linux/drivers/net/ethernet/tehuti/tehuti.c
<<
>>
Prefs
   1/*
   2 * Tehuti Networks(R) Network Driver
   3 * ethtool interface implementation
   4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * RX HW/SW interaction overview
  14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  15 * There are 2 types of RX communication channels between driver and NIC.
  16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  18 * info about buffer's location, size and ID. An ID field is used to identify a
  19 * buffer when it's returned with data via RXD Fifo (see below)
  20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  25 *
  26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  29 * filled with data, HW builds new RXD descriptor for it and push it into single
  30 * RXD Fifo.
  31 *
  32 * RX SW Data Structures
  33 * ~~~~~~~~~~~~~~~~~~~~~
  34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  35 * For RX case, ownership lasts from allocating new empty skb for RXF until
  36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  37 * skb db. Implemented as array with bitmask.
  38 * fifo - keeps info about fifo's size and location, relevant HW registers,
  39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  40 * Implemented as simple struct.
  41 *
  42 * RX SW Execution Flow
  43 * ~~~~~~~~~~~~~~~~~~~~
  44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  45 * relevant registers. At the end of init phase, driver enables interrupts.
  46 * NIC sees that there is no RXF buffers and raises
  47 * RD_INTR interrupt, isr fills skbs and Rx begins.
  48 * Driver has two receive operation modes:
  49 *    NAPI - interrupt-driven mixed with polling
  50 *    interrupt-driven only
  51 *
  52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  53 * interrupt and isr is called. isr collects all available packets
  54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  55
  56 * Rx buffer allocation note
  57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  58 * Driver cares to feed such amount of RxF descriptors that respective amount of
  59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  60 * overflow check in Bordeaux for RxD fifo free/used size.
  61 * FIXME: this is NOT fully implemented, more work should be done
  62 *
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include "tehuti.h"
  68
  69static const struct pci_device_id bdx_pci_tbl[] = {
  70        { PCI_VDEVICE(TEHUTI, 0x3009), },
  71        { PCI_VDEVICE(TEHUTI, 0x3010), },
  72        { PCI_VDEVICE(TEHUTI, 0x3014), },
  73        { 0 }
  74};
  75
  76MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  77
  78/* Definitions needed by ISR or NAPI functions */
  79static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  80static void bdx_tx_cleanup(struct bdx_priv *priv);
  81static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  82
  83/* Definitions needed by FW loading */
  84static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  85
  86/* Definitions needed by hw_start */
  87static int bdx_tx_init(struct bdx_priv *priv);
  88static int bdx_rx_init(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_close */
  91static void bdx_rx_free(struct bdx_priv *priv);
  92static void bdx_tx_free(struct bdx_priv *priv);
  93
  94/* Definitions needed by bdx_probe */
  95static void bdx_set_ethtool_ops(struct net_device *netdev);
  96
  97/*************************************************************************
  98 *    Print Info                                                         *
  99 *************************************************************************/
 100
 101static void print_hw_id(struct pci_dev *pdev)
 102{
 103        struct pci_nic *nic = pci_get_drvdata(pdev);
 104        u16 pci_link_status = 0;
 105        u16 pci_ctrl = 0;
 106
 107        pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 108        pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 109
 110        pr_info("%s%s\n", BDX_NIC_NAME,
 111                nic->port_num == 1 ? "" : ", 2-Port");
 112        pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 113                readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 114                readl(nic->regs + FPGA_SEED),
 115                GET_LINK_STATUS_LANES(pci_link_status),
 116                GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 117}
 118
 119static void print_fw_id(struct pci_nic *nic)
 120{
 121        pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 122}
 123
 124static void print_eth_id(struct net_device *ndev)
 125{
 126        netdev_info(ndev, "%s, Port %c\n",
 127                    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 128
 129}
 130
 131/*************************************************************************
 132 *    Code                                                               *
 133 *************************************************************************/
 134
 135#define bdx_enable_interrupts(priv)     \
 136        do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 137#define bdx_disable_interrupts(priv)    \
 138        do { WRITE_REG(priv, regIMR, 0); } while (0)
 139
 140/**
 141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 142 * @priv: NIC private structure
 143 * @f: fifo to initialize
 144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 145 * @reg_XXX: offsets of registers relative to base address
 146 *
 147 * 1K extra space is allocated at the end of the fifo to simplify
 148 * processing of descriptors that wraps around fifo's end
 149 *
 150 * Returns 0 on success, negative value on failure
 151 *
 152 */
 153static int
 154bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 155              u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 156{
 157        u16 memsz = FIFO_SIZE * (1 << fsz_type);
 158
 159        memset(f, 0, sizeof(struct fifo));
 160        /* pci_alloc_consistent gives us 4k-aligned memory */
 161        f->va = pci_alloc_consistent(priv->pdev,
 162                                     memsz + FIFO_EXTRA_SPACE, &f->da);
 163        if (!f->va) {
 164                pr_err("pci_alloc_consistent failed\n");
 165                RET(-ENOMEM);
 166        }
 167        f->reg_CFG0 = reg_CFG0;
 168        f->reg_CFG1 = reg_CFG1;
 169        f->reg_RPTR = reg_RPTR;
 170        f->reg_WPTR = reg_WPTR;
 171        f->rptr = 0;
 172        f->wptr = 0;
 173        f->memsz = memsz;
 174        f->size_mask = memsz - 1;
 175        WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 176        WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 177
 178        RET(0);
 179}
 180
 181/**
 182 * bdx_fifo_free - free all resources used by fifo
 183 * @priv: NIC private structure
 184 * @f: fifo to release
 185 */
 186static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 187{
 188        ENTER;
 189        if (f->va) {
 190                pci_free_consistent(priv->pdev,
 191                                    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 192                f->va = NULL;
 193        }
 194        RET();
 195}
 196
 197/**
 198 * bdx_link_changed - notifies OS about hw link state.
 199 * @priv: hw adapter structure
 200 */
 201static void bdx_link_changed(struct bdx_priv *priv)
 202{
 203        u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 204
 205        if (!link) {
 206                if (netif_carrier_ok(priv->ndev)) {
 207                        netif_stop_queue(priv->ndev);
 208                        netif_carrier_off(priv->ndev);
 209                        netdev_err(priv->ndev, "Link Down\n");
 210                }
 211        } else {
 212                if (!netif_carrier_ok(priv->ndev)) {
 213                        netif_wake_queue(priv->ndev);
 214                        netif_carrier_on(priv->ndev);
 215                        netdev_err(priv->ndev, "Link Up\n");
 216                }
 217        }
 218}
 219
 220static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 221{
 222        if (isr & IR_RX_FREE_0) {
 223                bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 224                DBG("RX_FREE_0\n");
 225        }
 226
 227        if (isr & IR_LNKCHG0)
 228                bdx_link_changed(priv);
 229
 230        if (isr & IR_PCIE_LINK)
 231                netdev_err(priv->ndev, "PCI-E Link Fault\n");
 232
 233        if (isr & IR_PCIE_TOUT)
 234                netdev_err(priv->ndev, "PCI-E Time Out\n");
 235
 236}
 237
 238/**
 239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 240 * @irq: interrupt number
 241 * @dev: network device
 242 *
 243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 244 *
 245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 246 * Reasons of interest are:
 247 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 248 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 249 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 250 */
 251
 252static irqreturn_t bdx_isr_napi(int irq, void *dev)
 253{
 254        struct net_device *ndev = dev;
 255        struct bdx_priv *priv = netdev_priv(ndev);
 256        u32 isr;
 257
 258        ENTER;
 259        isr = (READ_REG(priv, regISR) & IR_RUN);
 260        if (unlikely(!isr)) {
 261                bdx_enable_interrupts(priv);
 262                return IRQ_NONE;        /* Not our interrupt */
 263        }
 264
 265        if (isr & IR_EXTRA)
 266                bdx_isr_extra(priv, isr);
 267
 268        if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 269                if (likely(napi_schedule_prep(&priv->napi))) {
 270                        __napi_schedule(&priv->napi);
 271                        RET(IRQ_HANDLED);
 272                } else {
 273                        /* NOTE: we get here if intr has slipped into window
 274                         * between these lines in bdx_poll:
 275                         *    bdx_enable_interrupts(priv);
 276                         *    return 0;
 277                         * currently intrs are disabled (since we read ISR),
 278                         * and we have failed to register next poll.
 279                         * so we read the regs to trigger chip
 280                         * and allow further interupts. */
 281                        READ_REG(priv, regTXF_WPTR_0);
 282                        READ_REG(priv, regRXD_WPTR_0);
 283                }
 284        }
 285
 286        bdx_enable_interrupts(priv);
 287        RET(IRQ_HANDLED);
 288}
 289
 290static int bdx_poll(struct napi_struct *napi, int budget)
 291{
 292        struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 293        int work_done;
 294
 295        ENTER;
 296        bdx_tx_cleanup(priv);
 297        work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 298        if ((work_done < budget) ||
 299            (priv->napi_stop++ >= 30)) {
 300                DBG("rx poll is done. backing to isr-driven\n");
 301
 302                /* from time to time we exit to let NAPI layer release
 303                 * device lock and allow waiting tasks (eg rmmod) to advance) */
 304                priv->napi_stop = 0;
 305
 306                napi_complete_done(napi, work_done);
 307                bdx_enable_interrupts(priv);
 308        }
 309        return work_done;
 310}
 311
 312/**
 313 * bdx_fw_load - loads firmware to NIC
 314 * @priv: NIC private structure
 315 *
 316 * Firmware is loaded via TXD fifo, so it must be initialized first.
