linux/drivers/usb/gadget/udc/pch_udc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; version 2 of the License.
   7 */
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/pci.h>
  12#include <linux/delay.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/interrupt.h>
  16#include <linux/usb/ch9.h>
  17#include <linux/usb/gadget.h>
  18#include <linux/gpio.h>
  19#include <linux/irq.h>
  20
  21/* GPIO port for VBUS detecting */
  22static int vbus_gpio_port = -1;         /* GPIO port number (-1:Not used) */
  23
  24#define PCH_VBUS_PERIOD         3000    /* VBUS polling period (msec) */
  25#define PCH_VBUS_INTERVAL       10      /* VBUS polling interval (msec) */
  26
  27/* Address offset of Registers */
  28#define UDC_EP_REG_SHIFT        0x20    /* Offset to next EP */
  29
  30#define UDC_EPCTL_ADDR          0x00    /* Endpoint control */
  31#define UDC_EPSTS_ADDR          0x04    /* Endpoint status */
  32#define UDC_BUFIN_FRAMENUM_ADDR 0x08    /* buffer size in / frame number out */
  33#define UDC_BUFOUT_MAXPKT_ADDR  0x0C    /* buffer size out / maxpkt in */
  34#define UDC_SUBPTR_ADDR         0x10    /* setup buffer pointer */
  35#define UDC_DESPTR_ADDR         0x14    /* Data descriptor pointer */
  36#define UDC_CONFIRM_ADDR        0x18    /* Write/Read confirmation */
  37
  38#define UDC_DEVCFG_ADDR         0x400   /* Device configuration */
  39#define UDC_DEVCTL_ADDR         0x404   /* Device control */
  40#define UDC_DEVSTS_ADDR         0x408   /* Device status */
  41#define UDC_DEVIRQSTS_ADDR      0x40C   /* Device irq status */
  42#define UDC_DEVIRQMSK_ADDR      0x410   /* Device irq mask */
  43#define UDC_EPIRQSTS_ADDR       0x414   /* Endpoint irq status */
  44#define UDC_EPIRQMSK_ADDR       0x418   /* Endpoint irq mask */
  45#define UDC_DEVLPM_ADDR         0x41C   /* LPM control / status */
  46#define UDC_CSR_BUSY_ADDR       0x4f0   /* UDC_CSR_BUSY Status register */
  47#define UDC_SRST_ADDR           0x4fc   /* SOFT RESET register */
  48#define UDC_CSR_ADDR            0x500   /* USB_DEVICE endpoint register */
  49
  50/* Endpoint control register */
  51/* Bit position */
  52#define UDC_EPCTL_MRXFLUSH              (1 << 12)
  53#define UDC_EPCTL_RRDY                  (1 << 9)
  54#define UDC_EPCTL_CNAK                  (1 << 8)
  55#define UDC_EPCTL_SNAK                  (1 << 7)
  56#define UDC_EPCTL_NAK                   (1 << 6)
  57#define UDC_EPCTL_P                     (1 << 3)
  58#define UDC_EPCTL_F                     (1 << 1)
  59#define UDC_EPCTL_S                     (1 << 0)
  60#define UDC_EPCTL_ET_SHIFT              4
  61/* Mask patern */
  62#define UDC_EPCTL_ET_MASK               0x00000030
  63/* Value for ET field */
  64#define UDC_EPCTL_ET_CONTROL            0
  65#define UDC_EPCTL_ET_ISO                1
  66#define UDC_EPCTL_ET_BULK               2
  67#define UDC_EPCTL_ET_INTERRUPT          3
  68
  69/* Endpoint status register */
  70/* Bit position */
  71#define UDC_EPSTS_XFERDONE              (1 << 27)
  72#define UDC_EPSTS_RSS                   (1 << 26)
  73#define UDC_EPSTS_RCS                   (1 << 25)
  74#define UDC_EPSTS_TXEMPTY               (1 << 24)
  75#define UDC_EPSTS_TDC                   (1 << 10)
  76#define UDC_EPSTS_HE                    (1 << 9)
  77#define UDC_EPSTS_MRXFIFO_EMP           (1 << 8)
  78#define UDC_EPSTS_BNA                   (1 << 7)
  79#define UDC_EPSTS_IN                    (1 << 6)
  80#define UDC_EPSTS_OUT_SHIFT             4
  81/* Mask patern */
  82#define UDC_EPSTS_OUT_MASK              0x00000030
  83#define UDC_EPSTS_ALL_CLR_MASK          0x1F0006F0
  84/* Value for OUT field */
  85#define UDC_EPSTS_OUT_SETUP             2
  86#define UDC_EPSTS_OUT_DATA              1
  87
  88/* Device configuration register */
  89/* Bit position */
  90#define UDC_DEVCFG_CSR_PRG              (1 << 17)
  91#define UDC_DEVCFG_SP                   (1 << 3)
  92/* SPD Valee */
  93#define UDC_DEVCFG_SPD_HS               0x0
  94#define UDC_DEVCFG_SPD_FS               0x1
  95#define UDC_DEVCFG_SPD_LS               0x2
  96
  97/* Device control register */
  98/* Bit position */
  99#define UDC_DEVCTL_THLEN_SHIFT          24
 100#define UDC_DEVCTL_BRLEN_SHIFT          16
 101#define UDC_DEVCTL_CSR_DONE             (1 << 13)
 102#define UDC_DEVCTL_SD                   (1 << 10)
 103#define UDC_DEVCTL_MODE                 (1 << 9)
 104#define UDC_DEVCTL_BREN                 (1 << 8)
 105#define UDC_DEVCTL_THE                  (1 << 7)
 106#define UDC_DEVCTL_DU                   (1 << 4)
 107#define UDC_DEVCTL_TDE                  (1 << 3)
 108#define UDC_DEVCTL_RDE                  (1 << 2)
 109#define UDC_DEVCTL_RES                  (1 << 0)
 110
 111/* Device status register */
 112/* Bit position */
 113#define UDC_DEVSTS_TS_SHIFT             18
 114#define UDC_DEVSTS_ENUM_SPEED_SHIFT     13
 115#define UDC_DEVSTS_ALT_SHIFT            8
 116#define UDC_DEVSTS_INTF_SHIFT           4
 117#define UDC_DEVSTS_CFG_SHIFT            0
 118/* Mask patern */
 119#define UDC_DEVSTS_TS_MASK              0xfffc0000
 120#define UDC_DEVSTS_ENUM_SPEED_MASK      0x00006000
 121#define UDC_DEVSTS_ALT_MASK             0x00000f00
 122#define UDC_DEVSTS_INTF_MASK            0x000000f0
 123#define UDC_DEVSTS_CFG_MASK             0x0000000f
 124/* value for maximum speed for SPEED field */
 125#define UDC_DEVSTS_ENUM_SPEED_FULL      1
 126#define UDC_DEVSTS_ENUM_SPEED_HIGH      0
 127#define UDC_DEVSTS_ENUM_SPEED_LOW       2
 128#define UDC_DEVSTS_ENUM_SPEED_FULLX     3
 129
 130/* Device irq register */
 131/* Bit position */
 132#define UDC_DEVINT_RWKP                 (1 << 7)
 133#define UDC_DEVINT_ENUM                 (1 << 6)
 134#define UDC_DEVINT_SOF                  (1 << 5)
 135#define UDC_DEVINT_US                   (1 << 4)
 136#define UDC_DEVINT_UR                   (1 << 3)
 137#define UDC_DEVINT_ES                   (1 << 2)
 138#define UDC_DEVINT_SI                   (1 << 1)
 139#define UDC_DEVINT_SC                   (1 << 0)
 140/* Mask patern */
 141#define UDC_DEVINT_MSK                  0x7f
 142
 143/* Endpoint irq register */
 144/* Bit position */
 145#define UDC_EPINT_IN_SHIFT              0
 146#define UDC_EPINT_OUT_SHIFT             16
 147#define UDC_EPINT_IN_EP0                (1 << 0)
 148#define UDC_EPINT_OUT_EP0               (1 << 16)
 149/* Mask patern */
 150#define UDC_EPINT_MSK_DISABLE_ALL       0xffffffff
 151
 152/* UDC_CSR_BUSY Status register */
 153/* Bit position */
 154#define UDC_CSR_BUSY                    (1 << 0)
 155
 156/* SOFT RESET register */
 157/* Bit position */
 158#define UDC_PSRST                       (1 << 1)
 159#define UDC_SRST                        (1 << 0)
 160
 161/* USB_DEVICE endpoint register */
 162/* Bit position */
 163#define UDC_CSR_NE_NUM_SHIFT            0
 164#define UDC_CSR_NE_DIR_SHIFT            4
 165#define UDC_CSR_NE_TYPE_SHIFT           5
 166#define UDC_CSR_NE_CFG_SHIFT            7
 167#define UDC_CSR_NE_INTF_SHIFT           11
 168#define UDC_CSR_NE_ALT_SHIFT            15
 169#define UDC_CSR_NE_MAX_PKT_SHIFT        19
 170/* Mask patern */
 171#define UDC_CSR_NE_NUM_MASK             0x0000000f
 172#define UDC_CSR_NE_DIR_MASK             0x00000010
 173#define UDC_CSR_NE_TYPE_MASK            0x00000060
 174#define UDC_CSR_NE_CFG_MASK             0x00000780
 175#define UDC_CSR_NE_INTF_MASK            0x00007800
 176#define UDC_CSR_NE_ALT_MASK             0x00078000
 177#define UDC_CSR_NE_MAX_PKT_MASK         0x3ff80000
 178
 179#define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
 180#define PCH_UDC_EPINT(in, num)\
 181                (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
 182
 183/* Index of endpoint */
 184#define UDC_EP0IN_IDX           0
 185#define UDC_EP0OUT_IDX          1
 186#define UDC_EPIN_IDX(ep)        (ep * 2)
 187#define UDC_EPOUT_IDX(ep)       (ep * 2 + 1)
 188#define PCH_UDC_EP0             0
 189#define PCH_UDC_EP1             1
 190#define PCH_UDC_EP2             2
 191#define PCH_UDC_EP3             3
 192
 193/* Number of endpoint */
 194#define PCH_UDC_EP_NUM          32      /* Total number of EPs (16 IN,16 OUT) */
 195#define PCH_UDC_USED_EP_NUM     4       /* EP number of EP's really used */
 196/* Length Value */
 197#define PCH_UDC_BRLEN           0x0F    /* Burst length */
 198#define PCH_UDC_THLEN           0x1F    /* Threshold length */
 199/* Value of EP Buffer Size */
 200#define UDC_EP0IN_BUFF_SIZE     16
 201#define UDC_EPIN_BUFF_SIZE      256
 202#define UDC_EP0OUT_BUFF_SIZE    16
 203#define UDC_EPOUT_BUFF_SIZE     256
 204/* Value of EP maximum packet size */
 205#define UDC_EP0IN_MAX_PKT_SIZE  64
 206#define UDC_EP0OUT_MAX_PKT_SIZE 64
 207#define UDC_BULK_MAX_PKT_SIZE   512
 208
 209/* DMA */
 210#define DMA_DIR_RX              1       /* DMA for data receive */
 211#define DMA_DIR_TX              2       /* DMA for data transmit */
 212#define DMA_ADDR_INVALID        (~(dma_addr_t)0)
 213#define UDC_DMA_MAXPACKET       65536   /* maximum packet size for DMA */
 214
 215/**
 216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
 217 *                                for data
 218 * @status:             Status quadlet
 219 * @reserved:           Reserved
 220 * @dataptr:            Buffer descriptor
 221 * @next:               Next descriptor
 222 */
 223struct pch_udc_data_dma_desc {
 224        u32 status;
 225        u32 reserved;
 226        u32 dataptr;
 227        u32 next;
 228};
 229
 230/**
 231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
 232 *                               for control data
 233 * @status:     Status
 234 * @reserved:   Reserved
 235 * @data12:     First setup word
 236 * @data34:     Second setup word
 237 */
 238struct pch_udc_stp_dma_desc {
 239        u32 status;
 240        u32 reserved;
 241        struct usb_ctrlrequest request;
 242} __attribute((packed));
 243
 244/* DMA status definitions */
 245/* Buffer status */
 246#define PCH_UDC_BUFF_STS        0xC0000000
 247#define PCH_UDC_BS_HST_RDY      0x00000000
 248#define PCH_UDC_BS_DMA_BSY      0x40000000
 249#define PCH_UDC_BS_DMA_DONE     0x80000000
 250#define PCH_UDC_BS_HST_BSY      0xC0000000
 251/*  Rx/Tx Status */
 252#define PCH_UDC_RXTX_STS        0x30000000
 253#define PCH_UDC_RTS_SUCC        0x00000000
 254#define PCH_UDC_RTS_DESERR      0x10000000
 255#define PCH_UDC_RTS_BUFERR      0x30000000
 256/* Last Descriptor Indication */
 257#define PCH_UDC_DMA_LAST        0x08000000
 258/* Number of Rx/Tx Bytes Mask */
 259#define PCH_UDC_RXTX_BYTES      0x0000ffff
 260
 261/**
 262 * struct pch_udc_cfg_data - Structure to hold current configuration
 263 *                           and interface information
 264 * @cur_cfg:    current configuration in use
 265 * @cur_intf:   current interface in use
 266 * @cur_alt:    current alt interface in use
 267 */
 268struct pch_udc_cfg_data {
 269        u16 cur_cfg;
 270        u16 cur_intf;
 271        u16 cur_alt;
 272};
 273
 274/**
 275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
 276 * @ep:                 embedded ep request
 277 * @td_stp_phys:        for setup request
 278 * @td_data_phys:       for data request
 279 * @td_stp:             for setup request
 280 * @td_data:            for data request
 281 * @dev:                reference to device struct
 282 * @offset_addr:        offset address of ep register
 283 * @desc:               for this ep
 284 * @queue:              queue for requests
 285 * @num:                endpoint number
 286 * @in:                 endpoint is IN
 287 * @halted:             endpoint halted?
