linux/drivers/net/ethernet/intel/e1000/e1000_hw.c
<<
>>
Prefs
   1/*******************************************************************************
   2*
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37                                e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41                                              bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46                                  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51                                  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53                                  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70                                  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72                                        u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78                                  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80                                 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89                                u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91                                 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97        5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98        25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99        40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100        60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101        90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102            100,
 103        100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104            110, 110,
 105        110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106            120, 120
 107};
 108
 109static DEFINE_MUTEX(e1000_eeprom_lock);
 110static DEFINE_SPINLOCK(e1000_phy_lock);
 111
 112/**
 113 * e1000_set_phy_type - Set the phy type member in the hw struct.
 114 * @hw: Struct containing variables accessed by shared code
 115 */
 116static s32 e1000_set_phy_type(struct e1000_hw *hw)
 117{
 118        if (hw->mac_type == e1000_undefined)
 119                return -E1000_ERR_PHY_TYPE;
 120
 121        switch (hw->phy_id) {
 122        case M88E1000_E_PHY_ID:
 123        case M88E1000_I_PHY_ID:
 124        case M88E1011_I_PHY_ID:
 125        case M88E1111_I_PHY_ID:
 126        case M88E1118_E_PHY_ID:
 127                hw->phy_type = e1000_phy_m88;
 128                break;
 129        case IGP01E1000_I_PHY_ID:
 130                if (hw->mac_type == e1000_82541 ||
 131                    hw->mac_type == e1000_82541_rev_2 ||
 132                    hw->mac_type == e1000_82547 ||
 133                    hw->mac_type == e1000_82547_rev_2)
 134                        hw->phy_type = e1000_phy_igp;
 135                break;
 136        case RTL8211B_PHY_ID:
 137                hw->phy_type = e1000_phy_8211;
 138                break;
 139        case RTL8201N_PHY_ID:
 140                hw->phy_type = e1000_phy_8201;
 141                break;
 142        default:
 143                /* Should never have loaded on this device */
 144                hw->phy_type = e1000_phy_undefined;
 145                return -E1000_ERR_PHY_TYPE;
 146        }
 147
 148        return E1000_SUCCESS;
 149}
 150
 151/**
 152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 153 * @hw: Struct containing variables accessed by shared code
 154 */
 155static void e1000_phy_init_script(struct e1000_hw *hw)
 156{
 157        u32 ret_val;
 158        u16 phy_saved_data;
 159
 160        if (hw->phy_init_script) {
 161                msleep(20);
 162
 163                /* Save off the current value of register 0x2F5B to be restored
 164                 * at the end of this routine.
 165                 */
 166                ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 167
 168                /* Disabled the PHY transmitter */
 169                e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 170                msleep(20);
 171
 172                e1000_write_phy_reg(hw, 0x0000, 0x0140);
 173                msleep(5);
 174
 175                switch (hw->mac_type) {
 176                case e1000_82541:
 177                case e1000_82547:
 178                        e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 179                        e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 180                        e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 181                        e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 182                        e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 183                        e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 184                        e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 185                        e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 186                        e1000_write_phy_reg(hw, 0x2010, 0x0008);
 187                        break;
 188
 189                case e1000_82541_rev_2:
 190                case e1000_82547_rev_2:
 191                        e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 192                        break;
 193                default:
 194                        break;
 195                }
 196
 197                e1000_write_phy_reg(hw, 0x0000, 0x3300);
 198                msleep(20);
 199
 200                /* Now enable the transmitter */
 201                e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 202
 203                if (hw->mac_type == e1000_82547) {
 204                        u16 fused, fine, coarse;
 205
 206                        /* Move to analog registers page */
 207                        e1000_read_phy_reg(hw,
 208                                           IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 209                                           &fused);
 210
 211                        if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 212                                e1000_read_phy_reg(hw,
 213                                                   IGP01E1000_ANALOG_FUSE_STATUS,
 214                                                   &fused);
 215
 216                                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 217                                coarse =
 218                                    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 219
 220                                if (coarse >
 221                                    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 222                                        coarse -=
 223                                            IGP01E1000_ANALOG_FUSE_COARSE_10;
 224                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 225                                } else if (coarse ==
 226                                           IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 227                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 228
 229                                fused =
 230                                    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 231                                    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 232                                    (coarse &
 233                                     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 234
 235                                e1000_write_phy_reg(hw,
 236                                                    IGP01E1000_ANALOG_FUSE_CONTROL,
 237                                                    fused);
 238                                e1000_write_phy_reg(hw,
 239                                                    IGP01E1000_ANALOG_FUSE_BYPASS,
 240                                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 241                        }
 242                }
 243        }
 244}
 245
 246/**
 247 * e1000_set_mac_type - Set the mac type member in the hw struct.
 248 * @hw: Struct containing variables accessed by shared code
 249 */
 250s32 e1000_set_mac_type(struct e1000_hw *hw)
 251{
 252        switch (hw->device_id) {
 253        case E1000_DEV_ID_82542:
 254                switch (hw->revision_id) {
 255                case E1000_82542_2_0_REV_ID:
 256                        hw->mac_type = e1000_82542_rev2_0;
 257                        break;
 258                case E1000_82542_2_1_REV_ID:
 259                        hw->mac_type = e1000_82542_rev2_1;
 260                        break;
 261                default:
 262                        /* Invalid 82542 revision ID */
 263                        return -E1000_ERR_MAC_TYPE;
 264                }
 265                break;
 266        case E1000_DEV_ID_82543GC_FIBER:
 267        case E1000_DEV_ID_82543GC_COPPER:
 268                hw->mac_type = e1000_82543;
 269                break;
 270        case E1000_DEV_ID_82544EI_COPPER:
 271        case E1000_DEV_ID_82544EI_FIBER:
 272        case E1000_DEV_ID_82544GC_COPPER:
 273        case E1000_DEV_ID_82544GC_LOM:
 274                hw->mac_type = e1000_82544;
 275                break;
 276        case E1000_DEV_ID_82540EM:
 277        case E1000_DEV_ID_82540EM_LOM:
 278        case E1000_DEV_ID_82540EP:
 279        case E1000_DEV_ID_82540EP_LOM:
 280        case E1000_DEV_ID_82540EP_LP:
 281                hw->mac_type = e1000_82540;
 282                break;
 283        case E1000_DEV_ID_82545EM_COPPER:
 284        case E1000_DEV_ID_82545EM_FIBER:
 285                hw->mac_type = e1000_82545;
 286                break;
 287        case E1000_DEV_ID_82545GM_COPPER:
 288        case E1000_DEV_ID_82545GM_FIBER:
 289        case E1000_DEV_ID_82545GM_SERDES:
 290                hw->mac_type = e1000_82545_rev_3;
 291                break;
 292        case E1000_DEV_ID_82546EB_COPPER:
 293        case E1000_DEV_ID_82546EB_FIBER:
 294        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 295                hw->mac_type = e1000_82546;
 296                break;
 297        case E1000_DEV_ID_82546GB_COPPER:
 298        case E1000_DEV_ID_82546GB_FIBER:
 299        case E1000_DEV_ID_82546GB_SERDES:
 300        case E1000_DEV_ID_82546GB_PCIE:
 301        case E1000_DEV_ID_82546GB_QUAD_COPPER:
 302        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 303                hw->mac_type = e1000_82546_rev_3;
 304                break;
 305        case E1000_DEV_ID_82541EI:
 306        case E1000_DEV_ID_82541EI_MOBILE:
 307        case E1000_DEV_ID_82541ER_LOM:
 308                hw->mac_type = e1000_82541;
 309                break;
 310        case E1000_DEV_ID_82541ER:
 311        case E1000_DEV_ID_82541GI:
 312        case E1000_DEV_ID_82541GI_LF:
 313        case E1000_DEV_ID_82541GI_MOBILE:
 314                hw->mac_type = e1000_82541_rev_2;
 315                break;
 316        case E1000_DEV_ID_82547EI:
 317        case E1000_DEV_ID_82547EI_MOBILE:
 318                hw->mac_type = e1000_82547;
 319                break;
 320        case E1000_DEV_ID_82547GI:
 321                hw->mac_type = e1000_82547_rev_2;
 322                break;
 323        case E1000_DEV_ID_INTEL_CE4100_GBE:
 324                hw->mac_type = e1000_ce4100;
 325                break;
 326        default:
 327                /* Should never have loaded on this device */
 328                return -E1000_ERR_MAC_TYPE;
 329        }
 330
 331        switch (hw->mac_type) {
 332        case e1000_82541:
 333        case e1000_82547:
 334        case e1000_82541_rev_2:
 335        case e1000_82547_rev_2:
 336                hw->asf_firmware_present = true;
 337                break;
 338        default:
 339                break;
 340        }
 341
 342        /* The 82543 chip does not count tx_carrier_errors properly in
 343         * FD mode
 344         */
 345        if (hw->mac_type == e1000_82543)
 346                hw->bad_tx_carr_stats_fd = true;
 347
 348        if (hw->mac_type > e1000_82544)
 349                hw->has_smbus = true;
 350
 351        return E1000_SUCCESS;
 352}
 353
 354/**
 355 * e1000_set_media_type - Set media type and TBI compatibility.
 356 * @hw: Struct containing variables accessed by shared code
 357 */
 358void e1000_set_media_type(struct e1000_hw *hw)
 359{
 360        u32 status;
 361
 362        if (hw->mac_type != e1000_82543) {
 363                /* tbi_compatibility is only valid on 82543 */
 364                hw->tbi_compatibility_en = false;
 365        }
 366
 367        switch (hw->device_id) {
 368        case E1000_DEV_ID_82545GM_SERDES:
 369        case E1000_DEV_ID_82546GB_SERDES:
 370                hw->media_type = e1000_media_type_internal_serdes;
 371                break;
 372        default:
 373                switch (hw->mac_type) {
 374                case e1000_82542_rev2_0:
 375                case e1000_82542_rev2_1:
 376                        hw->media_type = e1000_media_type_fiber;
 377                        break;
 378                case e1000_ce4100:
 379                        hw->media_type = e1000_media_type_copper;
 380                        break;
 381                default:
 382                        status = er32(STATUS);
 383                        if (status & E1000_STATUS_TBIMODE) {
 384                                hw->media_type = e1000_media_type_fiber;
 385                                /* tbi_compatibility not valid on fiber */
 386                                hw->tbi_compatibility_en = false;
 387                        } else {
 388                                hw->media_type = e1000_media_type_copper;
 389                        }
 390                        break;
 391                }
 392        }
 393}
 394
 395/**
 396 * e1000_reset_hw - reset the hardware completely
 397 * @hw: Struct containing variables accessed by shared code
 398 *
 399 * Reset the transmit and receive units; mask and clear all interrupts.
 400 */
 401s32 e1000_reset_hw(struct e1000_hw *hw)
 402{
 403        u32 ctrl;
 404        u32 ctrl_ext;
 405        u32 icr;
 406        u32 manc;
 407        u32 led_ctrl;
 408        s32 ret_val;
 409
 410        /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 411        if (hw->mac_type == e1000_82542_rev2_0) {
 412                e_dbg("Disabling MWI on 82542 rev 2.0\n");
 413                e1000_pci_clear_mwi(hw);
 414        }
 415
 416        /* Clear interrupt mask to stop board from generating interrupts */
 417        e_dbg("Masking off all interrupts\n");
 418        ew32(IMC, 0xffffffff);
 419
 420        /* Disable the Transmit and Receive units.  Then delay to allow
 421         * any pending transactions to complete before we hit the MAC with
 422         * the global reset.
 423         */
 424        ew32(RCTL, 0);
 425        ew32(TCTL, E1000_TCTL_PSP);
 426        E1000_WRITE_FLUSH();
 427
 428        /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 429        hw->tbi_compatibility_on = false;
 430
 431        /* Delay to allow any outstanding PCI transactions to complete before
 432         * resetting the device
 433         */
 434        msleep(10);
 435
 436        ctrl = er32(CTRL);
 437
 438        /* Must reset the PHY before resetting the MAC */
 439        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 440                ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 441                E1000_WRITE_FLUSH();
 442                msleep(5);
 443        }
 444
 445        /* Issue a global reset to the MAC.  This will reset the chip's
 446         * transmit, receive, DMA, and link units.  It will not effect
 447         * the current PCI configuration.  The global reset bit is self-
 448         * clearing, and should clear within a microsecond.
 449         */
 450        e_dbg("Issuing a global reset to MAC\n");
 451
 452        switch (hw->mac_type) {
 453        case e1000_82544:
 454        case e1000_82540:
 455        case e1000_82545:
 456        case e1000_82546:
 457        case e1000_82541:
 458        case e1000_82541_rev_2:
 459                /* These controllers can't ack the 64-bit write when issuing the
 460                 * reset, so use IO-mapping as a workaround to issue the reset
 461                 */
 462                E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 463                break;
 464        case e1000_82545_rev_3:
 465        case e1000_82546_rev_3:
 466                /* Reset is performed on a shadow of the control register */
 467                ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 468                break;
 469        case e1000_ce4100:
 470        default:
 471                ew32(CTRL, (ctrl | E1000_CTRL_RST));
 472                break;
 473        }
 474
 475        /* After MAC reset, force reload of EEPROM to restore power-on settings
 476         * to device.  Later controllers reload the EEPROM automatically, so
 477         * just wait for reload to complete.
 478         */
 479        switch (hw->mac_type) {
 480        case e1000_82542_rev2_0:
 481        case e1000_82542_rev2_1:
 482        case e1000_82543:
 483        case e1000_82544:
 484                /* Wait for reset to complete */
 485                udelay(10);
 486                ctrl_ext = er32(CTRL_EXT);
 487                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 488                ew32(CTRL_EXT, ctrl_ext);
 489                E1000_WRITE_FLUSH();
 490                /* Wait for EEPROM reload */
 491                msleep(2);
 492                break;
 493        case e1000_82541:
 494        case e1000_82541_rev_2:
 495        case e1000_82547:
 496        case e1000_82547_rev_2:
 497                /* Wait for EEPROM reload */
 498                msleep(20);
 499                break;
 500        default:
 501                /* Auto read done will delay 5ms or poll based on mac type */
 502                ret_val = e1000_get_auto_rd_done(hw);
 503                if (ret_val)
 504                        return ret_val;
 505                break;
 506        }
 507
 508        /* Disable HW ARPs on ASF enabled adapters */
 509        if (hw->mac_type >= e1000_82540) {
 510                manc = er32(MANC);
 511                manc &= ~(E1000_MANC_ARP_EN);
 512                ew32(MANC, manc);
 513        }
 514
 515        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 516                e1000_phy_init_script(hw);
 517
 518                /* Configure activity LED after PHY reset */
 519                led_ctrl = er32(LEDCTL);
 520                led_ctrl &= IGP_ACTIVITY_LED_MASK;
 521                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 522                ew32(LEDCTL, led_ctrl);
 523        }
 524
 525        /* Clear interrupt mask to stop board from generating interrupts */
 526        e_dbg("Masking off all interrupts\n");
 527        ew32(IMC, 0xffffffff);
 528
 529        /* Clear any pending interrupt events. */
 530        icr = er32(ICR);
 531
 532        /* If MWI was previously enabled, reenable it. */
 533        if (hw->mac_type == e1000_82542_rev2_0) {
 534                if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 535                        e1000_pci_set_mwi(hw);
 536        }
 537
 538        return E1000_SUCCESS;
 539}
 540
 541/**
 542 * e1000_init_hw - Performs basic configuration of the adapter.
 543 * @hw: Struct containing variables accessed by shared code
 544 *
 545 * Assumes that the controller has previously been reset and is in a
 546 * post-reset uninitialized state. Initializes the receive address registers,
 547 * multicast table, and VLAN filter table. Calls routines to setup link
 548 * configuration and flow control settings. Clears all on-chip counters. Leaves
 549 * the transmit and receive units disabled and uninitialized.
 550 */
 551s32 e1000_init_hw(struct e1000_hw *hw)
 552{
 553        u32 ctrl;
 554        u32 i;
 555        s32 ret_val;
 556        u32 mta_size;
 557        u32 ctrl_ext;
 558
 559        /* Initialize Identification LED */
 560        ret_val = e1000_id_led_init(hw);
 561        if (ret_val) {
 562                e_dbg("Error Initializing Identification LED\n");
 563                return ret_val;
 564        }
 565
 566        /* Set the media type and TBI compatibility */
 567        e1000_set_media_type(hw);
 568
 569        /* Disabling VLAN filtering. */
 570        e_dbg("Initializing the IEEE VLAN\n");
 571        if (hw->mac_type < e1000_82545_rev_3)
 572                ew32(VET, 0);
 573        e1000_clear_vfta(hw);
 574
 575        /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 576        if (hw->mac_type == e1000_82542_rev2_0) {
 577                e_dbg("Disabling MWI on 82542 rev 2.0\n");
 578                e1000_pci_clear_mwi(hw);
 579                ew32(RCTL, E1000_RCTL_RST);
 580                E1000_WRITE_FLUSH();
 581                msleep(5);
 582        }
 583
 584        /* Setup the receive address. This involves initializing all of the
 585         * Receive Address Registers (RARs 0 - 15).
 586         */
 587        e1000_init_rx_addrs(hw);
 588
 589        /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 590        if (hw->mac_type == e1000_82542_rev2_0) {
 591                ew32(RCTL, 0);
 592                E1000_WRITE_FLUSH();
 593                msleep(1);
 594                if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 595                        e1000_pci_set_mwi(hw);
 596        }
 597
 598        /* Zero out the Multicast HASH table */
 599        e_dbg("Zeroing the MTA\n");
 600        mta_size = E1000_MC_TBL_SIZE;
 601        for (i = 0; i < mta_size; i++) {
 602                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 603                /* use write flush to prevent Memory Write Block (MWB) from
 604                 * occurring when accessing our register space
 605                 */
 606                E1000_WRITE_FLUSH();
 607        }
 608
 609        /* Set the PCI priority bit correctly in the CTRL register.  This
 610         * determines if the adapter gives priority to receives, or if it
 611         * gives equal priority to transmits and receives.  Valid only on
 612         * 82542 and 82543 silicon.
 613         */
 614        if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 615                ctrl = er32(CTRL);
 616                ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 617        }
 618
 619        switch (hw->mac_type) {
 620        case e1000_82545_rev_3:
 621        case e1000_82546_rev_3:
 622                break;
 623        default:
 624                /* Workaround for PCI-X problem when BIOS sets MMRBC
 625                 * incorrectly.
 626                 */
 627                if (hw->bus_type == e1000_bus_type_pcix &&
 628                    e1000_pcix_get_mmrbc(hw) > 2048)
 629                        e1000_pcix_set_mmrbc(hw, 2048);
 630                break;
 631        }
 632
 633        /* Call a subroutine to configure the link and setup flow control. */
 634        ret_val = e1000_setup_link(hw);
 635
 636        /* Set the transmit descriptor write-back policy */
 637        if (hw->mac_type > e1000_82544) {
 638                ctrl = er32(TXDCTL);
 639                ctrl =
 640                    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 641                    E1000_TXDCTL_FULL_TX_DESC_WB;
 642                ew32(TXDCTL, ctrl);
 643        }
 644
 645        /* Clear all of the statistics registers (clear on read).  It is
 646         * important that we do this after we have tried to establish link
 647         * because the symbol error count will increment wildly if there
 648         * is no link.
 649         */
 650        e1000_clear_hw_cntrs(hw);
 651
 652        if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 653            hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 654                ctrl_ext = er32(CTRL_EXT);
 655                /* Relaxed ordering must be disabled to avoid a parity
 656                 * error crash in a PCI slot.
 657                 */
 658                ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 659                ew32(CTRL_EXT, ctrl_ext);
 660        }
 661
 662        return ret_val;
 663}
 664
 665/**
 666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 667 * @hw: Struct containing variables accessed by shared code.
 668 */
 669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 670{
 671        u16 eeprom_data;
 672        s32 ret_val;
 673
 674        if (hw->media_type != e1000_media_type_internal_serdes)
 675                return E1000_SUCCESS;
 676
 677        switch (hw->mac_type) {
 678        case e1000_82545_rev_3:
 679        case e1000_82546_rev_3:
 680                break;
 681        default:
 682                return E1000_SUCCESS;
 683        }
 684
 685        ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 686                                    &eeprom_data);
 687        if (ret_val)
 688                return ret_val;
 689
 690        if (eeprom_data != EEPROM_RESERVED_WORD) {
 691                /* Adjust SERDES output amplitude only. */
 692                eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 693                ret_val =
 694                    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 695                if (ret_val)
 696                        return ret_val;
 697        }
 698
 699        return E1000_SUCCESS;
 700}
 701
 702/**
 703 * e1000_setup_link - Configures flow control and link settings.
 704 * @hw: Struct containing variables accessed by shared code
 705 *
 706 * Determines which flow control settings to use. Calls the appropriate media-
 707 * specific link configuration function. Configures the flow control settings.
 708 * Assuming the adapter has a valid link partner, a valid link should be
 709 * established. Assumes the hardware has previously been reset and the
 710 * transmitter and receiver are not enabled.
 711 */
 712s32 e1000_setup_link(struct e1000_hw *hw)
 713{
 714        u32 ctrl_ext;
 715        s32 ret_val;
 716        u16 eeprom_data;
 717
 718        /* Read and store word 0x0F of the EEPROM. This word contains bits
 719         * that determine the hardware's default PAUSE (flow control) mode,
 720         * a bit that determines whether the HW defaults to enabling or
 721         * disabling auto-negotiation, and the direction of the
 722         * SW defined pins. If there is no SW over-ride of the flow
 723         * control setting, then the variable hw->fc will
 724         * be initialized based on a value in the EEPROM.