 317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 318 * can have few of them). So all drivers use semaphore register to choose one
 319 * that will actually load FW to NIC.
 320 */
 321
 322static int bdx_fw_load(struct bdx_priv *priv)
 323{
 324        const struct firmware *fw = NULL;
 325        int master, i;
 326        int rc;
 327
 328        ENTER;
 329        master = READ_REG(priv, regINIT_SEMAPHORE);
 330        if (!READ_REG(priv, regINIT_STATUS) && master) {
 331                rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 332                if (rc)
 333                        goto out;
 334                bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 335                mdelay(100);
 336        }
 337        for (i = 0; i < 200; i++) {
 338                if (READ_REG(priv, regINIT_STATUS)) {
 339                        rc = 0;
 340                        goto out;
 341                }
 342                mdelay(2);
 343        }
 344        rc = -EIO;
 345out:
 346        if (master)
 347                WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 348
 349        release_firmware(fw);
 350
 351        if (rc) {
 352                netdev_err(priv->ndev, "firmware loading failed\n");
 353                if (rc == -EIO)
 354                        DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 355                            READ_REG(priv, regVPC),
 356                            READ_REG(priv, regVIC),
 357                            READ_REG(priv, regINIT_STATUS), i);
 358                RET(rc);
 359        } else {
 360                DBG("%s: firmware loading success\n", priv->ndev->name);
 361                RET(0);
 362        }
 363}
 364
 365static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 366{
 367        u32 val;
 368
 369        ENTER;
 370        DBG("mac0=%x mac1=%x mac2=%x\n",
 371            READ_REG(priv, regUNC_MAC0_A),
 372            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 373
 374        val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 375        WRITE_REG(priv, regUNC_MAC2_A, val);
 376        val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 377        WRITE_REG(priv, regUNC_MAC1_A, val);
 378        val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 379        WRITE_REG(priv, regUNC_MAC0_A, val);
 380
 381        DBG("mac0=%x mac1=%x mac2=%x\n",
 382            READ_REG(priv, regUNC_MAC0_A),
 383            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 384        RET();
 385}
 386
 387/**
 388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 389 * @priv: NIC private structure
 390 */
 391static int bdx_hw_start(struct bdx_priv *priv)
 392{
 393        int rc = -EIO;
 394        struct net_device *ndev = priv->ndev;
 395
 396        ENTER;
 397        bdx_link_changed(priv);
 398
 399        /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 400        WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 401        WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 402        WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 403        WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 404        WRITE_REG(priv, regRX_FULLNESS, 0);
 405        WRITE_REG(priv, regTX_FULLNESS, 0);
 406        WRITE_REG(priv, regCTRLST,
 407                  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 408
 409        WRITE_REG(priv, regVGLB, 0);
 410        WRITE_REG(priv, regMAX_FRAME_A,
 411                  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 412
 413        DBG("RDINTCM=%08x\n", priv->rdintcm);   /*NOTE: test script uses this */
 414        WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 415        WRITE_REG(priv, regRDINTCM2, 0);        /*cpu_to_le32(rcm.val)); */
 416
 417        DBG("TDINTCM=%08x\n", priv->tdintcm);   /*NOTE: test script uses this */
 418        WRITE_REG(priv, regTDINTCM0, priv->tdintcm);    /* old val = 0x300064 */
 419
 420        /* Enable timer interrupt once in 2 secs. */
 421        /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 422        bdx_restore_mac(priv->ndev, priv);
 423
 424        WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 425                  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 426
 427#define BDX_IRQ_TYPE    ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 428
 429        rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 430                         ndev->name, ndev);
 431        if (rc)
 432                goto err_irq;
 433        bdx_enable_interrupts(priv);
 434
 435        RET(0);
 436
 437err_irq:
 438        RET(rc);
 439}
 440
 441static void bdx_hw_stop(struct bdx_priv *priv)
 442{
 443        ENTER;
 444        bdx_disable_interrupts(priv);
 445        free_irq(priv->pdev->irq, priv->ndev);
 446
 447        netif_carrier_off(priv->ndev);
 448        netif_stop_queue(priv->ndev);
 449
 450        RET();
 451}
 452
 453static int bdx_hw_reset_direct(void __iomem *regs)
 454{
 455        u32 val, i;
 456        ENTER;
 457
 458        /* reset sequences: read, write 1, read, write 0 */
 459        val = readl(regs + regCLKPLL);
 460        writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 461        udelay(50);
 462        val = readl(regs + regCLKPLL);
 463        writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 464
 465        /* check that the PLLs are locked and reset ended */
 466        for (i = 0; i < 70; i++, mdelay(10))
 467                if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 468                        /* do any PCI-E read transaction */
 469                        readl(regs + regRXD_CFG0_0);
 470                        return 0;
 471                }
 472        pr_err("HW reset failed\n");
 473        return 1;               /* failure */
 474}
 475
 476static int bdx_hw_reset(struct bdx_priv *priv)
 477{
 478        u32 val, i;
 479        ENTER;
 480
 481        if (priv->port == 0) {
 482                /* reset sequences: read, write 1, read, write 0 */
 483                val = READ_REG(priv, regCLKPLL);
 484                WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 485                udelay(50);
 486                val = READ_REG(priv, regCLKPLL);
 487                WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 488        }
 489        /* check that the PLLs are locked and reset ended */
 490        for (i = 0; i < 70; i++, mdelay(10))
 491                if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 492                        /* do any PCI-E read transaction */
 493                        READ_REG(priv, regRXD_CFG0_0);
 494                        return 0;
 495                }
 496        pr_err("HW reset failed\n");
 497        return 1;               /* failure */
 498}
 499
 500static int bdx_sw_reset(struct bdx_priv *priv)
 501{
 502        int i;
 503
 504        ENTER;
 505        /* 1. load MAC (obsolete) */
 506        /* 2. disable Rx (and Tx) */
 507        WRITE_REG(priv, regGMAC_RXF_A, 0);
 508        mdelay(100);
 509        /* 3. disable port */
 510        WRITE_REG(priv, regDIS_PORT, 1);
 511        /* 4. disable queue */
 512        WRITE_REG(priv, regDIS_QU, 1);
 513        /* 5. wait until hw is disabled */
 514        for (i = 0; i < 50; i++) {
 515                if (READ_REG(priv, regRST_PORT) & 1)
 516                        break;
 517                mdelay(10);
 518        }
 519        if (i == 50)
 520                netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 521
 522        /* 6. disable intrs */
 523        WRITE_REG(priv, regRDINTCM0, 0);
 524        WRITE_REG(priv, regTDINTCM0, 0);
 525        WRITE_REG(priv, regIMR, 0);
 526        READ_REG(priv, regISR);
 527
 528        /* 7. reset queue */
 529        WRITE_REG(priv, regRST_QU, 1);
 530        /* 8. reset port */
 531        WRITE_REG(priv, regRST_PORT, 1);
 532        /* 9. zero all read and write pointers */
 533        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 534                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 535        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 536                WRITE_REG(priv, i, 0);
 537        /* 10. unseet port disable */
 538        WRITE_REG(priv, regDIS_PORT, 0);
 539        /* 11. unset queue disable */
 540        WRITE_REG(priv, regDIS_QU, 0);
 541        /* 12. unset queue reset */
 542        WRITE_REG(priv, regRST_QU, 0);
 543        /* 13. unset port reset */
 544        WRITE_REG(priv, regRST_PORT, 0);
 545        /* 14. enable Rx */
 546        /* skiped. will be done later */
 547        /* 15. save MAC (obsolete) */
 548        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 549                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 550
 551        RET(0);
 552}
 553
 554/* bdx_reset - performs right type of reset depending on hw type */
 555static int bdx_reset(struct bdx_priv *priv)
 556{
 557        ENTER;
 558        RET((priv->pdev->device == 0x3009)
 559            ? bdx_hw_reset(priv)
 560            : bdx_sw_reset(priv));
 561}
 562
 563/**
 564 * bdx_close - Disables a network interface
 565 * @netdev: network interface device structure
 566 *
 567 * Returns 0, this is not allowed to fail
 568 *
 569 * The close entry point is called when an interface is de-activated
 570 * by the OS.  The hardware is still under the drivers control, but
 571 * needs to be disabled.  A global MAC reset is issued to stop the
 572 * hardware, and all transmit and receive resources are freed.
 573 **/
 574static int bdx_close(struct net_device *ndev)
 575{
 576        struct bdx_priv *priv = NULL;
 577
 578        ENTER;
 579        priv = netdev_priv(ndev);
 580
 581        napi_disable(&priv->napi);
 582
 583        bdx_reset(priv);
 584        bdx_hw_stop(priv);
 585        bdx_rx_free(priv);
 586        bdx_tx_free(priv);
 587        RET(0);
 588}
 589
 590/**
 591 * bdx_open - Called when a network interface is made active
 592 * @netdev: network interface device structure
 593 *
 594 * Returns 0 on success, negative value on failure
 595 *
 596 * The open entry point is called when a network interface is made
 597 * active by the system (IFF_UP).  At this point all resources needed
 598 * for transmit and receive operations are allocated, the interrupt
 599 * handler is registered with the OS, the watchdog timer is started,
 600 * and the stack is notified that the interface is ready.
