linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1/* Intel(R) Ethernet Switch Host Interface Driver
   2 * Copyright(c) 2013 - 2016 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <net/ipv6.h>
  24#include <net/ip.h>
  25#include <net/tcp.h>
  26#include <linux/if_macvlan.h>
  27#include <linux/prefetch.h>
  28
  29#include "fm10k.h"
  30
  31#define DRV_VERSION     "0.21.7-k"
  32#define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  33const char fm10k_driver_version[] = DRV_VERSION;
  34char fm10k_driver_name[] = "fm10k";
  35static const char fm10k_driver_string[] = DRV_SUMMARY;
  36static const char fm10k_copyright[] =
  37        "Copyright (c) 2013 - 2016 Intel Corporation.";
  38
  39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  40MODULE_DESCRIPTION(DRV_SUMMARY);
  41MODULE_LICENSE("GPL");
  42MODULE_VERSION(DRV_VERSION);
  43
  44/* single workqueue for entire fm10k driver */
  45struct workqueue_struct *fm10k_workqueue;
  46
  47/**
  48 * fm10k_init_module - Driver Registration Routine
  49 *
  50 * fm10k_init_module is the first routine called when the driver is
  51 * loaded.  All it does is register with the PCI subsystem.
  52 **/
  53static int __init fm10k_init_module(void)
  54{
  55        pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  56        pr_info("%s\n", fm10k_copyright);
  57
  58        /* create driver workqueue */
  59        fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  60                                          fm10k_driver_name);
  61
  62        fm10k_dbg_init();
  63
  64        return fm10k_register_pci_driver();
  65}
  66module_init(fm10k_init_module);
  67
  68/**
  69 * fm10k_exit_module - Driver Exit Cleanup Routine
  70 *
  71 * fm10k_exit_module is called just before the driver is removed
  72 * from memory.
  73 **/
  74static void __exit fm10k_exit_module(void)
  75{
  76        fm10k_unregister_pci_driver();
  77
  78        fm10k_dbg_exit();
  79
  80        /* destroy driver workqueue */
  81        destroy_workqueue(fm10k_workqueue);
  82}
  83module_exit(fm10k_exit_module);
  84
  85static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  86                                    struct fm10k_rx_buffer *bi)
  87{
  88        struct page *page = bi->page;
  89        dma_addr_t dma;
  90
  91        /* Only page will be NULL if buffer was consumed */
  92        if (likely(page))
  93                return true;
  94
  95        /* alloc new page for storage */
  96        page = dev_alloc_page();
  97        if (unlikely(!page)) {
  98                rx_ring->rx_stats.alloc_failed++;
  99                return false;
 100        }
 101
 102        /* map page for use */
 103        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 104
 105        /* if mapping failed free memory back to system since
 106         * there isn't much point in holding memory we can't use
 107         */
 108        if (dma_mapping_error(rx_ring->dev, dma)) {
 109                __free_page(page);
 110
 111                rx_ring->rx_stats.alloc_failed++;
 112                return false;
 113        }
 114
 115        bi->dma = dma;
 116        bi->page = page;
 117        bi->page_offset = 0;
 118
 119        return true;
 120}
 121
 122/**
 123 * fm10k_alloc_rx_buffers - Replace used receive buffers
 124 * @rx_ring: ring to place buffers on
 125 * @cleaned_count: number of buffers to replace
 126 **/
 127void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 128{
 129        union fm10k_rx_desc *rx_desc;
 130        struct fm10k_rx_buffer *bi;
 131        u16 i = rx_ring->next_to_use;
 132
 133        /* nothing to do */
 134        if (!cleaned_count)
 135                return;
 136
 137        rx_desc = FM10K_RX_DESC(rx_ring, i);
 138        bi = &rx_ring->rx_buffer[i];
 139        i -= rx_ring->count;
 140
 141        do {
 142                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 143                        break;
 144
 145                /* Refresh the desc even if buffer_addrs didn't change
 146                 * because each write-back erases this info.
 147                 */
 148                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 149
 150                rx_desc++;
 151                bi++;
 152                i++;
 153                if (unlikely(!i)) {
 154                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 155                        bi = rx_ring->rx_buffer;
 156                        i -= rx_ring->count;
 157                }
 158
 159                /* clear the status bits for the next_to_use descriptor */
 160                rx_desc->d.staterr = 0;
 161
 162                cleaned_count--;
 163        } while (cleaned_count);
 164
 165        i += rx_ring->count;
 166
 167        if (rx_ring->next_to_use != i) {
 168                /* record the next descriptor to use */
 169                rx_ring->next_to_use = i;
 170
 171                /* update next to alloc since we have filled the ring */
 172                rx_ring->next_to_alloc = i;
 173
 174                /* Force memory writes to complete before letting h/w
 175                 * know there are new descriptors to fetch.  (Only
 176                 * applicable for weak-ordered memory model archs,
 177                 * such as IA-64).
 178                 */
 179                wmb();
 180
 181                /* notify hardware of new descriptors */
 182                writel(i, rx_ring->tail);
 183        }
 184}
 185
 186/**
 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 188 * @rx_ring: rx descriptor ring to store buffers on
 189 * @old_buff: donor buffer to have page reused
 190 *
 191 * Synchronizes page for reuse by the interface
 192 **/
 193static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 194                                struct fm10k_rx_buffer *old_buff)
 195{
 196        struct fm10k_rx_buffer *new_buff;
 197        u16 nta = rx_ring->next_to_alloc;
 198
 199        new_buff = &rx_ring->rx_buffer[nta];
 200
 201        /* update, and store next to alloc */
 202        nta++;
 203        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 204
 205        /* transfer page from old buffer to new buffer */
 206        *new_buff = *old_buff;
 207
 208        /* sync the buffer for use by the device */
 209        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 210                                         old_buff->page_offset,
 211                                         FM10K_RX_BUFSZ,
 212                                         DMA_FROM_DEVICE);
 213}
 214
 215static inline bool fm10k_page_is_reserved(struct page *page)
 216{
 217        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 218}
 219
 220static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 221                                    struct page *page,
 222                                    unsigned int __maybe_unused truesize)
 223{
 224        /* avoid re-using remote pages */
 225        if (unlikely(fm10k_page_is_reserved(page)))
 226                return false;
 227
 228#if (PAGE_SIZE < 8192)
 229        /* if we are only owner of page we can reuse it */
 230        if (unlikely(page_count(page) != 1))
 231                return false;
 232
 233        /* flip page offset to other buffer */
 234        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 235#else
 236        /* move offset up to the next cache line */
 237        rx_buffer->page_offset += truesize;
 238
 239        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 240                return false;
 241#endif
 242
 243        /* Even if we own the page, we are not allowed to use atomic_set()
 244         * This would break get_page_unless_zero() users.
 245         */
 246        page_ref_inc(page);
 247
 248        return true;
 249}
 250
 251/**
 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 253 * @rx_buffer: buffer containing page to add
 254 * @size: packet size from rx_desc
 255 * @rx_desc: descriptor containing length of buffer written by hardware
 256 * @skb: sk_buff to place the data into
 257 *
 258 * This function will add the data contained in rx_buffer->page to the skb.
 259 * This is done either through a direct copy if the data in the buffer is
 260 * less than the skb header size, otherwise it will just attach the page as
 261 * a frag to the skb.
 262 *
 263 * The function will then update the page offset if necessary and return
 264 * true if the buffer can be reused by the interface.