 288 * @epsts:              Endpoint status
 289 */
 290struct pch_udc_ep {
 291        struct usb_ep                   ep;
 292        dma_addr_t                      td_stp_phys;
 293        dma_addr_t                      td_data_phys;
 294        struct pch_udc_stp_dma_desc     *td_stp;
 295        struct pch_udc_data_dma_desc    *td_data;
 296        struct pch_udc_dev              *dev;
 297        unsigned long                   offset_addr;
 298        struct list_head                queue;
 299        unsigned                        num:5,
 300                                        in:1,
 301                                        halted:1;
 302        unsigned long                   epsts;
 303};
 304
 305/**
 306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton
 307 *                                      for detecting VBUS
 308 * @port:               gpio port number
 309 * @intr:               gpio interrupt number
 310 * @irq_work_fall       Structure for WorkQueue
 311 * @irq_work_rise       Structure for WorkQueue
 312 */
 313struct pch_vbus_gpio_data {
 314        int                     port;
 315        int                     intr;
 316        struct work_struct      irq_work_fall;
 317        struct work_struct      irq_work_rise;
 318};
 319
 320/**
 321 * struct pch_udc_dev - Structure holding complete information
 322 *                      of the PCH USB device
 323 * @gadget:             gadget driver data
 324 * @driver:             reference to gadget driver bound
 325 * @pdev:               reference to the PCI device
 326 * @ep:                 array of endpoints
 327 * @lock:               protects all state
 328 * @stall:              stall requested
 329 * @prot_stall:         protcol stall requested
 330 * @registered:         driver registered with system
 331 * @suspended:          driver in suspended state
 332 * @connected:          gadget driver associated
 333 * @vbus_session:       required vbus_session state
 334 * @set_cfg_not_acked:  pending acknowledgement 4 setup
 335 * @waiting_zlp_ack:    pending acknowledgement 4 ZLP
 336 * @data_requests:      DMA pool for data requests
 337 * @stp_requests:       DMA pool for setup requests
 338 * @dma_addr:           DMA pool for received
 339 * @setup_data:         Received setup data
 340 * @base_addr:          for mapped device memory
 341 * @cfg_data:           current cfg, intf, and alt in use
 342 * @vbus_gpio:          GPIO informaton for detecting VBUS
 343 */
 344struct pch_udc_dev {
 345        struct usb_gadget               gadget;
 346        struct usb_gadget_driver        *driver;
 347        struct pci_dev                  *pdev;
 348        struct pch_udc_ep               ep[PCH_UDC_EP_NUM];
 349        spinlock_t                      lock; /* protects all state */
 350        unsigned
 351                        stall:1,
 352                        prot_stall:1,
 353                        suspended:1,
 354                        connected:1,
 355                        vbus_session:1,
 356                        set_cfg_not_acked:1,
 357                        waiting_zlp_ack:1;
 358        struct pci_pool         *data_requests;
 359        struct pci_pool         *stp_requests;
 360        dma_addr_t                      dma_addr;
 361        struct usb_ctrlrequest          setup_data;
 362        void __iomem                    *base_addr;
 363        struct pch_udc_cfg_data         cfg_data;
 364        struct pch_vbus_gpio_data       vbus_gpio;
 365};
 366#define to_pch_udc(g)   (container_of((g), struct pch_udc_dev, gadget))
 367
 368#define PCH_UDC_PCI_BAR_QUARK_X1000     0
 369#define PCH_UDC_PCI_BAR                 1
 370
 371#define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC     0x0939
 372#define PCI_DEVICE_ID_INTEL_EG20T_UDC           0x8808
 373
 374#define PCI_VENDOR_ID_ROHM              0x10DB
 375#define PCI_DEVICE_ID_ML7213_IOH_UDC    0x801D
 376#define PCI_DEVICE_ID_ML7831_IOH_UDC    0x8808
 377
 378static const char       ep0_string[] = "ep0in";
 379static DEFINE_SPINLOCK(udc_stall_spinlock);     /* stall spin lock */
 380static bool speed_fs;
 381module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
 382MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
 383
 384/**
 385 * struct pch_udc_request - Structure holding a PCH USB device request packet
 386 * @req:                embedded ep request
 387 * @td_data_phys:       phys. address
 388 * @td_data:            first dma desc. of chain
 389 * @td_data_last:       last dma desc. of chain
 390 * @queue:              associated queue
 391 * @dma_going:          DMA in progress for request
 392 * @dma_mapped:         DMA memory mapped for request
 393 * @dma_done:           DMA completed for request
 394 * @chain_len:          chain length
 395 * @buf:                Buffer memory for align adjustment
 396 * @dma:                DMA memory for align adjustment
 397 */
 398struct pch_udc_request {
 399        struct usb_request              req;
 400        dma_addr_t                      td_data_phys;
 401        struct pch_udc_data_dma_desc    *td_data;
 402        struct pch_udc_data_dma_desc    *td_data_last;
 403        struct list_head                queue;
 404        unsigned                        dma_going:1,
 405                                        dma_mapped:1,
 406                                        dma_done:1;
 407        unsigned                        chain_len;
 408        void                            *buf;
 409        dma_addr_t                      dma;
 410};
 411
 412static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
 413{
 414        return ioread32(dev->base_addr + reg);
 415}
 416
 417static inline void pch_udc_writel(struct pch_udc_dev *dev,
 418                                    unsigned long val, unsigned long reg)
 419{
 420        iowrite32(val, dev->base_addr + reg);
 421}
 422
 423static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
 424                                     unsigned long reg,
 425                                     unsigned long bitmask)
 426{
 427        pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
 428}
 429
 430static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
 431                                     unsigned long reg,
 432                                     unsigned long bitmask)
 433{
 434        pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
 435}
 436
 437static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
 438{
 439        return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
 440}
 441
 442static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
 443                                    unsigned long val, unsigned long reg)
 444{
 445        iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
 446}
 447
 448static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
 449                                     unsigned long reg,
 450                                     unsigned long bitmask)
 451{
 452        pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
 453}
 454
 455static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
 456                                     unsigned long reg,
 457                                     unsigned long bitmask)
 458{
 459        pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
 460}
 461
 462/**
 463 * pch_udc_csr_busy() - Wait till idle.
 464 * @dev:        Reference to pch_udc_dev structure
 465 */
 466static void pch_udc_csr_busy(struct pch_udc_dev *dev)
 467{
 468        unsigned int count = 200;
 469
 470        /* Wait till idle */
 471        while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
 472                && --count)
 473                cpu_relax();
 474        if (!count)
 475                dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
 476}
 477
 478/**
 479 * pch_udc_write_csr() - Write the command and status registers.
 480 * @dev:        Reference to pch_udc_dev structure
 481 * @val:        value to be written to CSR register
 482 * @addr:       address of CSR register
 483 */
 484static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
 485                               unsigned int ep)
 486{
 487        unsigned long reg = PCH_UDC_CSR(ep);
 488
 489        pch_udc_csr_busy(dev);          /* Wait till idle */
 490        pch_udc_writel(dev, val, reg);
 491        pch_udc_csr_busy(dev);          /* Wait till idle */
 492}
 493
 494/**
 495 * pch_udc_read_csr() - Read the command and status registers.
 496 * @dev:        Reference to pch_udc_dev structure
 497 * @addr:       address of CSR register
 498 *
 499 * Return codes:        content of CSR register
 500 */
 501static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
 502{
 503        unsigned long reg = PCH_UDC_CSR(ep);
 504
 505        pch_udc_csr_busy(dev);          /* Wait till idle */
 506        pch_udc_readl(dev, reg);        /* Dummy read */
 507        pch_udc_csr_busy(dev);          /* Wait till idle */
 508        return pch_udc_readl(dev, reg);
 509}
 510
 511/**
 512 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
 513 * @dev:        Reference to pch_udc_dev structure
 514 */
 515static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
 516{
 517        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 518        mdelay(1);
 519        pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 520}
 521
 522/**
 523 * pch_udc_get_frame() - Get the current frame from device status register
 524 * @dev:        Reference to pch_udc_dev structure
 525 * Retern       current frame
 526 */
 527static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
 528{
 529        u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
 530        return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
 531}
 532
 533/**
 534 * pch_udc_clear_selfpowered() - Clear the self power control
 535 * @dev:        Reference to pch_udc_regs structure
 536 */
 537static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
 538{
 539        pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
 540}
 541
 542/**
 543 * pch_udc_set_selfpowered() - Set the self power control
 544 * @dev:        Reference to pch_udc_regs structure
 545 */
 546static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
 547{
 548        pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
 549}
 550
 551/**
 552 * pch_udc_set_disconnect() - Set the disconnect status.
 553 * @dev:        Reference to pch_udc_regs structure
 554 */
 555static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
 556{
 557        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
 558}
 559
 560/**
 561 * pch_udc_clear_disconnect() - Clear the disconnect status.
 562 * @dev:        Reference to pch_udc_regs structure
 563 */
 564static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
 565{
 566        /* Clear the disconnect */
 567        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 568        pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
 569        mdelay(1);
 570        /* Resume USB signalling */
 571        pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 572}
 573
 574/**
 575 * pch_udc_reconnect() - This API initializes usb device controller,
 576 *                                              and clear the disconnect status.
 577 * @dev:                Reference to pch_udc_regs structure
 578 */
 579static void pch_udc_init(struct pch_udc_dev *dev);
 580static void pch_udc_reconnect(struct pch_udc_dev *dev)
 581{
 582        pch_udc_init(dev);
 583
 584        /* enable device interrupts */
 585        /* pch_udc_enable_interrupts() */
 586        pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
 587                        UDC_DEVINT_UR | UDC_DEVINT_ENUM);
 588
 589        /* Clear the disconnect */
 590        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 591        pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
 592        mdelay(1);
 593        /* Resume USB signalling */
 594        pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
 595}
 596
 597/**
 598 * pch_udc_vbus_session() - set or clearr the disconnect status.