 601 **/
 602static int bdx_open(struct net_device *ndev)
 603{
 604        struct bdx_priv *priv;
 605        int rc;
 606
 607        ENTER;
 608        priv = netdev_priv(ndev);
 609        bdx_reset(priv);
 610        if (netif_running(ndev))
 611                netif_stop_queue(priv->ndev);
 612
 613        if ((rc = bdx_tx_init(priv)) ||
 614            (rc = bdx_rx_init(priv)) ||
 615            (rc = bdx_fw_load(priv)))
 616                goto err;
 617
 618        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 619
 620        rc = bdx_hw_start(priv);
 621        if (rc)
 622                goto err;
 623
 624        napi_enable(&priv->napi);
 625
 626        print_fw_id(priv->nic);
 627
 628        RET(0);
 629
 630err:
 631        bdx_close(ndev);
 632        RET(rc);
 633}
 634
 635static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 636{
 637        return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 638                -EINVAL : 0;
 639}
 640
 641static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 642{
 643        struct bdx_priv *priv = netdev_priv(ndev);
 644        u32 data[3];
 645        int error;
 646
 647        ENTER;
 648
 649        DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 650        if (cmd != SIOCDEVPRIVATE) {
 651                error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 652                if (error) {
 653                        pr_err("can't copy from user\n");
 654                        RET(-EFAULT);
 655                }
 656                DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 657        }
 658
 659        if (!capable(CAP_SYS_RAWIO))
 660                return -EPERM;
 661
 662        switch (data[0]) {
 663
 664        case BDX_OP_READ:
 665                error = bdx_range_check(priv, data[1]);
 666                if (error < 0)
 667                        return error;
 668                data[2] = READ_REG(priv, data[1]);
 669                DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 670                    data[2]);
 671                error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 672                if (error)
 673                        RET(-EFAULT);
 674                break;
 675
 676        case BDX_OP_WRITE:
 677                error = bdx_range_check(priv, data[1]);
 678                if (error < 0)
 679                        return error;
 680                WRITE_REG(priv, data[1], data[2]);
 681                DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 682                break;
 683
 684        default:
 685                RET(-EOPNOTSUPP);
 686        }
 687        return 0;
 688}
 689
 690static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 691{
 692        ENTER;
 693        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 694                RET(bdx_ioctl_priv(ndev, ifr, cmd));
 695        else
 696                RET(-EOPNOTSUPP);
 697}
 698
 699/**
 700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 701 * @ndev: network device
 702 * @vid:  VLAN vid
 703 * @op:   add or kill operation
 704 *
 705 * Passes VLAN filter table to hardware
 706 */
 707static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 708{
 709        struct bdx_priv *priv = netdev_priv(ndev);
 710        u32 reg, bit, val;
 711
 712        ENTER;
 713        DBG2("vid=%d value=%d\n", (int)vid, enable);
 714        if (unlikely(vid >= 4096)) {
 715                pr_err("invalid VID: %u (> 4096)\n", vid);
 716                RET();
 717        }
 718        reg = regVLAN_0 + (vid / 32) * 4;
 719        bit = 1 << vid % 32;
 720        val = READ_REG(priv, reg);
 721        DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 722        if (enable)
 723                val |= bit;
 724        else
 725                val &= ~bit;
 726        DBG2("new val %x\n", val);
 727        WRITE_REG(priv, reg, val);
 728        RET();
 729}
 730
 731/**
 732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 733 * @ndev: network device
 734 * @vid:  VLAN vid to add
 735 */
 736static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 737{
 738        __bdx_vlan_rx_vid(ndev, vid, 1);
 739        return 0;
 740}
 741
 742/**
 743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 744 * @ndev: network device
 745 * @vid:  VLAN vid to kill
 746 */
 747static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 748{
 749        __bdx_vlan_rx_vid(ndev, vid, 0);
 750        return 0;
 751}
 752
 753/**
 754 * bdx_change_mtu - Change the Maximum Transfer Unit
 755 * @netdev: network interface device structure
 756 * @new_mtu: new value for maximum frame size
 757 *
 758 * Returns 0 on success, negative on failure
 759 */
 760static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 761{
 762        ENTER;
 763
 764        ndev->mtu = new_mtu;
 765        if (netif_running(ndev)) {
 766                bdx_close(ndev);
 767                bdx_open(ndev);
 768        }
 769        RET(0);
 770}
 771
 772static void bdx_setmulti(struct net_device *ndev)
 773{
 774        struct bdx_priv *priv = netdev_priv(ndev);
 775
 776        u32 rxf_val =
 777            GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 778        int i;
 779
 780        ENTER;
 781        /* IMF - imperfect (hash) rx multicat filter */
 782        /* PMF - perfect rx multicat filter */
 783
 784        /* FIXME: RXE(OFF) */
 785        if (ndev->flags & IFF_PROMISC) {
 786                rxf_val |= GMAC_RX_FILTER_PRM;
 787        } else if (ndev->flags & IFF_ALLMULTI) {
 788                /* set IMF to accept all multicast frmaes */
 789                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 790                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 791        } else if (!netdev_mc_empty(ndev)) {
 792                u8 hash;
 793                struct netdev_hw_addr *ha;
 794                u32 reg, val;
 795
 796                /* set IMF to deny all multicast frames */
 797                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 798                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 799                /* set PMF to deny all multicast frames */
 800                for (i = 0; i < MAC_MCST_NUM; i++) {
 801                        WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 802                        WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 803                }
 804
 805                /* use PMF to accept first MAC_MCST_NUM (15) addresses */
 806                /* TBD: sort addresses and write them in ascending order
 807                 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 808                 * multicast frames throu IMF */
 809                /* accept the rest of addresses throu IMF */
 810                netdev_for_each_mc_addr(ha, ndev) {
 811                        hash = 0;
 812                        for (i = 0; i < ETH_ALEN; i++)
 813                                hash ^= ha->addr[i];
 814                        reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 815                        val = READ_REG(priv, reg);
 816                        val |= (1 << (hash % 32));
 817                        WRITE_REG(priv, reg, val);
 818                }
 819
 820        } else {
 821                DBG("only own mac %d\n", netdev_mc_count(ndev));
 822                rxf_val |= GMAC_RX_FILTER_AB;
 823        }
 824        WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 825        /* enable RX */
 826        /* FIXME: RXE(ON) */
 827        RET();
 828}
 829
 830static int bdx_set_mac(struct net_device *ndev, void *p)
 831{
 832        struct bdx_priv *priv = netdev_priv(ndev);
 833        struct sockaddr *addr = p;
 834
 835        ENTER;
 836        /*
 837           if (netif_running(dev))
 838           return -EBUSY
 839         */
 840        memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 841        bdx_restore_mac(ndev, priv);
 842        RET(0);
 843}
 844
 845static int bdx_read_mac(struct bdx_priv *priv)
 846{
 847        u16 macAddress[3], i;
 848        ENTER;
 849
 850        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 851        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 852        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 853        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 854        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 855        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 856        for (i = 0; i < 3; i++) {
 857                priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 858                priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 859        }
 860        RET(0);
 861}
 862
 863static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 864{
 865        u64 val;
 866
 867        val = READ_REG(priv, reg);
 868        val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 869        return val;
 870}
 871
 872/*Do the statistics-update work*/
 873static void bdx_update_stats(struct bdx_priv *priv)
 874{
 875        struct bdx_stats *stats = &priv->hw_stats;
 876        u64 *stats_vector = (u64 *) stats;
 877        int i;
 878        int addr;
 879
 880        /*Fill HW structure */
 881        addr = 0x7200;
 882        /*First 12 statistics - 0x7200 - 0x72B0 */
 883        for (i = 0; i < 12; i++) {
 884                stats_vector[i] = bdx_read_l2stat(priv, addr);
 885                addr += 0x10;
 886        }
 887        BDX_ASSERT(addr != 0x72C0);
 888        /* 0x72C0-0x72E0 RSRV */
 889        addr = 0x72F0;
 890        for (; i < 16; i++) {
 891                stats_vector[i] = bdx_read_l2stat(priv, addr);
 892                addr += 0x10;
 893        }
 894        BDX_ASSERT(addr != 0x7330);
 895        /* 0x7330-0x7360 RSRV */
 896        addr = 0x7370;
 897        for (; i < 19; i++) {
 898                stats_vector[i] = bdx_read_l2stat(priv, addr);
 899                addr += 0x10;
 900        }
 901        BDX_ASSERT(addr != 0x73A0);
 902        /* 0x73A0-0x73B0 RSRV */
 903        addr = 0x73C0;
 904        for (; i < 23; i++) {
 905                stats_vector[i] = bdx_read_l2stat(priv, addr);
 906                addr += 0x10;
 907        }
 908        BDX_ASSERT(addr != 0x7400);
 909        BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 910}
 911
 912static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 913                       u16 rxd_vlan);
 914static void print_rxfd(struct rxf_desc *rxfd);
 915
 916/*************************************************************************
 917 *     Rx DB                                                             *
 918 *************************************************************************/
 919
 920static void bdx_rxdb_destroy(struct rxdb *db)
 921{
 922        vfree(db);
 923}
 924
 925static struct rxdb *bdx_rxdb_create(int nelem)
 926{
 927        struct rxdb *db;
 928        int i;
 929
 930        db = vmalloc(sizeof(struct rxdb)
 931                     + (nelem * sizeof(int))
 932                     + (nelem * sizeof(struct rx_map)));
 933        if (likely(db != NULL)) {
 934                db->stack = (int *)(db + 1);
 935                db->elems = (void *)(db->stack + nelem);
 936                db->nelem = nelem;
 937                db->top = nelem;
 938                for (i = 0; i < nelem; i++)
 939                        db->stack[i] = nelem - i - 1;   /* to make first allocs
 940                                                           close to db struct*/
 941        }
 942
 943        return db;
 944}
 945
 946static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 947{
 948        BDX_ASSERT(db->top <= 0);
 949        return db->stack[--(db->top)];
 950}
 951
 952static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 953{
 954        BDX_ASSERT((n < 0) || (n >= db->nelem));
 955        return db->elems + n;
 956}
 957
 958static inline int bdx_rxdb_available(struct rxdb *db)
 959{
 960        return db->top;
 961}
 962
 963static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 964{
 965        BDX_ASSERT((n >= db->nelem) || (n < 0));
 966        db->stack[(db->top)++] = n;
 967}
 968
 969/*************************************************************************
 970 *     Rx Init                                                           *
 971 *************************************************************************/
 972
 973/**
 974 * bdx_rx_init - initialize RX all related HW and SW resources
 975 * @priv: NIC private structure
 976 *
 977 * Returns 0 on success, negative value on failure
 978 *
 979 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 980 * skb for rx. It assumes that Rx is desabled in HW
 981 * funcs are grouped for better cache usage
 982 *
 983 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 984 * filled and packets will be dropped by nic without getting into host or
 985 * cousing interrupt. Anyway, in that condition, host has no chance to process
 986 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 987 */
 988
 989/* TBD: ensure proper packet size */
 990
 991static int bdx_rx_init(struct bdx_priv *priv)
 992{
 993        ENTER;
 994
