linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful.
   9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
  10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
  11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
  12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
  13 * See the GNU General Public License for more details, a copy of which
  14 * can be found in the file COPYING included with this package
  15 *
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18#include <linux/module.h>
  19#include <linux/parser.h>
  20#include <uapi/scsi/fc/fc_fs.h>
  21#include <uapi/scsi/fc/fc_els.h>
  22
  23#include "nvme.h"
  24#include "fabrics.h"
  25#include <linux/nvme-fc-driver.h>
  26#include <linux/nvme-fc.h>
  27
  28
  29/* *************************** Data Structures/Defines ****************** */
  30
  31
  32/*
  33 * We handle AEN commands ourselves and don't even let the
  34 * block layer know about them.
  35 */
  36#define NVME_FC_NR_AEN_COMMANDS 1
  37#define NVME_FC_AQ_BLKMQ_DEPTH  \
  38        (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
  39#define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
  40
  41enum nvme_fc_queue_flags {
  42        NVME_FC_Q_CONNECTED = (1 << 0),
  43};
  44
  45#define NVMEFC_QUEUE_DELAY      3               /* ms units */
  46
  47struct nvme_fc_queue {
  48        struct nvme_fc_ctrl     *ctrl;
  49        struct device           *dev;
  50        struct blk_mq_hw_ctx    *hctx;
  51        void                    *lldd_handle;
  52        int                     queue_size;
  53        size_t                  cmnd_capsule_len;
  54        u32                     qnum;
  55        u32                     rqcnt;
  56        u32                     seqno;
  57
  58        u64                     connection_id;
  59        atomic_t                csn;
  60
  61        unsigned long           flags;
  62} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  63
  64struct nvmefc_ls_req_op {
  65        struct nvmefc_ls_req    ls_req;
  66
  67        struct nvme_fc_ctrl     *ctrl;
  68        struct nvme_fc_queue    *queue;
  69        struct request          *rq;
  70
  71        int                     ls_error;
  72        struct completion       ls_done;
  73        struct list_head        lsreq_list;     /* ctrl->ls_req_list */
  74        bool                    req_queued;
  75};
  76
  77enum nvme_fcpop_state {
  78        FCPOP_STATE_UNINIT      = 0,
  79        FCPOP_STATE_IDLE        = 1,
  80        FCPOP_STATE_ACTIVE      = 2,
  81        FCPOP_STATE_ABORTED     = 3,
  82};
  83
  84struct nvme_fc_fcp_op {
  85        struct nvme_request     nreq;           /*
  86                                                 * nvme/host/core.c
  87                                                 * requires this to be
  88                                                 * the 1st element in the
  89                                                 * private structure
  90                                                 * associated with the
  91                                                 * request.
  92                                                 */
  93        struct nvmefc_fcp_req   fcp_req;
  94
  95        struct nvme_fc_ctrl     *ctrl;
  96        struct nvme_fc_queue    *queue;
  97        struct request          *rq;
  98
  99        atomic_t                state;
 100        u32                     rqno;
 101        u32                     nents;
 102
 103        struct nvme_fc_cmd_iu   cmd_iu;
 104        struct nvme_fc_ersp_iu  rsp_iu;
 105};
 106
 107struct nvme_fc_lport {
 108        struct nvme_fc_local_port       localport;
 109
 110        struct ida                      endp_cnt;
 111        struct list_head                port_list;      /* nvme_fc_port_list */
 112        struct list_head                endp_list;
 113        struct device                   *dev;   /* physical device for dma */
 114        struct nvme_fc_port_template    *ops;
 115        struct kref                     ref;
 116} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 117
 118struct nvme_fc_rport {
 119        struct nvme_fc_remote_port      remoteport;
 120
 121        struct list_head                endp_list; /* for lport->endp_list */
 122        struct list_head                ctrl_list;
 123        spinlock_t                      lock;
 124        struct kref                     ref;
 125} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 126
 127enum nvme_fcctrl_state {
 128        FCCTRL_INIT             = 0,
 129        FCCTRL_ACTIVE           = 1,
 130};
 131
 132struct nvme_fc_ctrl {
 133        spinlock_t              lock;
 134        struct nvme_fc_queue    *queues;
 135        u32                     queue_count;
 136
 137        struct device           *dev;
 138        struct nvme_fc_lport    *lport;
 139        struct nvme_fc_rport    *rport;
 140        u32                     cnum;
 141
 142        u64                     association_id;
 143
 144        u64                     cap;
 145
 146        struct list_head        ctrl_list;      /* rport->ctrl_list */
 147        struct list_head        ls_req_list;
 148
 149        struct blk_mq_tag_set   admin_tag_set;
 150        struct blk_mq_tag_set   tag_set;
 151
 152        struct work_struct      delete_work;
 153        struct kref             ref;
 154        int                     state;
 155
 156        struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
 157
 158        struct nvme_ctrl        ctrl;
 159};
 160
 161static inline struct nvme_fc_ctrl *
 162to_fc_ctrl(struct nvme_ctrl *ctrl)
 163{
 164        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 165}
 166
 167static inline struct nvme_fc_lport *
 168localport_to_lport(struct nvme_fc_local_port *portptr)
 169{
 170        return container_of(portptr, struct nvme_fc_lport, localport);
 171}
 172
 173static inline struct nvme_fc_rport *
 174remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 175{
 176        return container_of(portptr, struct nvme_fc_rport, remoteport);
 177}
 178
 179static inline struct nvmefc_ls_req_op *
 180ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 181{
 182        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 183}
 184
 185static inline struct nvme_fc_fcp_op *
 186fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 187{
 188        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 189}
 190
 191
 192
 193/* *************************** Globals **************************** */
 194
 195
 196static DEFINE_SPINLOCK(nvme_fc_lock);
 197
 198static LIST_HEAD(nvme_fc_lport_list);
 199static DEFINE_IDA(nvme_fc_local_port_cnt);
 200static DEFINE_IDA(nvme_fc_ctrl_cnt);
 201
 202static struct workqueue_struct *nvme_fc_wq;
 203
 204
 205
 206/* *********************** FC-NVME Port Management ************************ */
 207
 208static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
 209static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 210                        struct nvme_fc_queue *, unsigned int);
 211
 212
 213/**
 214 * nvme_fc_register_localport - transport entry point called by an
 215 *                              LLDD to register the existence of a NVME
 216 *                              host FC port.
 217 * @pinfo:     pointer to information about the port to be registered
 218 * @template:  LLDD entrypoints and operational parameters for the port
 219 * @dev:       physical hardware device node port corresponds to. Will be
 220 *             used for DMA mappings
 221 * @lport_p:   pointer to a local port pointer. Upon success, the routine
 222 *             will allocate a nvme_fc_local_port structure and place its
 223 *             address in the local port pointer. Upon failure, local port
 224 *             pointer will be set to 0.
 225 *
 226 * Returns:
 227 * a completion status. Must be 0 upon success; a negative errno
 228 * (ex: -ENXIO) upon failure.
 229 */
 230int
 231nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 232                        struct nvme_fc_port_template *template,
 233                        struct device *dev,
 234                        struct nvme_fc_local_port **portptr)
 235{
 236        struct nvme_fc_lport *newrec;
 237        unsigned long flags;
 238        int ret, idx;
 239
 240        if (!template->localport_delete || !template->remoteport_delete ||
 241            !template->ls_req || !template->fcp_io ||
 242            !template->ls_abort || !template->fcp_abort ||
 243            !template->max_hw_queues || !template->max_sgl_segments ||
 244            !template->max_dif_sgl_segments || !template->dma_boundary) {
 245                ret = -EINVAL;
 246                goto out_reghost_failed;
 247        }
 248
 249        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 250                         GFP_KERNEL);
 251        if (!newrec) {
 252                ret = -ENOMEM;
 253                goto out_reghost_failed;
 254        }
 255
 256        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 257        if (idx < 0) {
 258                ret = -ENOSPC;
 259                goto out_fail_kfree;
 260        }
 261
 262        if (!get_device(dev) && dev) {
 263                ret = -ENODEV;
 264                goto out_ida_put;
 265        }
 266
 267        INIT_LIST_HEAD(&newrec->port_list);
 268        INIT_LIST_HEAD(&newrec->endp_list);
 269        kref_init(&newrec->ref);
 270        newrec->ops = template;
 271        newrec->dev = dev;
 272        ida_init(&newrec->endp_cnt);
 273        newrec->localport.private = &newrec[1];
 274        newrec->localport.node_name = pinfo->node_name;
 275        newrec->localport.port_name = pinfo->port_name;
 276        newrec->localport.port_role = pinfo->port_role;
 277        newrec->localport.port_id = pinfo->port_id;
 278        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 279        newrec->localport.port_num = idx;
 280
 281        spin_lock_irqsave(&nvme_fc_lock, flags);
 282        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 283        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 284
 285        if (dev)
 286                dma_set_seg_boundary(dev, template->dma_boundary);
 287
 288        *portptr = &newrec->localport;
 289        return 0;
 290
 291out_ida_put:
 292        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 293out_fail_kfree:
 294        kfree(newrec);
 295out_reghost_failed:
 296        *portptr = NULL;
 297
 298        return ret;
 299}
 300EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 301
 302static void
 303nvme_fc_free_lport(struct kref *ref)
 304{
 305        struct nvme_fc_lport *lport =
 306                container_of(ref, struct nvme_fc_lport, ref);
 307        unsigned long flags;
 308
 309        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 310        WARN_ON(!list_empty(&lport->endp_list));
 311
 312        /* remove from transport list */
 313        spin_lock_irqsave(&nvme_fc_lock, flags);
 314        list_del(&lport->port_list);
 315        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 316
 317        /* let the LLDD know we've finished tearing it down */
 318        lport->ops->localport_delete(&lport->localport);
 319
 320        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 321        ida_destroy(&lport->endp_cnt);
 322
 323        put_device(lport->dev);
 324
 325        kfree(lport);
 326}
 327
 328static void
 329nvme_fc_lport_put(struct nvme_fc_lport *lport)
 330{
 331        kref_put(&lport->ref, nvme_fc_free_lport);
 332}
 333
 334static int
 335nvme_fc_lport_get(struct nvme_fc_lport *lport)
 336{
 337        return kref_get_unless_zero(&lport->ref);
 338}
 339
 340/**
 341 * nvme_fc_unregister_localport - transport entry point called by an
 342 *                              LLDD to deregister/remove a previously
 343 *                              registered a NVME host FC port.