 599 * @dev:        Reference to pch_udc_regs structure
 600 * @is_active:  Parameter specifying the action
 601 *                0:   indicating VBUS power is ending
 602 *                !0:  indicating VBUS power is starting
 603 */
 604static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
 605                                          int is_active)
 606{
 607        if (is_active) {
 608                pch_udc_reconnect(dev);
 609                dev->vbus_session = 1;
 610        } else {
 611                if (dev->driver && dev->driver->disconnect) {
 612                        spin_lock(&dev->lock);
 613                        dev->driver->disconnect(&dev->gadget);
 614                        spin_unlock(&dev->lock);
 615                }
 616                pch_udc_set_disconnect(dev);
 617                dev->vbus_session = 0;
 618        }
 619}
 620
 621/**
 622 * pch_udc_ep_set_stall() - Set the stall of endpoint
 623 * @ep:         Reference to structure of type pch_udc_ep_regs
 624 */
 625static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
 626{
 627        if (ep->in) {
 628                pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
 629                pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
 630        } else {
 631                pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
 632        }
 633}
 634
 635/**
 636 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
 637 * @ep:         Reference to structure of type pch_udc_ep_regs
 638 */
 639static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
 640{
 641        /* Clear the stall */
 642        pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
 643        /* Clear NAK by writing CNAK */
 644        pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
 645}
 646
 647/**
 648 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
 649 * @ep:         Reference to structure of type pch_udc_ep_regs
 650 * @type:       Type of endpoint
 651 */
 652static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
 653                                        u8 type)
 654{
 655        pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
 656                                UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
 657}
 658
 659/**
 660 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
 661 * @ep:         Reference to structure of type pch_udc_ep_regs
 662 * @buf_size:   The buffer word size
 663 */
 664static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
 665                                                 u32 buf_size, u32 ep_in)
 666{
 667        u32 data;
 668        if (ep_in) {
 669                data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
 670                data = (data & 0xffff0000) | (buf_size & 0xffff);
 671                pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
 672        } else {
 673                data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
 674                data = (buf_size << 16) | (data & 0xffff);
 675                pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
 676        }
 677}
 678
 679/**
 680 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
 681 * @ep:         Reference to structure of type pch_udc_ep_regs
 682 * @pkt_size:   The packet byte size
 683 */
 684static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
 685{
 686        u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
 687        data = (data & 0xffff0000) | (pkt_size & 0xffff);
 688        pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
 689}
 690
 691/**
 692 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
 693 * @ep:         Reference to structure of type pch_udc_ep_regs
 694 * @addr:       Address of the register
 695 */
 696static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
 697{
 698        pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
 699}
 700
 701/**
 702 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
 703 * @ep:         Reference to structure of type pch_udc_ep_regs
 704 * @addr:       Address of the register
 705 */
 706static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
 707{
 708        pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
 709}
 710
 711/**
 712 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
 713 * @ep:         Reference to structure of type pch_udc_ep_regs
 714 */
 715static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
 716{
 717        pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
 718}
 719
 720/**
 721 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
 722 * @ep:         Reference to structure of type pch_udc_ep_regs
 723 */
 724static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
 725{
 726        pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
 727}
 728
 729/**
 730 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
 731 * @ep:         Reference to structure of type pch_udc_ep_regs
 732 */
 733static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
 734{
 735        pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
 736}
 737
 738/**
 739 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
 740 *                      register depending on the direction specified
 741 * @dev:        Reference to structure of type pch_udc_regs
 742 * @dir:        whether Tx or Rx
 743 *                DMA_DIR_RX: Receive
 744 *                DMA_DIR_TX: Transmit
 745 */
 746static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
 747{
 748        if (dir == DMA_DIR_RX)
 749                pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
 750        else if (dir == DMA_DIR_TX)
 751                pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
 752}
 753
 754/**
 755 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
 756 *                               register depending on the direction specified
 757 * @dev:        Reference to structure of type pch_udc_regs
 758 * @dir:        Whether Tx or Rx
 759 *                DMA_DIR_RX: Receive
 760 *                DMA_DIR_TX: Transmit
 761 */
 762static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
 763{
 764        if (dir == DMA_DIR_RX)
 765                pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
 766        else if (dir == DMA_DIR_TX)
 767                pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
 768}
 769
 770/**
 771 * pch_udc_set_csr_done() - Set the device control register
 772 *                              CSR done field (bit 13)
 773 * @dev:        reference to structure of type pch_udc_regs
 774 */
 775static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
 776{
 777        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
 778}
 779
 780/**
 781 * pch_udc_disable_interrupts() - Disables the specified interrupts
 782 * @dev:        Reference to structure of type pch_udc_regs
 783 * @mask:       Mask to disable interrupts
 784 */
 785static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
 786                                            u32 mask)
 787{
 788        pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
 789}
 790
 791/**
 792 * pch_udc_enable_interrupts() - Enable the specified interrupts
 793 * @dev:        Reference to structure of type pch_udc_regs
 794 * @mask:       Mask to enable interrupts
 795 */
 796static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
 797                                           u32 mask)
 798{
 799        pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
 800}
 801
 802/**
 803 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
 804 * @dev:        Reference to structure of type pch_udc_regs
 805 * @mask:       Mask to disable interrupts
 806 */
 807static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
 808                                                u32 mask)
 809{
 810        pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
 811}
 812
 813/**
 814 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
 815 * @dev:        Reference to structure of type pch_udc_regs
 816 * @mask:       Mask to enable interrupts
 817 */
 818static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
 819                                              u32 mask)
 820{
 821        pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
 822}
 823
 824/**
 825 * pch_udc_read_device_interrupts() - Read the device interrupts
 826 * @dev:        Reference to structure of type pch_udc_regs
 827 * Retern       The device interrupts
 828 */
 829static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
 830{
 831        return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
 832}
 833
 834/**
 835 * pch_udc_write_device_interrupts() - Write device interrupts
 836 * @dev:        Reference to structure of type pch_udc_regs
 837 * @val:        The value to be written to interrupt register
 838 */
 839static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
 840                                                     u32 val)
 841{
 842        pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
 843}
 844
 845/**
 846 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
 847 * @dev:        Reference to structure of type pch_udc_regs
 848 * Retern       The endpoint interrupt
 849 */
 850static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
 851{
 852        return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
 853}
 854
 855/**
 856 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
 857 * @dev:        Reference to structure of type pch_udc_regs
 858 * @val:        The value to be written to interrupt register
 859 */
 860static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
 861                                             u32 val)
 862{
 863        pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
 864}
 865
 866/**
 867 * pch_udc_read_device_status() - Read the device status
 868 * @dev:        Reference to structure of type pch_udc_regs
 869 * Retern       The device status
 870 */
 871static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
 872{
 873        return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
 874}
 875
 876/**
 877 * pch_udc_read_ep_control() - Read the endpoint control
 878 * @ep:         Reference to structure of type pch_udc_ep_regs
 879 * Retern       The endpoint control register value
 880 */
 881static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
 882{
 883        return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
 884}
 885
 886/**
 887 * pch_udc_clear_ep_control() - Clear the endpoint control register
 888 * @ep:         Reference to structure of type pch_udc_ep_regs
 889 * Retern       The endpoint control register value
 890 */
 891static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
 892{
 893        return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
 894}
 895
 896/**
 897 * pch_udc_read_ep_status() - Read the endpoint status
 898 * @ep:         Reference to structure of type pch_udc_ep_regs
 899 * Retern       The endpoint status
 900 */
 901static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
 902{
 903        return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
 904}
 905
 906/**
 907 * pch_udc_clear_ep_status() - Clear the endpoint status
 908 * @ep:         Reference to structure of type pch_udc_ep_regs
 909 * @stat:       Endpoint status
 910 */
 911static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
 912                                         u32 stat)
 913{
 914        return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
 915}
 916
 917/**
 918 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
 919 *                              of the endpoint control register
 920 * @ep:         Reference to structure of type pch_udc_ep_regs
 921 */
 922static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
 923{
 924        pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
 925}
 926
 927/**
 928 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
 929 *                              of the endpoint control register
 930 * @ep:         reference to structure of type pch_udc_ep_regs
 931 */
 932static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
 933{
 934        unsigned int loopcnt = 0;
 935        struct pch_udc_dev *dev = ep->dev;
 936
 937        if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
 938                return;
 939        if (!ep->in) {
 940                loopcnt = 10000;
 941                while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
 942                        --loopcnt)
 943                        udelay(5);
 944                if (!loopcnt)
 945                        dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
 946                                __func__);
 947        }
 948        loopcnt = 10000;
 949        while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
 950                pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
 951                udelay(5);
 952        }
 953        if (!loopcnt)
 954                dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
 955                        __func__, ep->num, (ep->in ? "in" : "out"));
 956}
 957
 958/**
 959 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
 960 * @ep: reference to structure of type pch_udc_ep_regs
 961 * @dir:        direction of endpoint
 962 *                0:  endpoint is OUT
 963 *                !0: endpoint is IN
 964 */
 965static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
 966{
 967        if (dir) {      /* IN ep */
 968                pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
 969                return;
 970        }
 971}
 972
 973/**
 974 * pch_udc_ep_enable() - This api enables endpoint
 975 * @regs:       Reference to structure pch_udc_ep_regs
 976 * @desc:       endpoint descriptor
 977 */
 978static void pch_udc_ep_enable(struct pch_udc_ep *ep,
 979                               struct pch_udc_cfg_data *cfg,
 980                               const struct usb_endpoint_descriptor *desc)
 981{
 982        u32 val = 0;
 983        u32 buff_size = 0;
 984
 985        pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
 986        if (ep->in)
 987                buff_size = UDC_EPIN_BUFF_SIZE;
 988        else
 989                buff_size = UDC_EPOUT_BUFF_SIZE;
 990        pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
 991        pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
 992        pch_udc_ep_set_nak(ep);
 993        pch_udc_ep_fifo_flush(ep, ep->in);
 994        /* Configure the endpoint */
 995        val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
 996              ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
 997                UDC_CSR_NE_TYPE_SHIFT) |
 998              (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
 999              (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1000              (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1001              usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1002
1003        if (ep->in)
1004                pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1005        else
1006                pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1007}
1008
1009/**
1010 * pch_udc_ep_disable() - This api disables endpoint
1011 * @regs:       Reference to structure pch_udc_ep_regs
1012 */
1013static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1014{
1015        if (ep->in) {
1016                /* flush the fifo */
1017                pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1018                /* set NAK */
1019                pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1020                pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1021        } else {
1022                /* set NAK */
1023                pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1024        }
1025        /* reset desc pointer */
1026        pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1027}
1028
1029/**
1030 * pch_udc_wait_ep_stall() - Wait EP stall.
1031 * @dev:        Reference to pch_udc_dev structure
1032 */
1033static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1034{
1035        unsigned int count = 10000;
1036
1037        /* Wait till idle */
1038        while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1039                udelay(5);
1040        if (!count)