 995        if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 996                          regRXD_CFG0_0, regRXD_CFG1_0,
 997                          regRXD_RPTR_0, regRXD_WPTR_0))
 998                goto err_mem;
 999        if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1000                          regRXF_CFG0_0, regRXF_CFG1_0,
1001                          regRXF_RPTR_0, regRXF_WPTR_0))
1002                goto err_mem;
1003        priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1004                                     sizeof(struct rxf_desc));
1005        if (!priv->rxdb)
1006                goto err_mem;
1007
1008        priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1009        return 0;
1010
1011err_mem:
1012        netdev_err(priv->ndev, "Rx init failed\n");
1013        return -ENOMEM;
1014}
1015
1016/**
1017 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1018 * @priv: NIC private structure
1019 * @f: RXF fifo
1020 */
1021static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1022{
1023        struct rx_map *dm;
1024        struct rxdb *db = priv->rxdb;
1025        u16 i;
1026
1027        ENTER;
1028        DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1029            db->nelem - bdx_rxdb_available(db));
1030        while (bdx_rxdb_available(db) > 0) {
1031                i = bdx_rxdb_alloc_elem(db);
1032                dm = bdx_rxdb_addr_elem(db, i);
1033                dm->dma = 0;
1034        }
1035        for (i = 0; i < db->nelem; i++) {
1036                dm = bdx_rxdb_addr_elem(db, i);
1037                if (dm->dma) {
1038                        pci_unmap_single(priv->pdev,
1039                                         dm->dma, f->m.pktsz,
1040                                         PCI_DMA_FROMDEVICE);
1041                        dev_kfree_skb(dm->skb);
1042                }
1043        }
1044}
1045
1046/**
1047 * bdx_rx_free - release all Rx resources
1048 * @priv: NIC private structure
1049 *
1050 * It assumes that Rx is desabled in HW
1051 */
1052static void bdx_rx_free(struct bdx_priv *priv)
1053{
1054        ENTER;
1055        if (priv->rxdb) {
1056                bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1057                bdx_rxdb_destroy(priv->rxdb);
1058                priv->rxdb = NULL;
1059        }
1060        bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1061        bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1062
1063        RET();
1064}
1065
1066/*************************************************************************
1067 *     Rx Engine                                                         *
1068 *************************************************************************/
1069
1070/**
1071 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1072 * @priv: nic's private structure
1073 * @f: RXF fifo that needs skbs
1074 *
1075 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1076 * skb's virtual and physical addresses are stored in skb db.
1077 * To calculate free space, func uses cached values of RPTR and WPTR
1078 * When needed, it also updates RPTR and WPTR.
1079 */
1080
1081/* TBD: do not update WPTR if no desc were written */
1082
1083static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1084{
1085        struct sk_buff *skb;
1086        struct rxf_desc *rxfd;
1087        struct rx_map *dm;
1088        int dno, delta, idx;
1089        struct rxdb *db = priv->rxdb;
1090
1091        ENTER;
1092        dno = bdx_rxdb_available(db) - 1;
1093        while (dno > 0) {
1094                skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1095                if (!skb)
1096                        break;
1097
1098                skb_reserve(skb, NET_IP_ALIGN);
1099
1100                idx = bdx_rxdb_alloc_elem(db);
1101                dm = bdx_rxdb_addr_elem(db, idx);
1102                dm->dma = pci_map_single(priv->pdev,
1103                                         skb->data, f->m.pktsz,
1104                                         PCI_DMA_FROMDEVICE);
1105                dm->skb = skb;
1106                rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1107                rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1108                rxfd->va_lo = idx;
1109                rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1110                rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1111                rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1112                print_rxfd(rxfd);
1113
1114                f->m.wptr += sizeof(struct rxf_desc);
1115                delta = f->m.wptr - f->m.memsz;
1116                if (unlikely(delta >= 0)) {
1117                        f->m.wptr = delta;
1118                        if (delta > 0) {
1119                                memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1120                                DBG("wrapped descriptor\n");
1121                        }
1122                }
1123                dno--;
1124        }
1125        /*TBD: to do - delayed rxf wptr like in txd */
1126        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1127        RET();
1128}
1129
1130static inline void
1131NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1132             struct sk_buff *skb)
1133{
1134        ENTER;
1135        DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1136        if (GET_RXD_VTAG(rxd_val1)) {
1137                DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1138                    priv->ndev->name,
1139                    GET_RXD_VLAN_ID(rxd_vlan),
1140                    GET_RXD_VTAG(rxd_val1));
1141                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1142        }
1143        netif_receive_skb(skb);
1144}
1145
1146static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1147{
1148        struct rxf_desc *rxfd;
1149        struct rx_map *dm;
1150        struct rxf_fifo *f;
1151        struct rxdb *db;
1152        struct sk_buff *skb;
1153        int delta;
1154
1155        ENTER;
1156        DBG("priv=%p rxdd=%p\n", priv, rxdd);
1157        f = &priv->rxf_fifo0;
1158        db = priv->rxdb;
1159        DBG("db=%p f=%p\n", db, f);
1160        dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1161        DBG("dm=%p\n", dm);
1162        skb = dm->skb;
1163        rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1164        rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1165        rxfd->va_lo = rxdd->va_lo;
1166        rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1167        rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1168        rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1169        print_rxfd(rxfd);
1170
1171        f->m.wptr += sizeof(struct rxf_desc);
1172        delta = f->m.wptr - f->m.memsz;
1173        if (unlikely(delta >= 0)) {
1174                f->m.wptr = delta;
1175                if (delta > 0) {
1176                        memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1177                        DBG("wrapped descriptor\n");
1178                }
1179        }
1180        RET();
1181}
1182
1183/**
1184 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1185 * NOTE: a special treatment is given to non-continuous descriptors
1186 * that start near the end, wraps around and continue at the beginning. a second
1187 * part is copied right after the first, and then descriptor is interpreted as
1188 * normal. fifo has an extra space to allow such operations
1189 * @priv: nic's private structure
1190 * @f: RXF fifo that needs skbs
1191 * @budget: maximum number of packets to receive
1192 */
1193
1194/* TBD: replace memcpy func call by explicite inline asm */
1195
1196static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1197{
1198        struct net_device *ndev = priv->ndev;
1199        struct sk_buff *skb, *skb2;
1200        struct rxd_desc *rxdd;
1201        struct rx_map *dm;
1202        struct rxf_fifo *rxf_fifo;
1203        int tmp_len, size;
1204        int done = 0;
1205        int max_done = BDX_MAX_RX_DONE;
1206        struct rxdb *db = NULL;
1207        /* Unmarshalled descriptor - copy of descriptor in host order */
1208        u32 rxd_val1;
1209        u16 len;
1210        u16 rxd_vlan;
1211
1212        ENTER;
1213        max_done = budget;
1214
1215        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1216
1217        size = f->m.wptr - f->m.rptr;
1218        if (size < 0)
1219                size = f->m.memsz + size;       /* size is negative :-) */
1220
1221        while (size > 0) {
1222
1223                rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1224                rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1225
1226                len = CPU_CHIP_SWAP16(rxdd->len);
1227
1228                rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1229
1230                print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1231
1232                tmp_len = GET_RXD_BC(rxd_val1) << 3;
1233                BDX_ASSERT(tmp_len <= 0);
1234                size -= tmp_len;
1235                if (size < 0)   /* test for partially arrived descriptor */
1236                        break;
1237
1238                f->m.rptr += tmp_len;
1239
1240                tmp_len = f->m.rptr - f->m.memsz;
1241                if (unlikely(tmp_len >= 0)) {
1242                        f->m.rptr = tmp_len;
1243                        if (tmp_len > 0) {
1244                                DBG("wrapped desc rptr=%d tmp_len=%d\n",
1245                                    f->m.rptr, tmp_len);
1246                                memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1247                        }
1248                }
1249
1250                if (unlikely(GET_RXD_ERR(rxd_val1))) {
1251                        DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1252                        ndev->stats.rx_errors++;
1253                        bdx_recycle_skb(priv, rxdd);
1254                        continue;
1255                }
1256
1257                rxf_fifo = &priv->rxf_fifo0;
1258                db = priv->rxdb;
1259                dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1260                skb = dm->skb;
1261
1262                if (len < BDX_COPYBREAK &&
1263                    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1264                        skb_reserve(skb2, NET_IP_ALIGN);
1265                        /*skb_put(skb2, len); */
1266                        pci_dma_sync_single_for_cpu(priv->pdev,
1267                                                    dm->dma, rxf_fifo->m.pktsz,
1268                                                    PCI_DMA_FROMDEVICE);
1269                        memcpy(skb2->data, skb->data, len);
1270                        bdx_recycle_skb(priv, rxdd);
1271                        skb = skb2;
1272                } else {
1273                        pci_unmap_single(priv->pdev,
1274                                         dm->dma, rxf_fifo->m.pktsz,
1275                                         PCI_DMA_FROMDEVICE);
1276                        bdx_rxdb_free_elem(db, rxdd->va_lo);
1277                }
1278
1279                ndev->stats.rx_bytes += len;
1280
1281                skb_put(skb, len);
1282                skb->protocol = eth_type_trans(skb, ndev);
1283
1284                /* Non-IP packets aren't checksum-offloaded */
1285                if (GET_RXD_PKT_ID(rxd_val1) == 0)
1286                        skb_checksum_none_assert(skb);
1287                else
1288                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1289
1290                NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1291
1292                if (++done >= max_done)
1293                        break;
1294        }
1295
1296        ndev->stats.rx_packets += done;
1297
1298        /* FIXME: do smth to minimize pci accesses    */
1299        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1300
1301        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1302
1303        RET(done);
1304}
1305
1306/*************************************************************************
1307 * Debug / Temprorary Code                                               *
1308 *************************************************************************/
1309static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1310                       u16 rxd_vlan)
1311{
1312        DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1313            GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1314            GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1315            GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1316            GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1317            GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1318            rxdd->va_hi);
1319}
1320
1321static void print_rxfd(struct rxf_desc *rxfd)
1322{
1323        DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1324            "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1325            rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1326}
1327
1328/*
1329 * TX HW/SW interaction overview
1330 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1331 * There are 2 types of TX communication channels between driver and NIC.