 725         */
 726        if (hw->fc == E1000_FC_DEFAULT) {
 727                ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 728                                            1, &eeprom_data);
 729                if (ret_val) {
 730                        e_dbg("EEPROM Read Error\n");
 731                        return -E1000_ERR_EEPROM;
 732                }
 733                if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 734                        hw->fc = E1000_FC_NONE;
 735                else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 736                         EEPROM_WORD0F_ASM_DIR)
 737                        hw->fc = E1000_FC_TX_PAUSE;
 738                else
 739                        hw->fc = E1000_FC_FULL;
 740        }
 741
 742        /* We want to save off the original Flow Control configuration just
 743         * in case we get disconnected and then reconnected into a different
 744         * hub or switch with different Flow Control capabilities.
 745         */
 746        if (hw->mac_type == e1000_82542_rev2_0)
 747                hw->fc &= (~E1000_FC_TX_PAUSE);
 748
 749        if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 750                hw->fc &= (~E1000_FC_RX_PAUSE);
 751
 752        hw->original_fc = hw->fc;
 753
 754        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 755
 756        /* Take the 4 bits from EEPROM word 0x0F that determine the initial
 757         * polarity value for the SW controlled pins, and setup the
 758         * Extended Device Control reg with that info.
 759         * This is needed because one of the SW controlled pins is used for
 760         * signal detection.  So this should be done before e1000_setup_pcs_link()
 761         * or e1000_phy_setup() is called.
 762         */
 763        if (hw->mac_type == e1000_82543) {
 764                ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 765                                            1, &eeprom_data);
 766                if (ret_val) {
 767                        e_dbg("EEPROM Read Error\n");
 768                        return -E1000_ERR_EEPROM;
 769                }
 770                ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 771                            SWDPIO__EXT_SHIFT);
 772                ew32(CTRL_EXT, ctrl_ext);
 773        }
 774
 775        /* Call the necessary subroutine to configure the link. */
 776        ret_val = (hw->media_type == e1000_media_type_copper) ?
 777            e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 778
 779        /* Initialize the flow control address, type, and PAUSE timer
 780         * registers to their default values.  This is done even if flow
 781         * control is disabled, because it does not hurt anything to
 782         * initialize these registers.
 783         */
 784        e_dbg("Initializing the Flow Control address, type and timer regs\n");
 785
 786        ew32(FCT, FLOW_CONTROL_TYPE);
 787        ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 788        ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 789
 790        ew32(FCTTV, hw->fc_pause_time);
 791
 792        /* Set the flow control receive threshold registers.  Normally,
 793         * these registers will be set to a default threshold that may be
 794         * adjusted later by the driver's runtime code.  However, if the
 795         * ability to transmit pause frames in not enabled, then these
 796         * registers will be set to 0.
 797         */
 798        if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 799                ew32(FCRTL, 0);
 800                ew32(FCRTH, 0);
 801        } else {
 802                /* We need to set up the Receive Threshold high and low water
 803                 * marks as well as (optionally) enabling the transmission of
 804                 * XON frames.
 805                 */
 806                if (hw->fc_send_xon) {
 807                        ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 808                        ew32(FCRTH, hw->fc_high_water);
 809                } else {
 810                        ew32(FCRTL, hw->fc_low_water);
 811                        ew32(FCRTH, hw->fc_high_water);
 812                }
 813        }
 814        return ret_val;
 815}
 816
 817/**
 818 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 819 * @hw: Struct containing variables accessed by shared code
 820 *
 821 * Manipulates Physical Coding Sublayer functions in order to configure
 822 * link. Assumes the hardware has been previously reset and the transmitter
 823 * and receiver are not enabled.
 824 */
 825static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 826{
 827        u32 ctrl;
 828        u32 status;
 829        u32 txcw = 0;
 830        u32 i;
 831        u32 signal = 0;
 832        s32 ret_val;
 833
 834        /* On adapters with a MAC newer than 82544, SWDP 1 will be
 835         * set when the optics detect a signal. On older adapters, it will be
 836         * cleared when there is a signal.  This applies to fiber media only.
 837         * If we're on serdes media, adjust the output amplitude to value
 838         * set in the EEPROM.
 839         */
 840        ctrl = er32(CTRL);
 841        if (hw->media_type == e1000_media_type_fiber)
 842                signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 843
 844        ret_val = e1000_adjust_serdes_amplitude(hw);
 845        if (ret_val)
 846                return ret_val;
 847
 848        /* Take the link out of reset */
 849        ctrl &= ~(E1000_CTRL_LRST);
 850
 851        /* Adjust VCO speed to improve BER performance */
 852        ret_val = e1000_set_vco_speed(hw);
 853        if (ret_val)
 854                return ret_val;
 855
 856        e1000_config_collision_dist(hw);
 857
 858        /* Check for a software override of the flow control settings, and setup
 859         * the device accordingly.  If auto-negotiation is enabled, then
 860         * software will have to set the "PAUSE" bits to the correct value in
 861         * the Tranmsit Config Word Register (TXCW) and re-start
 862         * auto-negotiation.  However, if auto-negotiation is disabled, then
 863         * software will have to manually configure the two flow control enable
 864         * bits in the CTRL register.
 865         *
 866         * The possible values of the "fc" parameter are:
 867         *  0:  Flow control is completely disabled
 868         *  1:  Rx flow control is enabled (we can receive pause frames, but
 869         *      not send pause frames).
 870         *  2:  Tx flow control is enabled (we can send pause frames but we do
 871         *      not support receiving pause frames).
 872         *  3:  Both Rx and TX flow control (symmetric) are enabled.
 873         */
 874        switch (hw->fc) {
 875        case E1000_FC_NONE:
 876                /* Flow ctrl is completely disabled by a software over-ride */
 877                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 878                break;
 879        case E1000_FC_RX_PAUSE:
 880                /* Rx Flow control is enabled and Tx Flow control is disabled by
 881                 * a software over-ride. Since there really isn't a way to
 882                 * advertise that we are capable of Rx Pause ONLY, we will
 883                 * advertise that we support both symmetric and asymmetric Rx
 884                 * PAUSE. Later, we will disable the adapter's ability to send
 885                 * PAUSE frames.
 886                 */
 887                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 888                break;
 889        case E1000_FC_TX_PAUSE:
 890                /* Tx Flow control is enabled, and Rx Flow control is disabled,
 891                 * by a software over-ride.
 892                 */
 893                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 894                break;
 895        case E1000_FC_FULL:
 896                /* Flow control (both Rx and Tx) is enabled by a software
 897                 * over-ride.
 898                 */
 899                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 900                break;
 901        default:
 902                e_dbg("Flow control param set incorrectly\n");
 903                return -E1000_ERR_CONFIG;
 904        }
 905
 906        /* Since auto-negotiation is enabled, take the link out of reset (the
 907         * link will be in reset, because we previously reset the chip). This
 908         * will restart auto-negotiation.  If auto-negotiation is successful
 909         * then the link-up status bit will be set and the flow control enable
 910         * bits (RFCE and TFCE) will be set according to their negotiated value.
 911         */
 912        e_dbg("Auto-negotiation enabled\n");
 913
 914        ew32(TXCW, txcw);
 915        ew32(CTRL, ctrl);
 916        E1000_WRITE_FLUSH();
 917
 918        hw->txcw = txcw;
 919        msleep(1);
 920
 921        /* If we have a signal (the cable is plugged in) then poll for a
 922         * "Link-Up" indication in the Device Status Register.  Time-out if a
 923         * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 924         * complete in less than 500 milliseconds even if the other end is doing
 925         * it in SW). For internal serdes, we just assume a signal is present,
 926         * then poll.
 927         */
 928        if (hw->media_type == e1000_media_type_internal_serdes ||
 929            (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 930                e_dbg("Looking for Link\n");
 931                for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 932                        msleep(10);
 933                        status = er32(STATUS);
 934                        if (status & E1000_STATUS_LU)
 935                                break;
 936                }
 937                if (i == (LINK_UP_TIMEOUT / 10)) {
 938                        e_dbg("Never got a valid link from auto-neg!!!\n");
 939                        hw->autoneg_failed = 1;
 940                        /* AutoNeg failed to achieve a link, so we'll call
 941                         * e1000_check_for_link. This routine will force the
 942                         * link up if we detect a signal. This will allow us to
 943                         * communicate with non-autonegotiating link partners.
 944                         */
 945                        ret_val = e1000_check_for_link(hw);
 946                        if (ret_val) {
 947                                e_dbg("Error while checking for link\n");
 948                                return ret_val;
 949                        }
 950                        hw->autoneg_failed = 0;
 951                } else {
 952                        hw->autoneg_failed = 0;
 953                        e_dbg("Valid Link Found\n");
 954                }
 955        } else {
 956                e_dbg("No Signal Detected\n");
 957        }
 958        return E1000_SUCCESS;
 959}
 960
 961/**
 962 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 963 * @hw: Struct containing variables accessed by shared code
 964 *
 965 * Commits changes to PHY configuration by calling e1000_phy_reset().
 966 */
 967static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 968{
 969        s32 ret_val;
 970
 971        /* SW reset the PHY so all changes take effect */
 972        ret_val = e1000_phy_reset(hw);
 973        if (ret_val) {
 974                e_dbg("Error Resetting the PHY\n");
 975                return ret_val;
 976        }
 977
 978        return E1000_SUCCESS;
 979}
 980
 981static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 982{
 983        s32 ret_val;
 984        u32 ctrl_aux;
 985
 986        switch (hw->phy_type) {
 987        case e1000_phy_8211:
 988                ret_val = e1000_copper_link_rtl_setup(hw);
 989                if (ret_val) {
 990                        e_dbg("e1000_copper_link_rtl_setup failed!\n");
 991                        return ret_val;
 992                }
 993                break;
 994        case e1000_phy_8201:
 995                /* Set RMII mode */
 996                ctrl_aux = er32(CTL_AUX);
 997                ctrl_aux |= E1000_CTL_AUX_RMII;
 998                ew32(CTL_AUX, ctrl_aux);
 999                E1000_WRITE_FLUSH();
1000
1001                /* Disable the J/K bits required for receive */
1002                ctrl_aux = er32(CTL_AUX);
1003                ctrl_aux |= 0x4;
1004                ctrl_aux &= ~0x2;
1005                ew32(CTL_AUX, ctrl_aux);
1006                E1000_WRITE_FLUSH();
1007                ret_val = e1000_copper_link_rtl_setup(hw);
1008
1009                if (ret_val) {
1010                        e_dbg("e1000_copper_link_rtl_setup failed!\n");
1011                        return ret_val;
1012                }
1013                break;
1014        default:
1015                e_dbg("Error Resetting the PHY\n");
1016                return E1000_ERR_PHY_TYPE;
1017        }
1018
1019        return E1000_SUCCESS;
1020}
1021
1022/**
1023 * e1000_copper_link_preconfig - early configuration for copper
1024 * @hw: Struct containing variables accessed by shared code
1025 *
1026 * Make sure we have a valid PHY and change PHY mode before link setup.
1027 */
1028static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1029{
1030        u32 ctrl;
1031        s32 ret_val;
1032        u16 phy_data;
1033
1034        ctrl = er32(CTRL);
1035        /* With 82543, we need to force speed and duplex on the MAC equal to
1036         * what the PHY speed and duplex configuration is. In addition, we need
1037         * to perform a hardware reset on the PHY to take it out of reset.
1038         */
1039        if (hw->mac_type > e1000_82543) {
1040                ctrl |= E1000_CTRL_SLU;
1041                ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1042                ew32(CTRL, ctrl);
1043        } else {
1044                ctrl |=
1045                    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1046                ew32(CTRL, ctrl);
1047                ret_val = e1000_phy_hw_reset(hw);
1048                if (ret_val)
1049                        return ret_val;
1050        }
1051
1052        /* Make sure we have a valid PHY */
1053        ret_val = e1000_detect_gig_phy(hw);
1054        if (ret_val) {
1055                e_dbg("Error, did not detect valid phy.\n");
1056                return ret_val;
1057        }
1058        e_dbg("Phy ID = %x\n", hw->phy_id);
1059
1060        /* Set PHY to class A mode (if necessary) */
1061        ret_val = e1000_set_phy_mode(hw);
1062        if (ret_val)
1063                return ret_val;
1064
1065        if ((hw->mac_type == e1000_82545_rev_3) ||
1066            (hw->mac_type == e1000_82546_rev_3)) {
1067                ret_val =
1068                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1069                phy_data |= 0x00000008;
1070                ret_val =
1071                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1072        }
1073
1074        if (hw->mac_type <= e1000_82543 ||
1075            hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1076            hw->mac_type == e1000_82541_rev_2 ||
1077            hw->mac_type == e1000_82547_rev_2)
1078                hw->phy_reset_disable = false;
1079
1080        return E1000_SUCCESS;
1081}
1082
1083/**
1084 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1085 * @hw: Struct containing variables accessed by shared code
1086 */
1087static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1088{
1089        u32 led_ctrl;
1090        s32 ret_val;
1091        u16 phy_data;
1092
1093        if (hw->phy_reset_disable)
1094                return E1000_SUCCESS;
1095
1096        ret_val = e1000_phy_reset(hw);
1097        if (ret_val) {
1098                e_dbg("Error Resetting the PHY\n");
1099                return ret_val;
1100        }
1101
1102        /* Wait 15ms for MAC to configure PHY from eeprom settings */
1103        msleep(15);
1104        /* Configure activity LED after PHY reset */
1105        led_ctrl = er32(LEDCTL);
1106        led_ctrl &= IGP_ACTIVITY_LED_MASK;
1107        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1108        ew32(LEDCTL, led_ctrl);
1109
1110        /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1111        if (hw->phy_type == e1000_phy_igp) {
1112                /* disable lplu d3 during driver init */
1113                ret_val = e1000_set_d3_lplu_state(hw, false);
1114                if (ret_val) {
1115                        e_dbg("Error Disabling LPLU D3\n");
1116                        return ret_val;
1117                }
1118        }
1119
1120        /* Configure mdi-mdix settings */
1121        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1122        if (ret_val)
1123                return ret_val;
1124
1125        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1126                hw->dsp_config_state = e1000_dsp_config_disabled;
1127                /* Force MDI for earlier revs of the IGP PHY */
1128                phy_data &=
1129                    ~(IGP01E1000_PSCR_AUTO_MDIX |
1130                      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1131                hw->mdix = 1;
1132
1133        } else {
1134                hw->dsp_config_state = e1000_dsp_config_enabled;
1135                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1136
1137                switch (hw->mdix) {
1138                case 1:
1139                        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1140                        break;
1141                case 2:
1142                        phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1143                        break;
1144                case 0:
1145                default:
1146                        phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1147                        break;
1148                }
1149        }
1150        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1151        if (ret_val)
1152                return ret_val;
1153
1154        /* set auto-master slave resolution settings */
1155        if (hw->autoneg) {
1156                e1000_ms_type phy_ms_setting = hw->master_slave;
1157
1158                if (hw->ffe_config_state == e1000_ffe_config_active)
1159                        hw->ffe_config_state = e1000_ffe_config_enabled;
1160
1161                if (hw->dsp_config_state == e1000_dsp_config_activated)
1162                        hw->dsp_config_state = e1000_dsp_config_enabled;
1163
1164                /* when autonegotiation advertisement is only 1000Mbps then we
1165                 * should disable SmartSpeed and enable Auto MasterSlave
1166                 * resolution as hardware default.
1167                 */
1168                if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1169                        /* Disable SmartSpeed */
1170                        ret_val =
1171                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1172                                               &phy_data);
1173                        if (ret_val)
1174                                return ret_val;
1175                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1176                        ret_val =
1177                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1178                                                phy_data);
1179                        if (ret_val)
1180                                return ret_val;
1181                        /* Set auto Master/Slave resolution process */
1182                        ret_val =
1183                            e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1184                        if (ret_val)
1185                                return ret_val;
1186                        phy_data &= ~CR_1000T_MS_ENABLE;
1187                        ret_val =
1188                            e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1189                        if (ret_val)
1190                                return ret_val;
1191                }
1192
1193                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194                if (ret_val)
1195                        return ret_val;
1196
1197                /* load defaults for future use */
1198                hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1199                    ((phy_data & CR_1000T_MS_VALUE) ?
1200                     e1000_ms_force_master :
1201                     e1000_ms_force_slave) : e1000_ms_auto;
1202
1203                switch (phy_ms_setting) {
1204                case e1000_ms_force_master:
1205                        phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1206                        break;
1207                case e1000_ms_force_slave:
1208                        phy_data |= CR_1000T_MS_ENABLE;
1209                        phy_data &= ~(CR_1000T_MS_VALUE);
1210                        break;
1211                case e1000_ms_auto:
1212                        phy_data &= ~CR_1000T_MS_ENABLE;
1213                default:
1214                        break;
1215                }
1216                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1217                if (ret_val)
1218                        return ret_val;
1219        }
1220
1221        return E1000_SUCCESS;
1222}
1223
1224/**
1225 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1226 * @hw: Struct containing variables accessed by shared code
1227 */
1228static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1229{
1230        s32 ret_val;
1231        u16 phy_data;
1232
1233        if (hw->phy_reset_disable)
1234                return E1000_SUCCESS;
1235
1236        /* Enable CRS on TX. This must be set for half-duplex operation. */
1237        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1238        if (ret_val)
1239                return ret_val;
1240
1241        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1242
1243        /* Options:
1244         *   MDI/MDI-X = 0 (default)
1245         *   0 - Auto for all speeds
1246         *   1 - MDI mode
1247         *   2 - MDI-X mode
1248         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1249         */
1250        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1251
1252        switch (hw->mdix) {
1253        case 1:
1254                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1255                break;
1256        case 2:
1257                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1258                break;
1259        case 3:
1260                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1261                break;
1262        case 0:
1263        default:
1264                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1265                break;
1266        }
1267
1268        /* Options:
1269         *   disable_polarity_correction = 0 (default)
1270         *       Automatic Correction for Reversed Cable Polarity
1271         *   0 - Disabled
1272         *   1 - Enabled
1273         */
1274        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1275        if (hw->disable_polarity_correction == 1)
1276                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1277        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1278        if (ret_val)
1279                return ret_val;
1280
1281        if (hw->phy_revision < M88E1011_I_REV_4) {
1282                /* Force TX_CLK in the Extended PHY Specific Control Register
1283                 * to 25MHz clock.
1284                 */
1285                ret_val =
1286                    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1287                                       &phy_data);
1288                if (ret_val)
1289                        return ret_val;
1290
1291                phy_data |= M88E1000_EPSCR_TX_CLK_25;
1292
1293                if ((hw->phy_revision == E1000_REVISION_2) &&
1294                    (hw->phy_id == M88E1111_I_PHY_ID)) {
1295                        /* Vidalia Phy, set the downshift counter to 5x */
1296                        phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1297                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1298                        ret_val = e1000_write_phy_reg(hw,
1299                                                      M88E1000_EXT_PHY_SPEC_CTRL,
1300                                                      phy_data);
1301                        if (ret_val)
1302                                return ret_val;
1303                } else {
1304                        /* Configure Master and Slave downshift values */
1305                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1306                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1307                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1308                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1309                        ret_val = e1000_write_phy_reg(hw,
1310                                                      M88E1000_EXT_PHY_SPEC_CTRL,
1311                                                      phy_data);
1312                        if (ret_val)
1313                                return ret_val;
1314                }
1315        }
1316
1317        /* SW Reset the PHY so all changes take effect */
1318        ret_val = e1000_phy_reset(hw);
1319        if (ret_val) {
1320                e_dbg("Error Resetting the PHY\n");
1321                return ret_val;
1322        }
1323
1324        return E1000_SUCCESS;
1325}
1326
1327/**
1328 * e1000_copper_link_autoneg - setup auto-neg
1329 * @hw: Struct containing variables accessed by shared code
1330 *
1331 * Setup auto-negotiation and flow control advertisements,
1332 * and then perform auto-negotiation.
1333 */
1334static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1335{
1336        s32 ret_val;
1337        u16 phy_data;
1338
1339        /* Perform some bounds checking on the hw->autoneg_advertised
1340         * parameter.  If this variable is zero, then set it to the default.
1341         */
1342        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1343
1344        /* If autoneg_advertised is zero, we assume it was not defaulted
1345         * by the calling code so we set to advertise full capability.
1346         */
1347        if (hw->autoneg_advertised == 0)
1348                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1349
1350        /* IFE/RTL8201N PHY only supports 10/100 */
1351        if (hw->phy_type == e1000_phy_8201)
1352                hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1353
1354        e_dbg("Reconfiguring auto-neg advertisement params\n");
1355        ret_val = e1000_phy_setup_autoneg(hw);
1356        if (ret_val) {
1357                e_dbg("Error Setting up Auto-Negotiation\n");
1358                return ret_val;
1359        }
1360        e_dbg("Restarting Auto-Neg\n");
1361
1362        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1363         * the Auto Neg Restart bit in the PHY control register.
1364         */
1365        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1366        if (ret_val)
1367                return ret_val;
1368
1369        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1370        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1371        if (ret_val)
1372                return ret_val;
1373
1374        /* Does the user want to wait for Auto-Neg to complete here, or
1375         * check at a later time (for example, callback routine).
1376         */
1377        if (hw->wait_autoneg_complete) {
1378                ret_val = e1000_wait_autoneg(hw);
1379                if (ret_val) {
1380                        e_dbg
1381                            ("Error while waiting for autoneg to complete\n");
1382                        return ret_val;
1383                }
1384        }
1385
1386        hw->get_link_status = true;
1387
1388        return E1000_SUCCESS;
1389}
1390
1391/**
1392 * e1000_copper_link_postconfig - post link setup
1393 * @hw: Struct containing variables accessed by shared code
1394 *
1395 * Config the MAC and the PHY after link is up.
1396 *   1) Set up the MAC to the current PHY speed/duplex
1397 *      if we are on 82543.  If we
1398 *      are on newer silicon, we only need to configure
1399 *      collision distance in the Transmit Control Register.