1041                dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1042}
1043
1044/**
1045 * pch_udc_init() - This API initializes usb device controller
1046 * @dev:        Rreference to pch_udc_regs structure
1047 */
1048static void pch_udc_init(struct pch_udc_dev *dev)
1049{
1050        if (NULL == dev) {
1051                pr_err("%s: Invalid address\n", __func__);
1052                return;
1053        }
1054        /* Soft Reset and Reset PHY */
1055        pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1056        pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1057        mdelay(1);
1058        pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1059        pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1060        mdelay(1);
1061        /* mask and clear all device interrupts */
1062        pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1063        pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1064
1065        /* mask and clear all ep interrupts */
1066        pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1067        pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1068
1069        /* enable dynamic CSR programmingi, self powered and device speed */
1070        if (speed_fs)
1071                pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1072                                UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1073        else /* defaul high speed */
1074                pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1075                                UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1076        pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1077                        (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1078                        (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1079                        UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1080                        UDC_DEVCTL_THE);
1081}
1082
1083/**
1084 * pch_udc_exit() - This API exit usb device controller
1085 * @dev:        Reference to pch_udc_regs structure
1086 */
1087static void pch_udc_exit(struct pch_udc_dev *dev)
1088{
1089        /* mask all device interrupts */
1090        pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1091        /* mask all ep interrupts */
1092        pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1093        /* put device in disconnected state */
1094        pch_udc_set_disconnect(dev);
1095}
1096
1097/**
1098 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1099 * @gadget:     Reference to the gadget driver
1100 *
1101 * Return codes:
1102 *      0:              Success
1103 *      -EINVAL:        If the gadget passed is NULL
1104 */
1105static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1106{
1107        struct pch_udc_dev      *dev;
1108
1109        if (!gadget)
1110                return -EINVAL;
1111        dev = container_of(gadget, struct pch_udc_dev, gadget);
1112        return pch_udc_get_frame(dev);
1113}
1114
1115/**
1116 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1117 * @gadget:     Reference to the gadget driver
1118 *
1119 * Return codes:
1120 *      0:              Success
1121 *      -EINVAL:        If the gadget passed is NULL
1122 */
1123static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1124{
1125        struct pch_udc_dev      *dev;
1126        unsigned long           flags;
1127
1128        if (!gadget)
1129                return -EINVAL;
1130        dev = container_of(gadget, struct pch_udc_dev, gadget);
1131        spin_lock_irqsave(&dev->lock, flags);
1132        pch_udc_rmt_wakeup(dev);
1133        spin_unlock_irqrestore(&dev->lock, flags);
1134        return 0;
1135}
1136
1137/**
1138 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1139 *                              is self powered or not
1140 * @gadget:     Reference to the gadget driver
1141 * @value:      Specifies self powered or not
1142 *
1143 * Return codes:
1144 *      0:              Success
1145 *      -EINVAL:        If the gadget passed is NULL
1146 */
1147static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1148{
1149        struct pch_udc_dev      *dev;
1150
1151        if (!gadget)
1152                return -EINVAL;
1153        gadget->is_selfpowered = (value != 0);
1154        dev = container_of(gadget, struct pch_udc_dev, gadget);
1155        if (value)
1156                pch_udc_set_selfpowered(dev);
1157        else
1158                pch_udc_clear_selfpowered(dev);
1159        return 0;
1160}
1161
1162/**
1163 * pch_udc_pcd_pullup() - This API is invoked to make the device
1164 *                              visible/invisible to the host
1165 * @gadget:     Reference to the gadget driver
1166 * @is_on:      Specifies whether the pull up is made active or inactive
1167 *
1168 * Return codes:
1169 *      0:              Success
1170 *      -EINVAL:        If the gadget passed is NULL
1171 */
1172static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1173{
1174        struct pch_udc_dev      *dev;
1175
1176        if (!gadget)
1177                return -EINVAL;
1178        dev = container_of(gadget, struct pch_udc_dev, gadget);
1179        if (is_on) {
1180                pch_udc_reconnect(dev);
1181        } else {
1182                if (dev->driver && dev->driver->disconnect) {
1183                        spin_lock(&dev->lock);
1184                        dev->driver->disconnect(&dev->gadget);
1185                        spin_unlock(&dev->lock);
1186                }
1187                pch_udc_set_disconnect(dev);
1188        }
1189
1190        return 0;
1191}
1192
1193/**
1194 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1195 *                              transceiver (or GPIO) that
1196 *                              detects a VBUS power session starting/ending
1197 * @gadget:     Reference to the gadget driver
1198 * @is_active:  specifies whether the session is starting or ending
1199 *
1200 * Return codes:
1201 *      0:              Success
1202 *      -EINVAL:        If the gadget passed is NULL
1203 */
1204static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1205{
1206        struct pch_udc_dev      *dev;
1207
1208        if (!gadget)
1209                return -EINVAL;
1210        dev = container_of(gadget, struct pch_udc_dev, gadget);
1211        pch_udc_vbus_session(dev, is_active);
1212        return 0;
1213}
1214
1215/**
1216 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1217 *                              SET_CONFIGURATION calls to
1218 *                              specify how much power the device can consume
1219 * @gadget:     Reference to the gadget driver
1220 * @mA:         specifies the current limit in 2mA unit
1221 *
1222 * Return codes:
1223 *      -EINVAL:        If the gadget passed is NULL
1224 *      -EOPNOTSUPP:
1225 */
1226static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1227{
1228        return -EOPNOTSUPP;
1229}
1230
1231static int pch_udc_start(struct usb_gadget *g,
1232                struct usb_gadget_driver *driver);
1233static int pch_udc_stop(struct usb_gadget *g);
1234
1235static const struct usb_gadget_ops pch_udc_ops = {
1236        .get_frame = pch_udc_pcd_get_frame,
1237        .wakeup = pch_udc_pcd_wakeup,
1238        .set_selfpowered = pch_udc_pcd_selfpowered,
1239        .pullup = pch_udc_pcd_pullup,
1240        .vbus_session = pch_udc_pcd_vbus_session,
1241        .vbus_draw = pch_udc_pcd_vbus_draw,
1242        .udc_start = pch_udc_start,
1243        .udc_stop = pch_udc_stop,
1244};
1245
1246/**
1247 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1248 * @dev:        Reference to the driver structure
1249 *
1250 * Return value:
1251 *      1: VBUS is high
1252 *      0: VBUS is low
1253 *     -1: It is not enable to detect VBUS using GPIO
1254 */
1255static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1256{
1257        int vbus = 0;
1258
1259        if (dev->vbus_gpio.port)
1260                vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1261        else
1262                vbus = -1;
1263
1264        return vbus;
1265}
1266
1267/**
1268 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1269 *                             If VBUS is Low, disconnect is processed
1270 * @irq_work:   Structure for WorkQueue
1271 *
1272 */
1273static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1274{
1275        struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1276                struct pch_vbus_gpio_data, irq_work_fall);
1277        struct pch_udc_dev *dev =
1278                container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1279        int vbus_saved = -1;
1280        int vbus;
1281        int count;
1282
1283        if (!dev->vbus_gpio.port)
1284                return;
1285
1286        for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1287                count++) {
1288                vbus = pch_vbus_gpio_get_value(dev);
1289
1290                if ((vbus_saved == vbus) && (vbus == 0)) {
1291                        dev_dbg(&dev->pdev->dev, "VBUS fell");
1292                        if (dev->driver
1293                                && dev->driver->disconnect) {
1294                                dev->driver->disconnect(
1295                                        &dev->gadget);
1296                        }
1297                        if (dev->vbus_gpio.intr)
1298                                pch_udc_init(dev);
1299                        else
1300                                pch_udc_reconnect(dev);
1301                        return;
1302                }
1303                vbus_saved = vbus;
1304                mdelay(PCH_VBUS_INTERVAL);
1305        }
1306}
1307
1308/**
1309 * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1310 *                             If VBUS is High, connect is processed
1311 * @irq_work:   Structure for WorkQueue
1312 *
1313 */
1314static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1315{
1316        struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1317                struct pch_vbus_gpio_data, irq_work_rise);
1318        struct pch_udc_dev *dev =
1319                container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1320        int vbus;
1321
1322        if (!dev->vbus_gpio.port)
1323                return;
1324
1325        mdelay(PCH_VBUS_INTERVAL);
1326        vbus = pch_vbus_gpio_get_value(dev);
1327
1328        if (vbus == 1) {
1329                dev_dbg(&dev->pdev->dev, "VBUS rose");
1330                pch_udc_reconnect(dev);
1331                return;
1332        }
1333}
1334
1335/**
1336 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1337 * @irq:        Interrupt request number
1338 * @dev:        Reference to the device structure
1339 *
1340 * Return codes:
1341 *      0: Success
1342 *      -EINVAL: GPIO port is invalid or can't be initialized.
1343 */
1344static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1345{
1346        struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1347
1348        if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1349                return IRQ_NONE;
1350
1351        if (pch_vbus_gpio_get_value(dev))
1352                schedule_work(&dev->vbus_gpio.irq_work_rise);
1353        else
1354                schedule_work(&dev->vbus_gpio.irq_work_fall);
1355
1356        return IRQ_HANDLED;
1357}
1358
1359/**
1360 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1361 * @dev:        Reference to the driver structure
1362 * @vbus_gpio   Number of GPIO port to detect gpio
1363 *
1364 * Return codes:
1365 *      0: Success
1366 *      -EINVAL: GPIO port is invalid or can't be initialized.
1367 */
1368static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1369{
1370        int err;
1371        int irq_num = 0;
1372
1373        dev->vbus_gpio.port = 0;
1374        dev->vbus_gpio.intr = 0;
1375
1376        if (vbus_gpio_port <= -1)
1377                return -EINVAL;
1378
1379        err = gpio_is_valid(vbus_gpio_port);
1380        if (!err) {
1381                pr_err("%s: gpio port %d is invalid\n",
1382                        __func__, vbus_gpio_port);
1383                return -EINVAL;
1384        }
1385
1386        err = gpio_request(vbus_gpio_port, "pch_vbus");
1387        if (err) {
1388                pr_err("%s: can't request gpio port %d, err: %d\n",
1389                        __func__, vbus_gpio_port, err);
1390                return -EINVAL;
1391        }
1392
1393        dev->vbus_gpio.port = vbus_gpio_port;
1394        gpio_direction_input(vbus_gpio_port);
1395        INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1396
1397        irq_num = gpio_to_irq(vbus_gpio_port);
1398        if (irq_num > 0) {
1399                irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1400                err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1401                        "vbus_detect", dev);
1402                if (!err) {
1403                        dev->vbus_gpio.intr = irq_num;
1404                        INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1405                                pch_vbus_gpio_work_rise);
1406                } else {
1407                        pr_err("%s: can't request irq %d, err: %d\n",
1408                                __func__, irq_num, err);
1409                }
1410        }
1411
1412        return 0;
1413}
1414
1415/**
1416 * pch_vbus_gpio_free() - This API frees resources of GPIO port
1417 * @dev:        Reference to the driver structure
1418 */
1419static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1420{
1421        if (dev->vbus_gpio.intr)
1422                free_irq(dev->vbus_gpio.intr, dev);
1423
1424        if (dev->vbus_gpio.port)
1425                gpio_free(dev->vbus_gpio.port);
1426}
1427
1428/**
1429 * complete_req() - This API is invoked from the driver when processing
1430 *                      of a request is complete
1431 * @ep:         Reference to the endpoint structure
1432 * @req:        Reference to the request structure
1433 * @status:     Indicates the success/failure of completion
1434 */
1435static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1436                                                                 int status)
1437        __releases(&dev->lock)
1438        __acquires(&dev->lock)
1439{
1440        struct pch_udc_dev      *dev;
1441        unsigned halted = ep->halted;
1442
1443        list_del_init(&req->queue);
1444
1445        /* set new status if pending */
1446        if (req->req.status == -EINPROGRESS)
1447                req->req.status = status;
1448        else
1449                status = req->req.status;
1450
1451        dev = ep->dev;
1452        if (req->dma_mapped) {
1453                if (req->dma == DMA_ADDR_INVALID) {
1454                        if (ep->in)
1455                                dma_unmap_single(&dev->pdev->dev, req->req.dma,
1456                                                 req->req.length,
1457                                                 DMA_TO_DEVICE);
1458                        else
1459                                dma_unmap_single(&dev->pdev->dev, req->req.dma,
1460                                                 req->req.length,
1461                                                 DMA_FROM_DEVICE);
1462                        req->req.dma = DMA_ADDR_INVALID;
1463                } else {
1464                        if (ep->in)
1465                                dma_unmap_single(&dev->pdev->dev, req->dma,
1466                                                 req->req.length,
1467                                                 DMA_TO_DEVICE);
1468                        else {
1469                                dma_unmap_single(&dev->pdev->dev, req->dma,
1470                                                 req->req.length,
1471                                                 DMA_FROM_DEVICE);
1472                                memcpy(req->req.buf, req->buf, req->req.length);
1473                        }
1474                        kfree(req->buf);
1475                        req->dma = DMA_ADDR_INVALID;
1476                }
1477                req->dma_mapped = 0;
1478        }
1479        ep->halted = 1;
1480        spin_unlock(&dev->lock);
1481        if (!ep->in)
1482                pch_udc_ep_clear_rrdy(ep);
1483        usb_gadget_giveback_request(&ep->ep, &req->req);
1484        spin_lock(&dev->lock);
1485        ep->halted = halted;
1486}
1487
1488/**