 265 **/
 266static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 267                              unsigned int size,
 268                              union fm10k_rx_desc *rx_desc,
 269                              struct sk_buff *skb)
 270{
 271        struct page *page = rx_buffer->page;
 272        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 273#if (PAGE_SIZE < 8192)
 274        unsigned int truesize = FM10K_RX_BUFSZ;
 275#else
 276        unsigned int truesize = ALIGN(size, 512);
 277#endif
 278        unsigned int pull_len;
 279
 280        if (unlikely(skb_is_nonlinear(skb)))
 281                goto add_tail_frag;
 282
 283        if (likely(size <= FM10K_RX_HDR_LEN)) {
 284                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 285
 286                /* page is not reserved, we can reuse buffer as-is */
 287                if (likely(!fm10k_page_is_reserved(page)))
 288                        return true;
 289
 290                /* this page cannot be reused so discard it */
 291                __free_page(page);
 292                return false;
 293        }
 294
 295        /* we need the header to contain the greater of either ETH_HLEN or
 296         * 60 bytes if the skb->len is less than 60 for skb_pad.
 297         */
 298        pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
 299
 300        /* align pull length to size of long to optimize memcpy performance */
 301        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 302
 303        /* update all of the pointers */
 304        va += pull_len;
 305        size -= pull_len;
 306
 307add_tail_frag:
 308        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 309                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 310
 311        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 312}
 313
 314static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 315                                             union fm10k_rx_desc *rx_desc,
 316                                             struct sk_buff *skb)
 317{
 318        unsigned int size = le16_to_cpu(rx_desc->w.length);
 319        struct fm10k_rx_buffer *rx_buffer;
 320        struct page *page;
 321
 322        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 323        page = rx_buffer->page;
 324        prefetchw(page);
 325
 326        if (likely(!skb)) {
 327                void *page_addr = page_address(page) +
 328                                  rx_buffer->page_offset;
 329
 330                /* prefetch first cache line of first page */
 331                prefetch(page_addr);
 332#if L1_CACHE_BYTES < 128
 333                prefetch(page_addr + L1_CACHE_BYTES);
 334#endif
 335
 336                /* allocate a skb to store the frags */
 337                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 338                                     FM10K_RX_HDR_LEN);
 339                if (unlikely(!skb)) {
 340                        rx_ring->rx_stats.alloc_failed++;
 341                        return NULL;
 342                }
 343
 344                /* we will be copying header into skb->data in
 345                 * pskb_may_pull so it is in our interest to prefetch
 346                 * it now to avoid a possible cache miss
 347                 */
 348                prefetchw(skb->data);
 349        }
 350
 351        /* we are reusing so sync this buffer for CPU use */
 352        dma_sync_single_range_for_cpu(rx_ring->dev,
 353                                      rx_buffer->dma,
 354                                      rx_buffer->page_offset,
 355                                      size,
 356                                      DMA_FROM_DEVICE);
 357
 358        /* pull page into skb */
 359        if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 360                /* hand second half of page back to the ring */
 361                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 362        } else {
 363                /* we are not reusing the buffer so unmap it */
 364                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 365                               PAGE_SIZE, DMA_FROM_DEVICE);
 366        }
 367
 368        /* clear contents of rx_buffer */
 369        rx_buffer->page = NULL;
 370
 371        return skb;
 372}
 373
 374static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 375                                     union fm10k_rx_desc *rx_desc,
 376                                     struct sk_buff *skb)
 377{
 378        skb_checksum_none_assert(skb);
 379
 380        /* Rx checksum disabled via ethtool */
 381        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 382                return;
 383
 384        /* TCP/UDP checksum error bit is set */
 385        if (fm10k_test_staterr(rx_desc,
 386                               FM10K_RXD_STATUS_L4E |
 387                               FM10K_RXD_STATUS_L4E2 |
 388                               FM10K_RXD_STATUS_IPE |
 389                               FM10K_RXD_STATUS_IPE2)) {
 390                ring->rx_stats.csum_err++;
 391                return;
 392        }
 393
 394        /* It must be a TCP or UDP packet with a valid checksum */
 395        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 396                skb->encapsulation = true;
 397        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 398                return;
 399
 400        skb->ip_summed = CHECKSUM_UNNECESSARY;
 401
 402        ring->rx_stats.csum_good++;
 403}
 404
 405#define FM10K_RSS_L4_TYPES_MASK \
 406        (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 407         BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 408         BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 409         BIT(FM10K_RSSTYPE_IPV6_UDP))
 410
 411static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 412                                 union fm10k_rx_desc *rx_desc,
 413                                 struct sk_buff *skb)
 414{
 415        u16 rss_type;
 416
 417        if (!(ring->netdev->features & NETIF_F_RXHASH))
 418                return;
 419
 420        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 421        if (!rss_type)
 422                return;
 423
 424        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 425                     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 426                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 427}
 428
 429static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 430                             union fm10k_rx_desc __maybe_unused *rx_desc,
 431                             struct sk_buff *skb)
 432{
 433        struct net_device *dev = rx_ring->netdev;
 434        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 435
 436        /* check to see if DGLORT belongs to a MACVLAN */
 437        if (l2_accel) {
 438                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 439
 440                idx -= l2_accel->dglort;
 441                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 442                        dev = l2_accel->macvlan[idx];
 443                else
 444                        l2_accel = NULL;
 445        }
 446
 447        skb->protocol = eth_type_trans(skb, dev);
 448
 449        if (!l2_accel)
 450                return;
 451
 452        /* update MACVLAN statistics */
 453        macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
 454                         !!(rx_desc->w.hdr_info &
 455                            cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
 456}
 457
 458/**
 459 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 460 * @rx_ring: rx descriptor ring packet is being transacted on
 461 * @rx_desc: pointer to the EOP Rx descriptor
 462 * @skb: pointer to current skb being populated
 463 *
 464 * This function checks the ring, descriptor, and packet information in
 465 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 466 * other fields within the skb.
 467 **/
 468static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 469                                             union fm10k_rx_desc *rx_desc,
 470                                             struct sk_buff *skb)
 471{
 472        unsigned int len = skb->len;
 473
 474        fm10k_rx_hash(rx_ring, rx_desc, skb);
 475
 476        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 477
 478        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 479
 480        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 481
 482        skb_record_rx_queue(skb, rx_ring->queue_index);
 483
 484        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 485
 486        if (rx_desc->w.vlan) {
 487                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 488
 489                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 490                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 491                else if (vid & VLAN_PRIO_MASK)
 492                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 493                                               vid & VLAN_PRIO_MASK);
 494        }
 495
 496        fm10k_type_trans(rx_ring, rx_desc, skb);
 497
 498        return len;
 499}
 500
 501/**
 502 * fm10k_is_non_eop - process handling of non-EOP buffers
 503 * @rx_ring: Rx ring being processed
 504 * @rx_desc: Rx descriptor for current buffer
 505 *
 506 * This function updates next to clean.  If the buffer is an EOP buffer
 507 * this function exits returning false, otherwise it will place the
 508 * sk_buff in the next buffer to be chained and return true indicating
 509 * that this is in fact a non-EOP buffer.
 510 **/
 511static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 512                             union fm10k_rx_desc *rx_desc)
 513{
 514        u32 ntc = rx_ring->next_to_clean + 1;
 515
 516        /* fetch, update, and store next to clean */
 517        ntc = (ntc < rx_ring->count) ? ntc : 0;
 518        rx_ring->next_to_clean = ntc;
 519
 520        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 521
 522        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 523                return false;
 524
 525        return true;
 526}
 527
 528/**
 529 * fm10k_cleanup_headers - Correct corrupted or empty headers
 530 * @rx_ring: rx descriptor ring packet is being transacted on
 531 * @rx_desc: pointer to the EOP Rx descriptor
 532 * @skb: pointer to current skb being fixed
 533 *
 534 * Address the case where we are pulling data in on pages only
 535 * and as such no data is present in the skb header.
 536 *
 537 * In addition if skb is not at least 60 bytes we need to pad it so that
 538 * it is large enough to qualify as a valid Ethernet frame.