1400 *   2) Set up flow control on the MAC to that established with
1401 *      the link partner.
1402 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1403 */
1404static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1405{
1406        s32 ret_val;
1407
1408        if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1409                e1000_config_collision_dist(hw);
1410        } else {
1411                ret_val = e1000_config_mac_to_phy(hw);
1412                if (ret_val) {
1413                        e_dbg("Error configuring MAC to PHY settings\n");
1414                        return ret_val;
1415                }
1416        }
1417        ret_val = e1000_config_fc_after_link_up(hw);
1418        if (ret_val) {
1419                e_dbg("Error Configuring Flow Control\n");
1420                return ret_val;
1421        }
1422
1423        /* Config DSP to improve Giga link quality */
1424        if (hw->phy_type == e1000_phy_igp) {
1425                ret_val = e1000_config_dsp_after_link_change(hw, true);
1426                if (ret_val) {
1427                        e_dbg("Error Configuring DSP after link up\n");
1428                        return ret_val;
1429                }
1430        }
1431
1432        return E1000_SUCCESS;
1433}
1434
1435/**
1436 * e1000_setup_copper_link - phy/speed/duplex setting
1437 * @hw: Struct containing variables accessed by shared code
1438 *
1439 * Detects which PHY is present and sets up the speed and duplex
1440 */
1441static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1442{
1443        s32 ret_val;
1444        u16 i;
1445        u16 phy_data;
1446
1447        /* Check if it is a valid PHY and set PHY mode if necessary. */
1448        ret_val = e1000_copper_link_preconfig(hw);
1449        if (ret_val)
1450                return ret_val;
1451
1452        if (hw->phy_type == e1000_phy_igp) {
1453                ret_val = e1000_copper_link_igp_setup(hw);
1454                if (ret_val)
1455                        return ret_val;
1456        } else if (hw->phy_type == e1000_phy_m88) {
1457                ret_val = e1000_copper_link_mgp_setup(hw);
1458                if (ret_val)
1459                        return ret_val;
1460        } else {
1461                ret_val = gbe_dhg_phy_setup(hw);
1462                if (ret_val) {
1463                        e_dbg("gbe_dhg_phy_setup failed!\n");
1464                        return ret_val;
1465                }
1466        }
1467
1468        if (hw->autoneg) {
1469                /* Setup autoneg and flow control advertisement
1470                 * and perform autonegotiation
1471                 */
1472                ret_val = e1000_copper_link_autoneg(hw);
1473                if (ret_val)
1474                        return ret_val;
1475        } else {
1476                /* PHY will be set to 10H, 10F, 100H,or 100F
1477                 * depending on value from forced_speed_duplex.
1478                 */
1479                e_dbg("Forcing speed and duplex\n");
1480                ret_val = e1000_phy_force_speed_duplex(hw);
1481                if (ret_val) {
1482                        e_dbg("Error Forcing Speed and Duplex\n");
1483                        return ret_val;
1484                }
1485        }
1486
1487        /* Check link status. Wait up to 100 microseconds for link to become
1488         * valid.
1489         */
1490        for (i = 0; i < 10; i++) {
1491                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1492                if (ret_val)
1493                        return ret_val;
1494                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1495                if (ret_val)
1496                        return ret_val;
1497
1498                if (phy_data & MII_SR_LINK_STATUS) {
1499                        /* Config the MAC and PHY after link is up */
1500                        ret_val = e1000_copper_link_postconfig(hw);
1501                        if (ret_val)
1502                                return ret_val;
1503
1504                        e_dbg("Valid link established!!!\n");
1505                        return E1000_SUCCESS;
1506                }
1507                udelay(10);
1508        }
1509
1510        e_dbg("Unable to establish link!!!\n");
1511        return E1000_SUCCESS;
1512}
1513
1514/**
1515 * e1000_phy_setup_autoneg - phy settings
1516 * @hw: Struct containing variables accessed by shared code
1517 *
1518 * Configures PHY autoneg and flow control advertisement settings
1519 */
1520s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1521{
1522        s32 ret_val;
1523        u16 mii_autoneg_adv_reg;
1524        u16 mii_1000t_ctrl_reg;
1525
1526        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1527        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1528        if (ret_val)
1529                return ret_val;
1530
1531        /* Read the MII 1000Base-T Control Register (Address 9). */
1532        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1533        if (ret_val)
1534                return ret_val;
1535        else if (hw->phy_type == e1000_phy_8201)
1536                mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1537
1538        /* Need to parse both autoneg_advertised and fc and set up
1539         * the appropriate PHY registers.  First we will parse for
1540         * autoneg_advertised software override.  Since we can advertise
1541         * a plethora of combinations, we need to check each bit
1542         * individually.
1543         */
1544
1545        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1546         * Advertisement Register (Address 4) and the 1000 mb speed bits in
1547         * the  1000Base-T Control Register (Address 9).
1548         */
1549        mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1550        mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1551
1552        e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1553
1554        /* Do we want to advertise 10 Mb Half Duplex? */
1555        if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1556                e_dbg("Advertise 10mb Half duplex\n");
1557                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1558        }
1559
1560        /* Do we want to advertise 10 Mb Full Duplex? */
1561        if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1562                e_dbg("Advertise 10mb Full duplex\n");
1563                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1564        }
1565
1566        /* Do we want to advertise 100 Mb Half Duplex? */
1567        if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1568                e_dbg("Advertise 100mb Half duplex\n");
1569                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1570        }
1571
1572        /* Do we want to advertise 100 Mb Full Duplex? */
1573        if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1574                e_dbg("Advertise 100mb Full duplex\n");
1575                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1576        }
1577
1578        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1579        if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1580                e_dbg
1581                    ("Advertise 1000mb Half duplex requested, request denied!\n");
1582        }
1583
1584        /* Do we want to advertise 1000 Mb Full Duplex? */
1585        if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1586                e_dbg("Advertise 1000mb Full duplex\n");
1587                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1588        }
1589
1590        /* Check for a software override of the flow control settings, and
1591         * setup the PHY advertisement registers accordingly.  If
1592         * auto-negotiation is enabled, then software will have to set the
1593         * "PAUSE" bits to the correct value in the Auto-Negotiation
1594         * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1595         * auto-negotiation.
1596         *
1597         * The possible values of the "fc" parameter are:
1598         *      0:  Flow control is completely disabled
1599         *      1:  Rx flow control is enabled (we can receive pause frames
1600         *          but not send pause frames).
1601         *      2:  Tx flow control is enabled (we can send pause frames
1602         *          but we do not support receiving pause frames).
1603         *      3:  Both Rx and TX flow control (symmetric) are enabled.
1604         *  other:  No software override.  The flow control configuration
1605         *          in the EEPROM is used.
1606         */
1607        switch (hw->fc) {
1608        case E1000_FC_NONE:     /* 0 */
1609                /* Flow control (RX & TX) is completely disabled by a
1610                 * software over-ride.
1611                 */
1612                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613                break;
1614        case E1000_FC_RX_PAUSE: /* 1 */
1615                /* RX Flow control is enabled, and TX Flow control is
1616                 * disabled, by a software over-ride.
1617                 */
1618                /* Since there really isn't a way to advertise that we are
1619                 * capable of RX Pause ONLY, we will advertise that we
1620                 * support both symmetric and asymmetric RX PAUSE.  Later
1621                 * (in e1000_config_fc_after_link_up) we will disable the
1622                 * hw's ability to send PAUSE frames.
1623                 */
1624                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1625                break;
1626        case E1000_FC_TX_PAUSE: /* 2 */
1627                /* TX Flow control is enabled, and RX Flow control is
1628                 * disabled, by a software over-ride.
1629                 */
1630                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1631                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1632                break;
1633        case E1000_FC_FULL:     /* 3 */
1634                /* Flow control (both RX and TX) is enabled by a software
1635                 * over-ride.
1636                 */
1637                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1638                break;
1639        default:
1640                e_dbg("Flow control param set incorrectly\n");
1641                return -E1000_ERR_CONFIG;
1642        }
1643
1644        ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1645        if (ret_val)
1646                return ret_val;
1647
1648        e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1649
1650        if (hw->phy_type == e1000_phy_8201) {
1651                mii_1000t_ctrl_reg = 0;
1652        } else {
1653                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1654                                              mii_1000t_ctrl_reg);
1655                if (ret_val)
1656                        return ret_val;
1657        }
1658
1659        return E1000_SUCCESS;
1660}
1661
1662/**
1663 * e1000_phy_force_speed_duplex - force link settings
1664 * @hw: Struct containing variables accessed by shared code
1665 *
1666 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1667 */
1668static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1669{
1670        u32 ctrl;
1671        s32 ret_val;
1672        u16 mii_ctrl_reg;
1673        u16 mii_status_reg;
1674        u16 phy_data;
1675        u16 i;
1676
1677        /* Turn off Flow control if we are forcing speed and duplex. */
1678        hw->fc = E1000_FC_NONE;
1679
1680        e_dbg("hw->fc = %d\n", hw->fc);
1681
1682        /* Read the Device Control Register. */
1683        ctrl = er32(CTRL);
1684
1685        /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1686        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1687        ctrl &= ~(DEVICE_SPEED_MASK);
1688
1689        /* Clear the Auto Speed Detect Enable bit. */
1690        ctrl &= ~E1000_CTRL_ASDE;
1691
1692        /* Read the MII Control Register. */
1693        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1694        if (ret_val)
1695                return ret_val;
1696
1697        /* We need to disable autoneg in order to force link and duplex. */
1698
1699        mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1700
1701        /* Are we forcing Full or Half Duplex? */
1702        if (hw->forced_speed_duplex == e1000_100_full ||
1703            hw->forced_speed_duplex == e1000_10_full) {
1704                /* We want to force full duplex so we SET the full duplex bits
1705                 * in the Device and MII Control Registers.
1706                 */
1707                ctrl |= E1000_CTRL_FD;
1708                mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1709                e_dbg("Full Duplex\n");
1710        } else {
1711                /* We want to force half duplex so we CLEAR the full duplex bits
1712                 * in the Device and MII Control Registers.
1713                 */
1714                ctrl &= ~E1000_CTRL_FD;
1715                mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1716                e_dbg("Half Duplex\n");
1717        }
1718
1719        /* Are we forcing 100Mbps??? */
1720        if (hw->forced_speed_duplex == e1000_100_full ||
1721            hw->forced_speed_duplex == e1000_100_half) {
1722                /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1723                ctrl |= E1000_CTRL_SPD_100;
1724                mii_ctrl_reg |= MII_CR_SPEED_100;
1725                mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1726                e_dbg("Forcing 100mb ");
1727        } else {
1728                /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1729                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1730                mii_ctrl_reg |= MII_CR_SPEED_10;
1731                mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1732                e_dbg("Forcing 10mb ");
1733        }
1734
1735        e1000_config_collision_dist(hw);
1736
1737        /* Write the configured values back to the Device Control Reg. */
1738        ew32(CTRL, ctrl);
1739
1740        if (hw->phy_type == e1000_phy_m88) {
1741                ret_val =
1742                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1743                if (ret_val)
1744                        return ret_val;
1745
1746                /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1747                 * MDI forced whenever speed are duplex are forced.
1748                 */
1749                phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1750                ret_val =
1751                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1752                if (ret_val)
1753                        return ret_val;
1754
1755                e_dbg("M88E1000 PSCR: %x\n", phy_data);
1756
1757                /* Need to reset the PHY or these changes will be ignored */
1758                mii_ctrl_reg |= MII_CR_RESET;
1759
1760                /* Disable MDI-X support for 10/100 */
1761        } else {
1762                /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1763                 * forced whenever speed or duplex are forced.
1764                 */
1765                ret_val =
1766                    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1767                if (ret_val)
1768                        return ret_val;
1769
1770                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1771                phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1772
1773                ret_val =
1774                    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1775                if (ret_val)
1776                        return ret_val;
1777        }
1778
1779        /* Write back the modified PHY MII control register. */
1780        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1781        if (ret_val)
1782                return ret_val;
1783
1784        udelay(1);
1785
1786        /* The wait_autoneg_complete flag may be a little misleading here.
1787         * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1788         * But we do want to delay for a period while forcing only so we
1789         * don't generate false No Link messages.  So we will wait here
1790         * only if the user has set wait_autoneg_complete to 1, which is
1791         * the default.
1792         */
1793        if (hw->wait_autoneg_complete) {
1794                /* We will wait for autoneg to complete. */
1795                e_dbg("Waiting for forced speed/duplex link.\n");
1796                mii_status_reg = 0;
1797
1798                /* Wait for autoneg to complete or 4.5 seconds to expire */
1799                for (i = PHY_FORCE_TIME; i > 0; i--) {
1800                        /* Read the MII Status Register and wait for Auto-Neg
1801                         * Complete bit to be set.
1802                         */
1803                        ret_val =
1804                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1805                        if (ret_val)
1806                                return ret_val;
1807
1808                        ret_val =
1809                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1810                        if (ret_val)
1811                                return ret_val;
1812
1813                        if (mii_status_reg & MII_SR_LINK_STATUS)
1814                                break;
1815                        msleep(100);
1816                }
1817                if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1818                        /* We didn't get link.  Reset the DSP and wait again
1819                         * for link.
1820                         */
1821                        ret_val = e1000_phy_reset_dsp(hw);
1822                        if (ret_val) {
1823                                e_dbg("Error Resetting PHY DSP\n");
1824                                return ret_val;
1825                        }
1826                }
1827                /* This loop will early-out if the link condition has been
1828                 * met
1829                 */
1830                for (i = PHY_FORCE_TIME; i > 0; i--) {
1831                        if (mii_status_reg & MII_SR_LINK_STATUS)
1832                                break;
1833                        msleep(100);
1834                        /* Read the MII Status Register and wait for Auto-Neg
1835                         * Complete bit to be set.
1836                         */
1837                        ret_val =
1838                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1839                        if (ret_val)
1840                                return ret_val;
1841
1842                        ret_val =
1843                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1844                        if (ret_val)
1845                                return ret_val;
1846                }
1847        }
1848
1849        if (hw->phy_type == e1000_phy_m88) {
1850                /* Because we reset the PHY above, we need to re-force TX_CLK in
1851                 * the Extended PHY Specific Control Register to 25MHz clock.
1852                 * This value defaults back to a 2.5MHz clock when the PHY is
1853                 * reset.
1854                 */
1855                ret_val =
1856                    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1857                                       &phy_data);
1858                if (ret_val)
1859                        return ret_val;
1860
1861                phy_data |= M88E1000_EPSCR_TX_CLK_25;
1862                ret_val =
1863                    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1864                                        phy_data);
1865                if (ret_val)
1866                        return ret_val;
1867
1868                /* In addition, because of the s/w reset above, we need to
1869                 * enable CRS on Tx.  This must be set for both full and half
1870                 * duplex operation.
1871                 */
1872                ret_val =
1873                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874                if (ret_val)
1875                        return ret_val;
1876
1877                phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1878                ret_val =
1879                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1880                if (ret_val)
1881                        return ret_val;
1882
1883                if ((hw->mac_type == e1000_82544 ||
1884                     hw->mac_type == e1000_82543) &&
1885                    (!hw->autoneg) &&
1886                    (hw->forced_speed_duplex == e1000_10_full ||
1887                     hw->forced_speed_duplex == e1000_10_half)) {
1888                        ret_val = e1000_polarity_reversal_workaround(hw);
1889                        if (ret_val)
1890                                return ret_val;
1891                }
1892        }
1893        return E1000_SUCCESS;
1894}
1895
1896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
1904void e1000_config_collision_dist(struct e1000_hw *hw)
1905{
1906        u32 tctl, coll_dist;
1907
1908        if (hw->mac_type < e1000_82543)
1909                coll_dist = E1000_COLLISION_DISTANCE_82542;
1910        else
1911                coll_dist = E1000_COLLISION_DISTANCE;
1912
1913        tctl = er32(TCTL);
1914
1915        tctl &= ~E1000_TCTL_COLD;
1916        tctl |= coll_dist << E1000_COLD_SHIFT;
1917
1918        ew32(TCTL, tctl);
1919        E1000_WRITE_FLUSH();
1920}
1921
1922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
1931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932{
1933        u32 ctrl;
1934        s32 ret_val;
1935        u16 phy_data;
1936
1937        /* 82544 or newer MAC, Auto Speed Detection takes care of
1938         * MAC speed/duplex configuration.
1939         */
1940        if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941                return E1000_SUCCESS;
1942
1943        /* Read the Device Control Register and set the bits to Force Speed
1944         * and Duplex.
1945         */
1946        ctrl = er32(CTRL);
1947        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948        ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949
1950        switch (hw->phy_type) {
1951        case e1000_phy_8201:
1952                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953                if (ret_val)
1954                        return ret_val;
1955
1956                if (phy_data & RTL_PHY_CTRL_FD)
1957                        ctrl |= E1000_CTRL_FD;
1958                else
1959                        ctrl &= ~E1000_CTRL_FD;
1960
1961                if (phy_data & RTL_PHY_CTRL_SPD_100)
1962                        ctrl |= E1000_CTRL_SPD_100;
1963                else
1964                        ctrl |= E1000_CTRL_SPD_10;
1965
1966                e1000_config_collision_dist(hw);
1967                break;
1968        default:
1969                /* Set up duplex in the Device Control and Transmit Control
1970                 * registers depending on negotiated values.
1971                 */
1972                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973                                             &phy_data);
1974                if (ret_val)
1975                        return ret_val;
1976
1977                if (phy_data & M88E1000_PSSR_DPLX)
1978                        ctrl |= E1000_CTRL_FD;
1979                else
1980                        ctrl &= ~E1000_CTRL_FD;
1981
1982                e1000_config_collision_dist(hw);
1983
1984                /* Set up speed in the Device Control register depending on
1985                 * negotiated values.
1986                 */
1987                if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988                        ctrl |= E1000_CTRL_SPD_1000;
1989                else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990                         M88E1000_PSSR_100MBS)
1991                        ctrl |= E1000_CTRL_SPD_100;
1992        }
1993
1994        /* Write the configured values back to the Device Control Reg. */
1995        ew32(CTRL, ctrl);
1996        return E1000_SUCCESS;
1997}
1998
1999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
2003 * Forces the MAC's flow control settings.
2004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
2009 */
2010s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011{
2012        u32 ctrl;
2013
2014        /* Get the current configuration of the Device Control Register */
2015        ctrl = er32(CTRL);
2016
2017        /* Because we didn't get link via the internal auto-negotiation
2018         * mechanism (we either forced link or we got link via PHY
2019         * auto-neg), we have to manually enable/disable transmit an
2020         * receive flow control.
2021         *
2022         * The "Case" statement below enables/disable flow control
2023         * according to the "hw->fc" parameter.
2024         *
2025         * The possible values of the "fc" parameter are:
2026         *      0:  Flow control is completely disabled
2027         *      1:  Rx flow control is enabled (we can receive pause
2028         *          frames but not send pause frames).
2029         *      2:  Tx flow control is enabled (we can send pause frames
2030         *          frames but we do not receive pause frames).
2031         *      3:  Both Rx and TX flow control (symmetric) is enabled.
2032         *  other:  No other values should be possible at this point.
2033         */
2034
2035        switch (hw->fc) {
2036        case E1000_FC_NONE:
2037                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038                break;
2039        case E1000_FC_RX_PAUSE:
2040                ctrl &= (~E1000_CTRL_TFCE);
2041                ctrl |= E1000_CTRL_RFCE;
2042                break;
2043        case E1000_FC_TX_PAUSE:
2044                ctrl &= (~E1000_CTRL_RFCE);
2045                ctrl |= E1000_CTRL_TFCE;
2046                break;
2047        case E1000_FC_FULL:
2048                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049                break;
2050        default:
2051                e_dbg("Flow control param set incorrectly\n");
2052                return -E1000_ERR_CONFIG;
2053        }
2054
2055        /* Disable TX Flow Control for 82542 (rev 2.0) */
2056        if (hw->mac_type == e1000_82542_rev2_0)
2057                ctrl &= (~E1000_CTRL_TFCE);
2058
2059        ew32(CTRL, ctrl);
2060        return E1000_SUCCESS;
2061}
2062
2063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
2067 * Configures flow control settings after link is established
2068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
2074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075{
2076        s32 ret_val;
2077        u16 mii_status_reg;
2078        u16 mii_nway_adv_reg;
2079        u16 mii_nway_lp_ability_reg;
2080        u16 speed;
2081        u16 duplex;
2082
2083        /* Check for the case where we have fiber media and auto-neg failed
2084         * so we had to force link.  In this case, we need to force the
2085         * configuration of the MAC to match the "fc" parameter.
2086         */
2087        if (((hw->media_type == e1000_media_type_fiber) &&
2088             (hw->autoneg_failed)) ||
2089            ((hw->media_type == e1000_media_type_internal_serdes) &&
2090             (hw->autoneg_failed)) ||
2091            ((hw->media_type == e1000_media_type_copper) &&
2092             (!hw->autoneg))) {
2093                ret_val = e1000_force_mac_fc(hw);
2094                if (ret_val) {
2095                        e_dbg("Error forcing flow control settings\n");
2096                        return ret_val;
2097                }
2098        }
2099
2100        /* Check for the case where we have copper media and auto-neg is
2101         * enabled.  In this case, we need to check and see if Auto-Neg
2102         * has completed, and if so, how the PHY and link partner has
2103         * flow control configured.
2104         */
2105        if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2106                /* Read the MII Status Register and check to see if AutoNeg
2107                 * has completed.  We read this twice because this reg has
2108                 * some "sticky" (latched) bits.
2109                 */
2110                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2111                if (ret_val)
2112                        return ret_val;
2113                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2114                if (ret_val)
2115                        return ret_val;
2116
2117                if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2118                        /* The AutoNeg process has completed, so we now need to
2119                         * read both the Auto Negotiation Advertisement Register
2120                         * (Address 4) and the Auto_Negotiation Base Page
2121                         * Ability Register (Address 5) to determine how flow
2122                         * control was negotiated.