1332 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1333 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1334 *
1335 * Currently NIC supports TSO, checksuming and gather DMA
1336 * UFO and IP fragmentation is on the way
1337 *
1338 * RX SW Data Structures
1339 * ~~~~~~~~~~~~~~~~~~~~~
1340 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1341 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1342 * acknowledges sent by TXF descriptors.
1343 * Implemented as cyclic buffer.
1344 * fifo - keeps info about fifo's size and location, relevant HW registers,
1345 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1346 * Implemented as simple struct.
1347 *
1348 * TX SW Execution Flow
1349 * ~~~~~~~~~~~~~~~~~~~~
1350 * OS calls driver's hard_xmit method with packet to sent.
1351 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1352 * by updating TXD WPTR.
1353 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1354 * To prevent TXD fifo overflow without reading HW registers every time,
1355 * SW deploys "tx level" technique.
1356 * Upon strart up, tx level is initialized to TXD fifo length.
1357 * For every sent packet, SW gets its TXD descriptor sizei
1358 * (from precalculated array) and substructs it from tx level.
1359 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1360 * original TXD descriptor from txdb and adds it to tx level.
1361 * When Tx level drops under some predefined treshhold, the driver
1362 * stops the TX queue. When TX level rises above that level,
1363 * the tx queue is enabled again.
1364 *
1365 * This technique avoids eccessive reading of RPTR and WPTR registers.
1366 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1367 */
1368
1369/*************************************************************************
1370 *     Tx DB                                                             *
1371 *************************************************************************/
1372static inline int bdx_tx_db_size(struct txdb *db)
1373{
1374        int taken = db->wptr - db->rptr;
1375        if (taken < 0)
1376                taken = db->size + 1 + taken;   /* (size + 1) equals memsz */
1377
1378        return db->size - taken;
1379}
1380
1381/**
1382 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1383 * @db: tx data base
1384 * @pptr: read or write pointer
1385 */
1386static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1387{
1388        BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1389
1390        BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1391                   *pptr != db->wptr);  /* or write pointer */
1392
1393        BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1394                   *pptr >= db->end);   /* in range */
1395
1396        ++*pptr;
1397        if (unlikely(*pptr == db->end))
1398                *pptr = db->start;
1399}
1400
1401/**
1402 * bdx_tx_db_inc_rptr - increment read pointer
1403 * @db: tx data base
1404 */
1405static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1406{
1407        BDX_ASSERT(db->rptr == db->wptr);       /* can't read from empty db */
1408        __bdx_tx_db_ptr_next(db, &db->rptr);
1409}
1410
1411/**
1412 * bdx_tx_db_inc_wptr - increment write pointer
1413 * @db: tx data base
1414 */
1415static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1416{
1417        __bdx_tx_db_ptr_next(db, &db->wptr);
1418        BDX_ASSERT(db->rptr == db->wptr);       /* we can not get empty db as
1419                                                   a result of write */
1420}
1421
1422/**
1423 * bdx_tx_db_init - creates and initializes tx db
1424 * @d: tx data base
1425 * @sz_type: size of tx fifo
1426 *
1427 * Returns 0 on success, error code otherwise
1428 */
1429static int bdx_tx_db_init(struct txdb *d, int sz_type)
1430{
1431        int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1432
1433        d->start = vmalloc(memsz);
1434        if (!d->start)
1435                return -ENOMEM;
1436
1437        /*
1438         * In order to differentiate between db is empty and db is full
1439         * states at least one element should always be empty in order to
1440         * avoid rptr == wptr which means db is empty
1441         */
1442        d->size = memsz / sizeof(struct tx_map) - 1;
1443        d->end = d->start + d->size + 1;        /* just after last element */
1444
1445        /* all dbs are created equally empty */
1446        d->rptr = d->start;
1447        d->wptr = d->start;
1448
1449        return 0;
1450}
1451
1452/**
1453 * bdx_tx_db_close - closes tx db and frees all memory
1454 * @d: tx data base
1455 */
1456static void bdx_tx_db_close(struct txdb *d)
1457{
1458        BDX_ASSERT(d == NULL);
1459
1460        vfree(d->start);
1461        d->start = NULL;
1462}
1463
1464/*************************************************************************
1465 *     Tx Engine                                                         *
1466 *************************************************************************/
1467
1468/* sizes of tx desc (including padding if needed) as function
1469 * of skb's frag number */
1470static struct {
1471        u16 bytes;
1472        u16 qwords;             /* qword = 64 bit */
1473} txd_sizes[MAX_SKB_FRAGS + 1];
1474
1475/**
1476 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1477 * @priv: NIC private structure
1478 * @skb: socket buffer to map
1479 * @txdd: TX descriptor to use
1480 *
1481 * It makes dma mappings for skb's data blocks and writes them to PBL of
1482 * new tx descriptor. It also stores them in the tx db, so they could be
1483 * unmaped after data was sent. It is reponsibility of a caller to make
1484 * sure that there is enough space in the tx db. Last element holds pointer
1485 * to skb itself and marked with zero length
1486 */
1487static inline void
1488bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1489               struct txd_desc *txdd)
1490{
1491        struct txdb *db = &priv->txdb;
1492        struct pbl *pbl = &txdd->pbl[0];
1493        int nr_frags = skb_shinfo(skb)->nr_frags;
1494        int i;
1495
1496        db->wptr->len = skb_headlen(skb);
1497        db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1498                                            db->wptr->len, PCI_DMA_TODEVICE);
1499        pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1500        pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1501        pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1502        DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1503        DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1504        DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1505        bdx_tx_db_inc_wptr(db);
1506
1507        for (i = 0; i < nr_frags; i++) {
1508                const struct skb_frag_struct *frag;
1509
1510                frag = &skb_shinfo(skb)->frags[i];
1511                db->wptr->len = skb_frag_size(frag);
1512                db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1513                                                      0, skb_frag_size(frag),
1514                                                      DMA_TO_DEVICE);
1515
1516                pbl++;
1517                pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1518                pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1519                pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1520                bdx_tx_db_inc_wptr(db);
1521        }
1522
1523        /* add skb clean up info. */
1524        db->wptr->len = -txd_sizes[nr_frags].bytes;
1525        db->wptr->addr.skb = skb;
1526        bdx_tx_db_inc_wptr(db);
1527}
1528
1529/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1530 * number of frags is used as index to fetch correct descriptors size,
1531 * instead of calculating it each time */
1532static void __init init_txd_sizes(void)
1533{
1534        int i, lwords;
1535
1536        /* 7 - is number of lwords in txd with one phys buffer
1537         * 3 - is number of lwords used for every additional phys buffer */
1538        for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1539                lwords = 7 + (i * 3);
1540                if (lwords & 1)
1541                        lwords++;       /* pad it with 1 lword */
1542                txd_sizes[i].qwords = lwords >> 1;
1543                txd_sizes[i].bytes = lwords << 2;
1544        }
1545}
1546
1547/* bdx_tx_init - initialize all Tx related stuff.