 344 * @localport: pointer to the (registered) local port that is to be
 345 *             deregistered.
 346 *
 347 * Returns:
 348 * a completion status. Must be 0 upon success; a negative errno
 349 * (ex: -ENXIO) upon failure.
 350 */
 351int
 352nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 353{
 354        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 355        unsigned long flags;
 356
 357        if (!portptr)
 358                return -EINVAL;
 359
 360        spin_lock_irqsave(&nvme_fc_lock, flags);
 361
 362        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 363                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 364                return -EINVAL;
 365        }
 366        portptr->port_state = FC_OBJSTATE_DELETED;
 367
 368        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 369
 370        nvme_fc_lport_put(lport);
 371
 372        return 0;
 373}
 374EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 375
 376/**
 377 * nvme_fc_register_remoteport - transport entry point called by an
 378 *                              LLDD to register the existence of a NVME
 379 *                              subsystem FC port on its fabric.
 380 * @localport: pointer to the (registered) local port that the remote
 381 *             subsystem port is connected to.
 382 * @pinfo:     pointer to information about the port to be registered
 383 * @rport_p:   pointer to a remote port pointer. Upon success, the routine
 384 *             will allocate a nvme_fc_remote_port structure and place its
 385 *             address in the remote port pointer. Upon failure, remote port
 386 *             pointer will be set to 0.
 387 *
 388 * Returns:
 389 * a completion status. Must be 0 upon success; a negative errno
 390 * (ex: -ENXIO) upon failure.
 391 */
 392int
 393nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 394                                struct nvme_fc_port_info *pinfo,
 395                                struct nvme_fc_remote_port **portptr)
 396{
 397        struct nvme_fc_lport *lport = localport_to_lport(localport);
 398        struct nvme_fc_rport *newrec;
 399        unsigned long flags;
 400        int ret, idx;
 401
 402        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 403                         GFP_KERNEL);
 404        if (!newrec) {
 405                ret = -ENOMEM;
 406                goto out_reghost_failed;
 407        }
 408
 409        if (!nvme_fc_lport_get(lport)) {
 410                ret = -ESHUTDOWN;
 411                goto out_kfree_rport;
 412        }
 413
 414        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 415        if (idx < 0) {
 416                ret = -ENOSPC;
 417                goto out_lport_put;
 418        }
 419
 420        INIT_LIST_HEAD(&newrec->endp_list);
 421        INIT_LIST_HEAD(&newrec->ctrl_list);
 422        kref_init(&newrec->ref);
 423        spin_lock_init(&newrec->lock);
 424        newrec->remoteport.localport = &lport->localport;
 425        newrec->remoteport.private = &newrec[1];
 426        newrec->remoteport.port_role = pinfo->port_role;
 427        newrec->remoteport.node_name = pinfo->node_name;
 428        newrec->remoteport.port_name = pinfo->port_name;
 429        newrec->remoteport.port_id = pinfo->port_id;
 430        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 431        newrec->remoteport.port_num = idx;
 432
 433        spin_lock_irqsave(&nvme_fc_lock, flags);
 434        list_add_tail(&newrec->endp_list, &lport->endp_list);
 435        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 436
 437        *portptr = &newrec->remoteport;
 438        return 0;
 439
 440out_lport_put:
 441        nvme_fc_lport_put(lport);
 442out_kfree_rport:
 443        kfree(newrec);
 444out_reghost_failed:
 445        *portptr = NULL;
 446        return ret;
 447
 448}
 449EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 450
 451static void
 452nvme_fc_free_rport(struct kref *ref)
 453{
 454        struct nvme_fc_rport *rport =
 455                container_of(ref, struct nvme_fc_rport, ref);
 456        struct nvme_fc_lport *lport =
 457                        localport_to_lport(rport->remoteport.localport);
 458        unsigned long flags;
 459
 460        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 461        WARN_ON(!list_empty(&rport->ctrl_list));
 462
 463        /* remove from lport list */
 464        spin_lock_irqsave(&nvme_fc_lock, flags);
 465        list_del(&rport->endp_list);
 466        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 467
 468        /* let the LLDD know we've finished tearing it down */
 469        lport->ops->remoteport_delete(&rport->remoteport);
 470
 471        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 472
 473        kfree(rport);
 474
 475        nvme_fc_lport_put(lport);
 476}
 477
 478static void
 479nvme_fc_rport_put(struct nvme_fc_rport *rport)
 480{
 481        kref_put(&rport->ref, nvme_fc_free_rport);
 482}
 483
 484static int
 485nvme_fc_rport_get(struct nvme_fc_rport *rport)
 486{
 487        return kref_get_unless_zero(&rport->ref);
 488}
 489
 490/**
 491 * nvme_fc_unregister_remoteport - transport entry point called by an
 492 *                              LLDD to deregister/remove a previously
 493 *                              registered a NVME subsystem FC port.
 494 * @remoteport: pointer to the (registered) remote port that is to be
 495 *              deregistered.
 496 *
 497 * Returns:
 498 * a completion status. Must be 0 upon success; a negative errno
 499 * (ex: -ENXIO) upon failure.
 500 */
 501int
 502nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 503{
 504        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 505        struct nvme_fc_ctrl *ctrl;
 506        unsigned long flags;
 507
 508        if (!portptr)
 509                return -EINVAL;
 510
 511        spin_lock_irqsave(&rport->lock, flags);
 512
 513        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 514                spin_unlock_irqrestore(&rport->lock, flags);
 515                return -EINVAL;
 516        }
 517        portptr->port_state = FC_OBJSTATE_DELETED;
 518
 519        /* tear down all associations to the remote port */
 520        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 521                __nvme_fc_del_ctrl(ctrl);
 522
 523        spin_unlock_irqrestore(&rport->lock, flags);
 524
 525        nvme_fc_rport_put(rport);
 526        return 0;
 527}
 528EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 529
 530
 531/* *********************** FC-NVME DMA Handling **************************** */
 532
 533/*
 534 * The fcloop device passes in a NULL device pointer. Real LLD's will
 535 * pass in a valid device pointer. If NULL is passed to the dma mapping
 536 * routines, depending on the platform, it may or may not succeed, and
 537 * may crash.
 538 *
 539 * As such:
 540 * Wrapper all the dma routines and check the dev pointer.
 541 *
 542 * If simple mappings (return just a dma address, we'll noop them,
 543 * returning a dma address of 0.
 544 *
 545 * On more complex mappings (dma_map_sg), a pseudo routine fills
 546 * in the scatter list, setting all dma addresses to 0.