2123                         */
2124                        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2125                                                     &mii_nway_adv_reg);
2126                        if (ret_val)
2127                                return ret_val;
2128                        ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2129                                                     &mii_nway_lp_ability_reg);
2130                        if (ret_val)
2131                                return ret_val;
2132
2133                        /* Two bits in the Auto Negotiation Advertisement
2134                         * Register (Address 4) and two bits in the Auto
2135                         * Negotiation Base Page Ability Register (Address 5)
2136                         * determine flow control for both the PHY and the link
2137                         * partner.  The following table, taken out of the IEEE
2138                         * 802.3ab/D6.0 dated March 25, 1999, describes these
2139                         * PAUSE resolution bits and how flow control is
2140                         * determined based upon these settings.
2141                         * NOTE:  DC = Don't Care
2142                         *
2143                         *   LOCAL DEVICE  |   LINK PARTNER
2144                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2145                         *-------|---------|-------|---------|------------------
2146                         *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2147                         *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2148                         *   0   |    1    |   1   |    0    | E1000_FC_NONE
2149                         *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2150                         *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2151                         *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2152                         *   1   |    1    |   0   |    0    | E1000_FC_NONE
2153                         *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2154                         *
2155                         */
2156                        /* Are both PAUSE bits set to 1?  If so, this implies
2157                         * Symmetric Flow Control is enabled at both ends.  The
2158                         * ASM_DIR bits are irrelevant per the spec.
2159                         *
2160                         * For Symmetric Flow Control:
2161                         *
2162                         *   LOCAL DEVICE  |   LINK PARTNER
2163                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164                         *-------|---------|-------|---------|------------------
2165                         *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2166                         *
2167                         */
2168                        if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169                            (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2170                                /* Now we need to check if the user selected Rx
2171                                 * ONLY of pause frames.  In this case, we had
2172                                 * to advertise FULL flow control because we
2173                                 * could not advertise Rx ONLY. Hence, we must
2174                                 * now check to see if we need to turn OFF the
2175                                 * TRANSMISSION of PAUSE frames.
2176                                 */
2177                                if (hw->original_fc == E1000_FC_FULL) {
2178                                        hw->fc = E1000_FC_FULL;
2179                                        e_dbg("Flow Control = FULL.\n");
2180                                } else {
2181                                        hw->fc = E1000_FC_RX_PAUSE;
2182                                        e_dbg
2183                                            ("Flow Control = RX PAUSE frames only.\n");
2184                                }
2185                        }
2186                        /* For receiving PAUSE frames ONLY.
2187                         *
2188                         *   LOCAL DEVICE  |   LINK PARTNER
2189                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2190                         *-------|---------|-------|---------|------------------
2191                         *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2192                         *
2193                         */
2194                        else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2195                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2196                                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2197                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2198                                hw->fc = E1000_FC_TX_PAUSE;
2199                                e_dbg
2200                                    ("Flow Control = TX PAUSE frames only.\n");
2201                        }
2202                        /* For transmitting PAUSE frames ONLY.
2203                         *
2204                         *   LOCAL DEVICE  |   LINK PARTNER
2205                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206                         *-------|---------|-------|---------|------------------
2207                         *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2208                         *
2209                         */
2210                        else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212                                 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2214                                hw->fc = E1000_FC_RX_PAUSE;
2215                                e_dbg
2216                                    ("Flow Control = RX PAUSE frames only.\n");
2217                        }
2218                        /* Per the IEEE spec, at this point flow control should
2219                         * be disabled.  However, we want to consider that we
2220                         * could be connected to a legacy switch that doesn't
2221                         * advertise desired flow control, but can be forced on
2222                         * the link partner.  So if we advertised no flow
2223                         * control, that is what we will resolve to.  If we
2224                         * advertised some kind of receive capability (Rx Pause
2225                         * Only or Full Flow Control) and the link partner
2226                         * advertised none, we will configure ourselves to
2227                         * enable Rx Flow Control only.  We can do this safely
2228                         * for two reasons:  If the link partner really
2229                         * didn't want flow control enabled, and we enable Rx,
2230                         * no harm done since we won't be receiving any PAUSE
2231                         * frames anyway.  If the intent on the link partner was
2232                         * to have flow control enabled, then by us enabling Rx
2233                         * only, we can at least receive pause frames and
2234                         * process them. This is a good idea because in most
2235                         * cases, since we are predominantly a server NIC, more
2236                         * times than not we will be asked to delay transmission
2237                         * of packets than asking our link partner to pause
2238                         * transmission of frames.
2239                         */
2240                        else if ((hw->original_fc == E1000_FC_NONE ||
2241                                  hw->original_fc == E1000_FC_TX_PAUSE) ||
2242                                 hw->fc_strict_ieee) {
2243                                hw->fc = E1000_FC_NONE;
2244                                e_dbg("Flow Control = NONE.\n");
2245                        } else {
2246                                hw->fc = E1000_FC_RX_PAUSE;
2247                                e_dbg
2248                                    ("Flow Control = RX PAUSE frames only.\n");
2249                        }
2250
2251                        /* Now we need to do one last check...  If we auto-
2252                         * negotiated to HALF DUPLEX, flow control should not be
2253                         * enabled per IEEE 802.3 spec.
2254                         */
2255                        ret_val =
2256                            e1000_get_speed_and_duplex(hw, &speed, &duplex);
2257                        if (ret_val) {
2258                                e_dbg
2259                                    ("Error getting link speed and duplex\n");
2260                                return ret_val;
2261                        }
2262
2263                        if (duplex == HALF_DUPLEX)
2264                                hw->fc = E1000_FC_NONE;
2265
2266                        /* Now we call a subroutine to actually force the MAC
2267                         * controller to use the correct flow control settings.
2268                         */
2269                        ret_val = e1000_force_mac_fc(hw);
2270                        if (ret_val) {
2271                                e_dbg
2272                                    ("Error forcing flow control settings\n");
2273                                return ret_val;
2274                        }
2275                } else {
2276                        e_dbg
2277                            ("Copper PHY and Auto Neg has not completed.\n");
2278                }
2279        }
2280        return E1000_SUCCESS;
2281}
2282
2283/**
2284 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2285 * @hw: pointer to the HW structure
2286 *
2287 * Checks for link up on the hardware.  If link is not up and we have
2288 * a signal, then we need to force link up.
2289 */
2290static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2291{
2292        u32 rxcw;
2293        u32 ctrl;
2294        u32 status;
2295        s32 ret_val = E1000_SUCCESS;
2296
2297        ctrl = er32(CTRL);
2298        status = er32(STATUS);
2299        rxcw = er32(RXCW);
2300
2301        /* If we don't have link (auto-negotiation failed or link partner
2302         * cannot auto-negotiate), and our link partner is not trying to
2303         * auto-negotiate with us (we are receiving idles or data),
2304         * we need to force link up. We also need to give auto-negotiation
2305         * time to complete.
2306         */
2307        /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2308        if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2309                if (hw->autoneg_failed == 0) {
2310                        hw->autoneg_failed = 1;
2311                        goto out;
2312                }
2313                e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2314
2315                /* Disable auto-negotiation in the TXCW register */
2316                ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2317
2318                /* Force link-up and also force full-duplex. */
2319                ctrl = er32(CTRL);
2320                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2321                ew32(CTRL, ctrl);
2322
2323                /* Configure Flow Control after forcing link up. */
2324                ret_val = e1000_config_fc_after_link_up(hw);
2325                if (ret_val) {
2326                        e_dbg("Error configuring flow control\n");
2327                        goto out;
2328                }
2329        } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2330                /* If we are forcing link and we are receiving /C/ ordered
2331                 * sets, re-enable auto-negotiation in the TXCW register
2332                 * and disable forced link in the Device Control register
2333                 * in an attempt to auto-negotiate with our link partner.
2334                 */
2335                e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2336                ew32(TXCW, hw->txcw);
2337                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2338
2339                hw->serdes_has_link = true;
2340        } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2341                /* If we force link for non-auto-negotiation switch, check
2342                 * link status based on MAC synchronization for internal
2343                 * serdes media type.
2344                 */
2345                /* SYNCH bit and IV bit are sticky. */
2346                udelay(10);
2347                rxcw = er32(RXCW);
2348                if (rxcw & E1000_RXCW_SYNCH) {
2349                        if (!(rxcw & E1000_RXCW_IV)) {
2350                                hw->serdes_has_link = true;
2351                                e_dbg("SERDES: Link up - forced.\n");
2352                        }
2353                } else {
2354                        hw->serdes_has_link = false;
2355                        e_dbg("SERDES: Link down - force failed.\n");
2356                }
2357        }
2358
2359        if (E1000_TXCW_ANE & er32(TXCW)) {
2360                status = er32(STATUS);
2361                if (status & E1000_STATUS_LU) {
2362                        /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2363                        udelay(10);
2364                        rxcw = er32(RXCW);
2365                        if (rxcw & E1000_RXCW_SYNCH) {
2366                                if (!(rxcw & E1000_RXCW_IV)) {
2367                                        hw->serdes_has_link = true;
2368                                        e_dbg("SERDES: Link up - autoneg "
2369                                                 "completed successfully.\n");
2370                                } else {
2371                                        hw->serdes_has_link = false;
2372                                        e_dbg("SERDES: Link down - invalid"
2373                                                 "codewords detected in autoneg.\n");
2374                                }
2375                        } else {
2376                                hw->serdes_has_link = false;
2377                                e_dbg("SERDES: Link down - no sync.\n");
2378                        }
2379                } else {
2380                        hw->serdes_has_link = false;
2381                        e_dbg("SERDES: Link down - autoneg failed\n");
2382                }
2383        }
2384
2385      out:
2386        return ret_val;
2387}
2388
2389/**
2390 * e1000_check_for_link
2391 * @hw: Struct containing variables accessed by shared code
2392 *
2393 * Checks to see if the link status of the hardware has changed.
2394 * Called by any function that needs to check the link status of the adapter.
2395 */
2396s32 e1000_check_for_link(struct e1000_hw *hw)
2397{
2398        u32 rxcw = 0;
2399        u32 ctrl;
2400        u32 status;
2401        u32 rctl;
2402        u32 icr;
2403        u32 signal = 0;
2404        s32 ret_val;
2405        u16 phy_data;
2406
2407        ctrl = er32(CTRL);
2408        status = er32(STATUS);
2409
2410        /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2411         * set when the optics detect a signal. On older adapters, it will be
2412         * cleared when there is a signal.  This applies to fiber media only.
2413         */
2414        if ((hw->media_type == e1000_media_type_fiber) ||
2415            (hw->media_type == e1000_media_type_internal_serdes)) {
2416                rxcw = er32(RXCW);
2417
2418                if (hw->media_type == e1000_media_type_fiber) {
2419                        signal =
2420                            (hw->mac_type >
2421                             e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2422                        if (status & E1000_STATUS_LU)
2423                                hw->get_link_status = false;
2424                }
2425        }
2426
2427        /* If we have a copper PHY then we only want to go out to the PHY
2428         * registers to see if Auto-Neg has completed and/or if our link
2429         * status has changed.  The get_link_status flag will be set if we
2430         * receive a Link Status Change interrupt or we have Rx Sequence
2431         * Errors.
2432         */
2433        if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2434                /* First we want to see if the MII Status Register reports
2435                 * link.  If so, then we want to get the current speed/duplex
2436                 * of the PHY.
2437                 * Read the register twice since the link bit is sticky.
2438                 */
2439                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2440                if (ret_val)
2441                        return ret_val;
2442                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2443                if (ret_val)
2444                        return ret_val;
2445
2446                if (phy_data & MII_SR_LINK_STATUS) {
2447                        hw->get_link_status = false;
2448                        /* Check if there was DownShift, must be checked
2449                         * immediately after link-up
2450                         */
2451                        e1000_check_downshift(hw);
2452
2453                        /* If we are on 82544 or 82543 silicon and speed/duplex
2454                         * are forced to 10H or 10F, then we will implement the
2455                         * polarity reversal workaround.  We disable interrupts
2456                         * first, and upon returning, place the devices
2457                         * interrupt state to its previous value except for the
2458                         * link status change interrupt which will
2459                         * happen due to the execution of this workaround.
2460                         */
2461
2462                        if ((hw->mac_type == e1000_82544 ||
2463                             hw->mac_type == e1000_82543) &&
2464                            (!hw->autoneg) &&
2465                            (hw->forced_speed_duplex == e1000_10_full ||
2466                             hw->forced_speed_duplex == e1000_10_half)) {
2467                                ew32(IMC, 0xffffffff);
2468                                ret_val =
2469                                    e1000_polarity_reversal_workaround(hw);
2470                                icr = er32(ICR);
2471                                ew32(ICS, (icr & ~E1000_ICS_LSC));
2472                                ew32(IMS, IMS_ENABLE_MASK);
2473                        }
2474
2475                } else {
2476                        /* No link detected */
2477                        e1000_config_dsp_after_link_change(hw, false);
2478                        return 0;
2479                }
2480
2481                /* If we are forcing speed/duplex, then we simply return since
2482                 * we have already determined whether we have link or not.
2483                 */
2484                if (!hw->autoneg)
2485                        return -E1000_ERR_CONFIG;
2486
2487                /* optimize the dsp settings for the igp phy */
2488                e1000_config_dsp_after_link_change(hw, true);
2489
2490                /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2491                 * have Si on board that is 82544 or newer, Auto
2492                 * Speed Detection takes care of MAC speed/duplex
2493                 * configuration.  So we only need to configure Collision
2494                 * Distance in the MAC.  Otherwise, we need to force
2495                 * speed/duplex on the MAC to the current PHY speed/duplex
2496                 * settings.
2497                 */
2498                if ((hw->mac_type >= e1000_82544) &&
2499                    (hw->mac_type != e1000_ce4100))
2500                        e1000_config_collision_dist(hw);
2501                else {
2502                        ret_val = e1000_config_mac_to_phy(hw);
2503                        if (ret_val) {
2504                                e_dbg
2505                                    ("Error configuring MAC to PHY settings\n");
2506                                return ret_val;
2507                        }
2508                }
2509
2510                /* Configure Flow Control now that Auto-Neg has completed.
2511                 * First, we need to restore the desired flow control settings
2512                 * because we may have had to re-autoneg with a different link
2513                 * partner.
2514                 */
2515                ret_val = e1000_config_fc_after_link_up(hw);
2516                if (ret_val) {
2517                        e_dbg("Error configuring flow control\n");
2518                        return ret_val;
2519                }
2520
2521                /* At this point we know that we are on copper and we have
2522                 * auto-negotiated link.  These are conditions for checking the
2523                 * link partner capability register.  We use the link speed to
2524                 * determine if TBI compatibility needs to be turned on or off.
2525                 * If the link is not at gigabit speed, then TBI compatibility
2526                 * is not needed.  If we are at gigabit speed, we turn on TBI
2527                 * compatibility.
2528                 */
2529                if (hw->tbi_compatibility_en) {
2530                        u16 speed, duplex;
2531
2532                        ret_val =
2533                            e1000_get_speed_and_duplex(hw, &speed, &duplex);
2534
2535                        if (ret_val) {
2536                                e_dbg
2537                                    ("Error getting link speed and duplex\n");
2538                                return ret_val;
2539                        }
2540                        if (speed != SPEED_1000) {
2541                                /* If link speed is not set to gigabit speed, we
2542                                 * do not need to enable TBI compatibility.
2543                                 */
2544                                if (hw->tbi_compatibility_on) {
2545                                        /* If we previously were in the mode,
2546                                         * turn it off.
2547                                         */
2548                                        rctl = er32(RCTL);
2549                                        rctl &= ~E1000_RCTL_SBP;
2550                                        ew32(RCTL, rctl);
2551                                        hw->tbi_compatibility_on = false;
2552                                }
2553                        } else {
2554                                /* If TBI compatibility is was previously off,
2555                                 * turn it on. For compatibility with a TBI link
2556                                 * partner, we will store bad packets. Some
2557                                 * frames have an additional byte on the end and
2558                                 * will look like CRC errors to to the hardware.
2559                                 */
2560                                if (!hw->tbi_compatibility_on) {
2561                                        hw->tbi_compatibility_on = true;
2562                                        rctl = er32(RCTL);
2563                                        rctl |= E1000_RCTL_SBP;
2564                                        ew32(RCTL, rctl);
2565                                }
2566                        }
2567                }
2568        }
2569
2570        if ((hw->media_type == e1000_media_type_fiber) ||
2571            (hw->media_type == e1000_media_type_internal_serdes))
2572                e1000_check_for_serdes_link_generic(hw);
2573
2574        return E1000_SUCCESS;
2575}
2576
2577/**
2578 * e1000_get_speed_and_duplex
2579 * @hw: Struct containing variables accessed by shared code
2580 * @speed: Speed of the connection
2581 * @duplex: Duplex setting of the connection
2582 *
2583 * Detects the current speed and duplex settings of the hardware.
2584 */
2585s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2586{
2587        u32 status;
2588        s32 ret_val;
2589        u16 phy_data;
2590
2591        if (hw->mac_type >= e1000_82543) {
2592                status = er32(STATUS);
2593                if (status & E1000_STATUS_SPEED_1000) {
2594                        *speed = SPEED_1000;
2595                        e_dbg("1000 Mbs, ");
2596                } else if (status & E1000_STATUS_SPEED_100) {
2597                        *speed = SPEED_100;
2598                        e_dbg("100 Mbs, ");
2599                } else {
2600                        *speed = SPEED_10;
2601                        e_dbg("10 Mbs, ");
2602                }
2603
2604                if (status & E1000_STATUS_FD) {
2605                        *duplex = FULL_DUPLEX;
2606                        e_dbg("Full Duplex\n");
2607                } else {
2608                        *duplex = HALF_DUPLEX;
2609                        e_dbg(" Half Duplex\n");
2610                }
2611        } else {
2612                e_dbg("1000 Mbs, Full Duplex\n");
2613                *speed = SPEED_1000;
2614                *duplex = FULL_DUPLEX;
2615        }
2616
2617        /* IGP01 PHY may advertise full duplex operation after speed downgrade
2618         * even if it is operating at half duplex.  Here we set the duplex
2619         * settings to match the duplex in the link partner's capabilities.
2620         */
2621        if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2622                ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2623                if (ret_val)
2624                        return ret_val;
2625
2626                if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2627                        *duplex = HALF_DUPLEX;
2628                else {
2629                        ret_val =
2630                            e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2631                        if (ret_val)
2632                                return ret_val;
2633                        if ((*speed == SPEED_100 &&
2634                             !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2635                            (*speed == SPEED_10 &&
2636                             !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2637                                *duplex = HALF_DUPLEX;
2638                }
2639        }
2640
2641        return E1000_SUCCESS;
2642}
2643
2644/**
2645 * e1000_wait_autoneg
2646 * @hw: Struct containing variables accessed by shared code
2647 *
2648 * Blocks until autoneg completes or times out (~4.5 seconds)
2649 */
2650static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2651{
2652        s32 ret_val;
2653        u16 i;
2654        u16 phy_data;
2655
2656        e_dbg("Waiting for Auto-Neg to complete.\n");
2657
2658        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2659        for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2660                /* Read the MII Status Register and wait for Auto-Neg
2661                 * Complete bit to be set.
2662                 */
2663                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2664                if (ret_val)
2665                        return ret_val;
2666                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2667                if (ret_val)
2668                        return ret_val;
2669                if (phy_data & MII_SR_AUTONEG_COMPLETE)
2670                        return E1000_SUCCESS;
2671
2672                msleep(100);
2673        }
2674        return E1000_SUCCESS;
2675}
2676
2677/**
2678 * e1000_raise_mdi_clk - Raises the Management Data Clock
2679 * @hw: Struct containing variables accessed by shared code
2680 * @ctrl: Device control register's current value
2681 */
2682static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2683{
2684        /* Raise the clock input to the Management Data Clock (by setting the
2685         * MDC bit), and then delay 10 microseconds.
2686         */
2687        ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2688        E1000_WRITE_FLUSH();
2689        udelay(10);
2690}
2691
2692/**
2693 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699        /* Lower the clock input to the Management Data Clock (by clearing the
2700         * MDC bit), and then delay 10 microseconds.
2701         */
2702        ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2703        E1000_WRITE_FLUSH();
2704        udelay(10);
2705}
2706
2707/**
2708 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2709 * @hw: Struct containing variables accessed by shared code
2710 * @data: Data to send out to the PHY
2711 * @count: Number of bits to shift out
2712 *
2713 * Bits are shifted out in MSB to LSB order.
2714 */
2715static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2716{
2717        u32 ctrl;
2718        u32 mask;
2719
2720        /* We need to shift "count" number of bits out to the PHY. So, the value
2721         * in the "data" parameter will be shifted out to the PHY one bit at a
2722         * time. In order to do this, "data" must be broken down into bits.
2723         */
2724        mask = 0x01;
2725        mask <<= (count - 1);
2726
2727        ctrl = er32(CTRL);
2728
2729        /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2730        ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2731
2732        while (mask) {
2733                /* A "1" is shifted out to the PHY by setting the MDIO bit to
2734                 * "1" and then raising and lowering the Management Data Clock.
2735                 * A "0" is shifted out to the PHY by setting the MDIO bit to
2736                 * "0" and then raising and lowering the clock.
2737                 */
2738                if (data & mask)
2739                        ctrl |= E1000_CTRL_MDIO;
2740                else
2741                        ctrl &= ~E1000_CTRL_MDIO;
2742
2743                ew32(CTRL, ctrl);
2744                E1000_WRITE_FLUSH();
2745
2746                udelay(10);
2747
2748                e1000_raise_mdi_clk(hw, &ctrl);
2749                e1000_lower_mdi_clk(hw, &ctrl);
2750
2751                mask = mask >> 1;
2752        }
2753}
2754
2755/**
2756 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2757 * @hw: Struct containing variables accessed by shared code
2758 *
2759 * Bits are shifted in in MSB to LSB order.