1489 * empty_req_queue() - This API empties the request queue of an endpoint
1490 * @ep:         Reference to the endpoint structure
1491 */
1492static void empty_req_queue(struct pch_udc_ep *ep)
1493{
1494        struct pch_udc_request  *req;
1495
1496        ep->halted = 1;
1497        while (!list_empty(&ep->queue)) {
1498                req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1499                complete_req(ep, req, -ESHUTDOWN);      /* Remove from list */
1500        }
1501}
1502
1503/**
1504 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1505 *                              for the request
1506 * @dev         Reference to the driver structure
1507 * @req         Reference to the request to be freed
1508 *
1509 * Return codes:
1510 *      0: Success
1511 */
1512static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1513                                   struct pch_udc_request *req)
1514{
1515        struct pch_udc_data_dma_desc *td = req->td_data;
1516        unsigned i = req->chain_len;
1517
1518        dma_addr_t addr2;
1519        dma_addr_t addr = (dma_addr_t)td->next;
1520        td->next = 0x00;
1521        for (; i > 1; --i) {
1522                /* do not free first desc., will be done by free for request */
1523                td = phys_to_virt(addr);
1524                addr2 = (dma_addr_t)td->next;
1525                pci_pool_free(dev->data_requests, td, addr);
1526                addr = addr2;
1527        }
1528        req->chain_len = 1;
1529}
1530
1531/**
1532 * pch_udc_create_dma_chain() - This function creates or reinitializes
1533 *                              a DMA chain
1534 * @ep:         Reference to the endpoint structure
1535 * @req:        Reference to the request
1536 * @buf_len:    The buffer length
1537 * @gfp_flags:  Flags to be used while mapping the data buffer
1538 *
1539 * Return codes:
1540 *      0:              success,
1541 *      -ENOMEM:        pci_pool_alloc invocation fails
1542 */
1543static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1544                                    struct pch_udc_request *req,
1545                                    unsigned long buf_len,
1546                                    gfp_t gfp_flags)
1547{
1548        struct pch_udc_data_dma_desc *td = req->td_data, *last;
1549        unsigned long bytes = req->req.length, i = 0;
1550        dma_addr_t dma_addr;
1551        unsigned len = 1;
1552
1553        if (req->chain_len > 1)
1554                pch_udc_free_dma_chain(ep->dev, req);
1555
1556        if (req->dma == DMA_ADDR_INVALID)
1557                td->dataptr = req->req.dma;
1558        else
1559                td->dataptr = req->dma;
1560
1561        td->status = PCH_UDC_BS_HST_BSY;
1562        for (; ; bytes -= buf_len, ++len) {
1563                td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1564                if (bytes <= buf_len)
1565                        break;
1566                last = td;
1567                td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1568                                    &dma_addr);
1569                if (!td)
1570                        goto nomem;
1571                i += buf_len;
1572                td->dataptr = req->td_data->dataptr + i;
1573                last->next = dma_addr;
1574        }
1575
1576        req->td_data_last = td;
1577        td->status |= PCH_UDC_DMA_LAST;
1578        td->next = req->td_data_phys;
1579        req->chain_len = len;
1580        return 0;
1581
1582nomem:
1583        if (len > 1) {
1584                req->chain_len = len;
1585                pch_udc_free_dma_chain(ep->dev, req);
1586        }
1587        req->chain_len = 1;
1588        return -ENOMEM;
1589}
1590
1591/**
1592 * prepare_dma() - This function creates and initializes the DMA chain
1593 *                      for the request
1594 * @ep:         Reference to the endpoint structure
1595 * @req:        Reference to the request
1596 * @gfp:        Flag to be used while mapping the data buffer
1597 *
1598 * Return codes:
1599 *      0:              Success
1600 *      Other 0:        linux error number on failure
1601 */
1602static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1603                          gfp_t gfp)
1604{
1605        int     retval;
1606
1607        /* Allocate and create a DMA chain */
1608        retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1609        if (retval) {
1610                pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1611                return retval;
1612        }
1613        if (ep->in)
1614                req->td_data->status = (req->td_data->status &
1615                                ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1616        return 0;
1617}
1618
1619/**
1620 * process_zlp() - This function process zero length packets
1621 *                      from the gadget driver
1622 * @ep:         Reference to the endpoint structure
1623 * @req:        Reference to the request
1624 */
1625static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1626{
1627        struct pch_udc_dev      *dev = ep->dev;
1628
1629        /* IN zlp's are handled by hardware */
1630        complete_req(ep, req, 0);
1631
1632        /* if set_config or set_intf is waiting for ack by zlp
1633         * then set CSR_DONE
1634         */
1635        if (dev->set_cfg_not_acked) {
1636                pch_udc_set_csr_done(dev);
1637                dev->set_cfg_not_acked = 0;
1638        }
1639        /* setup command is ACK'ed now by zlp */
1640        if (!dev->stall && dev->waiting_zlp_ack) {
1641                pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1642                dev->waiting_zlp_ack = 0;
1643        }
1644}
1645
1646/**
1647 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1648 * @ep:         Reference to the endpoint structure
1649 * @req:        Reference to the request structure
1650 */
1651static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1652                                         struct pch_udc_request *req)
1653{
1654        struct pch_udc_data_dma_desc *td_data;
1655
1656        pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1657        td_data = req->td_data;
1658        /* Set the status bits for all descriptors */
1659        while (1) {
1660                td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1661                                    PCH_UDC_BS_HST_RDY;
1662                if ((td_data->status & PCH_UDC_DMA_LAST) ==  PCH_UDC_DMA_LAST)
1663                        break;
1664                td_data = phys_to_virt(td_data->next);
1665        }
1666        /* Write the descriptor pointer */
1667        pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1668        req->dma_going = 1;
1669        pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1670        pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1671        pch_udc_ep_clear_nak(ep);
1672        pch_udc_ep_set_rrdy(ep);
1673}
1674
1675/**
1676 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1677 *                              from gadget driver
1678 * @usbep:      Reference to the USB endpoint structure
1679 * @desc:       Reference to the USB endpoint descriptor structure
1680 *
1681 * Return codes:
1682 *      0:              Success
1683 *      -EINVAL:
1684 *      -ESHUTDOWN:
1685 */
1686static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1687                                    const struct usb_endpoint_descriptor *desc)
1688{
1689        struct pch_udc_ep       *ep;
1690        struct pch_udc_dev      *dev;
1691        unsigned long           iflags;
1692
1693        if (!usbep || (usbep->name == ep0_string) || !desc ||
1694            (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1695                return -EINVAL;
1696
1697        ep = container_of(usbep, struct pch_udc_ep, ep);
1698        dev = ep->dev;
1699        if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1700                return -ESHUTDOWN;
1701        spin_lock_irqsave(&dev->lock, iflags);
1702        ep->ep.desc = desc;
1703        ep->halted = 0;
1704        pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1705        ep->ep.maxpacket = usb_endpoint_maxp(desc);
1706        pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1707        spin_unlock_irqrestore(&dev->lock, iflags);
1708        return 0;
1709}
1710
1711/**
1712 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1713 *                              from gadget driver
1714 * @usbep       Reference to the USB endpoint structure
1715 *
1716 * Return codes:
1717 *      0:              Success
1718 *      -EINVAL:
1719 */
1720static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1721{
1722        struct pch_udc_ep       *ep;
1723        unsigned long   iflags;
1724
1725        if (!usbep)
1726                return -EINVAL;
1727
1728        ep = container_of(usbep, struct pch_udc_ep, ep);
1729        if ((usbep->name == ep0_string) || !ep->ep.desc)
1730                return -EINVAL;
1731
1732        spin_lock_irqsave(&ep->dev->lock, iflags);
1733        empty_req_queue(ep);
1734        ep->halted = 1;
1735        pch_udc_ep_disable(ep);
1736        pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1737        ep->ep.desc = NULL;
1738        INIT_LIST_HEAD(&ep->queue);
1739        spin_unlock_irqrestore(&ep->dev->lock, iflags);
1740        return 0;
1741}
1742
1743/**
1744 * pch_udc_alloc_request() - This function allocates request structure.
1745 *                              It is called by gadget driver
1746 * @usbep:      Reference to the USB endpoint structure
1747 * @gfp:        Flag to be used while allocating memory
1748 *
1749 * Return codes:
1750 *      NULL:                   Failure
1751 *      Allocated address:      Success
1752 */
1753static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1754                                                  gfp_t gfp)
1755{
1756        struct pch_udc_request          *req;
1757        struct pch_udc_ep               *ep;
1758        struct pch_udc_data_dma_desc    *dma_desc;
1759
1760        if (!usbep)
1761                return NULL;
1762        ep = container_of(usbep, struct pch_udc_ep, ep);
1763        req = kzalloc(sizeof *req, gfp);
1764        if (!req)
1765                return NULL;
1766        req->req.dma = DMA_ADDR_INVALID;
1767        req->dma = DMA_ADDR_INVALID;
1768        INIT_LIST_HEAD(&req->queue);
1769        if (!ep->dev->dma_addr)
1770                return &req->req;
1771        /* ep0 in requests are allocated from data pool here */
1772        dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1773                                  &req->td_data_phys);
1774        if (NULL == dma_desc) {
1775                kfree(req);
1776                return NULL;
1777        }
1778        /* prevent from using desc. - set HOST BUSY */
1779        dma_desc->status |= PCH_UDC_BS_HST_BSY;
1780        dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
1781        req->td_data = dma_desc;
1782        req->td_data_last = dma_desc;
1783        req->chain_len = 1;
1784        return &req->req;
1785}
1786
1787/**
1788 * pch_udc_free_request() - This function frees request structure.
1789 *                              It is called by gadget driver
1790 * @usbep:      Reference to the USB endpoint structure
1791 * @usbreq:     Reference to the USB request
1792 */
1793static void pch_udc_free_request(struct usb_ep *usbep,
1794                                  struct usb_request *usbreq)
1795{
1796        struct pch_udc_ep       *ep;
1797        struct pch_udc_request  *req;
1798        struct pch_udc_dev      *dev;
1799
1800        if (!usbep || !usbreq)
1801                return;
1802        ep = container_of(usbep, struct pch_udc_ep, ep);
1803        req = container_of(usbreq, struct pch_udc_request, req);
1804        dev = ep->dev;
1805        if (!list_empty(&req->queue))
1806                dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1807                        __func__, usbep->name, req);
1808        if (req->td_data != NULL) {
1809                if (req->chain_len > 1)
1810                        pch_udc_free_dma_chain(ep->dev, req);
1811                pci_pool_free(ep->dev->data_requests, req->td_data,
1812                              req->td_data_phys);
1813        }
1814        kfree(req);
1815}
1816
1817/**
1818 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1819 *                      by gadget driver
1820 * @usbep:      Reference to the USB endpoint structure
1821 * @usbreq:     Reference to the USB request
1822 * @gfp:        Flag to be used while mapping the data buffer
1823 *
1824 * Return codes:
1825 *      0:                      Success
1826 *      linux error number:     Failure
1827 */
1828static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1829                                                                 gfp_t gfp)
1830{
1831        int retval = 0;
1832        struct pch_udc_ep       *ep;
1833        struct pch_udc_dev      *dev;
1834        struct pch_udc_request  *req;
1835        unsigned long   iflags;
1836
1837        if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1838                return -EINVAL;
1839        ep = container_of(usbep, struct pch_udc_ep, ep);
1840        dev = ep->dev;
1841        if (!ep->ep.desc && ep->num)
1842                return -EINVAL;
1843        req = container_of(usbreq, struct pch_udc_request, req);
1844        if (!list_empty(&req->queue))
1845                return -EINVAL;
1846        if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1847                return -ESHUTDOWN;
1848        spin_lock_irqsave(&dev->lock, iflags);
1849        /* map the buffer for dma */
1850        if (usbreq->length &&
1851            ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1852                if (!((unsigned long)(usbreq->buf) & 0x03)) {
1853                        if (ep->in)
1854                                usbreq->dma = dma_map_single(&dev->pdev->dev,
1855                                                             usbreq->buf,
1856                                                             usbreq->length,
1857                                                             DMA_TO_DEVICE);
1858                        else
1859                                usbreq->dma = dma_map_single(&dev->pdev->dev,
1860                                                             usbreq->buf,
1861                                                             usbreq->length,
1862                                                             DMA_FROM_DEVICE);
1863                } else {
1864                        req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1865                        if (!req->buf) {
1866                                retval = -ENOMEM;
1867                                goto probe_end;
1868                        }
1869                        if (ep->in) {
1870                                memcpy(req->buf, usbreq->buf, usbreq->length);
1871                                req->dma = dma_map_single(&dev->pdev->dev,
1872                                                          req->buf,
1873                                                          usbreq->length,
1874                                                          DMA_TO_DEVICE);
1875                        } else
1876                                req->dma = dma_map_single(&dev->pdev->dev,
1877                                                          req->buf,
1878                                                          usbreq->length,
1879                                                          DMA_FROM_DEVICE);
1880                }
1881                req->dma_mapped = 1;
1882        }
1883        if (usbreq->length > 0) {
1884                retval = prepare_dma(ep, req, GFP_ATOMIC);
1885                if (retval)
1886                        goto probe_end;
1887        }
1888        usbreq->actual = 0;
1889        usbreq->status = -EINPROGRESS;
1890        req->dma_done = 0;
1891        if (list_empty(&ep->queue) && !ep->halted) {
1892                /* no pending transfer, so start this req */
1893                if (!usbreq->length) {
1894                        process_zlp(ep, req);
1895                        retval = 0;
1896                        goto probe_end;
1897                }
1898                if (!ep->in) {
1899                        pch_udc_start_rxrequest(ep, req);
1900                } else {
1901                        /*