 547 */
 548
 549static inline dma_addr_t
 550fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 551                enum dma_data_direction dir)
 552{
 553        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 554}
 555
 556static inline int
 557fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 558{
 559        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 560}
 561
 562static inline void
 563fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 564        enum dma_data_direction dir)
 565{
 566        if (dev)
 567                dma_unmap_single(dev, addr, size, dir);
 568}
 569
 570static inline void
 571fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 572                enum dma_data_direction dir)
 573{
 574        if (dev)
 575                dma_sync_single_for_cpu(dev, addr, size, dir);
 576}
 577
 578static inline void
 579fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 580                enum dma_data_direction dir)
 581{
 582        if (dev)
 583                dma_sync_single_for_device(dev, addr, size, dir);
 584}
 585
 586/* pseudo dma_map_sg call */
 587static int
 588fc_map_sg(struct scatterlist *sg, int nents)
 589{
 590        struct scatterlist *s;
 591        int i;
 592
 593        WARN_ON(nents == 0 || sg[0].length == 0);
 594
 595        for_each_sg(sg, s, nents, i) {
 596                s->dma_address = 0L;
 597#ifdef CONFIG_NEED_SG_DMA_LENGTH
 598                s->dma_length = s->length;
 599#endif
 600        }
 601        return nents;
 602}
 603
 604static inline int
 605fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 606                enum dma_data_direction dir)
 607{
 608        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 609}
 610
 611static inline void
 612fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 613                enum dma_data_direction dir)
 614{
 615        if (dev)
 616                dma_unmap_sg(dev, sg, nents, dir);
 617}
 618
 619
 620/* *********************** FC-NVME LS Handling **************************** */
 621
 622static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
 623static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
 624
 625
 626static void
 627__nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
 628                struct nvmefc_ls_req_op *lsop)
 629{
 630        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 631        unsigned long flags;
 632
 633        spin_lock_irqsave(&ctrl->lock, flags);
 634
 635        if (!lsop->req_queued) {
 636                spin_unlock_irqrestore(&ctrl->lock, flags);
 637                return;
 638        }
 639
 640        list_del(&lsop->lsreq_list);
 641
 642        lsop->req_queued = false;
 643
 644        spin_unlock_irqrestore(&ctrl->lock, flags);
 645
 646        fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
 647                                  (lsreq->rqstlen + lsreq->rsplen),
 648                                  DMA_BIDIRECTIONAL);
 649
 650        nvme_fc_ctrl_put(ctrl);
 651}
 652
 653static int
 654__nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
 655                struct nvmefc_ls_req_op *lsop,
 656                void (*done)(struct nvmefc_ls_req *req, int status))
 657{
 658        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 659        unsigned long flags;
 660        int ret;
 661
 662        if (!nvme_fc_ctrl_get(ctrl))
 663                return -ESHUTDOWN;
 664
 665        lsreq->done = done;
 666        lsop->ctrl = ctrl;
 667        lsop->req_queued = false;
 668        INIT_LIST_HEAD(&lsop->lsreq_list);
 669        init_completion(&lsop->ls_done);
 670
 671        lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
 672                                  lsreq->rqstlen + lsreq->rsplen,
 673                                  DMA_BIDIRECTIONAL);
 674        if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
 675                nvme_fc_ctrl_put(ctrl);
 676                dev_err(ctrl->dev,
 677                        "els request command failed EFAULT.\n");
 678                return -EFAULT;
 679        }
 680        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
 681
 682        spin_lock_irqsave(&ctrl->lock, flags);
 683
 684        list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
 685
 686        lsop->req_queued = true;
 687
 688        spin_unlock_irqrestore(&ctrl->lock, flags);
 689
 690        ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
 691                                        &ctrl->rport->remoteport, lsreq);
 692        if (ret)
 693                lsop->ls_error = ret;
 694
 695        return ret;
 696}
 697
 698static void
 699nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
 700{
 701        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
 702
 703        lsop->ls_error = status;
 704        complete(&lsop->ls_done);
 705}
 706
 707static int
 708nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
 709{
 710        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
 711        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
 712        int ret;
 713
 714        ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
 715
 716        if (!ret)
 717                /*
 718                 * No timeout/not interruptible as we need the struct
 719                 * to exist until the lldd calls us back. Thus mandate
 720                 * wait until driver calls back. lldd responsible for
 721                 * the timeout action
 722                 */
 723                wait_for_completion(&lsop->ls_done);
 724
 725        __nvme_fc_finish_ls_req(ctrl, lsop);
 726
 727        if (ret) {
 728                dev_err(ctrl->dev,
 729                        "ls request command failed (%d).\n", ret);
 730                return ret;
 731        }
 732
 733        /* ACC or RJT payload ? */
 734        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
 735                return -ENXIO;
 736
 737        return 0;
 738}
 739
 740static void
 741nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
 742                struct nvmefc_ls_req_op *lsop,
 743                void (*done)(struct nvmefc_ls_req *req, int status))
 744{
 745        int ret;
 746
 747        ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
 748
 749        /* don't wait for completion */
 750
 751        if (ret)
 752                done(&lsop->ls_req, ret);
 753}
 754
 755/* Validation Error indexes into the string table below */
 756enum {
 757        VERR_NO_ERROR           = 0,
 758        VERR_LSACC              = 1,
 759        VERR_LSDESC_RQST        = 2,
 760        VERR_LSDESC_RQST_LEN    = 3,
 761        VERR_ASSOC_ID           = 4,
 762        VERR_ASSOC_ID_LEN       = 5,
 763        VERR_CONN_ID            = 6,
 764        VERR_CONN_ID_LEN        = 7,
 765        VERR_CR_ASSOC           = 8,
 766        VERR_CR_ASSOC_ACC_LEN   = 9,
 767        VERR_CR_CONN            = 10,
 768        VERR_CR_CONN_ACC_LEN    = 11,
 769        VERR_DISCONN            = 12,
 770        VERR_DISCONN_ACC_LEN    = 13,
 771};
 772
 773static char *validation_errors[] = {
 774        "OK",
 775        "Not LS_ACC",
 776        "Not LSDESC_RQST",
 777        "Bad LSDESC_RQST Length",
 778        "Not Association ID",
 779        "Bad Association ID Length",
 780        "Not Connection ID",
 781        "Bad Connection ID Length",
 782        "Not CR_ASSOC Rqst",
 783        "Bad CR_ASSOC ACC Length",
 784        "Not CR_CONN Rqst",
 785        "Bad CR_CONN ACC Length",
 786        "Not Disconnect Rqst",
 787        "Bad Disconnect ACC Length",
 788};
 789
 790static int
 791nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
 792        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
 793{
 794        struct nvmefc_ls_req_op *lsop;
 795        struct nvmefc_ls_req *lsreq;
 796        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
 797        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
 798        int ret, fcret = 0;
 799
 800        lsop = kzalloc((sizeof(*lsop) +
 801                         ctrl->lport->ops->lsrqst_priv_sz +
 802                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
 803        if (!lsop) {
 804                ret = -ENOMEM;
 805                goto out_no_memory;
 806        }
 807        lsreq = &lsop->ls_req;
 808
 809        lsreq->private = (void *)&lsop[1];
 810        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
 811                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
 812        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
 813
 814        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
 815        assoc_rqst->desc_list_len =
 816                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
 817
 818        assoc_rqst->assoc_cmd.desc_tag =
 819                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
 820        assoc_rqst->assoc_cmd.desc_len =
 821                        fcnvme_lsdesc_len(
 822                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
 823
 824        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
 825        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
 826        /* Linux supports only Dynamic controllers */
 827        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
 828        memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
 829                min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
 830        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
 831                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
 832        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
 833                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
 834
 835        lsop->queue = queue;
 836        lsreq->rqstaddr = assoc_rqst;
 837        lsreq->rqstlen = sizeof(*assoc_rqst);
 838        lsreq->rspaddr = assoc_acc;
 839        lsreq->rsplen = sizeof(*assoc_acc);
 840        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
 841
 842        ret = nvme_fc_send_ls_req(ctrl, lsop);
 843        if (ret)
 844                goto out_free_buffer;
 845
 846        /* process connect LS completion */
 847
 848        /* validate the ACC response */
 849        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
 850                fcret = VERR_LSACC;
 851        if (assoc_acc->hdr.desc_list_len !=
 852                        fcnvme_lsdesc_len(
 853                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
 854                fcret = VERR_CR_ASSOC_ACC_LEN;
 855        if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
 856                fcret = VERR_LSDESC_RQST;
 857        else if (assoc_acc->hdr.rqst.desc_len !=
 858                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
 859                fcret = VERR_LSDESC_RQST_LEN;
 860        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
 861                fcret = VERR_CR_ASSOC;
 862        else if (assoc_acc->associd.desc_tag !=
 863                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
 864                fcret = VERR_ASSOC_ID;
 865        else if (assoc_acc->associd.desc_len !=
 866                        fcnvme_lsdesc_len(
 867                                sizeof(struct fcnvme_lsdesc_assoc_id)))
 868                fcret = VERR_ASSOC_ID_LEN;
 869        else if (assoc_acc->connectid.desc_tag !=
 870                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
 871                fcret = VERR_CONN_ID;
 872        else if (assoc_acc->connectid.desc_len !=
 873                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
 874                fcret = VERR_CONN_ID_LEN;
 875
 876        if (fcret) {
 877                ret = -EBADF;
 878                dev_err(ctrl->dev,
 879                        "q %d connect failed: %s\n",
 880                        queue->qnum, validation_errors[fcret]);
 881        } else {
 882                ctrl->association_id =
 883                        be64_to_cpu(assoc_acc->associd.association_id);
 884                queue->connection_id =
 885                        be64_to_cpu(assoc_acc->connectid.connection_id);
 886                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
 887        }
 888
 889out_free_buffer:
 890        kfree(lsop);
 891out_no_memory:
 892        if (ret)
 893                dev_err(ctrl->dev,
 894                        "queue %d connect admin queue failed (%d).\n",
 895                        queue->qnum, ret);
 896        return ret;
 897}
 898
 899static int
 900nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
 901                        u16 qsize, u16 ersp_ratio)
 902{
 903        struct nvmefc_ls_req_op *lsop;
 904        struct nvmefc_ls_req *lsreq;
 905        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
 906        struct fcnvme_ls_cr_conn_acc *conn_acc;
 907        int ret, fcret = 0;
 908
 909        lsop = kzalloc((sizeof(*lsop) +
 910                         ctrl->lport->ops->lsrqst_priv_sz +
 911                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
 912        if (!lsop) {
 913                ret = -ENOMEM;
 914                goto out_no_memory;
 915        }
 916        lsreq = &lsop->ls_req;
 917
 918        lsreq->private = (void *)&lsop[1];
 919        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
 920                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
 921        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
 922
 923        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
 924        conn_rqst->desc_list_len = cpu_to_be32(
 925                                sizeof(struct fcnvme_lsdesc_assoc_id) +
 926                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
 927
 928        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
 929        conn_rqst->associd.desc_len =
 930                        fcnvme_lsdesc_len(
 931                                sizeof(struct fcnvme_lsdesc_assoc_id));
 932        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
 933        conn_rqst->connect_cmd.desc_tag =
 934                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
 935        conn_rqst->connect_cmd.desc_len =
 936                        fcnvme_lsdesc_len(
 937                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
 938        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
 939        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
 940        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
 941
 942        lsop->queue = queue;
 943        lsreq->rqstaddr = conn_rqst;
 944        lsreq->rqstlen = sizeof(*conn_rqst);
 945        lsreq->rspaddr = conn_acc;
 946        lsreq->rsplen = sizeof(*conn_acc);
 947        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
 948
 949        ret = nvme_fc_send_ls_req(ctrl, lsop);
 950        if (ret)
 951                goto out_free_buffer;
 952
 953        /* process connect LS completion */
 954
 955        /* validate the ACC response */
 956        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
 957                fcret = VERR_LSACC;
 958        if (conn_acc->hdr.desc_list_len !=
 959                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
 960                fcret = VERR_CR_CONN_ACC_LEN;
 961        if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
 962                fcret = VERR_LSDESC_RQST;
 963        else if (conn_acc->hdr.rqst.desc_len !=
 964                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
 965                fcret = VERR_LSDESC_RQST_LEN;
 966        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
 967                fcret = VERR_CR_CONN;
 968        else if (conn_acc->connectid.desc_tag !=
 969                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
 970                fcret = VERR_CONN_ID;
 971        else if (conn_acc->connectid.desc_len !=
 972                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
 973                fcret = VERR_CONN_ID_LEN;
 974
 975        if (fcret) {
 976                ret = -EBADF;
 977                dev_err(ctrl->dev,
 978                        "q %d connect failed: %s\n",
 979                        queue->qnum, validation_errors[fcret]);
 980        } else {
 981                queue->connection_id =
 982                        be64_to_cpu(conn_acc->connectid.connection_id);
 983                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
 984        }
 985
 986out_free_buffer:
 987        kfree(lsop);
 988out_no_memory:
 989        if (ret)
 990                dev_err(ctrl->dev,
 991                        "queue %d connect command failed (%d).\n",
 992                        queue->qnum, ret);
 993        return ret;
 994}
 995
 996static void
 997nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
 998{
 999        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1000        struct nvme_fc_ctrl *ctrl = lsop->ctrl;
1001
1002        __nvme_fc_finish_ls_req(ctrl, lsop);
1003
1004        if (status)
1005                dev_err(ctrl->dev,
1006                        "disconnect assoc ls request command failed (%d).\n",
1007                        status);
1008
1009        /* fc-nvme iniator doesn't care about success or failure of cmd */
1010
1011        kfree(lsop);
1012}
1013
1014/*
1015 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1016 * the FC-NVME Association.  Terminating the association also
1017 * terminates the FC-NVME connections (per queue, both admin and io
1018 * queues) that are part of the association. E.g. things are torn
1019 * down, and the related FC-NVME Association ID and Connection IDs
1020 * become invalid.