2760 */
2761static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2762{
2763        u32 ctrl;
2764        u16 data = 0;
2765        u8 i;
2766
2767        /* In order to read a register from the PHY, we need to shift in a total
2768         * of 18 bits from the PHY. The first two bit (turnaround) times are
2769         * used to avoid contention on the MDIO pin when a read operation is
2770         * performed. These two bits are ignored by us and thrown away. Bits are
2771         * "shifted in" by raising the input to the Management Data Clock
2772         * (setting the MDC bit), and then reading the value of the MDIO bit.
2773         */
2774        ctrl = er32(CTRL);
2775
2776        /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2777         * input.
2778         */
2779        ctrl &= ~E1000_CTRL_MDIO_DIR;
2780        ctrl &= ~E1000_CTRL_MDIO;
2781
2782        ew32(CTRL, ctrl);
2783        E1000_WRITE_FLUSH();
2784
2785        /* Raise and Lower the clock before reading in the data. This accounts
2786         * for the turnaround bits. The first clock occurred when we clocked out
2787         * the last bit of the Register Address.
2788         */
2789        e1000_raise_mdi_clk(hw, &ctrl);
2790        e1000_lower_mdi_clk(hw, &ctrl);
2791
2792        for (data = 0, i = 0; i < 16; i++) {
2793                data = data << 1;
2794                e1000_raise_mdi_clk(hw, &ctrl);
2795                ctrl = er32(CTRL);
2796                /* Check to see if we shifted in a "1". */
2797                if (ctrl & E1000_CTRL_MDIO)
2798                        data |= 1;
2799                e1000_lower_mdi_clk(hw, &ctrl);
2800        }
2801
2802        e1000_raise_mdi_clk(hw, &ctrl);
2803        e1000_lower_mdi_clk(hw, &ctrl);
2804
2805        return data;
2806}
2807
2808/**
2809 * e1000_read_phy_reg - read a phy register
2810 * @hw: Struct containing variables accessed by shared code
2811 * @reg_addr: address of the PHY register to read
2812 * @phy_data: pointer to the value on the PHY register
2813 *
2814 * Reads the value from a PHY register, if the value is on a specific non zero
2815 * page, sets the page first.
2816 */
2817s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2818{
2819        u32 ret_val;
2820        unsigned long flags;
2821
2822        spin_lock_irqsave(&e1000_phy_lock, flags);
2823
2824        if ((hw->phy_type == e1000_phy_igp) &&
2825            (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2826                ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2827                                                 (u16) reg_addr);
2828                if (ret_val)
2829                        goto out;
2830        }
2831
2832        ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833                                        phy_data);
2834out:
2835        spin_unlock_irqrestore(&e1000_phy_lock, flags);
2836
2837        return ret_val;
2838}
2839
2840static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2841                                 u16 *phy_data)
2842{
2843        u32 i;
2844        u32 mdic = 0;
2845        const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2846
2847        if (reg_addr > MAX_PHY_REG_ADDRESS) {
2848                e_dbg("PHY Address %d is out of range\n", reg_addr);
2849                return -E1000_ERR_PARAM;
2850        }
2851
2852        if (hw->mac_type > e1000_82543) {
2853                /* Set up Op-code, Phy Address, and register address in the MDI
2854                 * Control register.  The MAC will take care of interfacing with
2855                 * the PHY to retrieve the desired data.
2856                 */
2857                if (hw->mac_type == e1000_ce4100) {
2858                        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2859                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2860                                (INTEL_CE_GBE_MDIC_OP_READ) |
2861                                (INTEL_CE_GBE_MDIC_GO));
2862
2863                        writel(mdic, E1000_MDIO_CMD);
2864
2865                        /* Poll the ready bit to see if the MDI read
2866                         * completed
2867                         */
2868                        for (i = 0; i < 64; i++) {
2869                                udelay(50);
2870                                mdic = readl(E1000_MDIO_CMD);
2871                                if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2872                                        break;
2873                        }
2874
2875                        if (mdic & INTEL_CE_GBE_MDIC_GO) {
2876                                e_dbg("MDI Read did not complete\n");
2877                                return -E1000_ERR_PHY;
2878                        }
2879
2880                        mdic = readl(E1000_MDIO_STS);
2881                        if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2882                                e_dbg("MDI Read Error\n");
2883                                return -E1000_ERR_PHY;
2884                        }
2885                        *phy_data = (u16)mdic;
2886                } else {
2887                        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2888                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2889                                (E1000_MDIC_OP_READ));
2890
2891                        ew32(MDIC, mdic);
2892
2893                        /* Poll the ready bit to see if the MDI read
2894                         * completed
2895                         */
2896                        for (i = 0; i < 64; i++) {
2897                                udelay(50);
2898                                mdic = er32(MDIC);
2899                                if (mdic & E1000_MDIC_READY)
2900                                        break;
2901                        }
2902                        if (!(mdic & E1000_MDIC_READY)) {
2903                                e_dbg("MDI Read did not complete\n");
2904                                return -E1000_ERR_PHY;
2905                        }
2906                        if (mdic & E1000_MDIC_ERROR) {
2907                                e_dbg("MDI Error\n");
2908                                return -E1000_ERR_PHY;
2909                        }
2910                        *phy_data = (u16)mdic;
2911                }
2912        } else {
2913                /* We must first send a preamble through the MDIO pin to signal
2914                 * the beginning of an MII instruction.  This is done by sending
2915                 * 32 consecutive "1" bits.
2916                 */
2917                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2918
2919                /* Now combine the next few fields that are required for a read
2920                 * operation.  We use this method instead of calling the
2921                 * e1000_shift_out_mdi_bits routine five different times. The
2922                 * format of a MII read instruction consists of a shift out of
2923                 * 14 bits and is defined as follows:
2924                 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2925                 * followed by a shift in of 18 bits.  This first two bits
2926                 * shifted in are TurnAround bits used to avoid contention on
2927                 * the MDIO pin when a READ operation is performed.  These two
2928                 * bits are thrown away followed by a shift in of 16 bits which
2929                 * contains the desired data.
2930                 */
2931                mdic = ((reg_addr) | (phy_addr << 5) |
2932                        (PHY_OP_READ << 10) | (PHY_SOF << 12));
2933
2934                e1000_shift_out_mdi_bits(hw, mdic, 14);
2935
2936                /* Now that we've shifted out the read command to the MII, we
2937                 * need to "shift in" the 16-bit value (18 total bits) of the
2938                 * requested PHY register address.
2939                 */
2940                *phy_data = e1000_shift_in_mdi_bits(hw);
2941        }
2942        return E1000_SUCCESS;
2943}
2944
2945/**
2946 * e1000_write_phy_reg - write a phy register
2947 *
2948 * @hw: Struct containing variables accessed by shared code
2949 * @reg_addr: address of the PHY register to write
2950 * @data: data to write to the PHY
2951 *
2952 * Writes a value to a PHY register
2953 */
2954s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2955{
2956        u32 ret_val;
2957        unsigned long flags;
2958
2959        spin_lock_irqsave(&e1000_phy_lock, flags);
2960
2961        if ((hw->phy_type == e1000_phy_igp) &&
2962            (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2963                ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2964                                                 (u16)reg_addr);
2965                if (ret_val) {
2966                        spin_unlock_irqrestore(&e1000_phy_lock, flags);
2967                        return ret_val;
2968                }
2969        }
2970
2971        ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2972                                         phy_data);
2973        spin_unlock_irqrestore(&e1000_phy_lock, flags);
2974
2975        return ret_val;
2976}
2977
2978static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2979                                  u16 phy_data)
2980{
2981        u32 i;
2982        u32 mdic = 0;
2983        const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2984
2985        if (reg_addr > MAX_PHY_REG_ADDRESS) {
2986                e_dbg("PHY Address %d is out of range\n", reg_addr);
2987                return -E1000_ERR_PARAM;
2988        }
2989
2990        if (hw->mac_type > e1000_82543) {
2991                /* Set up Op-code, Phy Address, register address, and data
2992                 * intended for the PHY register in the MDI Control register.
2993                 * The MAC will take care of interfacing with the PHY to send
2994                 * the desired data.
2995                 */
2996                if (hw->mac_type == e1000_ce4100) {
2997                        mdic = (((u32)phy_data) |
2998                                (reg_addr << E1000_MDIC_REG_SHIFT) |
2999                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3000                                (INTEL_CE_GBE_MDIC_OP_WRITE) |
3001                                (INTEL_CE_GBE_MDIC_GO));
3002
3003                        writel(mdic, E1000_MDIO_CMD);
3004
3005                        /* Poll the ready bit to see if the MDI read
3006                         * completed
3007                         */
3008                        for (i = 0; i < 640; i++) {
3009                                udelay(5);
3010                                mdic = readl(E1000_MDIO_CMD);
3011                                if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3012                                        break;
3013                        }
3014                        if (mdic & INTEL_CE_GBE_MDIC_GO) {
3015                                e_dbg("MDI Write did not complete\n");
3016                                return -E1000_ERR_PHY;
3017                        }
3018                } else {
3019                        mdic = (((u32)phy_data) |
3020                                (reg_addr << E1000_MDIC_REG_SHIFT) |
3021                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3022                                (E1000_MDIC_OP_WRITE));
3023
3024                        ew32(MDIC, mdic);
3025
3026                        /* Poll the ready bit to see if the MDI read
3027                         * completed
3028                         */
3029                        for (i = 0; i < 641; i++) {
3030                                udelay(5);
3031                                mdic = er32(MDIC);
3032                                if (mdic & E1000_MDIC_READY)
3033                                        break;
3034                        }
3035                        if (!(mdic & E1000_MDIC_READY)) {
3036                                e_dbg("MDI Write did not complete\n");
3037                                return -E1000_ERR_PHY;
3038                        }
3039                }
3040        } else {
3041                /* We'll need to use the SW defined pins to shift the write
3042                 * command out to the PHY. We first send a preamble to the PHY
3043                 * to signal the beginning of the MII instruction.  This is done
3044                 * by sending 32 consecutive "1" bits.
3045                 */
3046                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3047
3048                /* Now combine the remaining required fields that will indicate
3049                 * a write operation. We use this method instead of calling the
3050                 * e1000_shift_out_mdi_bits routine for each field in the
3051                 * command. The format of a MII write instruction is as follows:
3052                 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3053                 */
3054                mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3055                        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3056                mdic <<= 16;
3057                mdic |= (u32)phy_data;
3058
3059                e1000_shift_out_mdi_bits(hw, mdic, 32);
3060        }
3061
3062        return E1000_SUCCESS;
3063}
3064
3065/**
3066 * e1000_phy_hw_reset - reset the phy, hardware style
3067 * @hw: Struct containing variables accessed by shared code
3068 *
3069 * Returns the PHY to the power-on reset state
3070 */
3071s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3072{
3073        u32 ctrl, ctrl_ext;
3074        u32 led_ctrl;
3075
3076        e_dbg("Resetting Phy...\n");
3077
3078        if (hw->mac_type > e1000_82543) {
3079                /* Read the device control register and assert the
3080                 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3081                 * For e1000 hardware, we delay for 10ms between the assert
3082                 * and de-assert.
3083                 */
3084                ctrl = er32(CTRL);
3085                ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3086                E1000_WRITE_FLUSH();
3087
3088                msleep(10);
3089
3090                ew32(CTRL, ctrl);
3091                E1000_WRITE_FLUSH();
3092
3093        } else {
3094                /* Read the Extended Device Control Register, assert the
3095                 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3096                 * out of reset.
3097                 */
3098                ctrl_ext = er32(CTRL_EXT);
3099                ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3100                ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3101                ew32(CTRL_EXT, ctrl_ext);
3102                E1000_WRITE_FLUSH();
3103                msleep(10);
3104                ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3105                ew32(CTRL_EXT, ctrl_ext);
3106                E1000_WRITE_FLUSH();
3107        }
3108        udelay(150);
3109
3110        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3111                /* Configure activity LED after PHY reset */
3112                led_ctrl = er32(LEDCTL);
3113                led_ctrl &= IGP_ACTIVITY_LED_MASK;
3114                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3115                ew32(LEDCTL, led_ctrl);
3116        }
3117
3118        /* Wait for FW to finish PHY configuration. */
3119        return e1000_get_phy_cfg_done(hw);
3120}
3121
3122/**
3123 * e1000_phy_reset - reset the phy to commit settings
3124 * @hw: Struct containing variables accessed by shared code
3125 *
3126 * Resets the PHY
3127 * Sets bit 15 of the MII Control register
3128 */
3129s32 e1000_phy_reset(struct e1000_hw *hw)
3130{
3131        s32 ret_val;
3132        u16 phy_data;
3133
3134        switch (hw->phy_type) {
3135        case e1000_phy_igp:
3136                ret_val = e1000_phy_hw_reset(hw);
3137                if (ret_val)
3138                        return ret_val;
3139                break;
3140        default:
3141                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3142                if (ret_val)
3143                        return ret_val;
3144
3145                phy_data |= MII_CR_RESET;
3146                ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3147                if (ret_val)
3148                        return ret_val;
3149
3150                udelay(1);
3151                break;
3152        }
3153
3154        if (hw->phy_type == e1000_phy_igp)
3155                e1000_phy_init_script(hw);
3156
3157        return E1000_SUCCESS;
3158}
3159
3160/**
3161 * e1000_detect_gig_phy - check the phy type
3162 * @hw: Struct containing variables accessed by shared code
3163 *
3164 * Probes the expected PHY address for known PHY IDs
3165 */
3166static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3167{
3168        s32 phy_init_status, ret_val;
3169        u16 phy_id_high, phy_id_low;
3170        bool match = false;
3171
3172        if (hw->phy_id != 0)
3173                return E1000_SUCCESS;
3174
3175        /* Read the PHY ID Registers to identify which PHY is onboard. */
3176        ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3177        if (ret_val)
3178                return ret_val;
3179
3180        hw->phy_id = (u32)(phy_id_high << 16);
3181        udelay(20);
3182        ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3183        if (ret_val)
3184                return ret_val;
3185
3186        hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3187        hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3188
3189        switch (hw->mac_type) {
3190        case e1000_82543:
3191                if (hw->phy_id == M88E1000_E_PHY_ID)
3192                        match = true;
3193                break;
3194        case e1000_82544:
3195                if (hw->phy_id == M88E1000_I_PHY_ID)
3196                        match = true;
3197                break;
3198        case e1000_82540:
3199        case e1000_82545:
3200        case e1000_82545_rev_3:
3201        case e1000_82546:
3202        case e1000_82546_rev_3:
3203                if (hw->phy_id == M88E1011_I_PHY_ID)
3204                        match = true;
3205                break;
3206        case e1000_ce4100:
3207                if ((hw->phy_id == RTL8211B_PHY_ID) ||
3208                    (hw->phy_id == RTL8201N_PHY_ID) ||
3209                    (hw->phy_id == M88E1118_E_PHY_ID))
3210                        match = true;
3211                break;
3212        case e1000_82541:
3213        case e1000_82541_rev_2:
3214        case e1000_82547:
3215        case e1000_82547_rev_2:
3216                if (hw->phy_id == IGP01E1000_I_PHY_ID)
3217                        match = true;
3218                break;
3219        default:
3220                e_dbg("Invalid MAC type %d\n", hw->mac_type);
3221                return -E1000_ERR_CONFIG;
3222        }
3223        phy_init_status = e1000_set_phy_type(hw);
3224
3225        if ((match) && (phy_init_status == E1000_SUCCESS)) {
3226                e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3227                return E1000_SUCCESS;
3228        }
3229        e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3230        return -E1000_ERR_PHY;
3231}
3232
3233/**
3234 * e1000_phy_reset_dsp - reset DSP
3235 * @hw: Struct containing variables accessed by shared code
3236 *
3237 * Resets the PHY's DSP
3238 */
3239static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3240{
3241        s32 ret_val;
3242
3243        do {
3244                ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3245                if (ret_val)
3246                        break;
3247                ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3248                if (ret_val)
3249                        break;
3250                ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3251                if (ret_val)
3252                        break;
3253                ret_val = E1000_SUCCESS;
3254        } while (0);
3255
3256        return ret_val;
3257}
3258
3259/**
3260 * e1000_phy_igp_get_info - get igp specific registers
3261 * @hw: Struct containing variables accessed by shared code
3262 * @phy_info: PHY information structure
3263 *
3264 * Get PHY information from various PHY registers for igp PHY only.
3265 */
3266static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3267                                  struct e1000_phy_info *phy_info)
3268{
3269        s32 ret_val;
3270        u16 phy_data, min_length, max_length, average;
3271        e1000_rev_polarity polarity;
3272
3273        /* The downshift status is checked only once, after link is established,
3274         * and it stored in the hw->speed_downgraded parameter.
3275         */
3276        phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3277
3278        /* IGP01E1000 does not need to support it. */
3279        phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3280
3281        /* IGP01E1000 always correct polarity reversal */
3282        phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3283
3284        /* Check polarity status */
3285        ret_val = e1000_check_polarity(hw, &polarity);
3286        if (ret_val)
3287                return ret_val;
3288
3289        phy_info->cable_polarity = polarity;
3290
3291        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3292        if (ret_val)
3293                return ret_val;
3294
3295        phy_info->mdix_mode =
3296            (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3297                                 IGP01E1000_PSSR_MDIX_SHIFT);
3298
3299        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3300            IGP01E1000_PSSR_SPEED_1000MBPS) {
3301                /* Local/Remote Receiver Information are only valid @ 1000
3302                 * Mbps
3303                 */
3304                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3305                if (ret_val)
3306                        return ret_val;
3307
3308                phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3309                                      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3310                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3311                phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3312                                       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3313                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3314
3315                /* Get cable length */
3316                ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3317                if (ret_val)
3318                        return ret_val;
3319
3320                /* Translate to old method */
3321                average = (max_length + min_length) / 2;
3322
3323                if (average <= e1000_igp_cable_length_50)
3324                        phy_info->cable_length = e1000_cable_length_50;
3325                else if (average <= e1000_igp_cable_length_80)
3326                        phy_info->cable_length = e1000_cable_length_50_80;
3327                else if (average <= e1000_igp_cable_length_110)
3328                        phy_info->cable_length = e1000_cable_length_80_110;
3329                else if (average <= e1000_igp_cable_length_140)
3330                        phy_info->cable_length = e1000_cable_length_110_140;
3331                else
3332                        phy_info->cable_length = e1000_cable_length_140;
3333        }
3334
3335        return E1000_SUCCESS;
3336}
3337
3338/**
3339 * e1000_phy_m88_get_info - get m88 specific registers
3340 * @hw: Struct containing variables accessed by shared code
3341 * @phy_info: PHY information structure
3342 *
3343 * Get PHY information from various PHY registers for m88 PHY only.
3344 */
3345static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3346                                  struct e1000_phy_info *phy_info)
3347{
3348        s32 ret_val;
3349        u16 phy_data;
3350        e1000_rev_polarity polarity;
3351
3352        /* The downshift status is checked only once, after link is established,
3353         * and it stored in the hw->speed_downgraded parameter.
3354         */
3355        phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3356
3357        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3358        if (ret_val)
3359                return ret_val;
3360
3361        phy_info->extended_10bt_distance =
3362            ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3363             M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3364            e1000_10bt_ext_dist_enable_lower :
3365            e1000_10bt_ext_dist_enable_normal;
3366
3367        phy_info->polarity_correction =
3368            ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3369             M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3370            e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3371
3372        /* Check polarity status */
3373        ret_val = e1000_check_polarity(hw, &polarity);
3374        if (ret_val)
3375                return ret_val;
3376        phy_info->cable_polarity = polarity;
3377
3378        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3379        if (ret_val)
3380                return ret_val;
3381
3382        phy_info->mdix_mode =
3383            (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3384                                 M88E1000_PSSR_MDIX_SHIFT);
3385
3386        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3387                /* Cable Length Estimation and Local/Remote Receiver Information
3388                 * are only valid at 1000 Mbps.
3389                 */
3390                phy_info->cable_length =
3391                    (e1000_cable_length) ((phy_data &
3392                                           M88E1000_PSSR_CABLE_LENGTH) >>
3393                                          M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3394
3395                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3396                if (ret_val)
3397                        return ret_val;
3398
3399                phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3400                                      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3401                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3402                phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3403                                       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3404                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3405        }
3406
3407        return E1000_SUCCESS;
3408}
3409
3410/**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
3417s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418{
3419        s32 ret_val;
3420        u16 phy_data;
3421
3422        phy_info->cable_length = e1000_cable_length_undefined;
3423        phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424        phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425        phy_info->downshift = e1000_downshift_undefined;
3426        phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427        phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428        phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429        phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430
3431        if (hw->media_type != e1000_media_type_copper) {
3432                e_dbg("PHY info is only valid for copper media\n");
3433                return -E1000_ERR_CONFIG;
3434        }
3435
3436        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437        if (ret_val)
3438                return ret_val;
3439
3440        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441        if (ret_val)
3442                return ret_val;
3443
3444        if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445                e_dbg("PHY info is only valid if link is up\n");
3446                return -E1000_ERR_CONFIG;
3447        }
3448
3449        if (hw->phy_type == e1000_phy_igp)
3450                return e1000_phy_igp_get_info(hw, phy_info);
3451        else if ((hw->phy_type == e1000_phy_8211) ||
3452                 (hw->phy_type == e1000_phy_8201))
3453                return E1000_SUCCESS;
3454        else
3455                return e1000_phy_m88_get_info(hw, phy_info);
3456}
3457
3458s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459{
3460        if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461                e_dbg("Invalid MDI setting detected\n");
3462                hw->mdix = 1;
3463                return -E1000_ERR_CONFIG;
3464        }
3465        return E1000_SUCCESS;
3466}
3467
3468/**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
3472 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3473 * is configured.