1902                        * For IN trfr the descriptors will be programmed and
1903                        * P bit will be set when
1904                        * we get an IN token
1905                        */
1906                        pch_udc_wait_ep_stall(ep);
1907                        pch_udc_ep_clear_nak(ep);
1908                        pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1909                }
1910        }
1911        /* Now add this request to the ep's pending requests */
1912        if (req != NULL)
1913                list_add_tail(&req->queue, &ep->queue);
1914
1915probe_end:
1916        spin_unlock_irqrestore(&dev->lock, iflags);
1917        return retval;
1918}
1919
1920/**
1921 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1922 *                              It is called by gadget driver
1923 * @usbep:      Reference to the USB endpoint structure
1924 * @usbreq:     Reference to the USB request
1925 *
1926 * Return codes:
1927 *      0:                      Success
1928 *      linux error number:     Failure
1929 */
1930static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1931                                struct usb_request *usbreq)
1932{
1933        struct pch_udc_ep       *ep;
1934        struct pch_udc_request  *req;
1935        unsigned long           flags;
1936        int ret = -EINVAL;
1937
1938        ep = container_of(usbep, struct pch_udc_ep, ep);
1939        if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1940                return ret;
1941        req = container_of(usbreq, struct pch_udc_request, req);
1942        spin_lock_irqsave(&ep->dev->lock, flags);
1943        /* make sure it's still queued on this endpoint */
1944        list_for_each_entry(req, &ep->queue, queue) {
1945                if (&req->req == usbreq) {
1946                        pch_udc_ep_set_nak(ep);
1947                        if (!list_empty(&req->queue))
1948                                complete_req(ep, req, -ECONNRESET);
1949                        ret = 0;
1950                        break;
1951                }
1952        }
1953        spin_unlock_irqrestore(&ep->dev->lock, flags);
1954        return ret;
1955}
1956
1957/**
1958 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1959 *                          feature
1960 * @usbep:      Reference to the USB endpoint structure
1961 * @halt:       Specifies whether to set or clear the feature
1962 *
1963 * Return codes:
1964 *      0:                      Success
1965 *      linux error number:     Failure
1966 */
1967static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1968{
1969        struct pch_udc_ep       *ep;
1970        unsigned long iflags;
1971        int ret;
1972
1973        if (!usbep)
1974                return -EINVAL;
1975        ep = container_of(usbep, struct pch_udc_ep, ep);
1976        if (!ep->ep.desc && !ep->num)
1977                return -EINVAL;
1978        if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1979                return -ESHUTDOWN;
1980        spin_lock_irqsave(&udc_stall_spinlock, iflags);
1981        if (list_empty(&ep->queue)) {
1982                if (halt) {
1983                        if (ep->num == PCH_UDC_EP0)
1984                                ep->dev->stall = 1;
1985                        pch_udc_ep_set_stall(ep);
1986                        pch_udc_enable_ep_interrupts(
1987                                ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1988                } else {
1989                        pch_udc_ep_clear_stall(ep);
1990                }
1991                ret = 0;
1992        } else {
1993                ret = -EAGAIN;
1994        }
1995        spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1996        return ret;
1997}
1998
1999/**
2000 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2001 *                              halt feature
2002 * @usbep:      Reference to the USB endpoint structure
2003 * @halt:       Specifies whether to set or clear the feature
2004 *
2005 * Return codes:
2006 *      0:                      Success
2007 *      linux error number:     Failure
2008 */
2009static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2010{
2011        struct pch_udc_ep       *ep;
2012        unsigned long iflags;
2013        int ret;
2014
2015        if (!usbep)
2016                return -EINVAL;
2017        ep = container_of(usbep, struct pch_udc_ep, ep);
2018        if (!ep->ep.desc && !ep->num)
2019                return -EINVAL;
2020        if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2021                return -ESHUTDOWN;
2022        spin_lock_irqsave(&udc_stall_spinlock, iflags);
2023        if (!list_empty(&ep->queue)) {
2024                ret = -EAGAIN;
2025        } else {
2026                if (ep->num == PCH_UDC_EP0)
2027                        ep->dev->stall = 1;
2028                pch_udc_ep_set_stall(ep);
2029                pch_udc_enable_ep_interrupts(ep->dev,
2030                                             PCH_UDC_EPINT(ep->in, ep->num));
2031                ep->dev->prot_stall = 1;
2032                ret = 0;
2033        }
2034        spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2035        return ret;
2036}
2037
2038/**
2039 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2040 * @usbep:      Reference to the USB endpoint structure
2041 */
2042static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2043{
2044        struct pch_udc_ep  *ep;
2045
2046        if (!usbep)
2047                return;
2048
2049        ep = container_of(usbep, struct pch_udc_ep, ep);
2050        if (ep->ep.desc || !ep->num)
2051                pch_udc_ep_fifo_flush(ep, ep->in);
2052}
2053
2054static const struct usb_ep_ops pch_udc_ep_ops = {
2055        .enable         = pch_udc_pcd_ep_enable,
2056        .disable        = pch_udc_pcd_ep_disable,
2057        .alloc_request  = pch_udc_alloc_request,
2058        .free_request   = pch_udc_free_request,
2059        .queue          = pch_udc_pcd_queue,
2060        .dequeue        = pch_udc_pcd_dequeue,
2061        .set_halt       = pch_udc_pcd_set_halt,
2062        .set_wedge      = pch_udc_pcd_set_wedge,
2063        .fifo_status    = NULL,
2064        .fifo_flush     = pch_udc_pcd_fifo_flush,
2065};
2066
2067/**
2068 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2069 * @td_stp:     Reference to the SETP buffer structure
2070 */
2071static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2072{
2073        static u32      pky_marker;
2074
2075        if (!td_stp)
2076                return;
2077        td_stp->reserved = ++pky_marker;
2078        memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2079        td_stp->status = PCH_UDC_BS_HST_RDY;
2080}
2081
2082/**
2083 * pch_udc_start_next_txrequest() - This function starts
2084 *                                      the next transmission requirement
2085 * @ep: Reference to the endpoint structure
2086 */
2087static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2088{
2089        struct pch_udc_request *req;
2090        struct pch_udc_data_dma_desc *td_data;
2091
2092        if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2093                return;
2094
2095        if (list_empty(&ep->queue))
2096                return;
2097
2098        /* next request */
2099        req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2100        if (req->dma_going)
2101                return;
2102        if (!req->td_data)
2103                return;
2104        pch_udc_wait_ep_stall(ep);
2105        req->dma_going = 1;
2106        pch_udc_ep_set_ddptr(ep, 0);
2107        td_data = req->td_data;
2108        while (1) {
2109                td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2110                                   PCH_UDC_BS_HST_RDY;
2111                if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2112                        break;
2113                td_data = phys_to_virt(td_data->next);
2114        }
2115        pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2116        pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2117        pch_udc_ep_set_pd(ep);
2118        pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2119        pch_udc_ep_clear_nak(ep);
2120}
2121
2122/**
2123 * pch_udc_complete_transfer() - This function completes a transfer
2124 * @ep:         Reference to the endpoint structure
2125 */
2126static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2127{
2128        struct pch_udc_request *req;
2129        struct pch_udc_dev *dev = ep->dev;
2130
2131        if (list_empty(&ep->queue))
2132                return;
2133        req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2134        if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2135            PCH_UDC_BS_DMA_DONE)
2136                return;
2137        if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2138             PCH_UDC_RTS_SUCC) {
2139                dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2140                        "epstatus=0x%08x\n",
2141                       (req->td_data_last->status & PCH_UDC_RXTX_STS),
2142                       (int)(ep->epsts));
2143                return;
2144        }
2145
2146        req->req.actual = req->req.length;
2147        req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2148        req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2149        complete_req(ep, req, 0);
2150        req->dma_going = 0;
2151        if (!list_empty(&ep->queue)) {
2152                pch_udc_wait_ep_stall(ep);
2153                pch_udc_ep_clear_nak(ep);
2154                pch_udc_enable_ep_interrupts(ep->dev,
2155                                             PCH_UDC_EPINT(ep->in, ep->num));
2156        } else {
2157                pch_udc_disable_ep_interrupts(ep->dev,
2158                                              PCH_UDC_EPINT(ep->in, ep->num));
2159        }
2160}
2161
2162/**
2163 * pch_udc_complete_receiver() - This function completes a receiver
2164 * @ep:         Reference to the endpoint structure
2165 */
2166static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2167{
2168        struct pch_udc_request *req;
2169        struct pch_udc_dev *dev = ep->dev;
2170        unsigned int count;
2171        struct pch_udc_data_dma_desc *td;
2172        dma_addr_t addr;
2173
2174        if (list_empty(&ep->queue))
2175                return;
2176        /* next request */
2177        req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2178        pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2179        pch_udc_ep_set_ddptr(ep, 0);
2180        if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2181            PCH_UDC_BS_DMA_DONE)
2182                td = req->td_data_last;
2183        else
2184                td = req->td_data;
2185
2186        while (1) {
2187                if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2188                        dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2189                                "epstatus=0x%08x\n",
2190                                (req->td_data->status & PCH_UDC_RXTX_STS),
2191                                (int)(ep->epsts));
2192                        return;
2193                }
2194                if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2195                        if (td->status & PCH_UDC_DMA_LAST) {
2196                                count = td->status & PCH_UDC_RXTX_BYTES;
2197                                break;
2198                        }
2199                if (td == req->td_data_last) {
2200                        dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2201                        return;
2202                }
2203                addr = (dma_addr_t)td->next;
2204                td = phys_to_virt(addr);
2205        }
2206        /* on 64k packets the RXBYTES field is zero */
2207        if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2208                count = UDC_DMA_MAXPACKET;
2209        req->td_data->status |= PCH_UDC_DMA_LAST;
2210        td->status |= PCH_UDC_BS_HST_BSY;
2211
2212        req->dma_going = 0;
2213        req->req.actual = count;
2214        complete_req(ep, req, 0);
2215        /* If there is a new/failed requests try that now */
2216        if (!list_empty(&ep->queue)) {
2217                req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2218                pch_udc_start_rxrequest(ep, req);
2219        }
2220}
2221
2222/**
2223 * pch_udc_svc_data_in() - This function process endpoint interrupts
2224 *                              for IN endpoints
2225 * @dev:        Reference to the device structure
2226 * @ep_num:     Endpoint that generated the interrupt
2227 */
2228static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2229{
2230        u32     epsts;
2231        struct pch_udc_ep       *ep;
2232
2233        ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2234        epsts = ep->epsts;
2235        ep->epsts = 0;
2236
2237        if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA  | UDC_EPSTS_HE |
2238                       UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2239                       UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2240                return;
2241        if ((epsts & UDC_EPSTS_BNA))
2242                return;
2243        if (epsts & UDC_EPSTS_HE)
2244                return;
2245        if (epsts & UDC_EPSTS_RSS) {
2246                pch_udc_ep_set_stall(ep);
2247                pch_udc_enable_ep_interrupts(ep->dev,
2248                                             PCH_UDC_EPINT(ep->in, ep->num));
2249        }
2250        if (epsts & UDC_EPSTS_RCS) {
2251                if (!dev->prot_stall) {
2252                        pch_udc_ep_clear_stall(ep);
2253                } else {
2254                        pch_udc_ep_set_stall(ep);
2255                        pch_udc_enable_ep_interrupts(ep->dev,
2256                                                PCH_UDC_EPINT(ep->in, ep->num));
2257                }
2258        }
2259        if (epsts & UDC_EPSTS_TDC)
2260                pch_udc_complete_transfer(ep);
2261        /* On IN interrupt, provide data if we have any */
2262        if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2263            !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2264                pch_udc_start_next_txrequest(ep);
2265}
2266
2267/**
2268 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2269 * @dev:        Reference to the device structure
2270 * @ep_num:     Endpoint that generated the interrupt
2271 */
2272static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2273{
2274        u32                     epsts;
2275        struct pch_udc_ep               *ep;
2276        struct pch_udc_request          *req = NULL;
2277
2278        ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2279        epsts = ep->epsts;
2280        ep->epsts = 0;
2281
2282        if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2283                /* next request */
2284                req = list_entry(ep->queue.next, struct pch_udc_request,
2285                                 queue);
2286                if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2287                     PCH_UDC_BS_DMA_DONE) {
2288                        if (!req->dma_going)
2289                                pch_udc_start_rxrequest(ep, req);
2290                        return;
2291                }
2292        }
2293        if (epsts & UDC_EPSTS_HE)
2294                return;
2295        if (epsts & UDC_EPSTS_RSS) {
2296                pch_udc_ep_set_stall(ep);
2297                pch_udc_enable_ep_interrupts(ep->dev,
2298                                             PCH_UDC_EPINT(ep->in, ep->num));
2299        }
2300        if (epsts & UDC_EPSTS_RCS) {
2301                if (!dev->prot_stall) {
2302                        pch_udc_ep_clear_stall(ep);
2303                } else {
2304                        pch_udc_ep_set_stall(ep);
2305                        pch_udc_enable_ep_interrupts(ep->dev,
2306                                                PCH_UDC_EPINT(ep->in, ep->num));
2307                }
2308        }
2309        if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2310            UDC_EPSTS_OUT_DATA) {
2311                if (ep->dev->prot_stall == 1) {
2312                        pch_udc_ep_set_stall(ep);
2313                        pch_udc_enable_ep_interrupts(ep->dev,
2314                                                PCH_UDC_EPINT(ep->in, ep->num));