 539 *
 540 * Returns true if an error was encountered and skb was freed.
 541 **/
 542static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 543                                  union fm10k_rx_desc *rx_desc,
 544                                  struct sk_buff *skb)
 545{
 546        if (unlikely((fm10k_test_staterr(rx_desc,
 547                                         FM10K_RXD_STATUS_RXE)))) {
 548#define FM10K_TEST_RXD_BIT(rxd, bit) \
 549        ((rxd)->w.csum_err & cpu_to_le16(bit))
 550                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 551                        rx_ring->rx_stats.switch_errors++;
 552                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 553                        rx_ring->rx_stats.drops++;
 554                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 555                        rx_ring->rx_stats.pp_errors++;
 556                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 557                        rx_ring->rx_stats.link_errors++;
 558                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 559                        rx_ring->rx_stats.length_errors++;
 560                dev_kfree_skb_any(skb);
 561                rx_ring->rx_stats.errors++;
 562                return true;
 563        }
 564
 565        /* if eth_skb_pad returns an error the skb was freed */
 566        if (eth_skb_pad(skb))
 567                return true;
 568
 569        return false;
 570}
 571
 572/**
 573 * fm10k_receive_skb - helper function to handle rx indications
 574 * @q_vector: structure containing interrupt and ring information
 575 * @skb: packet to send up
 576 **/
 577static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 578                              struct sk_buff *skb)
 579{
 580        napi_gro_receive(&q_vector->napi, skb);
 581}
 582
 583static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 584                              struct fm10k_ring *rx_ring,
 585                              int budget)
 586{
 587        struct sk_buff *skb = rx_ring->skb;
 588        unsigned int total_bytes = 0, total_packets = 0;
 589        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 590
 591        while (likely(total_packets < budget)) {
 592                union fm10k_rx_desc *rx_desc;
 593
 594                /* return some buffers to hardware, one at a time is too slow */
 595                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 596                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 597                        cleaned_count = 0;
 598                }
 599
 600                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 601
 602                if (!rx_desc->d.staterr)
 603                        break;
 604
 605                /* This memory barrier is needed to keep us from reading
 606                 * any other fields out of the rx_desc until we know the
 607                 * descriptor has been written back
 608                 */
 609                dma_rmb();
 610
 611                /* retrieve a buffer from the ring */
 612                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 613
 614                /* exit if we failed to retrieve a buffer */
 615                if (!skb)
 616                        break;
 617
 618                cleaned_count++;
 619
 620                /* fetch next buffer in frame if non-eop */
 621                if (fm10k_is_non_eop(rx_ring, rx_desc))
 622                        continue;
 623
 624                /* verify the packet layout is correct */
 625                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 626                        skb = NULL;
 627                        continue;
 628                }
 629
 630                /* populate checksum, timestamp, VLAN, and protocol */
 631                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 632
 633                fm10k_receive_skb(q_vector, skb);
 634
 635                /* reset skb pointer */
 636                skb = NULL;
 637
 638                /* update budget accounting */
 639                total_packets++;
 640        }
 641
 642        /* place incomplete frames back on ring for completion */
 643        rx_ring->skb = skb;
 644
 645        u64_stats_update_begin(&rx_ring->syncp);
 646        rx_ring->stats.packets += total_packets;
 647        rx_ring->stats.bytes += total_bytes;
 648        u64_stats_update_end(&rx_ring->syncp);
 649        q_vector->rx.total_packets += total_packets;
 650        q_vector->rx.total_bytes += total_bytes;
 651
 652        return total_packets;
 653}
 654
 655#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 656static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 657{
 658        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 659        struct fm10k_udp_port *vxlan_port;
 660
 661        /* we can only offload a vxlan if we recognize it as such */
 662        vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 663                                              struct fm10k_udp_port, list);
 664
 665        if (!vxlan_port)
 666                return NULL;
 667        if (vxlan_port->port != udp_hdr(skb)->dest)
 668                return NULL;
 669
 670        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 671        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 672}
 673
 674#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 675#define NVGRE_TNI htons(0x2000)
 676struct fm10k_nvgre_hdr {
 677        __be16 flags;
 678        __be16 proto;
 679        __be32 tni;
 680};
 681
 682static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 683{
 684        struct fm10k_nvgre_hdr *nvgre_hdr;
 685        int hlen = ip_hdrlen(skb);
 686
 687        /* currently only IPv4 is supported due to hlen above */
 688        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 689                return NULL;
 690
 691        /* our transport header should be NVGRE */
 692        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 693
 694        /* verify all reserved flags are 0 */
 695        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 696                return NULL;
 697
 698        /* report start of ethernet header */
 699        if (nvgre_hdr->flags & NVGRE_TNI)
 700                return (struct ethhdr *)(nvgre_hdr + 1);
 701
 702        return (struct ethhdr *)(&nvgre_hdr->tni);
 703}
 704
 705__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 706{
 707        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 708        struct ethhdr *eth_hdr;
 709
 710        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 711            skb->inner_protocol != htons(ETH_P_TEB))
 712                return 0;
 713
 714        switch (vlan_get_protocol(skb)) {
 715        case htons(ETH_P_IP):
 716                l4_hdr = ip_hdr(skb)->protocol;
 717                break;
 718        case htons(ETH_P_IPV6):
 719                l4_hdr = ipv6_hdr(skb)->nexthdr;
 720                break;
 721        default:
 722                return 0;
 723        }
 724
 725        switch (l4_hdr) {
 726        case IPPROTO_UDP:
 727                eth_hdr = fm10k_port_is_vxlan(skb);
 728                break;
 729        case IPPROTO_GRE:
 730                eth_hdr = fm10k_gre_is_nvgre(skb);
 731                break;
 732        default:
 733                return 0;
 734        }
 735
 736        if (!eth_hdr)
 737                return 0;
 738
 739        switch (eth_hdr->h_proto) {
 740        case htons(ETH_P_IP):
 741                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 742                break;
 743        case htons(ETH_P_IPV6):
 744                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 745                break;
 746        default:
 747                return 0;
 748        }
 749
 750        switch (inner_l4_hdr) {
 751        case IPPROTO_TCP:
 752                inner_l4_hlen = inner_tcp_hdrlen(skb);
 753                break;
 754        case IPPROTO_UDP:
 755                inner_l4_hlen = 8;
 756                break;
 757        default:
 758                return 0;
 759        }
 760
 761        /* The hardware allows tunnel offloads only if the combined inner and
 762         * outer header is 184 bytes or less
 763         */
 764        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 765            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 766                return 0;
 767
 768        return eth_hdr->h_proto;
 769}
 770
 771static int fm10k_tso(struct fm10k_ring *tx_ring,
 772                     struct fm10k_tx_buffer *first)
 773{
 774        struct sk_buff *skb = first->skb;
 775        struct fm10k_tx_desc *tx_desc;
 776        unsigned char *th;
 777        u8 hdrlen;
 778
 779        if (skb->ip_summed != CHECKSUM_PARTIAL)
 780                return 0;
 781
 782        if (!skb_is_gso(skb))
 783                return 0;
 784
 785        /* compute header lengths */
 786        if (skb->encapsulation) {
 787                if (!fm10k_tx_encap_offload(skb))
 788                        goto err_vxlan;
 789                th = skb_inner_transport_header(skb);
 790        } else {
 791                th = skb_transport_header(skb);
 792        }
 793
 794        /* compute offset from SOF to transport header and add header len */
 795        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 796
 797        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 798