3474 */
3475s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476{
3477        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478        u32 eecd = er32(EECD);
3479        s32 ret_val = E1000_SUCCESS;
3480        u16 eeprom_size;
3481
3482        switch (hw->mac_type) {
3483        case e1000_82542_rev2_0:
3484        case e1000_82542_rev2_1:
3485        case e1000_82543:
3486        case e1000_82544:
3487                eeprom->type = e1000_eeprom_microwire;
3488                eeprom->word_size = 64;
3489                eeprom->opcode_bits = 3;
3490                eeprom->address_bits = 6;
3491                eeprom->delay_usec = 50;
3492                break;
3493        case e1000_82540:
3494        case e1000_82545:
3495        case e1000_82545_rev_3:
3496        case e1000_82546:
3497        case e1000_82546_rev_3:
3498                eeprom->type = e1000_eeprom_microwire;
3499                eeprom->opcode_bits = 3;
3500                eeprom->delay_usec = 50;
3501                if (eecd & E1000_EECD_SIZE) {
3502                        eeprom->word_size = 256;
3503                        eeprom->address_bits = 8;
3504                } else {
3505                        eeprom->word_size = 64;
3506                        eeprom->address_bits = 6;
3507                }
3508                break;
3509        case e1000_82541:
3510        case e1000_82541_rev_2:
3511        case e1000_82547:
3512        case e1000_82547_rev_2:
3513                if (eecd & E1000_EECD_TYPE) {
3514                        eeprom->type = e1000_eeprom_spi;
3515                        eeprom->opcode_bits = 8;
3516                        eeprom->delay_usec = 1;
3517                        if (eecd & E1000_EECD_ADDR_BITS) {
3518                                eeprom->page_size = 32;
3519                                eeprom->address_bits = 16;
3520                        } else {
3521                                eeprom->page_size = 8;
3522                                eeprom->address_bits = 8;
3523                        }
3524                } else {
3525                        eeprom->type = e1000_eeprom_microwire;
3526                        eeprom->opcode_bits = 3;
3527                        eeprom->delay_usec = 50;
3528                        if (eecd & E1000_EECD_ADDR_BITS) {
3529                                eeprom->word_size = 256;
3530                                eeprom->address_bits = 8;
3531                        } else {
3532                                eeprom->word_size = 64;
3533                                eeprom->address_bits = 6;
3534                        }
3535                }
3536                break;
3537        default:
3538                break;
3539        }
3540
3541        if (eeprom->type == e1000_eeprom_spi) {
3542                /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543                 * 128B to 32KB (incremented by powers of 2).
3544                 */
3545                /* Set to default value for initial eeprom read. */
3546                eeprom->word_size = 64;
3547                ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548                if (ret_val)
3549                        return ret_val;
3550                eeprom_size =
3551                    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552                /* 256B eeprom size was not supported in earlier hardware, so we
3553                 * bump eeprom_size up one to ensure that "1" (which maps to
3554                 * 256B) is never the result used in the shifting logic below.
3555                 */
3556                if (eeprom_size)
3557                        eeprom_size++;
3558
3559                eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560        }
3561        return ret_val;
3562}
3563
3564/**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
3569static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570{
3571        /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572         * wait <delay> microseconds.
3573         */
3574        *eecd = *eecd | E1000_EECD_SK;
3575        ew32(EECD, *eecd);
3576        E1000_WRITE_FLUSH();
3577        udelay(hw->eeprom.delay_usec);
3578}
3579
3580/**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
3585static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586{
3587        /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588         * then wait 50 microseconds.
3589         */
3590        *eecd = *eecd & ~E1000_EECD_SK;
3591        ew32(EECD, *eecd);
3592        E1000_WRITE_FLUSH();
3593        udelay(hw->eeprom.delay_usec);
3594}
3595
3596/**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
3602static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603{
3604        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605        u32 eecd;
3606        u32 mask;
3607
3608        /* We need to shift "count" bits out to the EEPROM. So, value in the
3609         * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610         * In order to do this, "data" must be broken down into bits.
3611         */
3612        mask = 0x01 << (count - 1);
3613        eecd = er32(EECD);
3614        if (eeprom->type == e1000_eeprom_microwire)
3615                eecd &= ~E1000_EECD_DO;
3616        else if (eeprom->type == e1000_eeprom_spi)
3617                eecd |= E1000_EECD_DO;
3618
3619        do {
3620                /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621                 * "1", and then raising and then lowering the clock (the SK bit
3622                 * controls the clock input to the EEPROM).  A "0" is shifted
3623                 * out to the EEPROM by setting "DI" to "0" and then raising and
3624                 * then lowering the clock.
3625                 */
3626                eecd &= ~E1000_EECD_DI;
3627
3628                if (data & mask)
3629                        eecd |= E1000_EECD_DI;
3630
3631                ew32(EECD, eecd);
3632                E1000_WRITE_FLUSH();
3633
3634                udelay(eeprom->delay_usec);
3635
3636                e1000_raise_ee_clk(hw, &eecd);
3637                e1000_lower_ee_clk(hw, &eecd);
3638
3639                mask = mask >> 1;
3640
3641        } while (mask);
3642
3643        /* We leave the "DI" bit set to "0" when we leave this routine. */
3644        eecd &= ~E1000_EECD_DI;
3645        ew32(EECD, eecd);
3646}
3647
3648/**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
3653static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654{
3655        u32 eecd;
3656        u32 i;
3657        u16 data;
3658
3659        /* In order to read a register from the EEPROM, we need to shift 'count'
3660         * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661         * input to the EEPROM (setting the SK bit), and then reading the value
3662         * of the "DO" bit.  During this "shifting in" process the "DI" bit
3663         * should always be clear.
3664         */
3665
3666        eecd = er32(EECD);
3667
3668        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669        data = 0;
3670
3671        for (i = 0; i < count; i++) {
3672                data = data << 1;
3673                e1000_raise_ee_clk(hw, &eecd);
3674
3675                eecd = er32(EECD);
3676
3677                eecd &= ~(E1000_EECD_DI);
3678                if (eecd & E1000_EECD_DO)
3679                        data |= 1;
3680
3681                e1000_lower_ee_clk(hw, &eecd);
3682        }
3683
3684        return data;
3685}
3686
3687/**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
3690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
3693 */
3694static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695{
3696        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697        u32 eecd, i = 0;
3698
3699        eecd = er32(EECD);
3700
3701        /* Request EEPROM Access */
3702        if (hw->mac_type > e1000_82544) {
3703                eecd |= E1000_EECD_REQ;
3704                ew32(EECD, eecd);
3705                eecd = er32(EECD);
3706                while ((!(eecd & E1000_EECD_GNT)) &&
3707                       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708                        i++;
3709                        udelay(5);
3710                        eecd = er32(EECD);
3711                }
3712                if (!(eecd & E1000_EECD_GNT)) {
3713                        eecd &= ~E1000_EECD_REQ;
3714                        ew32(EECD, eecd);
3715                        e_dbg("Could not acquire EEPROM grant\n");
3716                        return -E1000_ERR_EEPROM;
3717                }
3718        }
3719
3720        /* Setup EEPROM for Read/Write */
3721
3722        if (eeprom->type == e1000_eeprom_microwire) {
3723                /* Clear SK and DI */
3724                eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725                ew32(EECD, eecd);
3726
3727                /* Set CS */
3728                eecd |= E1000_EECD_CS;
3729                ew32(EECD, eecd);
3730        } else if (eeprom->type == e1000_eeprom_spi) {
3731                /* Clear SK and CS */
3732                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733                ew32(EECD, eecd);
3734                E1000_WRITE_FLUSH();
3735                udelay(1);
3736        }
3737
3738        return E1000_SUCCESS;
3739}
3740
3741/**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
3745static void e1000_standby_eeprom(struct e1000_hw *hw)
3746{
3747        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748        u32 eecd;
3749
3750        eecd = er32(EECD);
3751
3752        if (eeprom->type == e1000_eeprom_microwire) {
3753                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754                ew32(EECD, eecd);
3755                E1000_WRITE_FLUSH();
3756                udelay(eeprom->delay_usec);
3757
3758                /* Clock high */
3759                eecd |= E1000_EECD_SK;
3760                ew32(EECD, eecd);
3761                E1000_WRITE_FLUSH();
3762                udelay(eeprom->delay_usec);
3763
3764                /* Select EEPROM */
3765                eecd |= E1000_EECD_CS;
3766                ew32(EECD, eecd);
3767                E1000_WRITE_FLUSH();
3768                udelay(eeprom->delay_usec);
3769
3770                /* Clock low */
3771                eecd &= ~E1000_EECD_SK;
3772                ew32(EECD, eecd);
3773                E1000_WRITE_FLUSH();
3774                udelay(eeprom->delay_usec);
3775        } else if (eeprom->type == e1000_eeprom_spi) {
3776                /* Toggle CS to flush commands */
3777                eecd |= E1000_EECD_CS;
3778                ew32(EECD, eecd);
3779                E1000_WRITE_FLUSH();
3780                udelay(eeprom->delay_usec);
3781                eecd &= ~E1000_EECD_CS;
3782                ew32(EECD, eecd);
3783                E1000_WRITE_FLUSH();
3784                udelay(eeprom->delay_usec);
3785        }
3786}
3787
3788/**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
3791 *
3792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
3794static void e1000_release_eeprom(struct e1000_hw *hw)
3795{
3796        u32 eecd;
3797
3798        eecd = er32(EECD);
3799
3800        if (hw->eeprom.type == e1000_eeprom_spi) {
3801                eecd |= E1000_EECD_CS;  /* Pull CS high */
3802                eecd &= ~E1000_EECD_SK; /* Lower SCK */
3803
3804                ew32(EECD, eecd);
3805                E1000_WRITE_FLUSH();
3806
3807                udelay(hw->eeprom.delay_usec);
3808        } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809                /* cleanup eeprom */
3810
3811                /* CS on Microwire is active-high */
3812                eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813
3814                ew32(EECD, eecd);
3815
3816                /* Rising edge of clock */
3817                eecd |= E1000_EECD_SK;
3818                ew32(EECD, eecd);
3819                E1000_WRITE_FLUSH();
3820                udelay(hw->eeprom.delay_usec);
3821
3822                /* Falling edge of clock */
3823                eecd &= ~E1000_EECD_SK;
3824                ew32(EECD, eecd);
3825                E1000_WRITE_FLUSH();
3826                udelay(hw->eeprom.delay_usec);
3827        }
3828
3829        /* Stop requesting EEPROM access */
3830        if (hw->mac_type > e1000_82544) {
3831                eecd &= ~E1000_EECD_REQ;
3832                ew32(EECD, eecd);
3833        }
3834}
3835
3836/**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
3840static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841{
3842        u16 retry_count = 0;
3843        u8 spi_stat_reg;
3844
3845        /* Read "Status Register" repeatedly until the LSB is cleared.  The
3846         * EEPROM will signal that the command has been completed by clearing
3847         * bit 0 of the internal status register.  If it's not cleared within
3848         * 5 milliseconds, then error out.
3849         */
3850        retry_count = 0;
3851        do {
3852                e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853                                        hw->eeprom.opcode_bits);
3854                spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3855                if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856                        break;
3857
3858                udelay(5);
3859                retry_count += 5;
3860
3861                e1000_standby_eeprom(hw);
3862        } while (retry_count < EEPROM_MAX_RETRY_SPI);
3863
3864        /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865         * only 0-5mSec on 5V devices)
3866         */
3867        if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868                e_dbg("SPI EEPROM Status error\n");
3869                return -E1000_ERR_EEPROM;
3870        }
3871
3872        return E1000_SUCCESS;
3873}
3874
3875/**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of  word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
3882s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883{
3884        s32 ret;
3885
3886        mutex_lock(&e1000_eeprom_lock);
3887        ret = e1000_do_read_eeprom(hw, offset, words, data);
3888        mutex_unlock(&e1000_eeprom_lock);
3889        return ret;
3890}
3891
3892static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3893                                u16 *data)
3894{
3895        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3896        u32 i = 0;
3897
3898        if (hw->mac_type == e1000_ce4100) {
3899                GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3900                                      data);
3901                return E1000_SUCCESS;
3902        }
3903
3904        /* A check for invalid values:  offset too large, too many words, and
3905         * not enough words.
3906         */
3907        if ((offset >= eeprom->word_size) ||
3908            (words > eeprom->word_size - offset) ||
3909            (words == 0)) {
3910                e_dbg("\"words\" parameter out of bounds. Words = %d,"
3911                      "size = %d\n", offset, eeprom->word_size);
3912                return -E1000_ERR_EEPROM;
3913        }
3914
3915        /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3916         * directly. In this case, we need to acquire the EEPROM so that
3917         * FW or other port software does not interrupt.
3918         */
3919        /* Prepare the EEPROM for bit-bang reading */
3920        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3921                return -E1000_ERR_EEPROM;
3922
3923        /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3924         * acquired the EEPROM at this point, so any returns should release it
3925         */
3926        if (eeprom->type == e1000_eeprom_spi) {
3927                u16 word_in;
3928                u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3929
3930                if (e1000_spi_eeprom_ready(hw)) {
3931                        e1000_release_eeprom(hw);
3932                        return -E1000_ERR_EEPROM;
3933                }
3934
3935                e1000_standby_eeprom(hw);
3936
3937                /* Some SPI eeproms use the 8th address bit embedded in the
3938                 * opcode
3939                 */
3940                if ((eeprom->address_bits == 8) && (offset >= 128))
3941                        read_opcode |= EEPROM_A8_OPCODE_SPI;
3942
3943                /* Send the READ command (opcode + addr)  */
3944                e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3945                e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3946                                        eeprom->address_bits);
3947
3948                /* Read the data.  The address of the eeprom internally
3949                 * increments with each byte (spi) being read, saving on the
3950                 * overhead of eeprom setup and tear-down.  The address counter
3951                 * will roll over if reading beyond the size of the eeprom, thus
3952                 * allowing the entire memory to be read starting from any
3953                 * offset.
3954                 */
3955                for (i = 0; i < words; i++) {
3956                        word_in = e1000_shift_in_ee_bits(hw, 16);
3957                        data[i] = (word_in >> 8) | (word_in << 8);
3958                }
3959        } else if (eeprom->type == e1000_eeprom_microwire) {
3960                for (i = 0; i < words; i++) {
3961                        /* Send the READ command (opcode + addr)  */
3962                        e1000_shift_out_ee_bits(hw,
3963                                                EEPROM_READ_OPCODE_MICROWIRE,
3964                                                eeprom->opcode_bits);
3965                        e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3966                                                eeprom->address_bits);
3967
3968                        /* Read the data.  For microwire, each word requires the
3969                         * overhead of eeprom setup and tear-down.
3970                         */
3971                        data[i] = e1000_shift_in_ee_bits(hw, 16);
3972                        e1000_standby_eeprom(hw);
3973                        cond_resched();
3974                }
3975        }
3976
3977        /* End this read operation */
3978        e1000_release_eeprom(hw);
3979
3980        return E1000_SUCCESS;
3981}
3982
3983/**
3984 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3985 * @hw: Struct containing variables accessed by shared code
3986 *
3987 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3988 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3989 * valid.
3990 */
3991s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3992{
3993        u16 checksum = 0;
3994        u16 i, eeprom_data;
3995
3996        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3997                if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3998                        e_dbg("EEPROM Read Error\n");
3999                        return -E1000_ERR_EEPROM;
4000                }
4001                checksum += eeprom_data;
4002        }
4003
4004#ifdef CONFIG_PARISC
4005        /* This is a signature and not a checksum on HP c8000 */
4006        if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4007                return E1000_SUCCESS;
4008
4009#endif
4010        if (checksum == (u16)EEPROM_SUM)
4011                return E1000_SUCCESS;
4012        else {
4013                e_dbg("EEPROM Checksum Invalid\n");
4014                return -E1000_ERR_EEPROM;
4015        }
4016}
4017
4018/**
4019 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4020 * @hw: Struct containing variables accessed by shared code
4021 *
4022 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4023 * Writes the difference to word offset 63 of the EEPROM.
4024 */
4025s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4026{
4027        u16 checksum = 0;
4028        u16 i, eeprom_data;
4029
4030        for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4031                if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4032                        e_dbg("EEPROM Read Error\n");
4033                        return -E1000_ERR_EEPROM;
4034                }
4035                checksum += eeprom_data;
4036        }
4037        checksum = (u16)EEPROM_SUM - checksum;
4038        if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4039                e_dbg("EEPROM Write Error\n");
4040                return -E1000_ERR_EEPROM;
4041        }
4042        return E1000_SUCCESS;
4043}
4044
4045/**
4046 * e1000_write_eeprom - write words to the different EEPROM types.
4047 * @hw: Struct containing variables accessed by shared code
4048 * @offset: offset within the EEPROM to be written to
4049 * @words: number of words to write
4050 * @data: 16 bit word to be written to the EEPROM
4051 *
4052 * If e1000_update_eeprom_checksum is not called after this function, the
4053 * EEPROM will most likely contain an invalid checksum.
4054 */
4055s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4056{
4057        s32 ret;
4058
4059        mutex_lock(&e1000_eeprom_lock);
4060        ret = e1000_do_write_eeprom(hw, offset, words, data);
4061        mutex_unlock(&e1000_eeprom_lock);
4062        return ret;
4063}
4064
4065static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066                                 u16 *data)
4067{
4068        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069        s32 status = 0;
4070
4071        if (hw->mac_type == e1000_ce4100) {
4072                GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073                                       data);
4074                return E1000_SUCCESS;
4075        }
4076
4077        /* A check for invalid values:  offset too large, too many words, and
4078         * not enough words.
4079         */
4080        if ((offset >= eeprom->word_size) ||
4081            (words > eeprom->word_size - offset) ||
4082            (words == 0)) {
4083                e_dbg("\"words\" parameter out of bounds\n");
4084                return -E1000_ERR_EEPROM;
4085        }
4086
4087        /* Prepare the EEPROM for writing  */
4088        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4089                return -E1000_ERR_EEPROM;
4090
4091        if (eeprom->type == e1000_eeprom_microwire) {
4092                status = e1000_write_eeprom_microwire(hw, offset, words, data);
4093        } else {
4094                status = e1000_write_eeprom_spi(hw, offset, words, data);
4095                msleep(10);
4096        }
4097
4098        /* Done with writing */
4099        e1000_release_eeprom(hw);
4100
4101        return status;
4102}
4103
4104/**
4105 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4106 * @hw: Struct containing variables accessed by shared code
4107 * @offset: offset within the EEPROM to be written to
4108 * @words: number of words to write
4109 * @data: pointer to array of 8 bit words to be written to the EEPROM
4110 */
4111static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4112                                  u16 *data)
4113{
4114        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4115        u16 widx = 0;
4116
4117        while (widx < words) {
4118                u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4119
4120                if (e1000_spi_eeprom_ready(hw))
4121                        return -E1000_ERR_EEPROM;
4122
4123                e1000_standby_eeprom(hw);
4124                cond_resched();
4125
4126                /*  Send the WRITE ENABLE command (8 bit opcode )  */
4127                e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4128                                        eeprom->opcode_bits);
4129
4130                e1000_standby_eeprom(hw);
4131
4132                /* Some SPI eeproms use the 8th address bit embedded in the
4133                 * opcode
4134                 */
4135                if ((eeprom->address_bits == 8) && (offset >= 128))
4136                        write_opcode |= EEPROM_A8_OPCODE_SPI;
4137
4138                /* Send the Write command (8-bit opcode + addr) */
4139                e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4140
4141                e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4142                                        eeprom->address_bits);
4143
4144                /* Send the data */
4145
4146                /* Loop to allow for up to whole page write (32 bytes) of
4147                 * eeprom
4148                 */
4149                while (widx < words) {
4150                        u16 word_out = data[widx];
4151
4152                        word_out = (word_out >> 8) | (word_out << 8);
4153                        e1000_shift_out_ee_bits(hw, word_out, 16);
4154                        widx++;
4155
4156                        /* Some larger eeprom sizes are capable of a 32-byte
4157                         * PAGE WRITE operation, while the smaller eeproms are
4158                         * capable of an 8-byte PAGE WRITE operation.  Break the
4159                         * inner loop to pass new address
4160                         */
4161                        if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4162                                e1000_standby_eeprom(hw);
4163                                break;
4164                        }
4165                }
4166        }
4167
4168        return E1000_SUCCESS;
4169}
4170
4171/**
4172 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4173 * @hw: Struct containing variables accessed by shared code
4174 * @offset: offset within the EEPROM to be written to
4175 * @words: number of words to write
4176 * @data: pointer to array of 8 bit words to be written to the EEPROM
4177 */
4178static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4179                                        u16 words, u16 *data)
4180{
4181        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4182        u32 eecd;
4183        u16 words_written = 0;
4184        u16 i = 0;
4185
4186        /* Send the write enable command to the EEPROM (3-bit opcode plus
4187         * 6/8-bit dummy address beginning with 11).  It's less work to include
4188         * the 11 of the dummy address as part of the opcode than it is to shift
4189         * it over the correct number of bits for the address.  This puts the
4190         * EEPROM into write/erase mode.
4191         */
4192        e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4193                                (u16)(eeprom->opcode_bits + 2));
4194
4195        e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4196
4197        /* Prepare the EEPROM */
4198        e1000_standby_eeprom(hw);
4199
4200        while (words_written < words) {
4201                /* Send the Write command (3-bit opcode + addr) */
4202                e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4203                                        eeprom->opcode_bits);
4204
4205                e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4206                                        eeprom->address_bits);
4207
4208                /* Send the data */
4209                e1000_shift_out_ee_bits(hw, data[words_written], 16);
4210
4211                /* Toggle the CS line.  This in effect tells the EEPROM to
4212                 * execute the previous command.