2315                } else {
2316                        pch_udc_complete_receiver(ep);
2317                }
2318        }
2319        if (list_empty(&ep->queue))
2320                pch_udc_set_dma(dev, DMA_DIR_RX);
2321}
2322
2323/**
2324 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2325 * @dev:        Reference to the device structure
2326 */
2327static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2328{
2329        u32     epsts;
2330        struct pch_udc_ep       *ep;
2331        struct pch_udc_ep       *ep_out;
2332
2333        ep = &dev->ep[UDC_EP0IN_IDX];
2334        ep_out = &dev->ep[UDC_EP0OUT_IDX];
2335        epsts = ep->epsts;
2336        ep->epsts = 0;
2337
2338        if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2339                       UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2340                       UDC_EPSTS_XFERDONE)))
2341                return;
2342        if ((epsts & UDC_EPSTS_BNA))
2343                return;
2344        if (epsts & UDC_EPSTS_HE)
2345                return;
2346        if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2347                pch_udc_complete_transfer(ep);
2348                pch_udc_clear_dma(dev, DMA_DIR_RX);
2349                ep_out->td_data->status = (ep_out->td_data->status &
2350                                        ~PCH_UDC_BUFF_STS) |
2351                                        PCH_UDC_BS_HST_RDY;
2352                pch_udc_ep_clear_nak(ep_out);
2353                pch_udc_set_dma(dev, DMA_DIR_RX);
2354                pch_udc_ep_set_rrdy(ep_out);
2355        }
2356        /* On IN interrupt, provide data if we have any */
2357        if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2358             !(epsts & UDC_EPSTS_TXEMPTY))
2359                pch_udc_start_next_txrequest(ep);
2360}
2361
2362/**
2363 * pch_udc_svc_control_out() - Routine that handle Control
2364 *                                      OUT endpoint interrupts
2365 * @dev:        Reference to the device structure
2366 */
2367static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2368        __releases(&dev->lock)
2369        __acquires(&dev->lock)
2370{
2371        u32     stat;
2372        int setup_supported;
2373        struct pch_udc_ep       *ep;
2374
2375        ep = &dev->ep[UDC_EP0OUT_IDX];
2376        stat = ep->epsts;
2377        ep->epsts = 0;
2378
2379        /* If setup data */
2380        if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2381            UDC_EPSTS_OUT_SETUP) {
2382                dev->stall = 0;
2383                dev->ep[UDC_EP0IN_IDX].halted = 0;
2384                dev->ep[UDC_EP0OUT_IDX].halted = 0;
2385                dev->setup_data = ep->td_stp->request;
2386                pch_udc_init_setup_buff(ep->td_stp);
2387                pch_udc_clear_dma(dev, DMA_DIR_RX);
2388                pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2389                                      dev->ep[UDC_EP0IN_IDX].in);
2390                if ((dev->setup_data.bRequestType & USB_DIR_IN))
2391                        dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2392                else /* OUT */
2393                        dev->gadget.ep0 = &ep->ep;
2394                spin_lock(&dev->lock);
2395                /* If Mass storage Reset */
2396                if ((dev->setup_data.bRequestType == 0x21) &&
2397                    (dev->setup_data.bRequest == 0xFF))
2398                        dev->prot_stall = 0;
2399                /* call gadget with setup data received */
2400                setup_supported = dev->driver->setup(&dev->gadget,
2401                                                     &dev->setup_data);
2402                spin_unlock(&dev->lock);
2403
2404                if (dev->setup_data.bRequestType & USB_DIR_IN) {
2405                        ep->td_data->status = (ep->td_data->status &
2406                                                ~PCH_UDC_BUFF_STS) |
2407                                                PCH_UDC_BS_HST_RDY;
2408                        pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2409                }
2410                /* ep0 in returns data on IN phase */
2411                if (setup_supported >= 0 && setup_supported <
2412                                            UDC_EP0IN_MAX_PKT_SIZE) {
2413                        pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2414                        /* Gadget would have queued a request when
2415                         * we called the setup */
2416                        if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2417                                pch_udc_set_dma(dev, DMA_DIR_RX);
2418                                pch_udc_ep_clear_nak(ep);
2419                        }
2420                } else if (setup_supported < 0) {
2421                        /* if unsupported request, then stall */
2422                        pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2423                        pch_udc_enable_ep_interrupts(ep->dev,
2424                                                PCH_UDC_EPINT(ep->in, ep->num));
2425                        dev->stall = 0;
2426                        pch_udc_set_dma(dev, DMA_DIR_RX);
2427                } else {
2428                        dev->waiting_zlp_ack = 1;
2429                }
2430        } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2431                     UDC_EPSTS_OUT_DATA) && !dev->stall) {
2432                pch_udc_clear_dma(dev, DMA_DIR_RX);
2433                pch_udc_ep_set_ddptr(ep, 0);
2434                if (!list_empty(&ep->queue)) {
2435                        ep->epsts = stat;
2436                        pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2437                }
2438                pch_udc_set_dma(dev, DMA_DIR_RX);
2439        }
2440        pch_udc_ep_set_rrdy(ep);
2441}
2442
2443
2444/**
2445 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2446 *                              and clears NAK status
2447 * @dev:        Reference to the device structure
2448 * @ep_num:     End point number
2449 */
2450static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2451{
2452        struct pch_udc_ep       *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2453        if (list_empty(&ep->queue))
2454                return;
2455        pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2456        pch_udc_ep_clear_nak(ep);
2457}
2458
2459/**
2460 * pch_udc_read_all_epstatus() - This function read all endpoint status
2461 * @dev:        Reference to the device structure
2462 * @ep_intr:    Status of endpoint interrupt
2463 */
2464static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2465{
2466        int i;
2467        struct pch_udc_ep       *ep;
2468
2469        for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2470                /* IN */
2471                if (ep_intr & (0x1 << i)) {
2472                        ep = &dev->ep[UDC_EPIN_IDX(i)];
2473                        ep->epsts = pch_udc_read_ep_status(ep);
2474                        pch_udc_clear_ep_status(ep, ep->epsts);
2475                }
2476                /* OUT */
2477                if (ep_intr & (0x10000 << i)) {
2478                        ep = &dev->ep[UDC_EPOUT_IDX(i)];
2479                        ep->epsts = pch_udc_read_ep_status(ep);
2480                        pch_udc_clear_ep_status(ep, ep->epsts);
2481                }
2482        }
2483}
2484
2485/**
2486 * pch_udc_activate_control_ep() - This function enables the control endpoints
2487 *                                      for traffic after a reset
2488 * @dev:        Reference to the device structure
2489 */
2490static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2491{
2492        struct pch_udc_ep       *ep;
2493        u32 val;
2494
2495        /* Setup the IN endpoint */
2496        ep = &dev->ep[UDC_EP0IN_IDX];
2497        pch_udc_clear_ep_control(ep);
2498        pch_udc_ep_fifo_flush(ep, ep->in);
2499        pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2500        pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2501        /* Initialize the IN EP Descriptor */
2502        ep->td_data      = NULL;
2503        ep->td_stp       = NULL;
2504        ep->td_data_phys = 0;
2505        ep->td_stp_phys  = 0;
2506
2507        /* Setup the OUT endpoint */
2508        ep = &dev->ep[UDC_EP0OUT_IDX];
2509        pch_udc_clear_ep_control(ep);
2510        pch_udc_ep_fifo_flush(ep, ep->in);
2511        pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2512        pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2513        val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2514        pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2515
2516        /* Initialize the SETUP buffer */
2517        pch_udc_init_setup_buff(ep->td_stp);
2518        /* Write the pointer address of dma descriptor */
2519        pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2520        /* Write the pointer address of Setup descriptor */
2521        pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2522
2523        /* Initialize the dma descriptor */
2524        ep->td_data->status  = PCH_UDC_DMA_LAST;
2525        ep->td_data->dataptr = dev->dma_addr;
2526        ep->td_data->next    = ep->td_data_phys;
2527
2528        pch_udc_ep_clear_nak(ep);
2529}
2530
2531
2532/**
2533 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2534 * @dev:        Reference to driver structure
2535 */
2536static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2537{
2538        struct pch_udc_ep       *ep;
2539        int i;
2540
2541        pch_udc_clear_dma(dev, DMA_DIR_TX);
2542        pch_udc_clear_dma(dev, DMA_DIR_RX);
2543        /* Mask all endpoint interrupts */
2544        pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2545        /* clear all endpoint interrupts */
2546        pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2547
2548        for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2549                ep = &dev->ep[i];
2550                pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2551                pch_udc_clear_ep_control(ep);
2552                pch_udc_ep_set_ddptr(ep, 0);
2553                pch_udc_write_csr(ep->dev, 0x00, i);
2554        }
2555        dev->stall = 0;
2556        dev->prot_stall = 0;
2557        dev->waiting_zlp_ack = 0;
2558        dev->set_cfg_not_acked = 0;
2559
2560        /* disable ep to empty req queue. Skip the control EP's */
2561        for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2562                ep = &dev->ep[i];
2563                pch_udc_ep_set_nak(ep);
2564                pch_udc_ep_fifo_flush(ep, ep->in);
2565                /* Complete request queue */
2566                empty_req_queue(ep);
2567        }
2568        if (dev->driver) {
2569                spin_unlock(&dev->lock);
2570                usb_gadget_udc_reset(&dev->gadget, dev->driver);
2571                spin_lock(&dev->lock);
2572        }
2573}
2574
2575/**
2576 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2577 *                              done interrupt
2578 * @dev:        Reference to driver structure
2579 */
2580static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2581{
2582        u32 dev_stat, dev_speed;
2583        u32 speed = USB_SPEED_FULL;
2584
2585        dev_stat = pch_udc_read_device_status(dev);
2586        dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2587                                                 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2588        switch (dev_speed) {
2589        case UDC_DEVSTS_ENUM_SPEED_HIGH:
2590                speed = USB_SPEED_HIGH;
2591                break;
2592        case  UDC_DEVSTS_ENUM_SPEED_FULL:
2593                speed = USB_SPEED_FULL;
2594                break;
2595        case  UDC_DEVSTS_ENUM_SPEED_LOW:
2596                speed = USB_SPEED_LOW;
2597                break;
2598        default:
2599                BUG();
2600        }
2601        dev->gadget.speed = speed;
2602        pch_udc_activate_control_ep(dev);
2603        pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2604        pch_udc_set_dma(dev, DMA_DIR_TX);
2605        pch_udc_set_dma(dev, DMA_DIR_RX);
2606        pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2607
2608        /* enable device interrupts */
2609        pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2610                                        UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2611                                        UDC_DEVINT_SI | UDC_DEVINT_SC);
2612}
2613
2614/**
2615 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2616 *                                interrupt
2617 * @dev:        Reference to driver structure
2618 */
2619static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2620{
2621        u32 reg, dev_stat = 0;
2622        int i;
2623
2624        dev_stat = pch_udc_read_device_status(dev);
2625        dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2626                                                         UDC_DEVSTS_INTF_SHIFT;
2627        dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2628                                                         UDC_DEVSTS_ALT_SHIFT;
2629        dev->set_cfg_not_acked = 1;
2630        /* Construct the usb request for gadget driver and inform it */
2631        memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2632        dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2633        dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2634        dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2635        dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2636        /* programm the Endpoint Cfg registers */
2637        /* Only one end point cfg register */
2638        reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2639        reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2640              (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2641        reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2642              (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2643        pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2644        for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2645                /* clear stall bits */
2646                pch_udc_ep_clear_stall(&(dev->ep[i]));
2647                dev->ep[i].halted = 0;
2648        }
2649        dev->stall = 0;
2650        spin_unlock(&dev->lock);
2651        dev->driver->setup(&dev->gadget, &dev->setup_data);
2652        spin_lock(&dev->lock);
2653}
2654
2655/**
2656 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2657 *                              interrupt
2658 * @dev:        Reference to driver structure
2659 */
2660static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2661{
2662        int i;
2663        u32 reg, dev_stat = 0;
2664
2665        dev_stat = pch_udc_read_device_status(dev);
2666        dev->set_cfg_not_acked = 1;
2667        dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2668                                UDC_DEVSTS_CFG_SHIFT;
2669        /* make usb request for gadget driver */
2670        memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2671        dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2672        dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2673        /* program the NE registers */
2674        /* Only one end point cfg register */
2675        reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2676        reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2677              (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2678        pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2679        for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2680                /* clear stall bits */
2681                pch_udc_ep_clear_stall(&(dev->ep[i]));
2682                dev->ep[i].halted = 0;
2683        }
2684        dev->stall = 0;
2685
2686        /* call gadget zero with setup data received */
2687        spin_unlock(&dev->lock);
2688        dev->driver->setup(&dev->gadget, &dev->setup_data);
2689        spin_lock(&dev->lock);
2690}
2691
2692/**
2693 * pch_udc_dev_isr() - This function services device interrupts
2694 *                      by invoking appropriate routines.
2695 * @dev:        Reference to the device structure
2696 * @dev_intr:   The Device interrupt status.