 799        /* update gso size and bytecount with header size */
 800        first->gso_segs = skb_shinfo(skb)->gso_segs;
 801        first->bytecount += (first->gso_segs - 1) * hdrlen;
 802
 803        /* populate Tx descriptor header size and mss */
 804        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 805        tx_desc->hdrlen = hdrlen;
 806        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 807
 808        return 1;
 809err_vxlan:
 810        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 811        if (!net_ratelimit())
 812                netdev_err(tx_ring->netdev,
 813                           "TSO requested for unsupported tunnel, disabling offload\n");
 814        return -1;
 815}
 816
 817static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 818                          struct fm10k_tx_buffer *first)
 819{
 820        struct sk_buff *skb = first->skb;
 821        struct fm10k_tx_desc *tx_desc;
 822        union {
 823                struct iphdr *ipv4;
 824                struct ipv6hdr *ipv6;
 825                u8 *raw;
 826        } network_hdr;
 827        u8 *transport_hdr;
 828        __be16 frag_off;
 829        __be16 protocol;
 830        u8 l4_hdr = 0;
 831
 832        if (skb->ip_summed != CHECKSUM_PARTIAL)
 833                goto no_csum;
 834
 835        if (skb->encapsulation) {
 836                protocol = fm10k_tx_encap_offload(skb);
 837                if (!protocol) {
 838                        if (skb_checksum_help(skb)) {
 839                                dev_warn(tx_ring->dev,
 840                                         "failed to offload encap csum!\n");
 841                                tx_ring->tx_stats.csum_err++;
 842                        }
 843                        goto no_csum;
 844                }
 845                network_hdr.raw = skb_inner_network_header(skb);
 846                transport_hdr = skb_inner_transport_header(skb);
 847        } else {
 848                protocol = vlan_get_protocol(skb);
 849                network_hdr.raw = skb_network_header(skb);
 850                transport_hdr = skb_transport_header(skb);
 851        }
 852
 853        switch (protocol) {
 854        case htons(ETH_P_IP):
 855                l4_hdr = network_hdr.ipv4->protocol;
 856                break;
 857        case htons(ETH_P_IPV6):
 858                l4_hdr = network_hdr.ipv6->nexthdr;
 859                if (likely((transport_hdr - network_hdr.raw) ==
 860                           sizeof(struct ipv6hdr)))
 861                        break;
 862                ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 863                                      sizeof(struct ipv6hdr),
 864                                 &l4_hdr, &frag_off);
 865                if (unlikely(frag_off))
 866                        l4_hdr = NEXTHDR_FRAGMENT;
 867                break;
 868        default:
 869                break;
 870        }
 871
 872        switch (l4_hdr) {
 873        case IPPROTO_TCP:
 874        case IPPROTO_UDP:
 875                break;
 876        case IPPROTO_GRE:
 877                if (skb->encapsulation)
 878                        break;
 879        default:
 880                if (unlikely(net_ratelimit())) {
 881                        dev_warn(tx_ring->dev,
 882                                 "partial checksum, version=%d l4 proto=%x\n",
 883                                 protocol, l4_hdr);
 884                }
 885                skb_checksum_help(skb);
 886                tx_ring->tx_stats.csum_err++;
 887                goto no_csum;
 888        }
 889
 890        /* update TX checksum flag */
 891        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 892        tx_ring->tx_stats.csum_good++;
 893
 894no_csum:
 895        /* populate Tx descriptor header size and mss */
 896        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 897        tx_desc->hdrlen = 0;
 898        tx_desc->mss = 0;
 899}
 900
 901#define FM10K_SET_FLAG(_input, _flag, _result) \
 902        ((_flag <= _result) ? \
 903         ((u32)(_input & _flag) * (_result / _flag)) : \
 904         ((u32)(_input & _flag) / (_flag / _result)))
 905
 906static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 907{
 908        /* set type for advanced descriptor with frame checksum insertion */
 909        u32 desc_flags = 0;
 910
 911        /* set checksum offload bits */
 912        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 913                                     FM10K_TXD_FLAG_CSUM);
 914
 915        return desc_flags;
 916}
 917
 918static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 919                               struct fm10k_tx_desc *tx_desc, u16 i,
 920                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 921{
 922        /* set RS and INT for last frame in a cache line */
 923        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 924                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 925
 926        /* record values to descriptor */
 927        tx_desc->buffer_addr = cpu_to_le64(dma);
 928        tx_desc->flags = desc_flags;
 929        tx_desc->buflen = cpu_to_le16(size);
 930
 931        /* return true if we just wrapped the ring */
 932        return i == tx_ring->count;
 933}
 934
 935static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 936{
 937        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 938
 939        /* Memory barrier before checking head and tail */
 940        smp_mb();
 941
 942        /* Check again in a case another CPU has just made room available */
 943        if (likely(fm10k_desc_unused(tx_ring) < size))
 944                return -EBUSY;
 945
 946        /* A reprieve! - use start_queue because it doesn't call schedule */
 947        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 948        ++tx_ring->tx_stats.restart_queue;
 949        return 0;
 950}
 951
 952static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 953{
 954        if (likely(fm10k_desc_unused(tx_ring) >= size))
 955                return 0;
 956        return __fm10k_maybe_stop_tx(tx_ring, size);
 957}
 958
 959static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 960                         struct fm10k_tx_buffer *first)
 961{
 962        struct sk_buff *skb = first->skb;
 963        struct fm10k_tx_buffer *tx_buffer;
 964        struct fm10k_tx_desc *tx_desc;
 965        struct skb_frag_struct *frag;
 966        unsigned char *data;
 967        dma_addr_t dma;
 968        unsigned int data_len, size;
 969        u32 tx_flags = first->tx_flags;
 970        u16 i = tx_ring->next_to_use;
 971        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 972
 973        tx_desc = FM10K_TX_DESC(tx_ring, i);
 974
 975        /* add HW VLAN tag */
 976        if (skb_vlan_tag_present(skb))
 977                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 978        else
 979                tx_desc->vlan = 0;
 980
 981        size = skb_headlen(skb);
 982        data = skb->data;
 983
 984        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 985
 986        data_len = skb->data_len;
 987        tx_buffer = first;
 988
 989        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 990                if (dma_mapping_error(tx_ring->dev, dma))
 991                        goto dma_error;
 992
 993                /* record length, and DMA address */
 994                dma_unmap_len_set(tx_buffer, len, size);
 995                dma_unmap_addr_set(tx_buffer, dma, dma);
 996
 997                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 998                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 999                                               FM10K_MAX_DATA_PER_TXD, flags)) {
1000                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1001                                i = 0;
1002                        }
1003
1004                        dma += FM10K_MAX_DATA_PER_TXD;
1005                        size -= FM10K_MAX_DATA_PER_TXD;
1006                }
1007
1008                if (likely(!data_len))
1009                        break;
1010
1011                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1012                                       dma, size, flags)) {
1013                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1014                        i = 0;
1015                }
1016
1017                size = skb_frag_size(frag);
1018                data_len -= size;
1019
1020                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1021                                       DMA_TO_DEVICE);
1022
1023                tx_buffer = &tx_ring->tx_buffer[i];
1024        }
1025
1026        /* write last descriptor with LAST bit set */
1027        flags |= FM10K_TXD_FLAG_LAST;
1028
1029        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1030                i = 0;
1031
1032        /* record bytecount for BQL */
1033        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1034
1035        /* record SW timestamp if HW timestamp is not available */
1036        skb_tx_timestamp(first->skb);
1037
1038        /* Force memory writes to complete before letting h/w know there
1039         * are new descriptors to fetch.  (Only applicable for weak-ordered
1040         * memory model archs, such as IA-64).
1041         *
1042         * We also need this memory barrier to make certain all of the
1043         * status bits have been updated before next_to_watch is written.
