->onfi_get_features = mxc_nand_onfi_get_features;
1649
1650        host->clk = devm_clk_get(&pdev->dev, NULL);
1651        if (IS_ERR(host->clk))
1652                return PTR_ERR(host->clk);
1653
1654        err = mxcnd_probe_dt(host);
1655        if (err > 0) {
1656                struct mxc_nand_platform_data *pdata =
1657                                        dev_get_platdata(&pdev->dev);
1658                if (pdata) {
1659                        host->pdata = *pdata;
1660                        host->devtype_data = (struct mxc_nand_devtype_data *)
1661                                                pdev->id_entry->driver_data;
1662                } else {
1663                        err = -ENODEV;
1664                }
1665        }
1666        if (err < 0)
1667                return err;
1668
1669        this->setup_data_interface = host->devtype_data->setup_data_interface;
1670
1671        if (host->devtype_data->needs_ip) {
1672                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1673                host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1674                if (IS_ERR(host->regs_ip))
1675                        return PTR_ERR(host->regs_ip);
1676
1677                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1678        } else {
1679                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680        }
1681
1682        host->base = devm_ioremap_resource(&pdev->dev, res);
1683        if (IS_ERR(host->base))
1684                return PTR_ERR(host->base);
1685
1686        host->main_area0 = host->base;
1687
1688        if (host->devtype_data->regs_offset)
1689                host->regs = host->base + host->devtype_data->regs_offset;
1690        host->spare0 = host->base + host->devtype_data->spare0_offset;
1691        if (host->devtype_data->axi_offset)
1692                host->regs_axi = host->base + host->devtype_data->axi_offset;
1693
1694        this->ecc.bytes = host->devtype_data->eccbytes;
1695        host->eccsize = host->devtype_data->eccsize;
1696
1697        this->select_chip = host->devtype_data->select_chip;
1698        this->ecc.size = 512;
1699        mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1700
1701        if (host->pdata.hw_ecc) {
1702                this->ecc.mode = NAND_ECC_HW;
1703        } else {
1704                this->ecc.mode = NAND_ECC_SOFT;
1705                this->ecc.algo = NAND_ECC_HAMMING;
1706        }
1707
1708        /* NAND bus width determines access functions used by upper layer */
1709        if (host->pdata.width == 2)
1710                this->options |= NAND_BUSWIDTH_16;
1711
1712        /* update flash based bbt */
1713        if (host->pdata.flash_bbt)
1714                this->bbt_options |= NAND_BBT_USE_FLASH;
1715
1716        init_completion(&host->op_completion);
1717
1718        host->irq = platform_get_irq(pdev, 0);
1719        if (host->irq < 0)
1720                return host->irq;
1721
1722        /*
1723         * Use host->devtype_data->irq_control() here instead of irq_control()
1724         * because we must not disable_irq_nosync without having requested the
1725         * irq.
1726         */
1727        host->devtype_data->irq_control(host, 0);
1728
1729        err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1730                        0, DRIVER_NAME, host);
1731        if (err)
1732                return err;
1733
1734        err = clk_prepare_enable(host->clk);
1735        if (err)
1736                return err;
1737        host->clk_act = 1;
1738
1739        /*
1740         * Now that we "own" the interrupt make sure the interrupt mask bit is
1741         * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1742         * on this machine.
1743         */
1744        if (host->devtype_data->irqpending_quirk) {
1745                disable_irq_nosync(host->irq);
1746                host->devtype_data->irq_control(host, 1);
1747        }
1748
1749        /* first scan to find the device and get the page size */
1750        err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1751        if (err)
1752                goto escan;
1753
1754        switch (this->ecc.mode) {
1755        case NAND_ECC_HW:
1756                this->ecc.calculate = mxc_nand_calculate_ecc;
1757                this->ecc.hwctl = mxc_nand_enable_hwecc;
1758                this->ecc.correct = host->devtype_data->correct_data;
1759                break;
1760
1761        case NAND_ECC_SOFT:
1762                break;
1763
1764        default:
1765                err = -EINVAL;
1766                goto escan;
1767        }
1768
1769        if (this->bbt_options & NAND_BBT_USE_FLASH) {
1770                this->bbt_td = &bbt_main_descr;
1771                this->bbt_md = &bbt_mirror_descr;
1772        }
1773
1774        /* allocate the right size buffer now */
1775        devm_kfree(&pdev->dev, (void *)host->data_buf);
1776        host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1777                                        GFP_KERNEL);
1778        if (!host->data_buf) {
1779                err = -ENOMEM;
1780                goto escan;
1781        }
1782
1783        /* Call preset again, with correct writesize this time */
1784        host->devtype_data->preset(mtd);
1785
1786        if (!this->ecc.bytes) {
1787                if (host->eccsize == 8)
1788                        this->ecc.bytes = 18;
1789                else if (host->eccsize == 4)
1790                        this->ecc.bytes = 9;
1791        }
1792
1793        /*
1794         * Experimentation shows that i.MX NFC can only handle up to 218 oob
1795         * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1796         * into copying invalid data to/from the spare IO buffer, as this
1797         * might cause ECC data corruption when doing sub-page write to a
1798         * partially written page.
1799         */
1800        host->used_oobsize = min(mtd->oobsize, 218U);
1801
1802        if (this->ecc.mode == NAND_ECC_HW) {
1803                if (is_imx21_nfc(host) || is_imx27_nfc(host))
1804                        this->ecc.strength = 1;
1805                else
1806                        this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1807        }
1808
1809        /* second phase scan */
1810        err = nand_scan_tail(mtd);
1811        if (err)
1812                goto escan;
1813
1814        /* Register the partitions */
1815        mtd_device_parse_register(mtd, part_probes,
1816                        NULL,
1817                        host->pdata.parts,
1818                        host->pdata.nr_parts);
1819
1820        platform_set_drvdata(pdev, host);
1821
1822        return 0;
1823
1824escan:
1825        if (host->clk_act)
1826                clk_disable_unprepare(host->clk);
1827
1828        return err;
1829}
1830
1831static int mxcnd_remove(struct platform_device *pdev)
1832{
1833        struct mxc_nand_host *host = platform_get_drvdata(pdev);
1834
1835        nand_release(nand_to_mtd(&host->nand));
1836        if (host->clk_act)
1837                clk_disable_unprepare(host->clk);
1838
1839        return 0;
1840}
1841
1842static struct platform_driver mxcnd_driver = {
1843        .driver = {
1844                   .name = DRIVER_NAME,
1845                   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1846        },
1847        .id_table = mxcnd_devtype,
1848        .probe = mxcnd_probe,
1849        .remove = mxcnd_remove,
1850};
1851module_platform_driver(mxcnd_driver);
1852
1853MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1854MODULE_DESCRIPTION("MXC NAND MTD driver");
1855MODULE_LICENSE("GPL");
1856