4213                 */
4214                e1000_standby_eeprom(hw);
4215
4216                /* Read DO repeatedly until it is high (equal to '1').  The
4217                 * EEPROM will signal that the command has been completed by
4218                 * raising the DO signal. If DO does not go high in 10
4219                 * milliseconds, then error out.
4220                 */
4221                for (i = 0; i < 200; i++) {
4222                        eecd = er32(EECD);
4223                        if (eecd & E1000_EECD_DO)
4224                                break;
4225                        udelay(50);
4226                }
4227                if (i == 200) {
4228                        e_dbg("EEPROM Write did not complete\n");
4229                        return -E1000_ERR_EEPROM;
4230                }
4231
4232                /* Recover from write */
4233                e1000_standby_eeprom(hw);
4234                cond_resched();
4235
4236                words_written++;
4237        }
4238
4239        /* Send the write disable command to the EEPROM (3-bit opcode plus
4240         * 6/8-bit dummy address beginning with 10).  It's less work to include
4241         * the 10 of the dummy address as part of the opcode than it is to shift
4242         * it over the correct number of bits for the address.  This takes the
4243         * EEPROM out of write/erase mode.
4244         */
4245        e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246                                (u16)(eeprom->opcode_bits + 2));
4247
4248        e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4249
4250        return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_read_mac_addr - read the adapters MAC from eeprom
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258 * second function of dual function devices
4259 */
4260s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261{
4262        u16 offset;
4263        u16 eeprom_data, i;
4264
4265        for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266                offset = i >> 1;
4267                if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268                        e_dbg("EEPROM Read Error\n");
4269                        return -E1000_ERR_EEPROM;
4270                }
4271                hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4272                hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4273        }
4274
4275        switch (hw->mac_type) {
4276        default:
4277                break;
4278        case e1000_82546:
4279        case e1000_82546_rev_3:
4280                if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281                        hw->perm_mac_addr[5] ^= 0x01;
4282                break;
4283        }
4284
4285        for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286                hw->mac_addr[i] = hw->perm_mac_addr[i];
4287        return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_rx_addrs - Initializes receive address filters.
4292 * @hw: Struct containing variables accessed by shared code
4293 *
4294 * Places the MAC address in receive address register 0 and clears the rest
4295 * of the receive address registers. Clears the multicast table. Assumes
4296 * the receiver is in reset when the routine is called.
4297 */
4298static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299{
4300        u32 i;
4301        u32 rar_num;
4302
4303        /* Setup the receive address. */
4304        e_dbg("Programming MAC Address into RAR[0]\n");
4305
4306        e1000_rar_set(hw, hw->mac_addr, 0);
4307
4308        rar_num = E1000_RAR_ENTRIES;
4309
4310        /* Zero out the other 15 receive addresses. */
4311        e_dbg("Clearing RAR[1-15]\n");
4312        for (i = 1; i < rar_num; i++) {
4313                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314                E1000_WRITE_FLUSH();
4315                E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316                E1000_WRITE_FLUSH();
4317        }
4318}
4319
4320/**
4321 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322 * @hw: Struct containing variables accessed by shared code
4323 * @mc_addr: the multicast address to hash
4324 */
4325u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326{
4327        u32 hash_value = 0;
4328
4329        /* The portion of the address that is used for the hash table is
4330         * determined by the mc_filter_type setting.
4331         */
4332        switch (hw->mc_filter_type) {
4333                /* [0] [1] [2] [3] [4] [5]
4334                 * 01  AA  00  12  34  56
4335                 * LSB                 MSB
4336                 */
4337        case 0:
4338                /* [47:36] i.e. 0x563 for above example address */
4339                hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4340                break;
4341        case 1:
4342                /* [46:35] i.e. 0xAC6 for above example address */
4343                hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4344                break;
4345        case 2:
4346                /* [45:34] i.e. 0x5D8 for above example address */
4347                hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4348                break;
4349        case 3:
4350                /* [43:32] i.e. 0x634 for above example address */
4351                hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4352                break;
4353        }
4354
4355        hash_value &= 0xFFF;
4356        return hash_value;
4357}
4358
4359/**
4360 * e1000_rar_set - Puts an ethernet address into a receive address register.
4361 * @hw: Struct containing variables accessed by shared code
4362 * @addr: Address to put into receive address register
4363 * @index: Receive address register to write
4364 */
4365void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366{
4367        u32 rar_low, rar_high;
4368
4369        /* HW expects these in little endian so we reverse the byte order
4370         * from network order (big endian) to little endian
4371         */
4372        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4373                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4374        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4375
4376        /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377         * unit hang.
4378         *
4379         * Description:
4380         * If there are any Rx frames queued up or otherwise present in the HW
4381         * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382         * hang.  To work around this issue, we have to disable receives and
4383         * flush out all Rx frames before we enable RSS. To do so, we modify we
4384         * redirect all Rx traffic to manageability and then reset the HW.
4385         * This flushes away Rx frames, and (since the redirections to
4386         * manageability persists across resets) keeps new ones from coming in
4387         * while we work.  Then, we clear the Address Valid AV bit for all MAC
4388         * addresses and undo the re-direction to manageability.
4389         * Now, frames are coming in again, but the MAC won't accept them, so
4390         * far so good.  We now proceed to initialize RSS (if necessary) and
4391         * configure the Rx unit.  Last, we re-enable the AV bits and continue
4392         * on our merry way.
4393         */
4394        switch (hw->mac_type) {
4395        default:
4396                /* Indicate to hardware the Address is Valid. */
4397                rar_high |= E1000_RAH_AV;
4398                break;
4399        }
4400
4401        E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402        E1000_WRITE_FLUSH();
4403        E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404        E1000_WRITE_FLUSH();
4405}
4406
4407/**
4408 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409 * @hw: Struct containing variables accessed by shared code
4410 * @offset: Offset in VLAN filer table to write
4411 * @value: Value to write into VLAN filter table
4412 */
4413void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414{
4415        u32 temp;
4416
4417        if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418                temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420                E1000_WRITE_FLUSH();
4421                E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422                E1000_WRITE_FLUSH();
4423        } else {
4424                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425                E1000_WRITE_FLUSH();
4426        }
4427}
4428
4429/**
4430 * e1000_clear_vfta - Clears the VLAN filer table
4431 * @hw: Struct containing variables accessed by shared code
4432 */
4433static void e1000_clear_vfta(struct e1000_hw *hw)
4434{
4435        u32 offset;
4436        u32 vfta_value = 0;
4437        u32 vfta_offset = 0;
4438        u32 vfta_bit_in_reg = 0;
4439
4440        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441                /* If the offset we want to clear is the same offset of the
4442                 * manageability VLAN ID, then clear all bits except that of the
4443                 * manageability unit
4444                 */
4445                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447                E1000_WRITE_FLUSH();
4448        }
4449}
4450
4451static s32 e1000_id_led_init(struct e1000_hw *hw)
4452{
4453        u32 ledctl;
4454        const u32 ledctl_mask = 0x000000FF;
4455        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457        u16 eeprom_data, i, temp;
4458        const u16 led_mask = 0x0F;
4459
4460        if (hw->mac_type < e1000_82540) {
4461                /* Nothing to do */
4462                return E1000_SUCCESS;
4463        }
4464
4465        ledctl = er32(LEDCTL);
4466        hw->ledctl_default = ledctl;
4467        hw->ledctl_mode1 = hw->ledctl_default;
4468        hw->ledctl_mode2 = hw->ledctl_default;
4469
4470        if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471                e_dbg("EEPROM Read Error\n");
4472                return -E1000_ERR_EEPROM;
4473        }
4474
4475        if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476            (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477                eeprom_data = ID_LED_DEFAULT;
4478        }
4479
4480        for (i = 0; i < 4; i++) {
4481                temp = (eeprom_data >> (i << 2)) & led_mask;
4482                switch (temp) {
4483                case ID_LED_ON1_DEF2:
4484                case ID_LED_ON1_ON2:
4485                case ID_LED_ON1_OFF2:
4486                        hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487                        hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488                        break;
4489                case ID_LED_OFF1_DEF2:
4490                case ID_LED_OFF1_ON2:
4491                case ID_LED_OFF1_OFF2:
4492                        hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493                        hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494                        break;
4495                default:
4496                        /* Do nothing */
4497                        break;
4498                }
4499                switch (temp) {
4500                case ID_LED_DEF1_ON2:
4501                case ID_LED_ON1_ON2:
4502                case ID_LED_OFF1_ON2:
4503                        hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504                        hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505                        break;
4506                case ID_LED_DEF1_OFF2:
4507                case ID_LED_ON1_OFF2:
4508                case ID_LED_OFF1_OFF2:
4509                        hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510                        hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511                        break;
4512                default:
4513                        /* Do nothing */
4514                        break;
4515                }
4516        }
4517        return E1000_SUCCESS;
4518}
4519
4520/**
4521 * e1000_setup_led
4522 * @hw: Struct containing variables accessed by shared code
4523 *
4524 * Prepares SW controlable LED for use and saves the current state of the LED.
4525 */
4526s32 e1000_setup_led(struct e1000_hw *hw)
4527{
4528        u32 ledctl;
4529        s32 ret_val = E1000_SUCCESS;
4530
4531        switch (hw->mac_type) {
4532        case e1000_82542_rev2_0:
4533        case e1000_82542_rev2_1:
4534        case e1000_82543:
4535        case e1000_82544:
4536                /* No setup necessary */
4537                break;
4538        case e1000_82541:
4539        case e1000_82547:
4540        case e1000_82541_rev_2:
4541        case e1000_82547_rev_2:
4542                /* Turn off PHY Smart Power Down (if enabled) */
4543                ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544                                             &hw->phy_spd_default);
4545                if (ret_val)
4546                        return ret_val;
4547                ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548                                              (u16)(hw->phy_spd_default &
4549                                                     ~IGP01E1000_GMII_SPD));
4550                if (ret_val)
4551                        return ret_val;
4552                /* Fall Through */
4553        default:
4554                if (hw->media_type == e1000_media_type_fiber) {
4555                        ledctl = er32(LEDCTL);
4556                        /* Save current LEDCTL settings */
4557                        hw->ledctl_default = ledctl;
4558                        /* Turn off LED0 */
4559                        ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560                                    E1000_LEDCTL_LED0_BLINK |
4561                                    E1000_LEDCTL_LED0_MODE_MASK);
4562                        ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563                                   E1000_LEDCTL_LED0_MODE_SHIFT);
4564                        ew32(LEDCTL, ledctl);
4565                } else if (hw->media_type == e1000_media_type_copper)
4566                        ew32(LEDCTL, hw->ledctl_mode1);
4567                break;
4568        }
4569
4570        return E1000_SUCCESS;
4571}
4572
4573/**
4574 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575 * @hw: Struct containing variables accessed by shared code
4576 */
4577s32 e1000_cleanup_led(struct e1000_hw *hw)
4578{
4579        s32 ret_val = E1000_SUCCESS;
4580
4581        switch (hw->mac_type) {
4582        case e1000_82542_rev2_0:
4583        case e1000_82542_rev2_1:
4584        case e1000_82543:
4585        case e1000_82544:
4586                /* No cleanup necessary */
4587                break;
4588        case e1000_82541:
4589        case e1000_82547:
4590        case e1000_82541_rev_2:
4591        case e1000_82547_rev_2:
4592                /* Turn on PHY Smart Power Down (if previously enabled) */
4593                ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594                                              hw->phy_spd_default);
4595                if (ret_val)
4596                        return ret_val;
4597                /* Fall Through */
4598        default:
4599                /* Restore LEDCTL settings */
4600                ew32(LEDCTL, hw->ledctl_default);
4601                break;
4602        }
4603
4604        return E1000_SUCCESS;
4605}
4606
4607/**
4608 * e1000_led_on - Turns on the software controllable LED
4609 * @hw: Struct containing variables accessed by shared code
4610 */
4611s32 e1000_led_on(struct e1000_hw *hw)
4612{
4613        u32 ctrl = er32(CTRL);
4614
4615        switch (hw->mac_type) {
4616        case e1000_82542_rev2_0:
4617        case e1000_82542_rev2_1:
4618        case e1000_82543:
4619                /* Set SW Defineable Pin 0 to turn on the LED */
4620                ctrl |= E1000_CTRL_SWDPIN0;
4621                ctrl |= E1000_CTRL_SWDPIO0;
4622                break;
4623        case e1000_82544:
4624                if (hw->media_type == e1000_media_type_fiber) {
4625                        /* Set SW Defineable Pin 0 to turn on the LED */
4626                        ctrl |= E1000_CTRL_SWDPIN0;
4627                        ctrl |= E1000_CTRL_SWDPIO0;
4628                } else {
4629                        /* Clear SW Defineable Pin 0 to turn on the LED */
4630                        ctrl &= ~E1000_CTRL_SWDPIN0;
4631                        ctrl |= E1000_CTRL_SWDPIO0;
4632                }
4633                break;
4634        default:
4635                if (hw->media_type == e1000_media_type_fiber) {
4636                        /* Clear SW Defineable Pin 0 to turn on the LED */
4637                        ctrl &= ~E1000_CTRL_SWDPIN0;
4638                        ctrl |= E1000_CTRL_SWDPIO0;
4639                } else if (hw->media_type == e1000_media_type_copper) {
4640                        ew32(LEDCTL, hw->ledctl_mode2);
4641                        return E1000_SUCCESS;
4642                }
4643                break;
4644        }
4645
4646        ew32(CTRL, ctrl);
4647
4648        return E1000_SUCCESS;
4649}
4650
4651/**
4652 * e1000_led_off - Turns off the software controllable LED
4653 * @hw: Struct containing variables accessed by shared code
4654 */
4655s32 e1000_led_off(struct e1000_hw *hw)
4656{
4657        u32 ctrl = er32(CTRL);
4658
4659        switch (hw->mac_type) {
4660        case e1000_82542_rev2_0:
4661        case e1000_82542_rev2_1:
4662        case e1000_82543:
4663                /* Clear SW Defineable Pin 0 to turn off the LED */
4664                ctrl &= ~E1000_CTRL_SWDPIN0;
4665                ctrl |= E1000_CTRL_SWDPIO0;
4666                break;
4667        case e1000_82544:
4668                if (hw->media_type == e1000_media_type_fiber) {
4669                        /* Clear SW Defineable Pin 0 to turn off the LED */
4670                        ctrl &= ~E1000_CTRL_SWDPIN0;
4671                        ctrl |= E1000_CTRL_SWDPIO0;
4672                } else {
4673                        /* Set SW Defineable Pin 0 to turn off the LED */
4674                        ctrl |= E1000_CTRL_SWDPIN0;
4675                        ctrl |= E1000_CTRL_SWDPIO0;
4676                }
4677                break;
4678        default:
4679                if (hw->media_type == e1000_media_type_fiber) {
4680                        /* Set SW Defineable Pin 0 to turn off the LED */
4681                        ctrl |= E1000_CTRL_SWDPIN0;
4682                        ctrl |= E1000_CTRL_SWDPIO0;
4683                } else if (hw->media_type == e1000_media_type_copper) {
4684                        ew32(LEDCTL, hw->ledctl_mode1);
4685                        return E1000_SUCCESS;
4686                }
4687                break;
4688        }
4689
4690        ew32(CTRL, ctrl);
4691
4692        return E1000_SUCCESS;
4693}
4694
4695/**
4696 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697 * @hw: Struct containing variables accessed by shared code
4698 */
4699static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700{
4701        volatile u32 temp;
4702
4703        temp = er32(CRCERRS);
4704        temp = er32(SYMERRS);
4705        temp = er32(MPC);
4706        temp = er32(SCC);
4707        temp = er32(ECOL);
4708        temp = er32(MCC);
4709        temp = er32(LATECOL);
4710        temp = er32(COLC);
4711        temp = er32(DC);
4712        temp = er32(SEC);
4713        temp = er32(RLEC);
4714        temp = er32(XONRXC);
4715        temp = er32(XONTXC);
4716        temp = er32(XOFFRXC);
4717        temp = er32(XOFFTXC);
4718        temp = er32(FCRUC);
4719
4720        temp = er32(PRC64);
4721        temp = er32(PRC127);
4722        temp = er32(PRC255);
4723        temp = er32(PRC511);
4724        temp = er32(PRC1023);
4725        temp = er32(PRC1522);
4726
4727        temp = er32(GPRC);
4728        temp = er32(BPRC);
4729        temp = er32(MPRC);
4730        temp = er32(GPTC);
4731        temp = er32(GORCL);
4732        temp = er32(GORCH);
4733        temp = er32(GOTCL);
4734        temp = er32(GOTCH);
4735        temp = er32(RNBC);
4736        temp = er32(RUC);
4737        temp = er32(RFC);
4738        temp = er32(ROC);
4739        temp = er32(RJC);
4740        temp = er32(TORL);
4741        temp = er32(TORH);
4742        temp = er32(TOTL);
4743        temp = er32(TOTH);
4744        temp = er32(TPR);
4745        temp = er32(TPT);
4746
4747        temp = er32(PTC64);
4748        temp = er32(PTC127);
4749        temp = er32(PTC255);
4750        temp = er32(PTC511);
4751        temp = er32(PTC1023);
4752        temp = er32(PTC1522);
4753
4754        temp = er32(MPTC);
4755        temp = er32(BPTC);
4756
4757        if (hw->mac_type < e1000_82543)
4758                return;
4759
4760        temp = er32(ALGNERRC);
4761        temp = er32(RXERRC);
4762        temp = er32(TNCRS);
4763        temp = er32(CEXTERR);
4764        temp = er32(TSCTC);
4765        temp = er32(TSCTFC);
4766
4767        if (hw->mac_type <= e1000_82544)
4768                return;
4769
4770        temp = er32(MGTPRC);
4771        temp = er32(MGTPDC);
4772        temp = er32(MGTPTC);
4773}
4774
4775/**
4776 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777 * @hw: Struct containing variables accessed by shared code
4778 *
4779 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780 * hw->ifs_params_forced to true. However, you must initialize hw->
4781 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782 * before calling this function.
4783 */
4784void e1000_reset_adaptive(struct e1000_hw *hw)
4785{
4786        if (hw->adaptive_ifs) {
4787                if (!hw->ifs_params_forced) {
4788                        hw->current_ifs_val = 0;
4789                        hw->ifs_min_val = IFS_MIN;
4790                        hw->ifs_max_val = IFS_MAX;
4791                        hw->ifs_step_size = IFS_STEP;
4792                        hw->ifs_ratio = IFS_RATIO;
4793                }
4794                hw->in_ifs_mode = false;
4795                ew32(AIT, 0);
4796        } else {
4797                e_dbg("Not in Adaptive IFS mode!\n");
4798        }
4799}
4800
4801/**
4802 * e1000_update_adaptive - update adaptive IFS
4803 * @hw: Struct containing variables accessed by shared code
4804 * @tx_packets: Number of transmits since last callback
4805 * @total_collisions: Number of collisions since last callback
4806 *
4807 * Called during the callback/watchdog routine to update IFS value based on
4808 * the ratio of transmits to collisions.
4809 */
4810void e1000_update_adaptive(struct e1000_hw *hw)
4811{
4812        if (hw->adaptive_ifs) {
4813                if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4814                        if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815                                hw->in_ifs_mode = true;
4816                                if (hw->current_ifs_val < hw->ifs_max_val) {
4817                                        if (hw->current_ifs_val == 0)
4818                                                hw->current_ifs_val =
4819                                                    hw->ifs_min_val;
4820                                        else
4821                                                hw->current_ifs_val +=
4822                                                    hw->ifs_step_size;
4823                                        ew32(AIT, hw->current_ifs_val);
4824                                }
4825                        }
4826                } else {
4827                        if (hw->in_ifs_mode &&
4828                            (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829                                hw->current_ifs_val = 0;
4830                                hw->in_ifs_mode = false;
4831                                ew32(AIT, 0);
4832                        }
4833                }
4834        } else {
4835                e_dbg("Not in Adaptive IFS mode!\n");
4836        }
4837}
4838
4839/**
4840 * e1000_get_bus_info
4841 * @hw: Struct containing variables accessed by shared code
4842 *
4843 * Gets the current PCI bus type, speed, and width of the hardware
4844 */
4845void e1000_get_bus_info(struct e1000_hw *hw)
4846{
4847        u32 status;
4848
4849        switch (hw->mac_type) {
4850        case e1000_82542_rev2_0:
4851        case e1000_82542_rev2_1:
4852                hw->bus_type = e1000_bus_type_pci;
4853                hw->bus_speed = e1000_bus_speed_unknown;
4854                hw->bus_width = e1000_bus_width_unknown;
4855                break;
4856        default:
4857                status = er32(STATUS);
4858                hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859                    e1000_bus_type_pcix : e1000_bus_type_pci;
4860
4861                if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862                        hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863                            e1000_bus_speed_66 : e1000_bus_speed_120;
4864                } else if (hw->bus_type == e1000_bus_type_pci) {
4865                        hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866                            e1000_bus_speed_66 : e1000_bus_speed_33;
4867                } else {
4868                        switch (status & E1000_STATUS_PCIX_SPEED) {
4869                        case E1000_STATUS_PCIX_SPEED_66:
4870                                hw->bus_speed = e1000_bus_speed_66;
4871                                break;
4872                        case E1000_STATUS_PCIX_SPEED_100:
4873                                hw->bus_speed = e1000_bus_speed_100;
4874                                break;
4875                        case E1000_STATUS_PCIX_SPEED_133:
4876                                hw->bus_speed = e1000_bus_speed_133;
4877                                break;
4878                        default:
4879                                hw->bus_speed = e1000_bus_speed_reserved;
4880                                break;
4881                        }
4882                }
4883                hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884                    e1000_bus_width_64 : e1000_bus_width_32;
4885                break;
4886        }
4887}
4888
4889/**
4890 * e1000_write_reg_io
4891 * @hw: Struct containing variables accessed by shared code
4892 * @offset: offset to write to
4893 * @value: value to write
4894 *
4895 * Writes a value to one of the devices registers using port I/O (as opposed to
4896 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4897 */
4898static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4899{
4900        unsigned long io_addr = hw->io_base;
4901        unsigned long io_data = hw->io_base + 4;
4902
4903        e1000_io_write(hw, io_addr, offset);
4904        e1000_io_write(hw, io_data, value);
4905}
4906
4907/**
4908 * e1000_get_cable_length - Estimates the cable length.