1548 * Namely, TXD and TXF fifos, database etc */
1549static int bdx_tx_init(struct bdx_priv *priv)
1550{
1551        if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1552                          regTXD_CFG0_0,
1553                          regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1554                goto err_mem;
1555        if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1556                          regTXF_CFG0_0,
1557                          regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1558                goto err_mem;
1559
1560        /* The TX db has to keep mappings for all packets sent (on TxD)
1561         * and not yet reclaimed (on TxF) */
1562        if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1563                goto err_mem;
1564
1565        priv->tx_level = BDX_MAX_TX_LEVEL;
1566#ifdef BDX_DELAY_WPTR
1567        priv->tx_update_mark = priv->tx_level - 1024;
1568#endif
1569        return 0;
1570
1571err_mem:
1572        netdev_err(priv->ndev, "Tx init failed\n");
1573        return -ENOMEM;
1574}
1575
1576/**
1577 * bdx_tx_space - calculates available space in TX fifo
1578 * @priv: NIC private structure
1579 *
1580 * Returns available space in TX fifo in bytes
1581 */
1582static inline int bdx_tx_space(struct bdx_priv *priv)
1583{
1584        struct txd_fifo *f = &priv->txd_fifo0;
1585        int fsize;
1586
1587        f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1588        fsize = f->m.rptr - f->m.wptr;
1589        if (fsize <= 0)
1590                fsize = f->m.memsz + fsize;
1591        return fsize;
1592}
1593
1594/**
1595 * bdx_tx_transmit - send packet to NIC
1596 * @skb: packet to send
1597 * @ndev: network device assigned to NIC
1598 * Return codes:
1599 * o NETDEV_TX_OK everything ok.
1600 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1601 *   Usually a bug, means queue start/stop flow control is broken in
1602 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1603 */
1604static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1605                                   struct net_device *ndev)
1606{
1607        struct bdx_priv *priv = netdev_priv(ndev);
1608        struct txd_fifo *f = &priv->txd_fifo0;
1609        int txd_checksum = 7;   /* full checksum */
1610        int txd_lgsnd = 0;
1611        int txd_vlan_id = 0;
1612        int txd_vtag = 0;
1613        int txd_mss = 0;
1614
1615        int nr_frags = skb_shinfo(skb)->nr_frags;
1616        struct txd_desc *txdd;
1617        int len;
1618        unsigned long flags;
1619
1620        ENTER;
1621        local_irq_save(flags);
1622        spin_lock(&priv->tx_lock);
1623
1624        /* build tx descriptor */
1625        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* started with valid wptr */
1626        txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1627        if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1628                txd_checksum = 0;
1629
1630        if (skb_shinfo(skb)->gso_size) {
1631                txd_mss = skb_shinfo(skb)->gso_size;
1632                txd_lgsnd = 1;
1633                DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1634                    txd_mss);
1635        }
1636
1637        if (skb_vlan_tag_present(skb)) {
1638                /*Cut VLAN ID to 12 bits */
1639                txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1640                txd_vtag = 1;
1641        }
1642
1643        txdd->length = CPU_CHIP_SWAP16(skb->len);
1644        txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1645        txdd->txd_val1 =
1646            CPU_CHIP_SWAP32(TXD_W1_VAL
1647                            (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1648                             txd_lgsnd, txd_vlan_id));
1649        DBG("=== TxD desc =====================\n");
1650        DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1651        DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1652
1653        bdx_tx_map_skb(priv, skb, txdd);
1654
1655        /* increment TXD write pointer. In case of
1656           fifo wrapping copy reminder of the descriptor
1657           to the beginning */
1658        f->m.wptr += txd_sizes[nr_frags].bytes;
1659        len = f->m.wptr - f->m.memsz;
1660        if (unlikely(len >= 0)) {
1661                f->m.wptr = len;
1662                if (len > 0) {
1663                        BDX_ASSERT(len > f->m.memsz);
1664                        memcpy(f->m.va, f->m.va + f->m.memsz, len);
1665                }
1666        }
1667        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* finished with valid wptr */
1668
1669        priv->tx_level -= txd_sizes[nr_frags].bytes;
1670        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1671#ifdef BDX_DELAY_WPTR
1672        if (priv->tx_level > priv->tx_update_mark) {
1673                /* Force memory writes to complete before letting h/w
1674                   know there are new descriptors to fetch.
1675                   (might be needed on platforms like IA64)
1676                   wmb(); */
1677                WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1678        } else {
1679                if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1680                        priv->tx_noupd = 0;
1681                        WRITE_REG(priv, f->m.reg_WPTR,
1682                                  f->m.wptr & TXF_WPTR_WR_PTR);
1683                }
1684        }
1685#else
1686        /* Force memory writes to complete before letting h/w
1687           know there are new descriptors to fetch.
1688           (might be needed on platforms like IA64)
1689           wmb(); */
1690        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1691
1692#endif
1693#ifdef BDX_LLTX
1694        netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1695#endif
1696        ndev->stats.tx_packets++;
1697        ndev->stats.tx_bytes += skb->len;
1698
1699        if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1700                DBG("%s: %s: TX Q STOP level %d\n",
1701                    BDX_DRV_NAME, ndev->name, priv->tx_level);
1702                netif_stop_queue(ndev);
1703        }
1704
1705        spin_unlock_irqrestore(&priv->tx_lock, flags);
1706        return NETDEV_TX_OK;
1707}
1708
1709/**
1710 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1711 * @priv: bdx adapter
1712 *
1713 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1714 * that those packets were sent
1715 */
1716static void bdx_tx_cleanup(struct bdx_priv *priv)
1717{
1718        struct txf_fifo *f = &priv->txf_fifo0;
1719        struct txdb *db = &priv->txdb;
1720        int tx_level = 0;
1721
1722        ENTER;
1723        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1724        BDX_ASSERT(f->m.rptr >= f->m.memsz);    /* started with valid rptr */
1725
1726        while (f->m.wptr != f->m.rptr) {
1727                f->m.rptr += BDX_TXF_DESC_SZ;
1728                f->m.rptr &= f->m.size_mask;
1729
1730                /* unmap all the fragments */
1731                /* first has to come tx_maps containing dma */
1732                BDX_ASSERT(db->rptr->len == 0);
1733                do {
1734                        BDX_ASSERT(db->rptr->addr.dma == 0);
1735                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1736                                       db->rptr->len, PCI_DMA_TODEVICE);
1737                        bdx_tx_db_inc_rptr(db);
1738                } while (db->rptr->len > 0);
1739                tx_level -= db->rptr->len;      /* '-' koz len is negative */
1740
1741                /* now should come skb pointer - free it */
1742                dev_kfree_skb_irq(db->rptr->addr.skb);
1743                bdx_tx_db_inc_rptr(db);
1744        }
1745
1746        /* let h/w know which TXF descriptors were cleaned */
1747        BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1748        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1749
1750        /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1751         * we resume the transmission and use tx_lock to synchronize with xmit.*/
1752        spin_lock(&priv->tx_lock);
1753        priv->tx_level += tx_level;
1754        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1755#ifdef BDX_DELAY_WPTR
1756        if (priv->tx_noupd) {
1757                priv->tx_noupd = 0;
1758                WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1759                          priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1760        }
1761#endif
1762
1763        if (unlikely(netif_queue_stopped(priv->ndev) &&
1764                     netif_carrier_ok(priv->ndev) &&
1765                     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1766                DBG("%s: %s: TX Q WAKE level %d\n",
1767                    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1768                netif_wake_queue(priv->ndev);
1769        }
1770        spin_unlock(&priv->tx_lock);
1771}
1772
1773/**
1774 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1775 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1776 */
1777static void bdx_tx_free_skbs(struct bdx_priv *priv)
1778{
1779        struct txdb *db = &priv->txdb;
1780
1781        ENTER;
1782        while (db->rptr != db->wptr) {
1783                if (likely(db->rptr->len))
1784                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1785                                       db->rptr->len, PCI_DMA_TODEVICE);
1786                else
1787                        dev_kfree_skb(db->rptr->addr.skb);
1788                bdx_tx_db_inc_rptr(db);
1789        }
1790        RET();
1791}
1792
1793/* bdx_tx_free - frees all Tx resources */
1794static void bdx_tx_free(struct bdx_priv *priv)
1795{
1796        ENTER;
1797        bdx_tx_free_skbs(priv);
1798        bdx_fifo_free(priv, &priv->txd_fifo0.m);
1799        bdx_fifo_free(priv, &priv->txf_fifo0.m);
1800        bdx_tx_db_close(&priv->txdb);
1801}
1802
1803/**
1804 * bdx_tx_push_desc - push descriptor to TxD fifo
1805 * @priv: NIC private structure
1806 * @data: desc's data
1807 * @size: desc's size
1808 *
1809 * Pushes desc to TxD fifo and overlaps it if needed.
1810 * NOTE: this func does not check for available space. this is responsibility
1811 *    of the caller. Neither does it check that data size is smaller than
1812 *    fifo size.
1813 */
1814static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1815{
1816        struct txd_fifo *f = &priv->txd_fifo0;
1817        int i = f->m.memsz - f->m.wptr;
1818
1819        if (size == 0)
1820                return;
1821
1822        if (i > size) {
1823                memcpy(f->m.va + f->m.wptr, data, size);
1824                f->m.wptr += size;
1825        } else {
1826                memcpy(f->m.va + f->m.wptr, data, i);
1827                f->m.wptr = size - i;
1828                memcpy(f->m.va, data + i, f->m.wptr);
1829        }
1830        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1831}
1832
1833/**
1834 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1835 * @priv: NIC private structure
1836 * @data: desc's data
1837 * @size: desc's size
1838 *
1839 * NOTE: this func does check for available space and, if necessary, waits for
1840 *   NIC to read existing data before writing new one.