1044         */
1045        wmb();
1046
1047        /* set next_to_watch value indicating a packet is present */
1048        first->next_to_watch = tx_desc;
1049
1050        tx_ring->next_to_use = i;
1051
1052        /* Make sure there is space in the ring for the next send. */
1053        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1054
1055        /* notify HW of packet */
1056        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1057                writel(i, tx_ring->tail);
1058
1059                /* we need this if more than one processor can write to our tail
1060                 * at a time, it synchronizes IO on IA64/Altix systems
1061                 */
1062                mmiowb();
1063        }
1064
1065        return;
1066dma_error:
1067        dev_err(tx_ring->dev, "TX DMA map failed\n");
1068
1069        /* clear dma mappings for failed tx_buffer map */
1070        for (;;) {
1071                tx_buffer = &tx_ring->tx_buffer[i];
1072                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1073                if (tx_buffer == first)
1074                        break;
1075                if (i == 0)
1076                        i = tx_ring->count;
1077                i--;
1078        }
1079
1080        tx_ring->next_to_use = i;
1081}
1082
1083netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1084                                  struct fm10k_ring *tx_ring)
1085{
1086        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1087        struct fm10k_tx_buffer *first;
1088        unsigned short f;
1089        u32 tx_flags = 0;
1090        int tso;
1091
1092        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1093         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1094         *       + 2 desc gap to keep tail from touching head
1095         * otherwise try next time
1096         */
1097        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1098                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1099
1100        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1101                tx_ring->tx_stats.tx_busy++;
1102                return NETDEV_TX_BUSY;
1103        }
1104
1105        /* record the location of the first descriptor for this packet */
1106        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1107        first->skb = skb;
1108        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1109        first->gso_segs = 1;
1110
1111        /* record initial flags and protocol */
1112        first->tx_flags = tx_flags;
1113
1114        tso = fm10k_tso(tx_ring, first);
1115        if (tso < 0)
1116                goto out_drop;
1117        else if (!tso)
1118                fm10k_tx_csum(tx_ring, first);
1119
1120        fm10k_tx_map(tx_ring, first);
1121
1122        return NETDEV_TX_OK;
1123
1124out_drop:
1125        dev_kfree_skb_any(first->skb);
1126        first->skb = NULL;
1127
1128        return NETDEV_TX_OK;
1129}
1130
1131static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1132{
1133        return ring->stats.packets;
1134}
1135
1136/**
1137 * fm10k_get_tx_pending - how many Tx descriptors not processed
1138 * @ring: the ring structure
1139 * @in_sw: is tx_pending being checked in SW or in HW?
1140 */
1141u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1142{
1143        struct fm10k_intfc *interface = ring->q_vector->interface;
1144        struct fm10k_hw *hw = &interface->hw;
1145        u32 head, tail;
1146
1147        if (likely(in_sw)) {
1148                head = ring->next_to_clean;
1149                tail = ring->next_to_use;
1150        } else {
1151                head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1152                tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1153        }
1154
1155        return ((head <= tail) ? tail : tail + ring->count) - head;
1156}
1157
1158bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1159{
1160        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1161        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1162        u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1163
1164        clear_check_for_tx_hang(tx_ring);
1165
1166        /* Check for a hung queue, but be thorough. This verifies
1167         * that a transmit has been completed since the previous
1168         * check AND there is at least one packet pending. By
1169         * requiring this to fail twice we avoid races with
1170         * clearing the ARMED bit and conditions where we
1171         * run the check_tx_hang logic with a transmit completion
1172         * pending but without time to complete it yet.
1173         */
1174        if (!tx_pending || (tx_done_old != tx_done)) {
1175                /* update completed stats and continue */
1176                tx_ring->tx_stats.tx_done_old = tx_done;
1177                /* reset the countdown */
1178                clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1179
1180                return false;
1181        }
1182
1183        /* make sure it is true for two checks in a row */
1184        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1185}
1186
1187/**
1188 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1189 * @interface: driver private struct
1190 **/
1191void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1192{
1193        /* Do the reset outside of interrupt context */
1194        if (!test_bit(__FM10K_DOWN, &interface->state)) {
1195                interface->tx_timeout_count++;
1196                interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1197                fm10k_service_event_schedule(interface);
1198        }
1199}
1200
1201/**
1202 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1203 * @q_vector: structure containing interrupt and ring information
1204 * @tx_ring: tx ring to clean
1205 * @napi_budget: Used to determine if we are in netpoll
1206 **/
1207static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1208                               struct fm10k_ring *tx_ring, int napi_budget)
1209{
1210        struct fm10k_intfc *interface = q_vector->interface;
1211        struct fm10k_tx_buffer *tx_buffer;
1212        struct fm10k_tx_desc *tx_desc;
1213        unsigned int total_bytes = 0, total_packets = 0;
1214        unsigned int budget = q_vector->tx.work_limit;
1215        unsigned int i = tx_ring->next_to_clean;
1216
1217        if (test_bit(__FM10K_DOWN, &interface->state))
1218                return true;
1219
1220        tx_buffer = &tx_ring->tx_buffer[i];
1221        tx_desc = FM10K_TX_DESC(tx_ring, i);
1222        i -= tx_ring->count;
1223
1224        do {
1225                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1226
1227                /* if next_to_watch is not set then there is no work pending */
1228                if (!eop_desc)
1229                        break;
1230
1231                /* prevent any other reads prior to eop_desc */
1232                read_barrier_depends();
1233
1234                /* if DD is not set pending work has not been completed */
1235                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1236                        break;
1237
1238                /* clear next_to_watch to prevent false hangs */
1239                tx_buffer->next_to_watch = NULL;
1240
1241                /* update the statistics for this packet */
1242                total_bytes += tx_buffer->bytecount;
1243                total_packets += tx_buffer->gso_segs;
1244
1245                /* free the skb */
1246                napi_consume_skb(tx_buffer->skb, napi_budget);
1247
1248                /* unmap skb header data */
1249                dma_unmap_single(tx_ring->dev,
1250                                 dma_unmap_addr(tx_buffer, dma),
1251                                 dma_unmap_len(tx_buffer, len),
1252                                 DMA_TO_DEVICE);
1253
1254                /* clear tx_buffer data */
1255                tx_buffer->skb = NULL;
1256                dma_unmap_len_set(tx_buffer, len, 0);
1257
1258                /* unmap remaining buffers */
1259                while (tx_desc != eop_desc) {
1260                        tx_buffer++;
1261                        tx_desc++;
1262                        i++;
1263                        if (unlikely(!i)) {
1264                                i -= tx_ring->count;
1265                                tx_buffer = tx_ring->tx_buffer;
1266                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1267                        }
1268
1269                        /* unmap any remaining paged data */
1270                        if (dma_unmap_len(tx_buffer, len)) {
1271                                dma_unmap_page(tx_ring->dev,
1272                                               dma_unmap_addr(tx_buffer, dma),
1273                                               dma_unmap_len(tx_buffer, len),
1274                                               DMA_TO_DEVICE);
1275                                dma_unmap_len_set(tx_buffer, len, 0);
1276                        }
1277                }
1278
1279                /* move us one more past the eop_desc for start of next pkt */
1280                tx_buffer++;
1281                tx_desc++;
1282                i++;
1283                if (unlikely(!i)) {
1284                        i -= tx_ring->count;
1285                        tx_buffer = tx_ring->tx_buffer;
1286                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1287                }
1288
1289                /* issue prefetch for next Tx descriptor */
1290                prefetch(tx_desc);
1291
1292                /* update budget accounting */
1293                budget--;
1294        } while (likely(budget));
1295
1296        i += tx_ring->count;
1297        tx_ring->next_to_clean = i;
1298        u64_stats_update_begin(&tx_ring->syncp);
1299        tx_ring->stats.bytes += total_bytes;
1300        tx_ring->stats.packets += total_packets;
1301        u64_stats_update_end(&tx_ring->syncp);
1302        q_vector->tx.total_bytes += total_bytes;
1303        q_vector->tx.total_packets += total_packets;
1304
1305        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1306                /* schedule immediate reset if we believe we hung */
1307                struct fm10k_hw *hw = &interface->hw;
1308
1309                netif_err(interface, drv, tx_ring->netdev,
1310                          "Detected Tx Unit Hang\n"
1311                          "  Tx Queue             <%d>\n"
1312                          "  TDH, TDT             <%x>, <%x>\n"
1313                          "  next_to_use          <%x>\n"
1314                          "  next_to_clean        <%x>\n",
1315                          tx_ring->queue_index,
1316                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1317                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1318                          tx_ring->next_to_use, i);
1319
1320                netif_stop_subqueue(tx_ring->netdev,
1321                                    tx_ring->queue_index);
1322
1323                netif_info(interface, probe, tx_ring->netdev,
1324                           "tx hang %d detected on queue %d, resetting interface\n",
1325                           interface->tx_timeout_count + 1,
1326                           tx_ring->queue_index);
1327
1328                fm10k_tx_timeout_reset(interface);
1329
1330                /* the netdev is about to reset, no point in enabling stuff */
1331                return true;
1332        }
1333
1334        /* notify netdev of completed buffers */
1335        netdev_tx_completed_queue(txring_txq(tx_ring),
1336                                  total_packets, total_bytes);
1337
1338#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1339        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1340                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1341                /* Make sure that anybody stopping the queue after this
1342                 * sees the new next_to_clean.