4909 * @hw: Struct containing variables accessed by shared code
4910 * @min_length: The estimated minimum length
4911 * @max_length: The estimated maximum length
4912 *
4913 * returns: - E1000_ERR_XXX
4914 *            E1000_SUCCESS
4915 *
4916 * This function always returns a ranged length (minimum & maximum).
4917 * So for M88 phy's, this function interprets the one value returned from the
4918 * register to the minimum and maximum range.
4919 * For IGP phy's, the function calculates the range by the AGC registers.
4920 */
4921static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922                                  u16 *max_length)
4923{
4924        s32 ret_val;
4925        u16 agc_value = 0;
4926        u16 i, phy_data;
4927        u16 cable_length;
4928
4929        *min_length = *max_length = 0;
4930
4931        /* Use old method for Phy older than IGP */
4932        if (hw->phy_type == e1000_phy_m88) {
4933                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4934                                             &phy_data);
4935                if (ret_val)
4936                        return ret_val;
4937                cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4938                    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4939
4940                /* Convert the enum value to ranged values */
4941                switch (cable_length) {
4942                case e1000_cable_length_50:
4943                        *min_length = 0;
4944                        *max_length = e1000_igp_cable_length_50;
4945                        break;
4946                case e1000_cable_length_50_80:
4947                        *min_length = e1000_igp_cable_length_50;
4948                        *max_length = e1000_igp_cable_length_80;
4949                        break;
4950                case e1000_cable_length_80_110:
4951                        *min_length = e1000_igp_cable_length_80;
4952                        *max_length = e1000_igp_cable_length_110;
4953                        break;
4954                case e1000_cable_length_110_140:
4955                        *min_length = e1000_igp_cable_length_110;
4956                        *max_length = e1000_igp_cable_length_140;
4957                        break;
4958                case e1000_cable_length_140:
4959                        *min_length = e1000_igp_cable_length_140;
4960                        *max_length = e1000_igp_cable_length_170;
4961                        break;
4962                default:
4963                        return -E1000_ERR_PHY;
4964                }
4965        } else if (hw->phy_type == e1000_phy_igp) {     /* For IGP PHY */
4966                u16 cur_agc_value;
4967                u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4968                static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4969                       IGP01E1000_PHY_AGC_A,
4970                       IGP01E1000_PHY_AGC_B,
4971                       IGP01E1000_PHY_AGC_C,
4972                       IGP01E1000_PHY_AGC_D
4973                };
4974                /* Read the AGC registers for all channels */
4975                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4976                        ret_val =
4977                            e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4978                        if (ret_val)
4979                                return ret_val;
4980
4981                        cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4982
4983                        /* Value bound check. */
4984                        if ((cur_agc_value >=
4985                             IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4986                            (cur_agc_value == 0))
4987                                return -E1000_ERR_PHY;
4988
4989                        agc_value += cur_agc_value;
4990
4991                        /* Update minimal AGC value. */
4992                        if (min_agc_value > cur_agc_value)
4993                                min_agc_value = cur_agc_value;
4994                }
4995
4996                /* Remove the minimal AGC result for length < 50m */
4997                if (agc_value <
4998                    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4999                        agc_value -= min_agc_value;
5000
5001                        /* Get the average length of the remaining 3 channels */
5002                        agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5003                } else {
5004                        /* Get the average length of all the 4 channels. */
5005                        agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5006                }
5007
5008                /* Set the range of the calculated length. */
5009                *min_length = ((e1000_igp_cable_length_table[agc_value] -
5010                                IGP01E1000_AGC_RANGE) > 0) ?
5011                    (e1000_igp_cable_length_table[agc_value] -
5012                     IGP01E1000_AGC_RANGE) : 0;
5013                *max_length = e1000_igp_cable_length_table[agc_value] +
5014                    IGP01E1000_AGC_RANGE;
5015        }
5016
5017        return E1000_SUCCESS;
5018}
5019
5020/**
5021 * e1000_check_polarity - Check the cable polarity
5022 * @hw: Struct containing variables accessed by shared code
5023 * @polarity: output parameter : 0 - Polarity is not reversed
5024 *                               1 - Polarity is reversed.
5025 *
5026 * returns: - E1000_ERR_XXX
5027 *            E1000_SUCCESS
5028 *
5029 * For phy's older than IGP, this function simply reads the polarity bit in the
5030 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5031 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5032 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5033 * IGP01E1000_PHY_PCS_INIT_REG.
5034 */
5035static s32 e1000_check_polarity(struct e1000_hw *hw,
5036                                e1000_rev_polarity *polarity)
5037{
5038        s32 ret_val;
5039        u16 phy_data;
5040
5041        if (hw->phy_type == e1000_phy_m88) {
5042                /* return the Polarity bit in the Status register. */
5043                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5044                                             &phy_data);
5045                if (ret_val)
5046                        return ret_val;
5047                *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5048                             M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5049                    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5050
5051        } else if (hw->phy_type == e1000_phy_igp) {
5052                /* Read the Status register to check the speed */
5053                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5054                                             &phy_data);
5055                if (ret_val)
5056                        return ret_val;
5057
5058                /* If speed is 1000 Mbps, must read the
5059                 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5060                 */
5061                if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5062                    IGP01E1000_PSSR_SPEED_1000MBPS) {
5063                        /* Read the GIG initialization PCS register (0x00B4) */
5064                        ret_val =
5065                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5066                                               &phy_data);
5067                        if (ret_val)
5068                                return ret_val;
5069
5070                        /* Check the polarity bits */
5071                        *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5072                            e1000_rev_polarity_reversed :
5073                            e1000_rev_polarity_normal;
5074                } else {
5075                        /* For 10 Mbps, read the polarity bit in the status
5076                         * register. (for 100 Mbps this bit is always 0)
5077                         */
5078                        *polarity =
5079                            (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5080                            e1000_rev_polarity_reversed :
5081                            e1000_rev_polarity_normal;
5082                }
5083        }
5084        return E1000_SUCCESS;
5085}
5086
5087/**
5088 * e1000_check_downshift - Check if Downshift occurred
5089 * @hw: Struct containing variables accessed by shared code
5090 * @downshift: output parameter : 0 - No Downshift occurred.
5091 *                                1 - Downshift occurred.
5092 *
5093 * returns: - E1000_ERR_XXX
5094 *            E1000_SUCCESS
5095 *
5096 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5097 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5098 * Link Health register.  In IGP this bit is latched high, so the driver must
5099 * read it immediately after link is established.
5100 */
5101static s32 e1000_check_downshift(struct e1000_hw *hw)
5102{
5103        s32 ret_val;
5104        u16 phy_data;
5105
5106        if (hw->phy_type == e1000_phy_igp) {
5107                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5108                                             &phy_data);
5109                if (ret_val)
5110                        return ret_val;
5111
5112                hw->speed_downgraded =
5113                    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5114        } else if (hw->phy_type == e1000_phy_m88) {
5115                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5116                                             &phy_data);
5117                if (ret_val)
5118                        return ret_val;
5119
5120                hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5121                    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5122        }
5123
5124        return E1000_SUCCESS;
5125}
5126
5127static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5128        IGP01E1000_PHY_AGC_PARAM_A,
5129        IGP01E1000_PHY_AGC_PARAM_B,
5130        IGP01E1000_PHY_AGC_PARAM_C,
5131        IGP01E1000_PHY_AGC_PARAM_D
5132};
5133
5134static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5135{
5136        u16 min_length, max_length;
5137        u16 phy_data, i;
5138        s32 ret_val;
5139
5140        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5141        if (ret_val)
5142                return ret_val;
5143
5144        if (hw->dsp_config_state != e1000_dsp_config_enabled)
5145                return 0;
5146
5147        if (min_length >= e1000_igp_cable_length_50) {
5148                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5149                        ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5150                                                     &phy_data);
5151                        if (ret_val)
5152                                return ret_val;
5153
5154                        phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5155
5156                        ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5157                                                      phy_data);
5158                        if (ret_val)
5159                                return ret_val;
5160                }
5161                hw->dsp_config_state = e1000_dsp_config_activated;
5162        } else {
5163                u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5164                u32 idle_errs = 0;
5165
5166                /* clear previous idle error counts */
5167                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5168                if (ret_val)
5169                        return ret_val;
5170
5171                for (i = 0; i < ffe_idle_err_timeout; i++) {
5172                        udelay(1000);
5173                        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5174                                                     &phy_data);
5175                        if (ret_val)
5176                                return ret_val;
5177
5178                        idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5179                        if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5180                                hw->ffe_config_state = e1000_ffe_config_active;
5181
5182                                ret_val = e1000_write_phy_reg(hw,
5183                                                              IGP01E1000_PHY_DSP_FFE,
5184                                                              IGP01E1000_PHY_DSP_FFE_CM_CP);
5185                                if (ret_val)
5186                                        return ret_val;
5187                                break;
5188                        }
5189
5190                        if (idle_errs)
5191                                ffe_idle_err_timeout =
5192                                            FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5193                }
5194        }
5195
5196        return 0;
5197}
5198
5199/**
5200 * e1000_config_dsp_after_link_change
5201 * @hw: Struct containing variables accessed by shared code
5202 * @link_up: was link up at the time this was called
5203 *
5204 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5205 *            E1000_SUCCESS at any other case.
5206 *
5207 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5208 * gigabit link is achieved to improve link quality.
5209 */
5210
5211static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5212{
5213        s32 ret_val;
5214        u16 phy_data, phy_saved_data, speed, duplex, i;
5215
5216        if (hw->phy_type != e1000_phy_igp)
5217                return E1000_SUCCESS;
5218
5219        if (link_up) {
5220                ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5221                if (ret_val) {
5222                        e_dbg("Error getting link speed and duplex\n");
5223                        return ret_val;
5224                }
5225
5226                if (speed == SPEED_1000) {
5227                        ret_val = e1000_1000Mb_check_cable_length(hw);
5228                        if (ret_val)
5229                                return ret_val;
5230                }
5231        } else {
5232                if (hw->dsp_config_state == e1000_dsp_config_activated) {
5233                        /* Save off the current value of register 0x2F5B to be
5234                         * restored at the end of the routines.
5235                         */
5236                        ret_val =
5237                            e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5238
5239                        if (ret_val)
5240                                return ret_val;
5241
5242                        /* Disable the PHY transmitter */
5243                        ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5244
5245                        if (ret_val)
5246                                return ret_val;
5247
5248                        msleep(20);
5249
5250                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5251                                                      IGP01E1000_IEEE_FORCE_GIGA);
5252                        if (ret_val)
5253                                return ret_val;
5254                        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5255                                ret_val =
5256                                    e1000_read_phy_reg(hw, dsp_reg_array[i],
5257                                                       &phy_data);
5258                                if (ret_val)
5259                                        return ret_val;
5260
5261                                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5262                                phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5263
5264                                ret_val =
5265                                    e1000_write_phy_reg(hw, dsp_reg_array[i],
5266                                                        phy_data);
5267                                if (ret_val)
5268                                        return ret_val;
5269                        }
5270
5271                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5272                                                      IGP01E1000_IEEE_RESTART_AUTONEG);
5273                        if (ret_val)
5274                                return ret_val;
5275
5276                        msleep(20);
5277
5278                        /* Now enable the transmitter */
5279                        ret_val =
5280                            e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281
5282                        if (ret_val)
5283                                return ret_val;
5284
5285                        hw->dsp_config_state = e1000_dsp_config_enabled;
5286                }
5287
5288                if (hw->ffe_config_state == e1000_ffe_config_active) {
5289                        /* Save off the current value of register 0x2F5B to be
5290                         * restored at the end of the routines.
5291                         */
5292                        ret_val =
5293                            e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5294
5295                        if (ret_val)
5296                                return ret_val;
5297
5298                        /* Disable the PHY transmitter */
5299                        ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5300
5301                        if (ret_val)
5302                                return ret_val;
5303
5304                        msleep(20);
5305
5306                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5307                                                      IGP01E1000_IEEE_FORCE_GIGA);
5308                        if (ret_val)
5309                                return ret_val;
5310                        ret_val =
5311                            e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5312                                                IGP01E1000_PHY_DSP_FFE_DEFAULT);
5313                        if (ret_val)
5314                                return ret_val;
5315
5316                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5317                                                      IGP01E1000_IEEE_RESTART_AUTONEG);
5318                        if (ret_val)
5319                                return ret_val;
5320
5321                        msleep(20);
5322
5323                        /* Now enable the transmitter */
5324                        ret_val =
5325                            e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5326
5327                        if (ret_val)
5328                                return ret_val;
5329
5330                        hw->ffe_config_state = e1000_ffe_config_enabled;
5331                }
5332        }
5333        return E1000_SUCCESS;
5334}
5335
5336/**
5337 * e1000_set_phy_mode - Set PHY to class A mode
5338 * @hw: Struct containing variables accessed by shared code
5339 *
5340 * Assumes the following operations will follow to enable the new class mode.
5341 *  1. Do a PHY soft reset
5342 *  2. Restart auto-negotiation or force link.
5343 */
5344static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5345{
5346        s32 ret_val;
5347        u16 eeprom_data;
5348
5349        if ((hw->mac_type == e1000_82545_rev_3) &&
5350            (hw->media_type == e1000_media_type_copper)) {
5351                ret_val =
5352                    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5353                                      &eeprom_data);
5354                if (ret_val)
5355                        return ret_val;
5356
5357                if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5358                    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5359                        ret_val =
5360                            e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5361                                                0x000B);
5362                        if (ret_val)
5363                                return ret_val;
5364                        ret_val =
5365                            e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5366                                                0x8104);
5367                        if (ret_val)
5368                                return ret_val;
5369
5370                        hw->phy_reset_disable = false;
5371                }
5372        }
5373
5374        return E1000_SUCCESS;
5375}
5376
5377/**
5378 * e1000_set_d3_lplu_state - set d3 link power state
5379 * @hw: Struct containing variables accessed by shared code
5380 * @active: true to enable lplu false to disable lplu.
5381 *
5382 * This function sets the lplu state according to the active flag.  When
5383 * activating lplu this function also disables smart speed and vise versa.
5384 * lplu will not be activated unless the device autonegotiation advertisement
5385 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5386 *
5387 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5388 *            E1000_SUCCESS at any other case.
5389 */
5390static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5391{
5392        s32 ret_val;
5393        u16 phy_data;
5394
5395        if (hw->phy_type != e1000_phy_igp)
5396                return E1000_SUCCESS;
5397
5398        /* During driver activity LPLU should not be used or it will attain link
5399         * from the lowest speeds starting from 10Mbps. The capability is used
5400         * for Dx transitions and states
5401         */
5402        if (hw->mac_type == e1000_82541_rev_2 ||
5403            hw->mac_type == e1000_82547_rev_2) {
5404                ret_val =
5405                    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5406                if (ret_val)
5407                        return ret_val;
5408        }
5409
5410        if (!active) {
5411                if (hw->mac_type == e1000_82541_rev_2 ||
5412                    hw->mac_type == e1000_82547_rev_2) {
5413                        phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5414                        ret_val =
5415                            e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416                                                phy_data);
5417                        if (ret_val)
5418                                return ret_val;
5419                }
5420
5421                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5422                 * during Dx states where the power conservation is most
5423                 * important.  During driver activity we should enable
5424                 * SmartSpeed, so performance is maintained.
5425                 */
5426                if (hw->smart_speed == e1000_smart_speed_on) {
5427                        ret_val =
5428                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5429                                               &phy_data);
5430                        if (ret_val)
5431                                return ret_val;
5432
5433                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5434                        ret_val =
5435                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5436                                                phy_data);
5437                        if (ret_val)
5438                                return ret_val;
5439                } else if (hw->smart_speed == e1000_smart_speed_off) {
5440                        ret_val =
5441                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5442                                               &phy_data);
5443                        if (ret_val)
5444                                return ret_val;
5445
5446                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5447                        ret_val =
5448                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5449                                                phy_data);
5450                        if (ret_val)
5451                                return ret_val;
5452                }
5453        } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5454                   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5455                   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5456                if (hw->mac_type == e1000_82541_rev_2 ||
5457                    hw->mac_type == e1000_82547_rev_2) {
5458                        phy_data |= IGP01E1000_GMII_FLEX_SPD;
5459                        ret_val =
5460                            e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5461                                                phy_data);
5462                        if (ret_val)
5463                                return ret_val;
5464                }
5465
5466                /* When LPLU is enabled we should disable SmartSpeed */
5467                ret_val =
5468                    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5469                                       &phy_data);
5470                if (ret_val)
5471                        return ret_val;
5472
5473                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5474                ret_val =
5475                    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5476                                        phy_data);
5477                if (ret_val)
5478                        return ret_val;
5479        }
5480        return E1000_SUCCESS;
5481}
5482
5483/**
5484 * e1000_set_vco_speed
5485 * @hw: Struct containing variables accessed by shared code
5486 *
5487 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5488 */
5489static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5490{
5491        s32 ret_val;
5492        u16 default_page = 0;
5493        u16 phy_data;
5494
5495        switch (hw->mac_type) {
5496        case e1000_82545_rev_3:
5497        case e1000_82546_rev_3:
5498                break;
5499        default:
5500                return E1000_SUCCESS;
5501        }
5502
5503        /* Set PHY register 30, page 5, bit 8 to 0 */
5504
5505        ret_val =
5506            e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5507        if (ret_val)
5508                return ret_val;
5509
5510        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5511        if (ret_val)
5512                return ret_val;
5513
5514        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5515        if (ret_val)
5516                return ret_val;
5517
5518        phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5519        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5520        if (ret_val)
5521                return ret_val;
5522
5523        /* Set PHY register 30, page 4, bit 11 to 1 */
5524
5525        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5526        if (ret_val)
5527                return ret_val;
5528
5529        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5530        if (ret_val)
5531                return ret_val;
5532
5533        phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5534        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5535        if (ret_val)
5536                return ret_val;
5537
5538        ret_val =
5539            e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5540        if (ret_val)
5541                return ret_val;
5542
5543        return E1000_SUCCESS;
5544}
5545
5546/**
5547 * e1000_enable_mng_pass_thru - check for bmc pass through
5548 * @hw: Struct containing variables accessed by shared code
5549 *
5550 * Verifies the hardware needs to allow ARPs to be processed by the host
5551 * returns: - true/false
5552 */
5553u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5554{
5555        u32 manc;
5556
5557        if (hw->asf_firmware_present) {
5558                manc = er32(MANC);
5559
5560                if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5561                    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5562                        return false;
5563                if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5564                        return true;
5565        }
5566        return false;
5567}
5568
5569static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5570{
5571        s32 ret_val;
5572        u16 mii_status_reg;
5573        u16 i;
5574
5575        /* Polarity reversal workaround for forced 10F/10H links. */
5576
5577        /* Disable the transmitter on the PHY */
5578
5579        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5580        if (ret_val)
5581                return ret_val;
5582        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5583        if (ret_val)
5584                return ret_val;
5585
5586        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5587        if (ret_val)
5588                return ret_val;
5589
5590        /* This loop will early-out if the NO link condition has been met. */
5591        for (i = PHY_FORCE_TIME; i > 0; i--) {
5592                /* Read the MII Status Register and wait for Link Status bit
5593                 * to be clear.
5594                 */
5595
5596                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5597                if (ret_val)
5598                        return ret_val;
5599
5600                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5601                if (ret_val)
5602                        return ret_val;
5603
5604                if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5605                        break;
5606                msleep(100);
5607        }
5608
5609        /* Recommended delay time after link has been lost */
5610        msleep(1000);
5611
5612        /* Now we will re-enable th transmitter on the PHY */
5613
5614        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5615        if (ret_val)
5616                return ret_val;
5617        msleep(50);
5618        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5619        if (ret_val)
5620                return ret_val;
5621        msleep(50);
5622        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5623        if (ret_val)
5624                return ret_val;
5625        msleep(50);
5626        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5627        if (ret_val)
5628                return ret_val;
5629
5630        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5631        if (ret_val)
5632                return ret_val;
5633
5634        /* This loop will early-out if the link condition has been met. */
5635        for (i = PHY_FORCE_TIME; i > 0; i--) {
5636                /* Read the MII Status Register and wait for Link Status bit
5637                 * to be set.
5638                 */
5639
5640                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5641                if (ret_val)
5642                        return ret_val;
5643
5644                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5645                if (ret_val)
5646                        return ret_val;
5647
5648                if (mii_status_reg & MII_SR_LINK_STATUS)
5649                        break;
5650                msleep(100);
5651        }
5652        return E1000_SUCCESS;
5653}
5654
5655/**
5656 * e1000_get_auto_rd_done
5657 * @hw: Struct containing variables accessed by shared code
5658 *
5659 * Check for EEPROM Auto Read bit done.
5660 * returns: - E1000_ERR_RESET if fail to reset MAC
5661 *            E1000_SUCCESS at any other case.
5662 */
5663static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5664{
5665        msleep(5);
5666        return E1000_SUCCESS;
5667}
5668
5669/**
5670 * e1000_get_phy_cfg_done
5671 * @hw: Struct containing variables accessed by shared code
5672 *
5673 * Checks if the PHY configuration is done
5674 * returns: - E1000_ERR_RESET if fail to reset MAC
5675 *            E1000_SUCCESS at any other case.
5676 */
5677static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5678{
5679        msleep(10);
5680        return E1000_SUCCESS;
5681}
5682