1021 *
1022 * The behavior of the fc-nvme initiator is such that it's
1023 * understanding of the association and connections will implicitly
1024 * be torn down. The action is implicit as it may be due to a loss of
1025 * connectivity with the fc-nvme target, so you may never get a
1026 * response even if you tried.  As such, the action of this routine
1027 * is to asynchronously send the LS, ignore any results of the LS, and
1028 * continue on with terminating the association. If the fc-nvme target
1029 * is present and receives the LS, it too can tear down.
1030 */
1031static void
1032nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1033{
1034        struct fcnvme_ls_disconnect_rqst *discon_rqst;
1035        struct fcnvme_ls_disconnect_acc *discon_acc;
1036        struct nvmefc_ls_req_op *lsop;
1037        struct nvmefc_ls_req *lsreq;
1038
1039        lsop = kzalloc((sizeof(*lsop) +
1040                         ctrl->lport->ops->lsrqst_priv_sz +
1041                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1042                        GFP_KERNEL);
1043        if (!lsop)
1044                /* couldn't sent it... too bad */
1045                return;
1046
1047        lsreq = &lsop->ls_req;
1048
1049        lsreq->private = (void *)&lsop[1];
1050        discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1051                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1052        discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1053
1054        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1055        discon_rqst->desc_list_len = cpu_to_be32(
1056                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1057                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1058
1059        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1060        discon_rqst->associd.desc_len =
1061                        fcnvme_lsdesc_len(
1062                                sizeof(struct fcnvme_lsdesc_assoc_id));
1063
1064        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1065
1066        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1067                                                FCNVME_LSDESC_DISCONN_CMD);
1068        discon_rqst->discon_cmd.desc_len =
1069                        fcnvme_lsdesc_len(
1070                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1071        discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1072        discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1073
1074        lsreq->rqstaddr = discon_rqst;
1075        lsreq->rqstlen = sizeof(*discon_rqst);
1076        lsreq->rspaddr = discon_acc;
1077        lsreq->rsplen = sizeof(*discon_acc);
1078        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1079
1080        nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
1081
1082        /* only meaningful part to terminating the association */
1083        ctrl->association_id = 0;
1084}
1085
1086
1087/* *********************** NVME Ctrl Routines **************************** */
1088
1089
1090static int
1091nvme_fc_reinit_request(void *data, struct request *rq)
1092{
1093        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1094        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1095
1096        memset(cmdiu, 0, sizeof(*cmdiu));
1097        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1098        cmdiu->fc_id = NVME_CMD_FC_ID;
1099        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1100        memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1101
1102        return 0;
1103}
1104
1105static void
1106__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1107                struct nvme_fc_fcp_op *op)
1108{
1109        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1110                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1111        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1112                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1113
1114        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1115}
1116
1117static void
1118nvme_fc_exit_request(void *data, struct request *rq,
1119                                unsigned int hctx_idx, unsigned int rq_idx)
1120{
1121        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1122
1123        return __nvme_fc_exit_request(data, op);
1124}
1125
1126static void
1127nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1128{
1129        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1130        int i;
1131
1132        for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1133                if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1134                        continue;
1135                __nvme_fc_exit_request(ctrl, aen_op);
1136                nvme_fc_ctrl_put(ctrl);
1137        }
1138}
1139
1140void
1141nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1142{
1143        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1144        struct request *rq = op->rq;
1145        struct nvmefc_fcp_req *freq = &op->fcp_req;
1146        struct nvme_fc_ctrl *ctrl = op->ctrl;
1147        struct nvme_fc_queue *queue = op->queue;
1148        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1149        u16 status;
1150
1151        /*
1152         * WARNING:
1153         * The current linux implementation of a nvme controller
1154         * allocates a single tag set for all io queues and sizes
1155         * the io queues to fully hold all possible tags. Thus, the
1156         * implementation does not reference or care about the sqhd
1157         * value as it never needs to use the sqhd/sqtail pointers
1158         * for submission pacing.
1159         *
1160         * This affects the FC-NVME implementation in two ways:
1161         * 1) As the value doesn't matter, we don't need to waste
1162         *    cycles extracting it from ERSPs and stamping it in the
1163         *    cases where the transport fabricates CQEs on successful
1164         *    completions.
1165         * 2) The FC-NVME implementation requires that delivery of
1166         *    ERSP completions are to go back to the nvme layer in order
1167         *    relative to the rsn, such that the sqhd value will always
1168         *    be "in order" for the nvme layer. As the nvme layer in
1169         *    linux doesn't care about sqhd, there's no need to return
1170         *    them in order.
1171         *
1172         * Additionally:
1173         * As the core nvme layer in linux currently does not look at
1174         * every field in the cqe - in cases where the FC transport must
1175         * fabricate a CQE, the following fields will not be set as they
1176         * are not referenced:
1177         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1178         */
1179
1180        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1181                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1182
1183        if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1184                status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1185        else
1186                status = freq->status;
1187
1188        /*
1189         * For the linux implementation, if we have an unsuccesful
1190         * status, they blk-mq layer can typically be called with the
1191         * non-zero status and the content of the cqe isn't important.
1192         */
1193        if (status)
1194                goto done;
1195
1196        /*
1197         * command completed successfully relative to the wire
1198         * protocol. However, validate anything received and
1199         * extract the status and result from the cqe (create it
1200         * where necessary).
1201         */
1202
1203        switch (freq->rcv_rsplen) {
1204
1205        case 0:
1206        case NVME_FC_SIZEOF_ZEROS_RSP:
1207                /*
1208                 * No response payload or 12 bytes of payload (which
1209                 * should all be zeros) are considered successful and
1210                 * no payload in the CQE by the transport.
1211                 */
1212                if (freq->transferred_length !=
1213                        be32_to_cpu(op->cmd_iu.data_len)) {
1214                        status = -EIO;
1215                        goto done;
1216                }
1217                op->nreq.result.u64 = 0;
1218                break;
1219
1220        case sizeof(struct nvme_fc_ersp_iu):
1221                /*
1222                 * The ERSP IU contains a full completion with CQE.
1223                 * Validate ERSP IU and look at cqe.