2697 */
2698static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2699{
2700        int vbus;
2701
2702        /* USB Reset Interrupt */
2703        if (dev_intr & UDC_DEVINT_UR) {
2704                pch_udc_svc_ur_interrupt(dev);
2705                dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2706        }
2707        /* Enumeration Done Interrupt */
2708        if (dev_intr & UDC_DEVINT_ENUM) {
2709                pch_udc_svc_enum_interrupt(dev);
2710                dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2711        }
2712        /* Set Interface Interrupt */
2713        if (dev_intr & UDC_DEVINT_SI)
2714                pch_udc_svc_intf_interrupt(dev);
2715        /* Set Config Interrupt */
2716        if (dev_intr & UDC_DEVINT_SC)
2717                pch_udc_svc_cfg_interrupt(dev);
2718        /* USB Suspend interrupt */
2719        if (dev_intr & UDC_DEVINT_US) {
2720                if (dev->driver
2721                        && dev->driver->suspend) {
2722                        spin_unlock(&dev->lock);
2723                        dev->driver->suspend(&dev->gadget);
2724                        spin_lock(&dev->lock);
2725                }
2726
2727                vbus = pch_vbus_gpio_get_value(dev);
2728                if ((dev->vbus_session == 0)
2729                        && (vbus != 1)) {
2730                        if (dev->driver && dev->driver->disconnect) {
2731                                spin_unlock(&dev->lock);
2732                                dev->driver->disconnect(&dev->gadget);
2733                                spin_lock(&dev->lock);
2734                        }
2735                        pch_udc_reconnect(dev);
2736                } else if ((dev->vbus_session == 0)
2737                        && (vbus == 1)
2738                        && !dev->vbus_gpio.intr)
2739                        schedule_work(&dev->vbus_gpio.irq_work_fall);
2740
2741                dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2742        }
2743        /* Clear the SOF interrupt, if enabled */
2744        if (dev_intr & UDC_DEVINT_SOF)
2745                dev_dbg(&dev->pdev->dev, "SOF\n");
2746        /* ES interrupt, IDLE > 3ms on the USB */
2747        if (dev_intr & UDC_DEVINT_ES)
2748                dev_dbg(&dev->pdev->dev, "ES\n");
2749        /* RWKP interrupt */
2750        if (dev_intr & UDC_DEVINT_RWKP)
2751                dev_dbg(&dev->pdev->dev, "RWKP\n");
2752}
2753
2754/**
2755 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2756 * @irq:        Interrupt request number
2757 * @dev:        Reference to the device structure
2758 */
2759static irqreturn_t pch_udc_isr(int irq, void *pdev)
2760{
2761        struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2762        u32 dev_intr, ep_intr;
2763        int i;
2764
2765        dev_intr = pch_udc_read_device_interrupts(dev);
2766        ep_intr = pch_udc_read_ep_interrupts(dev);
2767
2768        /* For a hot plug, this find that the controller is hung up. */
2769        if (dev_intr == ep_intr)
2770                if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2771                        dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2772                        /* The controller is reset */
2773                        pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2774                        return IRQ_HANDLED;
2775                }
2776        if (dev_intr)
2777                /* Clear device interrupts */
2778                pch_udc_write_device_interrupts(dev, dev_intr);
2779        if (ep_intr)
2780                /* Clear ep interrupts */
2781                pch_udc_write_ep_interrupts(dev, ep_intr);
2782        if (!dev_intr && !ep_intr)
2783                return IRQ_NONE;
2784        spin_lock(&dev->lock);
2785        if (dev_intr)
2786                pch_udc_dev_isr(dev, dev_intr);
2787        if (ep_intr) {
2788                pch_udc_read_all_epstatus(dev, ep_intr);
2789                /* Process Control In interrupts, if present */
2790                if (ep_intr & UDC_EPINT_IN_EP0) {
2791                        pch_udc_svc_control_in(dev);
2792                        pch_udc_postsvc_epinters(dev, 0);
2793                }
2794                /* Process Control Out interrupts, if present */
2795                if (ep_intr & UDC_EPINT_OUT_EP0)
2796                        pch_udc_svc_control_out(dev);
2797                /* Process data in end point interrupts */
2798                for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2799                        if (ep_intr & (1 <<  i)) {
2800                                pch_udc_svc_data_in(dev, i);
2801                                pch_udc_postsvc_epinters(dev, i);
2802                        }
2803                }
2804                /* Process data out end point interrupts */
2805                for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2806                                                 PCH_UDC_USED_EP_NUM); i++)
2807                        if (ep_intr & (1 <<  i))
2808                                pch_udc_svc_data_out(dev, i -
2809                                                         UDC_EPINT_OUT_SHIFT);
2810        }
2811        spin_unlock(&dev->lock);
2812        return IRQ_HANDLED;
2813}
2814
2815/**
2816 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2817 * @dev:        Reference to the device structure
2818 */
2819static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2820{
2821        /* enable ep0 interrupts */
2822        pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2823                                                UDC_EPINT_OUT_EP0);
2824        /* enable device interrupts */
2825        pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2826                                       UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2827                                       UDC_DEVINT_SI | UDC_DEVINT_SC);
2828}
2829
2830/**
2831 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2832 * @dev:        Reference to the driver structure
2833 */
2834static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2835{
2836        const char *const ep_string[] = {
2837                ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2838                "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2839                "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2840                "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2841                "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2842                "ep15in", "ep15out",
2843        };
2844        int i;
2845
2846        dev->gadget.speed = USB_SPEED_UNKNOWN;
2847        INIT_LIST_HEAD(&dev->gadget.ep_list);
2848
2849        /* Initialize the endpoints structures */
2850        memset(dev->ep, 0, sizeof dev->ep);
2851        for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2852                struct pch_udc_ep *ep = &dev->ep[i];
2853                ep->dev = dev;
2854                ep->halted = 1;
2855                ep->num = i / 2;
2856                ep->in = ~i & 1;
2857                ep->ep.name = ep_string[i];
2858                ep->ep.ops = &pch_udc_ep_ops;
2859                if (ep->in) {
2860                        ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2861                        ep->ep.caps.dir_in = true;
2862                } else {
2863                        ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2864                                          UDC_EP_REG_SHIFT;
2865                        ep->ep.caps.dir_out = true;
2866                }
2867                if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
2868                        ep->ep.caps.type_control = true;
2869                } else {
2870                        ep->ep.caps.type_iso = true;
2871                        ep->ep.caps.type_bulk = true;
2872                        ep->ep.caps.type_int = true;
2873                }
2874                /* need to set ep->ep.maxpacket and set Default Configuration?*/
2875                usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2876                list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2877                INIT_LIST_HEAD(&ep->queue);
2878        }
2879        usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2880        usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2881
2882        /* remove ep0 in and out from the list.  They have own pointer */
2883        list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2884        list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2885
2886        dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2887        INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2888}
2889
2890/**
2891 * pch_udc_pcd_init() - This API initializes the driver structure
2892 * @dev:        Reference to the driver structure
2893 *
2894 * Return codes:
2895 *      0: Success
2896 */
2897static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2898{
2899        pch_udc_init(dev);
2900        pch_udc_pcd_reinit(dev);
2901        pch_vbus_gpio_init(dev, vbus_gpio_port);
2902        return 0;
2903}
2904
2905/**
2906 * init_dma_pools() - create dma pools during initialization
2907 * @pdev:       reference to struct pci_dev
2908 */
2909static int init_dma_pools(struct pch_udc_dev *dev)
2910{
2911        struct pch_udc_stp_dma_desc     *td_stp;
2912        struct pch_udc_data_dma_desc    *td_data;
2913        void                            *ep0out_buf;
2914
2915        /* DMA setup */
2916        dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2917                sizeof(struct pch_udc_data_dma_desc), 0, 0);
2918        if (!dev->data_requests) {
2919                dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2920                        __func__);
2921                return -ENOMEM;
2922        }
2923
2924        /* dma desc for setup data */
2925        dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2926                sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2927        if (!dev->stp_requests) {
2928                dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2929                        __func__);
2930                return -ENOMEM;
2931        }
2932        /* setup */
2933        td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2934                                &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2935        if (!td_stp) {
2936                dev_err(&dev->pdev->dev,
2937                        "%s: can't allocate setup dma descriptor\n", __func__);
2938                return -ENOMEM;
2939        }
2940        dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2941
2942        /* data: 0 packets !? */
2943        td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2944                                &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2945        if (!td_data) {
2946                dev_err(&dev->pdev->dev,
2947                        "%s: can't allocate data dma descriptor\n", __func__);
2948                return -ENOMEM;
2949        }
2950        dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2951        dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2952        dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2953        dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2954        dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2955
2956        ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
2957                                  GFP_KERNEL);
2958        if (!ep0out_buf)
2959                return -ENOMEM;
2960        dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
2961                                       UDC_EP0OUT_BUFF_SIZE * 4,
2962                                       DMA_FROM_DEVICE);
2963        return 0;
2964}
2965
2966static int pch_udc_start(struct usb_gadget *g,
2967                struct usb_gadget_driver *driver)
2968{
2969        struct pch_udc_dev      *dev = to_pch_udc(g);
2970
2971        driver->driver.bus = NULL;
2972        dev->driver = driver;
2973
2974        /* get ready for ep0 traffic */
2975        pch_udc_setup_ep0(dev);
2976
2977        /* clear SD */
2978        if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
2979                pch_udc_clear_disconnect(dev);
2980
2981        dev->connected = 1;
2982        return 0;
2983}
2984
2985static int pch_udc_stop(struct usb_gadget *g)
2986{
2987        struct pch_udc_dev      *dev = to_pch_udc(g);
2988
2989        pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2990
2991        /* Assures that there are no pending requests with this driver */
2992        dev->driver = NULL;
2993        dev->connected = 0;
2994
2995        /* set SD */
2996        pch_udc_set_disconnect(dev);
2997
2998        return 0;
2999}
3000
3001static void pch_udc_shutdown(struct pci_dev *pdev)
3002{
3003        struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3004
3005        pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3006        pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3007
3008        /* disable the pullup so the host will think we're gone */
3009        pch_udc_set_disconnect(dev);
3010}
3011
3012static void pch_udc_remove(struct pci_dev *pdev)
3013{
3014        struct pch_udc_dev      *dev = pci_get_drvdata(pdev);
3015
3016        usb_del_gadget_udc(&dev->gadget);
3017
3018        /* gadget driver must not be registered */
3019        if (dev->driver)
3020                dev_err(&pdev->dev,
3021                        "%s: gadget driver still bound!!!\n", __func__);
3022        /* dma pool cleanup */
3023        if (dev->data_requests)
3024                pci_pool_destroy(dev->data_requests);
3025
3026        if (dev->stp_requests) {
3027                /* cleanup DMA desc's for ep0in */
3028                if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3029                        pci_pool_free(dev->stp_requests,
3030                                dev->ep[UDC_EP0OUT_IDX].td_stp,
3031                                dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3032                }
3033                if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3034                        pci_pool_free(dev->stp_requests,
3035                                dev->ep[UDC_EP0OUT_IDX].td_data,
3036                                dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3037                }
3038                pci_pool_destroy(dev->stp_requests);
3039        }
3040
3041        if (dev->dma_addr)
3042                dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3043                                 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3044
3045        pch_vbus_gpio_free(dev);
3046
3047        pch_udc_exit(dev);
3048}
3049
3050#ifdef CONFIG_PM_SLEEP
3051static int pch_udc_suspend(struct device *d)
3052{
3053        struct pci_dev *pdev = to_pci_dev(d);
3054        struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3055
3056        pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3057        pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3058
3059        return 0;
3060}
3061
3062static int pch_udc_resume(struct device *d)
3063{
3064        return 0;
3065}
3066
3067static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
3068#define PCH_UDC_PM_OPS          (&pch_udc_pm)
3069#else
3070#define PCH_UDC_PM_OPS          NULL
3071#endif /* CONFIG_PM_SLEEP */
3072
3073static int pch_udc_probe(struct pci_dev *pdev,
3074                          const struct pci_device_id *id)
3075{
3076        int                     bar;
3077        int                     retval;
3078        struct pch_udc_dev      *dev;
3079
3080        /* init */
3081        dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
3082        if (!dev)
3083                return -ENOMEM;
3084
3085        /* pci setup */
3086        retval = pcim_enable_device(pdev);
3087        if (retval)
3088                return retval;
3089
3090        pci_set_drvdata(pdev, dev);
3091
3092        /* Determine BAR based on PCI ID */
3093        if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3094                bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3095        else
3096                bar = PCH_UDC_PCI_BAR;
3097
3098        /* PCI resource allocation */
3099        retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
3100        if (retval)
3101                return retval;
3102
3103        dev->base_addr = pcim_iomap_table(pdev)[bar];
3104
3105        /* initialize the hardware */
3106        if (pch_udc_pcd_init(dev))
3107                return -ENODEV;
3108
3109        pci_enable_msi(pdev);
3110
3111        retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
3112                                  IRQF_SHARED, KBUILD_MODNAME, dev);
3113        if (retval) {
3114                dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3115                        pdev->irq);
3116                goto finished;
3117        }
3118
3119        pci_set_master(pdev);
3120        pci_try_set_mwi(pdev);
3121
3122        /* device struct setup */
3123        spin_lock_init(&dev->lock);
3124        dev->pdev = pdev;
3125        dev->gadget.ops = &pch_udc_ops;
3126
3127        retval = init_dma_pools(dev);
3128        if (retval)
3129                goto finished;
3130
3131        dev->gadget.name = KBUILD_MODNAME;
3132        dev->gadget.max_speed = USB_SPEED_HIGH;
3133
3134        /* Put the device in disconnected state till a driver is bound */
3135        pch_udc_set_disconnect(dev);
3136        retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
3137        if (retval)
3138                goto finished;
3139        return 0;
3140
3141finished:
3142        pch_udc_remove(pdev);
3143        return retval;
3144}
3145
3146static const struct pci_device_id pch_udc_pcidev_id[] = {
3147        {
3148                PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3149                           PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3150                .class = PCI_CLASS_SERIAL_USB_DEVICE,
3151                .class_mask = 0xffffffff,
3152        },
3153        {
3154                PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3155                .class = PCI_CLASS_SERIAL_USB_DEVICE,
3156                .class_mask = 0xffffffff,
3157        },
3158        {
3159                PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3160                .class = PCI_CLASS_SERIAL_USB_DEVICE,
3161                .class_mask = 0xffffffff,
3162        },
3163        {
3164                PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3165                .class = PCI_CLASS_SERIAL_USB_DEVICE,
3166                .class_mask = 0xffffffff,
3167        },
3168        { 0 },
3169};
3170
3171MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3172
3173static struct pci_driver pch_udc_driver = {
3174        .name = KBUILD_MODNAME,
3175        .id_table =     pch_udc_pcidev_id,
3176        .probe =        pch_udc_probe,
3177        .remove =       pch_udc_remove,
3178        .shutdown =     pch_udc_shutdown,
3179        .driver = {
3180                .pm = PCH_UDC_PM_OPS,
3181        },
3182};
3183
3184module_pci_driver(pch_udc_driver);
3185
3186MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3187MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3188MODULE_LICENSE("GPL");
3189