1841 */
1842static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1843{
1844        int timer = 0;
1845        ENTER;
1846
1847        while (size > 0) {
1848                /* we substruct 8 because when fifo is full rptr == wptr
1849                   which also means that fifo is empty, we can understand
1850                   the difference, but could hw do the same ??? :) */
1851                int avail = bdx_tx_space(priv) - 8;
1852                if (avail <= 0) {
1853                        if (timer++ > 300) {    /* prevent endless loop */
1854                                DBG("timeout while writing desc to TxD fifo\n");
1855                                break;
1856                        }
1857                        udelay(50);     /* give hw a chance to clean fifo */
1858                        continue;
1859                }
1860                avail = min(avail, size);
1861                DBG("about to push  %d bytes starting %p size %d\n", avail,
1862                    data, size);
1863                bdx_tx_push_desc(priv, data, avail);
1864                size -= avail;
1865                data += avail;
1866        }
1867        RET();
1868}
1869
1870static const struct net_device_ops bdx_netdev_ops = {
1871        .ndo_open               = bdx_open,
1872        .ndo_stop               = bdx_close,
1873        .ndo_start_xmit         = bdx_tx_transmit,
1874        .ndo_validate_addr      = eth_validate_addr,
1875        .ndo_do_ioctl           = bdx_ioctl,
1876        .ndo_set_rx_mode        = bdx_setmulti,
1877        .ndo_change_mtu         = bdx_change_mtu,
1878        .ndo_set_mac_address    = bdx_set_mac,
1879        .ndo_vlan_rx_add_vid    = bdx_vlan_rx_add_vid,
1880        .ndo_vlan_rx_kill_vid   = bdx_vlan_rx_kill_vid,
1881};
1882
1883/**
1884 * bdx_probe - Device Initialization Routine
1885 * @pdev: PCI device information struct
1886 * @ent: entry in bdx_pci_tbl
1887 *
1888 * Returns 0 on success, negative on failure
1889 *
1890 * bdx_probe initializes an adapter identified by a pci_dev structure.
1891 * The OS initialization, configuring of the adapter private structure,
1892 * and a hardware reset occur.
1893 *
1894 * functions and their order used as explained in
1895 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1896 *
1897 */
1898
1899/* TBD: netif_msg should be checked and implemented. I disable it for now */
1900static int
1901bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1902{
1903        struct net_device *ndev;
1904        struct bdx_priv *priv;
1905        int err, pci_using_dac, port;
1906        unsigned long pciaddr;
1907        u32 regionSize;
1908        struct pci_nic *nic;
1909
1910        ENTER;
1911
1912        nic = vmalloc(sizeof(*nic));
1913        if (!nic)
1914                RET(-ENOMEM);
1915
1916    /************** pci *****************/
1917        err = pci_enable_device(pdev);
1918        if (err)                        /* it triggers interrupt, dunno why. */
1919                goto err_pci;           /* it's not a problem though */
1920
1921        if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1922            !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1923                pci_using_dac = 1;
1924        } else {
1925                if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1926                    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1927                        pr_err("No usable DMA configuration, aborting\n");
1928                        goto err_dma;
1929                }
1930                pci_using_dac = 0;
1931        }
1932
1933        err = pci_request_regions(pdev, BDX_DRV_NAME);
1934        if (err)
1935                goto err_dma;
1936
1937        pci_set_master(pdev);
1938
1939        pciaddr = pci_resource_start(pdev, 0);
1940        if (!pciaddr) {
1941                err = -EIO;
1942                pr_err("no MMIO resource\n");
1943                goto err_out_res;
1944        }
1945        regionSize = pci_resource_len(pdev, 0);
1946        if (regionSize < BDX_REGS_SIZE) {
1947                err = -EIO;
1948                pr_err("MMIO resource (%x) too small\n", regionSize);
1949                goto err_out_res;
1950        }
1951
1952        nic->regs = ioremap(pciaddr, regionSize);
1953        if (!nic->regs) {
1954                err = -EIO;
1955                pr_err("ioremap failed\n");
1956                goto err_out_res;
1957        }
1958
1959        if (pdev->irq < 2) {
1960                err = -EIO;
1961                pr_err("invalid irq (%d)\n", pdev->irq);
1962                goto err_out_iomap;
1963        }
1964        pci_set_drvdata(pdev, nic);
1965
1966        if (pdev->device == 0x3014)
1967                nic->port_num = 2;
1968        else
1969                nic->port_num = 1;
1970
1971        print_hw_id(pdev);
1972
1973        bdx_hw_reset_direct(nic->regs);
1974
1975        nic->irq_type = IRQ_INTX;
1976#ifdef BDX_MSI
1977        if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1978                err = pci_enable_msi(pdev);
1979                if (err)
1980                        pr_err("Can't enable msi. error is %d\n", err);
1981                else
1982                        nic->irq_type = IRQ_MSI;
1983        } else
1984                DBG("HW does not support MSI\n");
1985#endif
1986
1987    /************** netdev **************/
1988        for (port = 0; port < nic->port_num; port++) {
1989                ndev = alloc_etherdev(sizeof(struct bdx_priv));
1990                if (!ndev) {
1991                        err = -ENOMEM;
1992                        goto err_out_iomap;
1993                }
1994
1995                ndev->netdev_ops = &bdx_netdev_ops;
1996                ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1997
1998                bdx_set_ethtool_ops(ndev);      /* ethtool interface */
1999
2000                /* these fields are used for info purposes only
2001                 * so we can have them same for all ports of the board */
2002                ndev->if_port = port;
2003                ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2004                    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2005                    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2006                    ;
2007                ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2008                        NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2009
2010                if (pci_using_dac)
2011                        ndev->features |= NETIF_F_HIGHDMA;
2012
2013        /************** priv ****************/
2014                priv = nic->priv[port] = netdev_priv(ndev);
2015
2016                priv->pBdxRegs = nic->regs + port * 0x8000;
2017                priv->port = port;
2018                priv->pdev = pdev;
2019                priv->ndev = ndev;
2020                priv->nic = nic;
2021                priv->msg_enable = BDX_DEF_MSG_ENABLE;
2022
2023                netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2024
2025                if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2026                        DBG("HW statistics not supported\n");
2027                        priv->stats_flag = 0;
2028                } else {
2029                        priv->stats_flag = 1;
2030                }
2031
2032                /* Initialize fifo sizes. */
2033                priv->txd_size = 2;
2034                priv->txf_size = 2;
2035                priv->rxd_size = 2;
2036                priv->rxf_size = 3;
2037
2038                /* Initialize the initial coalescing registers. */
2039                priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2040                priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2041
2042                /* ndev->xmit_lock spinlock is not used.
2043                 * Private priv->tx_lock is used for synchronization
2044                 * between transmit and TX irq cleanup.  In addition
2045                 * set multicast list callback has to use priv->tx_lock.
2046                 */
2047#ifdef BDX_LLTX
2048                ndev->features |= NETIF_F_LLTX;
2049#endif
2050                /* MTU range: 60 - 16384 */
2051                ndev->min_mtu = ETH_ZLEN;
2052                ndev->max_mtu = BDX_MAX_MTU;
2053
2054                spin_lock_init(&priv->tx_lock);
2055
2056                /*bdx_hw_reset(priv); */
2057                if (bdx_read_mac(priv)) {
2058                        pr_err("load MAC address failed\n");
2059                        goto err_out_iomap;
2060                }
2061                SET_NETDEV_DEV(ndev, &pdev->dev);
2062                err = register_netdev(ndev);
2063                if (err) {
2064                        pr_err("register_netdev failed\n");
2065                        goto err_out_free;
2066                }
2067                netif_carrier_off(ndev);
2068                netif_stop_queue(ndev);
2069
2070                print_eth_id(ndev);
2071        }
2072        RET(0);
2073
2074err_out_free:
2075        free_netdev(ndev);
2076err_out_iomap:
2077        iounmap(nic->regs);
2078err_out_res:
2079        pci_release_regions(pdev);
2080err_dma:
2081        pci_disable_device(pdev);
2082err_pci:
2083        vfree(nic);
2084
2085        RET(err);
2086}
2087
2088/****************** Ethtool interface *********************/
2089/* get strings for statistics counters */
2090static const char
2091 bdx_stat_names[][ETH_GSTRING_LEN] = {
2092        "InUCast",              /* 0x7200 */
2093        "InMCast",              /* 0x7210 */
2094        "InBCast",              /* 0x7220 */
2095        "InPkts",               /* 0x7230 */
2096        "InErrors",             /* 0x7240 */
2097        "InDropped",            /* 0x7250 */
2098        "FrameTooLong",         /* 0x7260 */
2099        "FrameSequenceErrors",  /* 0x7270 */
2100        "InVLAN",               /* 0x7280 */
2101        "InDroppedDFE",         /* 0x7290 */
2102        "InDroppedIntFull",     /* 0x72A0 */
2103        "InFrameAlignErrors",   /* 0x72B0 */
2104
2105        /* 0x72C0-0x72E0 RSRV */
2106
2107        "OutUCast",             /* 0x72F0 */
2108        "OutMCast",             /* 0x7300 */
2109        "OutBCast",             /* 0x7310 */
2110        "OutPkts",              /* 0x7320 */
2111
2112        /* 0x7330-0x7360 RSRV */
2113
2114        "OutVLAN",              /* 0x7370 */
2115        "InUCastOctects",       /* 0x7380 */
2116        "OutUCastOctects",      /* 0x7390 */
2117
2118        /* 0x73A0-0x73B0 RSRV */
2119
2120        "InBCastOctects",       /* 0x73C0 */
2121        "OutBCastOctects",      /* 0x73D0 */
2122        "InOctects",            /* 0x73E0 */
2123        "OutOctects",           /* 0x73F0 */
2124};
2125
2126/*
2127 * bdx_get_settings - get device-specific settings
2128 * @netdev
2129 * @ecmd
2130 */
2131static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2132{