1343                 */
1344                smp_mb();
1345                if (__netif_subqueue_stopped(tx_ring->netdev,
1346                                             tx_ring->queue_index) &&
1347                    !test_bit(__FM10K_DOWN, &interface->state)) {
1348                        netif_wake_subqueue(tx_ring->netdev,
1349                                            tx_ring->queue_index);
1350                        ++tx_ring->tx_stats.restart_queue;
1351                }
1352        }
1353
1354        return !!budget;
1355}
1356
1357/**
1358 * fm10k_update_itr - update the dynamic ITR value based on packet size
1359 *
1360 *      Stores a new ITR value based on strictly on packet size.  The
1361 *      divisors and thresholds used by this function were determined based
1362 *      on theoretical maximum wire speed and testing data, in order to
1363 *      minimize response time while increasing bulk throughput.
1364 *
1365 * @ring_container: Container for rings to have ITR updated
1366 **/
1367static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1368{
1369        unsigned int avg_wire_size, packets, itr_round;
1370
1371        /* Only update ITR if we are using adaptive setting */
1372        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1373                goto clear_counts;
1374
1375        packets = ring_container->total_packets;
1376        if (!packets)
1377                goto clear_counts;
1378
1379        avg_wire_size = ring_container->total_bytes / packets;
1380
1381        /* The following is a crude approximation of:
1382         *  wmem_default / (size + overhead) = desired_pkts_per_int
1383         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1384         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1385         *
1386         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1387         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1388         * formula down to
1389         *
1390         *  (34 * (size + 24)) / (size + 640) = ITR
1391         *
1392         * We first do some math on the packet size and then finally bitshift
1393         * by 8 after rounding up. We also have to account for PCIe link speed
1394         * difference as ITR scales based on this.
1395         */
1396        if (avg_wire_size <= 360) {
1397                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1398                avg_wire_size *= 8;
1399                avg_wire_size += 376;
1400        } else if (avg_wire_size <= 1152) {
1401                /* 77K ints/sec to 45K ints/sec */
1402                avg_wire_size *= 3;
1403                avg_wire_size += 2176;
1404        } else if (avg_wire_size <= 1920) {
1405                /* 45K ints/sec to 38K ints/sec */
1406                avg_wire_size += 4480;
1407        } else {
1408                /* plateau at a limit of 38K ints/sec */
1409                avg_wire_size = 6656;
1410        }
1411
1412        /* Perform final bitshift for division after rounding up to ensure
1413         * that the calculation will never get below a 1. The bit shift
1414         * accounts for changes in the ITR due to PCIe link speed.
1415         */
1416        itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1417        avg_wire_size += BIT(itr_round) - 1;
1418        avg_wire_size >>= itr_round;
1419
1420        /* write back value and retain adaptive flag */
1421        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1422
1423clear_counts:
1424        ring_container->total_bytes = 0;
1425        ring_container->total_packets = 0;
1426}
1427
1428static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1429{
1430        /* Enable auto-mask and clear the current mask */
1431        u32 itr = FM10K_ITR_ENABLE;
1432
1433        /* Update Tx ITR */
1434        fm10k_update_itr(&q_vector->tx);
1435
1436        /* Update Rx ITR */
1437        fm10k_update_itr(&q_vector->rx);
1438
1439        /* Store Tx itr in timer slot 0 */
1440        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1441
1442        /* Shift Rx itr to timer slot 1 */
1443        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1444
1445        /* Write the final value to the ITR register */
1446        writel(itr, q_vector->itr);
1447}
1448
1449static int fm10k_poll(struct napi_struct *napi, int budget)
1450{
1451        struct fm10k_q_vector *q_vector =
1452                               container_of(napi, struct fm10k_q_vector, napi);
1453        struct fm10k_ring *ring;
1454        int per_ring_budget, work_done = 0;
1455        bool clean_complete = true;
1456
1457        fm10k_for_each_ring(ring, q_vector->tx) {
1458                if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1459                        clean_complete = false;
1460        }
1461
1462        /* Handle case where we are called by netpoll with a budget of 0 */
1463        if (budget <= 0)
1464                return budget;
1465
1466        /* attempt to distribute budget to each queue fairly, but don't
1467         * allow the budget to go below 1 because we'll exit polling
1468         */
1469        if (q_vector->rx.count > 1)
1470                per_ring_budget = max(budget / q_vector->rx.count, 1);
1471        else
1472                per_ring_budget = budget;
1473
1474        fm10k_for_each_ring(ring, q_vector->rx) {
1475                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1476
1477                work_done += work;
1478                if (work >= per_ring_budget)
1479                        clean_complete = false;
1480        }
1481
1482        /* If all work not completed, return budget and keep polling */
1483        if (!clean_complete)
1484                return budget;
1485
1486        /* all work done, exit the polling mode */
1487        napi_complete_done(napi, work_done);
1488
1489        /* re-enable the q_vector */
1490        fm10k_qv_enable(q_vector);
1491
1492        return min(work_done, budget - 1);
1493}
1494
1495/**
1496 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1497 * @interface: board private structure to initialize
1498 *
1499 * When QoS (Quality of Service) is enabled, allocate queues for
1500 * each traffic class.  If multiqueue isn't available,then abort QoS
1501 * initialization.
1502 *
1503 * This function handles all combinations of Qos and RSS.