1224                 */
1225                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1226                                        (freq->rcv_rsplen / 4) ||
1227                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1228                                        freq->transferred_length ||
1229                             op->rqno != le16_to_cpu(cqe->command_id))) {
1230                        status = -EIO;
1231                        goto done;
1232                }
1233                op->nreq.result = cqe->result;
1234                status = le16_to_cpu(cqe->status) >> 1;
1235                break;
1236
1237        default:
1238                status = -EIO;
1239                goto done;
1240        }
1241
1242done:
1243        if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1244                nvme_complete_async_event(&queue->ctrl->ctrl, status,
1245                                        &op->nreq.result);
1246                nvme_fc_ctrl_put(ctrl);
1247                return;
1248        }
1249
1250        blk_mq_complete_request(rq, status);
1251}
1252
1253static int
1254__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1255                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1256                struct request *rq, u32 rqno)
1257{
1258        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1259        int ret = 0;
1260
1261        memset(op, 0, sizeof(*op));
1262        op->fcp_req.cmdaddr = &op->cmd_iu;
1263        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1264        op->fcp_req.rspaddr = &op->rsp_iu;
1265        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1266        op->fcp_req.done = nvme_fc_fcpio_done;
1267        op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1268        op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1269        op->ctrl = ctrl;
1270        op->queue = queue;
1271        op->rq = rq;
1272        op->rqno = rqno;
1273
1274        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1275        cmdiu->fc_id = NVME_CMD_FC_ID;
1276        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1277
1278        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1279                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1280        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1281                dev_err(ctrl->dev,
1282                        "FCP Op failed - cmdiu dma mapping failed.\n");
1283                ret = EFAULT;
1284                goto out_on_error;
1285        }
1286
1287        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1288                                &op->rsp_iu, sizeof(op->rsp_iu),
1289                                DMA_FROM_DEVICE);
1290        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1291                dev_err(ctrl->dev,
1292                        "FCP Op failed - rspiu dma mapping failed.\n");
1293                ret = EFAULT;
1294        }
1295
1296        atomic_set(&op->state, FCPOP_STATE_IDLE);
1297out_on_error:
1298        return ret;
1299}
1300
1301static int
1302nvme_fc_init_request(void *data, struct request *rq,
1303                                unsigned int hctx_idx, unsigned int rq_idx,
1304                                unsigned int numa_node)
1305{
1306        struct nvme_fc_ctrl *ctrl = data;
1307        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1308        struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1309
1310        return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1311}
1312
1313static int
1314nvme_fc_init_admin_request(void *data, struct request *rq,
1315                                unsigned int hctx_idx, unsigned int rq_idx,
1316                                unsigned int numa_node)
1317{
1318        struct nvme_fc_ctrl *ctrl = data;
1319        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1320        struct nvme_fc_queue *queue = &ctrl->queues[0];
1321
1322        return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1323}
1324
1325static int
1326nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1327{
1328        struct nvme_fc_fcp_op *aen_op;
1329        struct nvme_fc_cmd_iu *cmdiu;
1330        struct nvme_command *sqe;
1331        int i, ret;
1332
1333        aen_op = ctrl->aen_ops;
1334        for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1335                cmdiu = &aen_op->cmd_iu;
1336                sqe = &cmdiu->sqe;
1337                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1338                                aen_op, (struct request *)NULL,
1339                                (AEN_CMDID_BASE + i));
1340                if (ret)
1341                        return ret;
1342
1343                memset(sqe, 0, sizeof(*sqe));
1344                sqe->common.opcode = nvme_admin_async_event;
1345                sqe->common.command_id = AEN_CMDID_BASE + i;
1346        }
1347        return 0;
1348}
1349
1350
1351static inline void
1352__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1353                unsigned int qidx)
1354{
1355        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1356
1357        hctx->driver_data = queue;
1358        queue->hctx = hctx;
1359}
1360
1361static int
1362nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1363                unsigned int hctx_idx)
1364{
1365        struct nvme_fc_ctrl *ctrl = data;
1366
1367        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1368
1369        return 0;
1370}
1371
1372static int
1373nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1374                unsigned int hctx_idx)
1375{
1376        struct nvme_fc_ctrl *ctrl = data;
1377
1378        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1379
1380        return 0;
1381}
1382
1383static void
1384nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1385{
1386        struct nvme_fc_queue *queue;
1387
1388        queue = &ctrl->queues[idx];
1389        memset(queue, 0, sizeof(*queue));
1390        queue->ctrl = ctrl;
1391        queue->qnum = idx;
1392        atomic_set(&queue->csn, 1);
1393        queue->dev = ctrl->dev;
1394
1395        if (idx > 0)
1396                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1397        else
1398                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1399
1400        queue->queue_size = queue_size;
1401
1402        /*
1403         * Considered whether we should allocate buffers for all SQEs
1404         * and CQEs and dma map them - mapping their respective entries
1405         * into the request structures (kernel vm addr and dma address)
1406         * thus the driver could use the buffers/mappings directly.
1407         * It only makes sense if the LLDD would use them for its
1408         * messaging api. It's very unlikely most adapter api's would use
1409         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1410         * structures were used instead.
1411         */
1412}
1413
1414/*
1415 * This routine terminates a queue at the transport level.
1416 * The transport has already ensured that all outstanding ios on
1417 * the queue have been terminated.
1418 * The transport will send a Disconnect LS request to terminate
1419 * the queue's connection. Termination of the admin queue will also
1420 * terminate the association at the target.
1421 */
1422static void
1423nvme_fc_free_queue(struct nvme_fc_queue *queue)
1424{
1425        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1426                return;
1427
1428        /*
1429         * Current implementation never disconnects a single queue.
1430         * It always terminates a whole association. So there is never
1431         * a disconnect(queue) LS sent to the target.
1432         */
1433
1434        queue->connection_id = 0;
1435        clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1436}
1437
1438static void
1439__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1440        struct nvme_fc_queue *queue, unsigned int qidx)
1441{
1442        if (ctrl->lport->ops->delete_queue)
1443                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1444                                queue->lldd_handle);
1445        queue->lldd_handle = NULL;
1446}
1447
1448static void
1449nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1450{
1451        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1452        blk_cleanup_queue(ctrl->ctrl.admin_q);
1453        blk_mq_free_tag_set(&ctrl->admin_tag_set);
1454        nvme_fc_free_queue(&ctrl->queues[0]);
1455}
1456
1457static void
1458nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1459{
1460        int i;
1461
1462        for (i = 1; i < ctrl->queue_count; i++)
1463                nvme_fc_free_queue(&ctrl->queues[i]);
1464}
1465
1466static int
1467__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1468        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1469{
1470        int ret = 0;
1471
1472        queue->lldd_handle = NULL;
1473        if (ctrl->lport->ops->create_queue)
1474                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1475                                qidx, qsize, &queue->lldd_handle);
1476
1477        return ret;
1478}
1479
1480static void
1481nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1482{
1483        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1484        int i;
1485
1486        for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1487                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1488}
1489
1490static int
1491nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1492{
1493        struct nvme_fc_queue *queue = &ctrl->queues[1];
1494        int i, ret;
1495
1496        for (i = 1; i < ctrl->queue_count; i++, queue++) {
1497                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1498                if (ret)
1499                        goto delete_queues;
1500        }
1501
1502        return 0;
1503
1504delete_queues:
1505        for (; i >= 0; i--)
1506                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1507        return ret;
1508}
1509
1510static int
1511nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1512{
1513        int i, ret = 0;
1514
1515        for (i = 1; i < ctrl->queue_count; i++) {
1516                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1517                                        (qsize / 5));
1518                if (ret)
1519                        break;
1520                ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1521                if (ret)
1522                        break;
1523        }
1524
1525        return ret;
1526}
1527
1528static void
1529nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1530{
1531        int i;
1532
1533        for (i = 1; i < ctrl->queue_count; i++)
1534                nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1535}
1536
1537static void
1538nvme_fc_ctrl_free(struct kref *ref)
1539{
1540        struct nvme_fc_ctrl *ctrl =
1541                container_of(ref, struct nvme_fc_ctrl, ref);
1542        unsigned long flags;
1543
1544        if (ctrl->state != FCCTRL_INIT) {
1545                /* remove from rport list */
1546                spin_lock_irqsave(&ctrl->rport->lock, flags);
1547                list_del(&ctrl->ctrl_list);
1548                spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1549        }
1550
1551        put_device(ctrl->dev);
1552        nvme_fc_rport_put(ctrl->rport);
1553
1554        kfree(ctrl->queues);
1555        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1556        nvmf_free_options(ctrl->ctrl.opts);
1557        kfree(ctrl);
1558}
1559
1560static void
1561nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1562{
1563        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1564}
1565
1566static int
1567nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1568{
1569        return kref_get_unless_zero(&ctrl->ref);
1570}
1571
1572/*
1573 * All accesses from nvme core layer done - can now free the
1574 * controller. Called after last nvme_put_ctrl() call
1575 */
1576static void
1577nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1578{
1579        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1580
1581        WARN_ON(nctrl != &ctrl->ctrl);
1582
1583        /*
1584         * Tear down the association, which will generate link
1585         * traffic to terminate connections
1586         */
1587
1588        if (ctrl->state != FCCTRL_INIT) {
1589                /* send a Disconnect(association) LS to fc-nvme target */
1590                nvme_fc_xmt_disconnect_assoc(ctrl);
1591
1592                if (ctrl->ctrl.tagset) {
1593                        blk_cleanup_queue(ctrl->ctrl.connect_q);
1594                        blk_mq_free_tag_set(&ctrl->tag_set);
1595                        nvme_fc_delete_hw_io_queues(ctrl);
1596                        nvme_fc_free_io_queues(ctrl);
1597                }
1598
1599                nvme_fc_exit_aen_ops(ctrl);
1600
1601                nvme_fc_destroy_admin_queue(ctrl);
1602        }
1603
1604        nvme_fc_ctrl_put(ctrl);
1605}
1606
1607
1608static int
1609__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1610{
1611        int state;
1612
1613        state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1614        if (state != FCPOP_STATE_ACTIVE) {
1615                atomic_set(&op->state, state);
1616                return -ECANCELED; /* fail */
1617        }
1618
1619        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1620                                        &ctrl->rport->remoteport,
1621                                        op->queue->lldd_handle,
1622                                        &op->fcp_req);
1623
1624        return 0;
1625}
1626
1627enum blk_eh_timer_return
1628nvme_fc_timeout(struct request *rq, bool reserved)
1629{
1630        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1631        struct nvme_fc_ctrl *ctrl = op->ctrl;
1632        int ret;
1633
1634        if (reserved)
1635                return BLK_EH_RESET_TIMER;
1636
1637        ret = __nvme_fc_abort_op(ctrl, op);
1638        if (ret)
1639                /* io wasn't active to abort consider it done */
1640                return BLK_EH_HANDLED;
1641
1642        /*
1643         * TODO: force a controller reset
1644         *   when that happens, queues will be torn down and outstanding
1645         *   ios will be terminated, and the above abort, on a single io
1646         *   will no longer be needed.