2133        u32 rdintcm;
2134        u32 tdintcm;
2135        struct bdx_priv *priv = netdev_priv(netdev);
2136
2137        rdintcm = priv->rdintcm;
2138        tdintcm = priv->tdintcm;
2139
2140        ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2141        ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2142        ethtool_cmd_speed_set(ecmd, SPEED_10000);
2143        ecmd->duplex = DUPLEX_FULL;
2144        ecmd->port = PORT_FIBRE;
2145        ecmd->transceiver = XCVR_EXTERNAL;      /* what does it mean? */
2146        ecmd->autoneg = AUTONEG_DISABLE;
2147
2148        /* PCK_TH measures in multiples of FIFO bytes
2149           We translate to packets */
2150        ecmd->maxtxpkt =
2151            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2152        ecmd->maxrxpkt =
2153            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2154
2155        return 0;
2156}
2157
2158/*
2159 * bdx_get_drvinfo - report driver information
2160 * @netdev
2161 * @drvinfo
2162 */
2163static void
2164bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2165{
2166        struct bdx_priv *priv = netdev_priv(netdev);
2167
2168        strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2169        strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2170        strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2171        strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2172                sizeof(drvinfo->bus_info));
2173}
2174
2175/*
2176 * bdx_get_coalesce - get interrupt coalescing parameters
2177 * @netdev
2178 * @ecoal
2179 */
2180static int
2181bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2182{
2183        u32 rdintcm;
2184        u32 tdintcm;
2185        struct bdx_priv *priv = netdev_priv(netdev);
2186
2187        rdintcm = priv->rdintcm;
2188        tdintcm = priv->tdintcm;
2189
2190        /* PCK_TH measures in multiples of FIFO bytes
2191           We translate to packets */
2192        ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2193        ecoal->rx_max_coalesced_frames =
2194            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2195
2196        ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2197        ecoal->tx_max_coalesced_frames =
2198            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2199
2200        /* adaptive parameters ignored */
2201        return 0;
2202}
2203
2204/*
2205 * bdx_set_coalesce - set interrupt coalescing parameters
2206 * @netdev
2207 * @ecoal
2208 */
2209static int
2210bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2211{
2212        u32 rdintcm;
2213        u32 tdintcm;
2214        struct bdx_priv *priv = netdev_priv(netdev);
2215        int rx_coal;
2216        int tx_coal;
2217        int rx_max_coal;
2218        int tx_max_coal;
2219
2220        /* Check for valid input */
2221        rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2222        tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2223        rx_max_coal = ecoal->rx_max_coalesced_frames;
2224        tx_max_coal = ecoal->tx_max_coalesced_frames;
2225
2226        /* Translate from packets to multiples of FIFO bytes */
2227        rx_max_coal =
2228            (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2229             / PCK_TH_MULT);
2230        tx_max_coal =
2231            (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2232             / PCK_TH_MULT);
2233
2234        if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2235            (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2236                return -EINVAL;
2237
2238        rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2239                              GET_RXF_TH(priv->rdintcm), rx_max_coal);
2240        tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2241                              tx_max_coal);
2242
2243        priv->rdintcm = rdintcm;
2244        priv->tdintcm = tdintcm;
2245
2246        WRITE_REG(priv, regRDINTCM0, rdintcm);
2247        WRITE_REG(priv, regTDINTCM0, tdintcm);
2248
2249        return 0;
2250}
2251
2252/* Convert RX fifo size to number of pending packets */
2253static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2254{
2255        return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2256}
2257
2258/* Convert TX fifo size to number of pending packets */
2259static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2260{
2261        return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2262}
2263
2264/*
2265 * bdx_get_ringparam - report ring sizes
2266 * @netdev
2267 * @ring
2268 */
2269static void
2270bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2271{
2272        struct bdx_priv *priv = netdev_priv(netdev);
2273
2274        /*max_pending - the maximum-sized FIFO we allow */
2275        ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2276        ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2277        ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2278        ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2279}
2280
2281/*
2282 * bdx_set_ringparam - set ring sizes
2283 * @netdev
2284 * @ring
2285 */
2286static int
2287bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2288{
2289        struct bdx_priv *priv = netdev_priv(netdev);
2290        int rx_size = 0;
2291        int tx_size = 0;
2292
2293        for (; rx_size < 4; rx_size++) {
2294                if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2295                        break;
2296        }
2297        if (rx_size == 4)
2298                rx_size = 3;
2299
2300        for (; tx_size < 4; tx_size++) {
2301                if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2302                        break;
2303        }
2304        if (tx_size == 4)
2305                tx_size = 3;
2306
2307        /*Is there anything to do? */
2308        if ((rx_size == priv->rxf_size) &&
2309            (tx_size == priv->txd_size))
2310                return 0;
2311
2312        priv->rxf_size = rx_size;
2313        if (rx_size > 1)
2314                priv->rxd_size = rx_size - 1;
2315        else
2316                priv->rxd_size = rx_size;
2317
2318        priv->txf_size = priv->txd_size = tx_size;
2319
2320        if (netif_running(netdev)) {
2321                bdx_close(netdev);
2322                bdx_open(netdev);
2323        }
2324        return 0;
2325}
2326
2327/*
2328 * bdx_get_strings - return a set of strings that describe the requested objects
2329 * @netdev
2330 * @data
2331 */
2332static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2333{
2334        switch (stringset) {
2335        case ETH_SS_STATS:
2336                memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2337                break;
2338        }
2339}
2340
2341/*
2342 * bdx_get_sset_count - return number of statistics or tests
2343 * @netdev
2344 */
2345static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2346{
2347        struct bdx_priv *priv = netdev_priv(netdev);
2348
2349        switch (stringset) {
2350        case ETH_SS_STATS:
2351                BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2352                           != sizeof(struct bdx_stats) / sizeof(u64));
2353                return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)  : 0;
2354        }
2355
2356        return -EINVAL;
2357}
2358
2359/*
2360 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2361 * @netdev
2362 * @stats
2363 * @data
2364 */
2365static void bdx_get_ethtool_stats(struct net_device *netdev,
2366                                  struct ethtool_stats *stats, u64 *data)
2367{
2368        struct bdx_priv *priv = netdev_priv(netdev);
2369
2370        if (priv->stats_flag) {
2371
2372                /* Update stats from HW */
2373                bdx_update_stats(priv);
2374
2375                /* Copy data to user buffer */
2376                memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2377        }
2378}
2379
2380/*
2381 * bdx_set_ethtool_ops - ethtool interface implementation
2382 * @netdev
2383 */
2384static void bdx_set_ethtool_ops(struct net_device *netdev)
2385{
2386        static const struct ethtool_ops bdx_ethtool_ops = {
2387                .get_settings = bdx_get_settings,
2388                .get_drvinfo = bdx_get_drvinfo,
2389                .get_link = ethtool_op_get_link,
2390                .get_coalesce = bdx_get_coalesce,
2391                .set_coalesce = bdx_set_coalesce,
2392                .get_ringparam = bdx_get_ringparam,
2393                .set_ringparam = bdx_set_ringparam,
2394                .get_strings = bdx_get_strings,
2395                .get_sset_count = bdx_get_sset_count,
2396                .get_ethtool_stats = bdx_get_ethtool_stats,
2397        };
2398
2399        netdev->ethtool_ops = &bdx_ethtool_ops;
2400}
2401
2402/**
2403 * bdx_remove - Device Removal Routine
2404 * @pdev: PCI device information struct
2405 *
2406 * bdx_remove is called by the PCI subsystem to alert the driver
2407 * that it should release a PCI device.  The could be caused by a
2408 * Hot-Plug event, or because the driver is going to be removed from
2409 * memory.
2410 **/
2411static void bdx_remove(struct pci_dev *pdev)
2412{
2413        struct pci_nic *nic = pci_get_drvdata(pdev);
2414        struct net_device *ndev;
2415        int port;
2416
2417        for (port = 0; port < nic->port_num; port++) {
2418                ndev = nic->priv[port]->ndev;
2419                unregister_netdev(ndev);
2420                free_netdev(ndev);
2421        }
2422
2423        /*bdx_hw_reset_direct(nic->regs); */
2424#ifdef BDX_MSI
2425        if (nic->irq_type == IRQ_MSI)
2426                pci_disable_msi(pdev);
2427#endif
2428
2429        iounmap(nic->regs);
2430        pci_release_regions(pdev);
2431        pci_disable_device(pdev);
2432        vfree(nic);
2433
2434        RET();
2435}
2436
2437static struct pci_driver bdx_pci_driver = {
2438        .name = BDX_DRV_NAME,
2439        .id_table = bdx_pci_tbl,
2440        .probe = bdx_probe,
2441        .remove = bdx_remove,
2442};
2443
2444/*
2445 * print_driver_id - print parameters of the driver build
2446 */
2447static void __init print_driver_id(void)
2448{
2449        pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2450        pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2451}
2452
2453static int __init bdx_module_init(void)
2454{
2455        ENTER;
2456        init_txd_sizes();
2457        print_driver_id();
2458        RET(pci_register_driver(&bdx_pci_driver));
2459}
2460
2461module_init(bdx_module_init);
2462
2463static void __exit bdx_module_exit(void)
2464{
2465        ENTER;
2466        pci_unregister_driver(&bdx_pci_driver);
2467        RET();
2468}
2469
2470module_exit(bdx_module_exit);
2471
2472MODULE_LICENSE("GPL");
2473MODULE_AUTHOR(DRIVER_AUTHOR);
2474MODULE_DESCRIPTION(BDX_DRV_DESC);
2475MODULE_FIRMWARE("tehuti/bdx.bin");
2476