1504 *
1505 **/
1506static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1507{
1508        struct net_device *dev = interface->netdev;
1509        struct fm10k_ring_feature *f;
1510        int rss_i, i;
1511        int pcs;
1512
1513        /* Map queue offset and counts onto allocated tx queues */
1514        pcs = netdev_get_num_tc(dev);
1515
1516        if (pcs <= 1)
1517                return false;
1518
1519        /* set QoS mask and indices */
1520        f = &interface->ring_feature[RING_F_QOS];
1521        f->indices = pcs;
1522        f->mask = BIT(fls(pcs - 1)) - 1;
1523
1524        /* determine the upper limit for our current DCB mode */
1525        rss_i = interface->hw.mac.max_queues / pcs;
1526        rss_i = BIT(fls(rss_i) - 1);
1527
1528        /* set RSS mask and indices */
1529        f = &interface->ring_feature[RING_F_RSS];
1530        rss_i = min_t(u16, rss_i, f->limit);
1531        f->indices = rss_i;
1532        f->mask = BIT(fls(rss_i - 1)) - 1;
1533
1534        /* configure pause class to queue mapping */
1535        for (i = 0; i < pcs; i++)
1536                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1537
1538        interface->num_rx_queues = rss_i * pcs;
1539        interface->num_tx_queues = rss_i * pcs;
1540
1541        return true;
1542}
1543
1544/**
1545 * fm10k_set_rss_queues: Allocate queues for RSS
1546 * @interface: board private structure to initialize
1547 *
1548 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1549 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1550 *
1551 **/
1552static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1553{
1554        struct fm10k_ring_feature *f;
1555        u16 rss_i;
1556
1557        f = &interface->ring_feature[RING_F_RSS];
1558        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1559
1560        /* record indices and power of 2 mask for RSS */
1561        f->indices = rss_i;
1562        f->mask = BIT(fls(rss_i - 1)) - 1;
1563
1564        interface->num_rx_queues = rss_i;
1565        interface->num_tx_queues = rss_i;
1566
1567        return true;
1568}
1569
1570/**
1571 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1572 * @interface: board private structure to initialize
1573 *
1574 * This is the top level queue allocation routine.  The order here is very
1575 * important, starting with the "most" number of features turned on at once,
1576 * and ending with the smallest set of features.  This way large combinations
1577 * can be allocated if they're turned on, and smaller combinations are the
1578 * fallthrough conditions.
1579 *
1580 **/
1581static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1582{
1583        /* Attempt to setup QoS and RSS first */
1584        if (fm10k_set_qos_queues(interface))
1585                return;
1586
1587        /* If we don't have QoS, just fallback to only RSS. */
1588        fm10k_set_rss_queues(interface);
1589}
1590
1591/**
1592 * fm10k_reset_num_queues - Reset the number of queues to zero
1593 * @interface: board private structure
1594 *
1595 * This function should be called whenever we need to reset the number of
1596 * queues after an error condition.
1597 */
1598static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1599{
1600        interface->num_tx_queues = 0;
1601        interface->num_rx_queues = 0;
1602        interface->num_q_vectors = 0;
1603}
1604
1605/**
1606 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1607 * @interface: board private structure to initialize
1608 * @v_count: q_vectors allocated on interface, used for ring interleaving
1609 * @v_idx: index of vector in interface struct
1610 * @txr_count: total number of Tx rings to allocate
1611 * @txr_idx: index of first Tx ring to allocate
1612 * @rxr_count: total number of Rx rings to allocate
1613 * @rxr_idx: index of first Rx ring to allocate
1614 *
1615 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1616 **/
1617static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1618                                unsigned int v_count, unsigned int v_idx,
1619                                unsigned int txr_count, unsigned int txr_idx,
1620                                unsigned int rxr_count, unsigned int rxr_idx)
1621{
1622        struct fm10k_q_vector *q_vector;
1623        struct fm10k_ring *ring;
1624        int ring_count, size;
1625
1626        ring_count = txr_count + rxr_count;
1627        size = sizeof(struct fm10k_q_vector) +
1628               (sizeof(struct fm10k_ring) * ring_count);
1629
1630        /* allocate q_vector and rings */
1631        q_vector = kzalloc(size, GFP_KERNEL);
1632        if (!q_vector)
1633                return -ENOMEM;
1634
1635        /* initialize NAPI */
1636        netif_napi_add(interface->netdev, &q_vector->napi,
1637                       fm10k_poll, NAPI_POLL_WEIGHT);
1638
1639        /* tie q_vector and interface together */
1640        interface->q_vector[v_idx] = q_vector;
1641        q_vector->interface = interface;
1642        q_vector->v_idx = v_idx;
1643
1644        /* initialize pointer to rings */
1645        ring = q_vector->ring;
1646
1647        /* save Tx ring container info */
1648        q_vector->tx.ring = ring;
1649        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1650        q_vector->tx.itr = interface->tx_itr;
1651        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1652        q_vector->tx.count = txr_count;
1653
1654        while (txr_count) {
1655                /* assign generic ring traits */
1656                ring->dev = &interface->pdev->dev;
1657                ring->netdev = interface->netdev;
1658
1659                /* configure backlink on ring */
1660                ring->q_vector = q_vector;
1661
1662                /* apply Tx specific ring traits */
1663                ring->count = interface->tx_ring_count;
1664                ring->queue_index = txr_idx;
1665
1666                /* assign ring to interface */
1667                interface->tx_ring[txr_idx] = ring;
1668
1669                /* update count and index */
1670                txr_count--;
1671                txr_idx += v_count;
1672
1673                /* push pointer to next ring */
1674                ring++;
1675        }
1676
1677        /* save Rx ring container info */
1678        q_vector->rx.ring = ring;
1679        q_vector->rx.itr = interface->rx_itr;
1680        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1681        q_vector->rx.count = rxr_count;
1682
1683        while (rxr_count) {
1684                /* assign generic ring traits */
1685                ring->dev = &interface->pdev->dev;
1686                ring->netdev = interface->netdev;
1687                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1688
1689                /* configure backlink on ring */
1690                ring->q_vector = q_vector;
1691
1692                /* apply Rx specific ring traits */
1693                ring->count = interface->rx_ring_count;
1694                ring->queue_index = rxr_idx;
1695
1696                /* assign ring to interface */
1697                interface->rx_ring[rxr_idx] = ring;
1698
1699                /* update count and index */
1700                rxr_count--;
1701                rxr_idx += v_count;
1702
1703                /* push pointer to next ring */
1704                ring++;
1705        }
1706
1707        fm10k_dbg_q_vector_init(q_vector);
1708
1709        return 0;
1710}
1711
1712/**
1713 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1714 * @interface: board private structure to initialize
1715 * @v_idx: Index of vector to be freed
1716 *
1717 * This function frees the memory allocated to the q_vector.  In addition if
1718 * NAPI is enabled it will delete any references to the NAPI struct prior
1719 * to freeing the q_vector.
1720 **/
1721static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1722{
1723        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1724        struct fm10k_ring *ring;
1725
1726        fm10k_dbg_q_vector_exit(q_vector);
1727
1728        fm10k_for_each_ring(ring, q_vector->tx)
1729                interface->tx_ring[ring->queue_index] = NULL;
1730
1731        fm10k_for_each_ring(ring, q_vector->rx)
1732                interface->rx_ring[ring->queue_index] = NULL;
1733
1734        interface->q_vector[v_idx] = NULL;
1735        netif_napi_del(&q_vector->napi);
1736        kfree_rcu(q_vector, rcu);
1737}
1738
1739/**
1740 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1741 * @interface: board private structure to initialize
1742 *
1743 * We allocate one q_vector per queue interrupt.  If allocation fails we
1744 * return -ENOMEM.
1745 **/
1746static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1747{
1748        unsigned int q_vectors = interface->num_q_vectors;
1749        unsigned int rxr_remaining = interface->num_rx_queues;
1750        unsigned int txr_remaining = interface->num_tx_queues;
1751        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1752        int err;
1753
1754        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1755                for (; rxr_remaining; v_idx++) {
1756                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1757                                                   0, 0, 1, rxr_idx);
1758                        if (err)
1759                                goto err_out;
1760
1761                        /* update counts and index */
1762                        rxr_remaining--;
1763                        rxr_idx++;
1764                }
1765        }
1766
1767        for (; v_idx < q_vectors; v_idx++) {
1768                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1769                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1770
1771                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1772                                           tqpv, txr_idx,
1773                                           rqpv, rxr_idx);
1774
1775                if (err)
1776                        goto err_out;
1777
1778                /* update counts and index */
1779                rxr_remaining -= rqpv;
1780                txr_remaining -= tqpv;
1781                rxr_idx++;
1782                txr_idx++;
1783        }
1784
1785        return 0;
1786
1787err_out:
1788        fm10k_reset_num_queues(interface);
1789
1790        while (v_idx--)
1791                fm10k_free_q_vector(interface, v_idx);
1792
1793        return -ENOMEM;
1794}
1795
1796/**
1797 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1798 * @interface: board private structure to initialize
1799 *
1800 * This function frees the memory allocated to the q_vectors.  In addition if
1801 * NAPI is enabled it will delete any references to the NAPI struct prior
1802 * to freeing the q_vector.