1647         */
1648
1649        return BLK_EH_HANDLED;
1650}
1651
1652static int
1653nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1654                struct nvme_fc_fcp_op *op)
1655{
1656        struct nvmefc_fcp_req *freq = &op->fcp_req;
1657        enum dma_data_direction dir;
1658        int ret;
1659
1660        freq->sg_cnt = 0;
1661
1662        if (!blk_rq_payload_bytes(rq))
1663                return 0;
1664
1665        freq->sg_table.sgl = freq->first_sgl;
1666        ret = sg_alloc_table_chained(&freq->sg_table,
1667                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1668        if (ret)
1669                return -ENOMEM;
1670
1671        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1672        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1673        dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1674        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1675                                op->nents, dir);
1676        if (unlikely(freq->sg_cnt <= 0)) {
1677                sg_free_table_chained(&freq->sg_table, true);
1678                freq->sg_cnt = 0;
1679                return -EFAULT;
1680        }
1681
1682        /*
1683         * TODO: blk_integrity_rq(rq)  for DIF
1684         */
1685        return 0;
1686}
1687
1688static void
1689nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1690                struct nvme_fc_fcp_op *op)
1691{
1692        struct nvmefc_fcp_req *freq = &op->fcp_req;
1693
1694        if (!freq->sg_cnt)
1695                return;
1696
1697        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1698                                ((rq_data_dir(rq) == WRITE) ?
1699                                        DMA_TO_DEVICE : DMA_FROM_DEVICE));
1700
1701        nvme_cleanup_cmd(rq);
1702
1703        sg_free_table_chained(&freq->sg_table, true);
1704
1705        freq->sg_cnt = 0;
1706}
1707
1708/*
1709 * In FC, the queue is a logical thing. At transport connect, the target
1710 * creates its "queue" and returns a handle that is to be given to the
1711 * target whenever it posts something to the corresponding SQ.  When an
1712 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1713 * command contained within the SQE, an io, and assigns a FC exchange
1714 * to it. The SQE and the associated SQ handle are sent in the initial
1715 * CMD IU sents on the exchange. All transfers relative to the io occur
1716 * as part of the exchange.  The CQE is the last thing for the io,
1717 * which is transferred (explicitly or implicitly) with the RSP IU
1718 * sent on the exchange. After the CQE is received, the FC exchange is
1719 * terminaed and the Exchange may be used on a different io.
1720 *
1721 * The transport to LLDD api has the transport making a request for a
1722 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1723 * resource and transfers the command. The LLDD will then process all
1724 * steps to complete the io. Upon completion, the transport done routine
1725 * is called.
1726 *
1727 * So - while the operation is outstanding to the LLDD, there is a link
1728 * level FC exchange resource that is also outstanding. This must be
1729 * considered in all cleanup operations.
1730 */
1731static int
1732nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1733        struct nvme_fc_fcp_op *op, u32 data_len,
1734        enum nvmefc_fcp_datadir io_dir)
1735{
1736        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1737        struct nvme_command *sqe = &cmdiu->sqe;
1738        u32 csn;
1739        int ret;
1740
1741        if (!nvme_fc_ctrl_get(ctrl))
1742                return BLK_MQ_RQ_QUEUE_ERROR;
1743
1744        /* format the FC-NVME CMD IU and fcp_req */
1745        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1746        csn = atomic_inc_return(&queue->csn);
1747        cmdiu->csn = cpu_to_be32(csn);
1748        cmdiu->data_len = cpu_to_be32(data_len);
1749        switch (io_dir) {
1750        case NVMEFC_FCP_WRITE:
1751                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1752                break;
1753        case NVMEFC_FCP_READ:
1754                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1755                break;
1756        case NVMEFC_FCP_NODATA:
1757                cmdiu->flags = 0;
1758                break;
1759        }
1760        op->fcp_req.payload_length = data_len;
1761        op->fcp_req.io_dir = io_dir;
1762        op->fcp_req.transferred_length = 0;
1763        op->fcp_req.rcv_rsplen = 0;
1764        op->fcp_req.status = 0;
1765        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1766
1767        /*
1768         * validate per fabric rules, set fields mandated by fabric spec
1769         * as well as those by FC-NVME spec.
1770         */
1771        WARN_ON_ONCE(sqe->common.metadata);
1772        WARN_ON_ONCE(sqe->common.dptr.prp1);
1773        WARN_ON_ONCE(sqe->common.dptr.prp2);
1774        sqe->common.flags |= NVME_CMD_SGL_METABUF;
1775
1776        /*
1777         * format SQE DPTR field per FC-NVME rules
1778         *    type=data block descr; subtype=offset;
1779         *    offset is currently 0.
1780         */
1781        sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1782        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1783        sqe->rw.dptr.sgl.addr = 0;
1784
1785        /* odd that we set the command_id - should come from nvme-fabrics */
1786        WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1787
1788        if (op->rq) {                           /* skipped on aens */
1789                ret = nvme_fc_map_data(ctrl, op->rq, op);
1790                if (ret < 0) {
1791                        dev_err(queue->ctrl->ctrl.device,
1792                             "Failed to map data (%d)\n", ret);
1793                        nvme_cleanup_cmd(op->rq);
1794                        nvme_fc_ctrl_put(ctrl);
1795                        return (ret == -ENOMEM || ret == -EAGAIN) ?
1796                                BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1797                }
1798        }
1799
1800        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1801                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
1802
1803        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1804
1805        if (op->rq)
1806                blk_mq_start_request(op->rq);
1807
1808        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1809                                        &ctrl->rport->remoteport,
1810                                        queue->lldd_handle, &op->fcp_req);
1811
1812        if (ret) {
1813                dev_err(ctrl->dev,
1814                        "Send nvme command failed - lldd returned %d.\n", ret);
1815
1816                if (op->rq) {                   /* normal request */
1817                        nvme_fc_unmap_data(ctrl, op->rq, op);
1818                        nvme_cleanup_cmd(op->rq);
1819                }
1820                /* else - aen. no cleanup needed */
1821
1822                nvme_fc_ctrl_put(ctrl);
1823
1824                if (ret != -EBUSY)
1825                        return BLK_MQ_RQ_QUEUE_ERROR;
1826
1827                if (op->rq) {
1828                        blk_mq_stop_hw_queues(op->rq->q);
1829                        blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1830                }
1831                return BLK_MQ_RQ_QUEUE_BUSY;
1832        }
1833
1834        return BLK_MQ_RQ_QUEUE_OK;
1835}
1836
1837static int
1838nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1839                        const struct blk_mq_queue_data *bd)
1840{
1841        struct nvme_ns *ns = hctx->queue->queuedata;
1842        struct nvme_fc_queue *queue = hctx->driver_data;
1843        struct nvme_fc_ctrl *ctrl = queue->ctrl;
1844        struct request *rq = bd->rq;
1845        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1846        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1847        struct nvme_command *sqe = &cmdiu->sqe;
1848        enum nvmefc_fcp_datadir io_dir;
1849        u32 data_len;
1850        int ret;
1851
1852        ret = nvme_setup_cmd(ns, rq, sqe);
1853        if (ret)
1854                return ret;
1855
1856        data_len = blk_rq_payload_bytes(rq);
1857        if (data_len)
1858                io_dir = ((rq_data_dir(rq) == WRITE) ?
1859                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1860        else
1861                io_dir = NVMEFC_FCP_NODATA;
1862
1863        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1864}
1865
1866static struct blk_mq_tags *
1867nvme_fc_tagset(struct nvme_fc_queue *queue)
1868{
1869        if (queue->qnum == 0)
1870                return queue->ctrl->admin_tag_set.tags[queue->qnum];
1871
1872        return queue->ctrl->tag_set.tags[queue->qnum - 1];
1873}
1874
1875static int
1876nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1877
1878{
1879        struct nvme_fc_queue *queue = hctx->driver_data;
1880        struct nvme_fc_ctrl *ctrl = queue->ctrl;
1881        struct request *req;
1882        struct nvme_fc_fcp_op *op;
1883
1884        req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1885        if (!req) {
1886                dev_err(queue->ctrl->ctrl.device,
1887                         "tag 0x%x on QNum %#x not found\n",
1888                        tag, queue->qnum);
1889                return 0;
1890        }
1891
1892        op = blk_mq_rq_to_pdu(req);
1893
1894        if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1895                 (ctrl->lport->ops->poll_queue))
1896                ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1897                                                 queue->lldd_handle);
1898
1899        return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1900}
1901
1902static void
1903nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1904{
1905        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1906        struct nvme_fc_fcp_op *aen_op;
1907        int ret;
1908
1909        if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1910                return;
1911
1912        aen_op = &ctrl->aen_ops[aer_idx];
1913
1914        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1915                                        NVMEFC_FCP_NODATA);
1916        if (ret)
1917                dev_err(ctrl->ctrl.device,
1918                        "failed async event work [%d]\n", aer_idx);
1919}
1920
1921static void
1922nvme_fc_complete_rq(struct request *rq)
1923{
1924        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1925        struct nvme_fc_ctrl *ctrl = op->ctrl;
1926        int error = 0, state;
1927
1928        state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1929
1930        nvme_cleanup_cmd(rq);
1931
1932        nvme_fc_unmap_data(ctrl, rq, op);
1933
1934        if (unlikely(rq->errors)) {
1935                if (nvme_req_needs_retry(rq, rq->errors)) {
1936                        nvme_requeue_req(rq);
1937                        return;
1938                }
1939
1940                if (blk_rq_is_passthrough(rq))
1941                        error = rq->errors;
1942                else
1943                        error = nvme_error_status(rq->errors);
1944        }
1945
1946        nvme_fc_ctrl_put(ctrl);
1947
1948        blk_mq_end_request(rq, error);
1949}
1950
1951static struct blk_mq_ops nvme_fc_mq_ops = {
1952        .queue_rq       = nvme_fc_queue_rq,
1953        .complete       = nvme_fc_complete_rq,
1954        .init_request   = nvme_fc_init_request,
1955        .exit_request   = nvme_fc_exit_request,
1956        .reinit_request = nvme_fc_reinit_request,
1957        .init_hctx      = nvme_fc_init_hctx,
1958        .poll           = nvme_fc_poll,
1959        .timeout        = nvme_fc_timeout,
1960};
1961
1962static struct blk_mq_ops nvme_fc_admin_mq_ops = {
1963        .queue_rq       = nvme_fc_queue_rq,
1964        .complete       = nvme_fc_complete_rq,
1965        .init_request   = nvme_fc_init_admin_request,
1966        .exit_request   = nvme_fc_exit_request,
1967        .reinit_request = nvme_fc_reinit_request,
1968        .init_hctx      = nvme_fc_init_admin_hctx,
1969        .timeout        = nvme_fc_timeout,
1970};
1971
1972static int
1973nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
1974{
1975        u32 segs;
1976        int error;
1977
1978        nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
1979
1980        error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
1981                                NVME_FC_AQ_BLKMQ_DEPTH,
1982                                (NVME_FC_AQ_BLKMQ_DEPTH / 4));
1983        if (error)
1984                return error;
1985
1986        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1987        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
1988        ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
1989        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
1990        ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1991        ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
1992                                        (SG_CHUNK_SIZE *
1993                                                sizeof(struct scatterlist)) +
1994                                        ctrl->lport->ops->fcprqst_priv_sz;
1995        ctrl->admin_tag_set.driver_data = ctrl;
1996        ctrl->admin_tag_set.nr_hw_queues = 1;
1997        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1998
1999        error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2000        if (error)
2001                goto out_free_queue;
2002
2003        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2004        if (IS_ERR(ctrl->ctrl.admin_q)) {
2005                error = PTR_ERR(ctrl->ctrl.admin_q);
2006                goto out_free_tagset;
2007        }
2008
2009        error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2010                                NVME_FC_AQ_BLKMQ_DEPTH);
2011        if (error)
2012                goto out_cleanup_queue;
2013
2014        error = nvmf_connect_admin_queue(&ctrl->ctrl);
2015        if (error)
2016                goto out_delete_hw_queue;
2017
2018        error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2019        if (error) {
2020                dev_err(ctrl->ctrl.device,
2021                        "prop_get NVME_REG_CAP failed\n");
2022                goto out_delete_hw_queue;
2023        }
2024
2025        ctrl->ctrl.sqsize =
2026                min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
2027
2028        error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2029        if (error)
2030                goto out_delete_hw_queue;
2031
2032        segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2033                        ctrl->lport->ops->max_sgl_segments);
2034        ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2035
2036        error = nvme_init_identify(&ctrl->ctrl);
2037        if (error)
2038                goto out_delete_hw_queue;
2039
2040        nvme_start_keep_alive(&ctrl->ctrl);
2041
2042        return 0;
2043
2044out_delete_hw_queue:
2045        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2046out_cleanup_queue:
2047        blk_cleanup_queue(ctrl->ctrl.admin_q);
2048out_free_tagset:
2049        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2050out_free_queue:
2051        nvme_fc_free_queue(&ctrl->queues[0]);
2052        return error;
2053}
2054
2055/*
2056 * This routine is used by the transport when it needs to find active
2057 * io on a queue that is to be terminated. The transport uses
2058 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2059 * this routine to kill them on a 1 by 1 basis.
2060 *
2061 * As FC allocates FC exchange for each io, the transport must contact
2062 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2063 * After terminating the exchange the LLDD will call the transport's
2064 * normal io done path for the request, but it will have an aborted
2065 * status. The done path will return the io request back to the block
2066 * layer with an error status.
2067 */
2068static void
2069nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2070{
2071        struct nvme_ctrl *nctrl = data;
2072        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2073        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2074int status;
2075
2076        if (!blk_mq_request_started(req))
2077                return;
2078
2079        /* this performs an ABTS-LS on the FC exchange for the io */
2080        status = __nvme_fc_abort_op(ctrl, op);
2081        /*
2082         * if __nvme_fc_abort_op failed: io wasn't active to abort
2083         * consider it done. Assume completion path already completing
2084         * in parallel
2085         */
2086        if (status)
2087                /* io wasn't active to abort consider it done */
2088                /* assume completion path already completing in parallel */
2089                return;
2090}
2091
2092
2093/*
2094 * This routine stops operation of the controller. Admin and IO queues
2095 * are stopped, outstanding ios on them terminated, and the nvme ctrl
2096 * is shutdown.
2097 */
2098static void
2099nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2100{
2101        /*
2102         * If io queues are present, stop them and terminate all outstanding
2103         * ios on them. As FC allocates FC exchange for each io, the
2104         * transport must contact the LLDD to terminate the exchange,
2105         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2106         * to tell us what io's are busy and invoke a transport routine
2107         * to kill them with the LLDD.  After terminating the exchange
2108         * the LLDD will call the transport's normal io done path, but it
2109         * will have an aborted status. The done path will return the
2110         * io requests back to the block layer as part of normal completions
2111         * (but with error status).
2112         */
2113        if (ctrl->queue_count > 1) {
2114                nvme_stop_queues(&ctrl->ctrl);
2115                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2116                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2117        }
2118
2119        if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2120                nvme_shutdown_ctrl(&ctrl->ctrl);
2121
2122        /*
2123         * now clean up the admin queue. Same thing as above.
2124         * use blk_mq_tagset_busy_itr() and the transport routine to
2125         * terminate the exchanges.
2126         */
2127        blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2128        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2129                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2130}
2131
2132/*
2133 * Called to teardown an association.
2134 * May be called with association fully in place or partially in place.
2135 */
2136static void
2137__nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2138{
2139        nvme_stop_keep_alive(&ctrl->ctrl);
2140
2141        /* stop and terminate ios on admin and io queues */
2142        nvme_fc_shutdown_ctrl(ctrl);
2143
2144        /*
2145         * tear down the controller
2146         * This will result in the last reference on the nvme ctrl to
2147         * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2148         * From there, the transport will tear down it's logical queues and
2149         * association.
2150         */
2151        nvme_uninit_ctrl(&ctrl->ctrl);
2152
2153        nvme_put_ctrl(&ctrl->ctrl);
2154}
2155
2156static void
2157nvme_fc_del_ctrl_work(struct work_struct *work)
2158{
2159        struct nvme_fc_ctrl *ctrl =
2160                        container_of(work, struct nvme_fc_ctrl, delete_work);
2161
2162        __nvme_fc_remove_ctrl(ctrl);
2163}
2164
2165static int
2166__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2167{
2168        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2169                return -EBUSY;
2170
2171        if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2172                return -EBUSY;
2173
2174        return 0;
2175}
2176
2177/*
2178 * Request from nvme core layer to delete the controller
2179 */
2180static int
2181nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2182{
2183        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2184        struct nvme_fc_rport *rport = ctrl->rport;
2185        unsigned long flags;
2186        int ret;
2187
2188        spin_lock_irqsave(&rport->lock, flags);
2189        ret = __nvme_fc_del_ctrl(ctrl);
2190        spin_unlock_irqrestore(&rport->lock, flags);
2191        if (ret)
2192                return ret;
2193
2194        flush_work(&ctrl->delete_work);
2195
2196        return 0;
2197}
2198
2199static int
2200nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2201{
2202        return -EIO;
2203}
2204
2205static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2206        .name                   = "fc",
2207        .module                 = THIS_MODULE,
2208        .is_fabrics             = true,
2209        .reg_read32             = nvmf_reg_read32,
2210        .reg_read64             = nvmf_reg_read64,
2211        .reg_write32            = nvmf_reg_write32,