1803 **/
1804static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1805{
1806        int v_idx = interface->num_q_vectors;
1807
1808        fm10k_reset_num_queues(interface);
1809
1810        while (v_idx--)
1811                fm10k_free_q_vector(interface, v_idx);
1812}
1813
1814/**
1815 * f10k_reset_msix_capability - reset MSI-X capability
1816 * @interface: board private structure to initialize
1817 *
1818 * Reset the MSI-X capability back to its starting state
1819 **/
1820static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1821{
1822        pci_disable_msix(interface->pdev);
1823        kfree(interface->msix_entries);
1824        interface->msix_entries = NULL;
1825}
1826
1827/**
1828 * f10k_init_msix_capability - configure MSI-X capability
1829 * @interface: board private structure to initialize
1830 *
1831 * Attempt to configure the interrupts using the best available
1832 * capabilities of the hardware and the kernel.
1833 **/
1834static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1835{
1836        struct fm10k_hw *hw = &interface->hw;
1837        int v_budget, vector;
1838
1839        /* It's easy to be greedy for MSI-X vectors, but it really
1840         * doesn't do us much good if we have a lot more vectors
1841         * than CPU's.  So let's be conservative and only ask for
1842         * (roughly) the same number of vectors as there are CPU's.
1843         * the default is to use pairs of vectors
1844         */
1845        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1846        v_budget = min_t(u16, v_budget, num_online_cpus());
1847
1848        /* account for vectors not related to queues */
1849        v_budget += NON_Q_VECTORS(hw);
1850
1851        /* At the same time, hardware can only support a maximum of
1852         * hw.mac->max_msix_vectors vectors.  With features
1853         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1854         * descriptor queues supported by our device.  Thus, we cap it off in
1855         * those rare cases where the cpu count also exceeds our vector limit.
1856         */
1857        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1858
1859        /* A failure in MSI-X entry allocation is fatal. */
1860        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1861                                          GFP_KERNEL);
1862        if (!interface->msix_entries)
1863                return -ENOMEM;
1864
1865        /* populate entry values */
1866        for (vector = 0; vector < v_budget; vector++)
1867                interface->msix_entries[vector].entry = vector;
1868
1869        /* Attempt to enable MSI-X with requested value */
1870        v_budget = pci_enable_msix_range(interface->pdev,
1871                                         interface->msix_entries,
1872                                         MIN_MSIX_COUNT(hw),
1873                                         v_budget);
1874        if (v_budget < 0) {
1875                kfree(interface->msix_entries);
1876                interface->msix_entries = NULL;
1877                return v_budget;
1878        }
1879
1880        /* record the number of queues available for q_vectors */
1881        interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1882
1883        return 0;
1884}
1885
1886/**
1887 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1888 * @interface: Interface structure continaining rings and devices
1889 *
1890 * Cache the descriptor ring offsets for Qos
1891 **/
1892static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1893{
1894        struct net_device *dev = interface->netdev;
1895        int pc, offset, rss_i, i, q_idx;
1896        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1897        u8 num_pcs = netdev_get_num_tc(dev);
1898
1899        if (num_pcs <= 1)
1900                return false;
1901
1902        rss_i = interface->ring_feature[RING_F_RSS].indices;
1903
1904        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1905                q_idx = pc;
1906                for (i = 0; i < rss_i; i++) {
1907                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1908                        interface->tx_ring[offset + i]->qos_pc = pc;
1909                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1910                        interface->rx_ring[offset + i]->qos_pc = pc;
1911                        q_idx += pc_stride;
1912                }
1913        }
1914
1915        return true;
1916}
1917
1918/**
1919 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1920 * @interface: Interface structure continaining rings and devices
1921 *
1922 * Cache the descriptor ring offsets for RSS
1923 **/
1924static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1925{
1926        int i;
1927
1928        for (i = 0; i < interface->num_rx_queues; i++)
1929                interface->rx_ring[i]->reg_idx = i;
1930
1931        for (i = 0; i < interface->num_tx_queues; i++)
1932                interface->tx_ring[i]->reg_idx = i;
1933}
1934
1935/**
1936 * fm10k_assign_rings - Map rings to network devices
1937 * @interface: Interface structure containing rings and devices
1938 *
1939 * This function is meant to go though and configure both the network
1940 * devices so that they contain rings, and configure the rings so that
1941 * they function with their network devices.
1942 **/
1943static void fm10k_assign_rings(struct fm10k_intfc *interface)
1944{
1945        if (fm10k_cache_ring_qos(interface))
1946                return;
1947
1948        fm10k_cache_ring_rss(interface);
1949}
1950
1951static void fm10k_init_reta(struct fm10k_intfc *interface)
1952{
1953        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1954        u32 reta;
1955
1956        /* If the Rx flow indirection table has been configured manually, we
1957         * need to maintain it when possible.
1958         */
1959        if (netif_is_rxfh_configured(interface->netdev)) {
1960                for (i = FM10K_RETA_SIZE; i--;) {
1961                        reta = interface->reta[i];
1962                        if ((((reta << 24) >> 24) < rss_i) &&
1963                            (((reta << 16) >> 24) < rss_i) &&
1964                            (((reta <<  8) >> 24) < rss_i) &&
1965                            (((reta)       >> 24) < rss_i))
1966                                continue;
1967
1968                        /* this should never happen */
1969                        dev_err(&interface->pdev->dev,
1970                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1971                        goto repopulate_reta;
1972                }
1973
1974                /* do nothing if all of the elements are in bounds */
1975                return;
1976        }
1977
1978repopulate_reta:
1979        fm10k_write_reta(interface, NULL);
1980}
1981
1982/**
1983 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1984 * @interface: board private structure to initialize
1985 *
1986 * We determine which queueing scheme to use based on...
1987 * - Hardware queue count (num_*_queues)
1988 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1989 **/
1990int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1991{
1992        int err;
1993
1994        /* Number of supported queues */
1995        fm10k_set_num_queues(interface);
1996
1997        /* Configure MSI-X capability */
1998        err = fm10k_init_msix_capability(interface);
1999        if (err) {
2000                dev_err(&interface->pdev->dev,
2001                        "Unable to initialize MSI-X capability\n");
2002                goto err_init_msix;
2003        }
2004
2005        /* Allocate memory for queues */
2006        err = fm10k_alloc_q_vectors(interface);
2007        if (err) {
2008                dev_err(&interface->pdev->dev,
2009                        "Unable to allocate queue vectors\n");
2010                goto err_alloc_q_vectors;
2011        }
2012
2013        /* Map rings to devices, and map devices to physical queues */
2014        fm10k_assign_rings(interface);
2015
2016        /* Initialize RSS redirection table */
2017        fm10k_init_reta(interface);
2018
2019        return 0;
2020
2021err_alloc_q_vectors:
2022        fm10k_reset_msix_capability(interface);
2023err_init_msix:
2024        fm10k_reset_num_queues(interface);
2025        return err;
2026}
2027
2028/**
2029 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2030 * @interface: board private structure to clear queueing scheme on
2031 *
2032 * We go through and clear queueing specific resources and reset the structure
2033 * to pre-load conditions
2034 **/
2035void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2036{
2037        fm10k_free_q_vectors(interface);
2038        fm10k_reset_msix_capability(interface);
2039}
2040