2212        .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2213        .free_ctrl              = nvme_fc_free_nvme_ctrl,
2214        .submit_async_event     = nvme_fc_submit_async_event,
2215        .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2216        .get_subsysnqn          = nvmf_get_subsysnqn,
2217        .get_address            = nvmf_get_address,
2218};
2219
2220static int
2221nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2222{
2223        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2224        int ret;
2225
2226        ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2227        if (ret) {
2228                dev_info(ctrl->ctrl.device,
2229                        "set_queue_count failed: %d\n", ret);
2230                return ret;
2231        }
2232
2233        ctrl->queue_count = opts->nr_io_queues + 1;
2234        if (!opts->nr_io_queues)
2235                return 0;
2236
2237        dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2238                        opts->nr_io_queues);
2239
2240        nvme_fc_init_io_queues(ctrl);
2241
2242        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2243        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2244        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2245        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2246        ctrl->tag_set.numa_node = NUMA_NO_NODE;
2247        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2248        ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2249                                        (SG_CHUNK_SIZE *
2250                                                sizeof(struct scatterlist)) +
2251                                        ctrl->lport->ops->fcprqst_priv_sz;
2252        ctrl->tag_set.driver_data = ctrl;
2253        ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2254        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2255
2256        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2257        if (ret)
2258                return ret;
2259
2260        ctrl->ctrl.tagset = &ctrl->tag_set;
2261
2262        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2263        if (IS_ERR(ctrl->ctrl.connect_q)) {
2264                ret = PTR_ERR(ctrl->ctrl.connect_q);
2265                goto out_free_tag_set;
2266        }
2267
2268        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2269        if (ret)
2270                goto out_cleanup_blk_queue;
2271
2272        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2273        if (ret)
2274                goto out_delete_hw_queues;
2275
2276        return 0;
2277
2278out_delete_hw_queues:
2279        nvme_fc_delete_hw_io_queues(ctrl);
2280out_cleanup_blk_queue:
2281        nvme_stop_keep_alive(&ctrl->ctrl);
2282        blk_cleanup_queue(ctrl->ctrl.connect_q);
2283out_free_tag_set:
2284        blk_mq_free_tag_set(&ctrl->tag_set);
2285        nvme_fc_free_io_queues(ctrl);
2286
2287        /* force put free routine to ignore io queues */
2288        ctrl->ctrl.tagset = NULL;
2289
2290        return ret;
2291}
2292
2293
2294static struct nvme_ctrl *
2295__nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2296        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2297{
2298        struct nvme_fc_ctrl *ctrl;
2299        unsigned long flags;
2300        int ret, idx;
2301        bool changed;
2302
2303        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2304        if (!ctrl) {
2305                ret = -ENOMEM;
2306                goto out_fail;
2307        }
2308
2309        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2310        if (idx < 0) {
2311                ret = -ENOSPC;
2312                goto out_free_ctrl;
2313        }
2314
2315        ctrl->ctrl.opts = opts;
2316        INIT_LIST_HEAD(&ctrl->ctrl_list);
2317        INIT_LIST_HEAD(&ctrl->ls_req_list);
2318        ctrl->lport = lport;
2319        ctrl->rport = rport;
2320        ctrl->dev = lport->dev;
2321        ctrl->state = FCCTRL_INIT;
2322        ctrl->cnum = idx;
2323
2324        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2325        if (ret)
2326                goto out_free_ida;
2327
2328        get_device(ctrl->dev);
2329        kref_init(&ctrl->ref);
2330
2331        INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2332        spin_lock_init(&ctrl->lock);
2333
2334        /* io queue count */
2335        ctrl->queue_count = min_t(unsigned int,
2336                                opts->nr_io_queues,
2337                                lport->ops->max_hw_queues);
2338        opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2339        ctrl->queue_count++;    /* +1 for admin queue */
2340
2341        ctrl->ctrl.sqsize = opts->queue_size - 1;
2342        ctrl->ctrl.kato = opts->kato;
2343
2344        ret = -ENOMEM;
2345        ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2346                                GFP_KERNEL);
2347        if (!ctrl->queues)
2348                goto out_uninit_ctrl;
2349
2350        ret = nvme_fc_configure_admin_queue(ctrl);
2351        if (ret)
2352                goto out_uninit_ctrl;
2353
2354        /* sanity checks */
2355
2356        /* FC-NVME does not have other data in the capsule */
2357        if (ctrl->ctrl.icdoff) {
2358                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2359                                ctrl->ctrl.icdoff);
2360                goto out_remove_admin_queue;
2361        }
2362
2363        /* FC-NVME supports normal SGL Data Block Descriptors */
2364
2365        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2366                /* warn if maxcmd is lower than queue_size */
2367                dev_warn(ctrl->ctrl.device,
2368                        "queue_size %zu > ctrl maxcmd %u, reducing "
2369                        "to queue_size\n",
2370                        opts->queue_size, ctrl->ctrl.maxcmd);
2371                opts->queue_size = ctrl->ctrl.maxcmd;
2372        }
2373
2374        ret = nvme_fc_init_aen_ops(ctrl);
2375        if (ret)
2376                goto out_exit_aen_ops;
2377
2378        if (ctrl->queue_count > 1) {
2379                ret = nvme_fc_create_io_queues(ctrl);
2380                if (ret)
2381                        goto out_exit_aen_ops;
2382        }
2383
2384        spin_lock_irqsave(&ctrl->lock, flags);
2385        ctrl->state = FCCTRL_ACTIVE;
2386        spin_unlock_irqrestore(&ctrl->lock, flags);
2387
2388        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2389        WARN_ON_ONCE(!changed);
2390
2391        dev_info(ctrl->ctrl.device,
2392                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2393                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2394
2395        kref_get(&ctrl->ctrl.kref);
2396
2397        spin_lock_irqsave(&rport->lock, flags);
2398        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2399        spin_unlock_irqrestore(&rport->lock, flags);
2400
2401        if (opts->nr_io_queues) {
2402                nvme_queue_scan(&ctrl->ctrl);
2403                nvme_queue_async_events(&ctrl->ctrl);
2404        }
2405
2406        return &ctrl->ctrl;
2407
2408out_exit_aen_ops:
2409        nvme_fc_exit_aen_ops(ctrl);
2410out_remove_admin_queue:
2411        /* send a Disconnect(association) LS to fc-nvme target */
2412        nvme_fc_xmt_disconnect_assoc(ctrl);
2413        nvme_stop_keep_alive(&ctrl->ctrl);
2414        nvme_fc_destroy_admin_queue(ctrl);
2415out_uninit_ctrl:
2416        nvme_uninit_ctrl(&ctrl->ctrl);
2417        nvme_put_ctrl(&ctrl->ctrl);
2418        if (ret > 0)
2419                ret = -EIO;
2420        /* exit via here will follow ctlr ref point callbacks to free */
2421        return ERR_PTR(ret);
2422
2423out_free_ida:
2424        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2425out_free_ctrl:
2426        kfree(ctrl);
2427out_fail:
2428        nvme_fc_rport_put(rport);
2429        /* exit via here doesn't follow ctlr ref points */
2430        return ERR_PTR(ret);
2431}
2432
2433enum {
2434        FCT_TRADDR_ERR          = 0,
2435        FCT_TRADDR_WWNN         = 1 << 0,
2436        FCT_TRADDR_WWPN         = 1 << 1,
2437};
2438
2439struct nvmet_fc_traddr {
2440        u64     nn;
2441        u64     pn;
2442};
2443
2444static const match_table_t traddr_opt_tokens = {
2445        { FCT_TRADDR_WWNN,      "nn-%s"         },
2446        { FCT_TRADDR_WWPN,      "pn-%s"         },
2447        { FCT_TRADDR_ERR,       NULL            }
2448};
2449
2450static int
2451nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2452{
2453        substring_t args[MAX_OPT_ARGS];
2454        char *options, *o, *p;
2455        int token, ret = 0;
2456        u64 token64;
2457
2458        options = o = kstrdup(buf, GFP_KERNEL);
2459        if (!options)
2460                return -ENOMEM;
2461
2462        while ((p = strsep(&o, ":\n")) != NULL) {
2463                if (!*p)
2464                        continue;
2465
2466                token = match_token(p, traddr_opt_tokens, args);
2467                switch (token) {
2468                case FCT_TRADDR_WWNN:
2469                        if (match_u64(args, &token64)) {
2470                                ret = -EINVAL;
2471                                goto out;
2472                        }
2473                        traddr->nn = token64;
2474                        break;
2475                case FCT_TRADDR_WWPN:
2476                        if (match_u64(args, &token64)) {
2477                                ret = -EINVAL;
2478                                goto out;
2479                        }
2480                        traddr->pn = token64;
2481                        break;
2482                default:
2483                        pr_warn("unknown traddr token or missing value '%s'\n",
2484                                        p);
2485                        ret = -EINVAL;
2486                        goto out;
2487                }
2488        }
2489
2490out:
2491        kfree(options);
2492        return ret;
2493}
2494
2495static struct nvme_ctrl *
2496nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2497{
2498        struct nvme_fc_lport *lport;
2499        struct nvme_fc_rport *rport;
2500        struct nvmet_fc_traddr laddr = { 0L, 0L };
2501        struct nvmet_fc_traddr raddr = { 0L, 0L };
2502        unsigned long flags;
2503        int ret;
2504
2505        ret = nvme_fc_parse_address(&raddr, opts->traddr);
2506        if (ret || !raddr.nn || !raddr.pn)
2507                return ERR_PTR(-EINVAL);
2508
2509        ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2510        if (ret || !laddr.nn || !laddr.pn)
2511                return ERR_PTR(-EINVAL);
2512
2513        /* find the host and remote ports to connect together */
2514        spin_lock_irqsave(&nvme_fc_lock, flags);
2515        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2516                if (lport->localport.node_name != laddr.nn ||
2517                    lport->localport.port_name != laddr.pn)
2518                        continue;
2519
2520                list_for_each_entry(rport, &lport->endp_list, endp_list) {
2521                        if (rport->remoteport.node_name != raddr.nn ||
2522                            rport->remoteport.port_name != raddr.pn)
2523                                continue;
2524
2525                        /* if fail to get reference fall through. Will error */
2526                        if (!nvme_fc_rport_get(rport))
2527                                break;
2528
2529                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
2530
2531                        return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2532                }
2533        }
2534        spin_unlock_irqrestore(&nvme_fc_lock, flags);
2535
2536        return ERR_PTR(-ENOENT);
2537}
2538
2539
2540static struct nvmf_transport_ops nvme_fc_transport = {
2541        .name           = "fc",
2542        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2543        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2544        .create_ctrl    = nvme_fc_create_ctrl,
2545};
2546
2547static int __init nvme_fc_init_module(void)
2548{
2549        nvme_fc_wq = create_workqueue("nvme_fc_wq");
2550        if (!nvme_fc_wq)
2551                return -ENOMEM;
2552
2553        return nvmf_register_transport(&nvme_fc_transport);
2554}
2555
2556static void __exit nvme_fc_exit_module(void)
2557{
2558        /* sanity check - all lports should be removed */
2559        if (!list_empty(&nvme_fc_lport_list))
2560                pr_warn("%s: localport list not empty\n", __func__);
2561
2562        nvmf_unregister_transport(&nvme_fc_transport);
2563
2564        destroy_workqueue(nvme_fc_wq);
2565
2566        ida_destroy(&nvme_fc_local_port_cnt);
2567        ida_destroy(&nvme_fc_ctrl_cnt);
2568}
2569
2570module_init(nvme_fc_init_module);
2571module_exit(nvme_fc_exit_module);
2572
2573MODULE_LICENSE("GPL v2");
2574