linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
  34#include "qgroup.h"
  35
  36#define BTRFS_ROOT_TRANS_TAG 0
  37
  38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  39        [TRANS_STATE_RUNNING]           = 0U,
  40        [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
  41                                           __TRANS_START),
  42        [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
  43                                           __TRANS_START |
  44                                           __TRANS_ATTACH),
  45        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
  46                                           __TRANS_START |
  47                                           __TRANS_ATTACH |
  48                                           __TRANS_JOIN),
  49        [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
  50                                           __TRANS_START |
  51                                           __TRANS_ATTACH |
  52                                           __TRANS_JOIN |
  53                                           __TRANS_JOIN_NOLOCK),
  54        [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
  55                                           __TRANS_START |
  56                                           __TRANS_ATTACH |
  57                                           __TRANS_JOIN |
  58                                           __TRANS_JOIN_NOLOCK),
  59};
  60
  61void btrfs_put_transaction(struct btrfs_transaction *transaction)
  62{
  63        WARN_ON(atomic_read(&transaction->use_count) == 0);
  64        if (atomic_dec_and_test(&transaction->use_count)) {
  65                BUG_ON(!list_empty(&transaction->list));
  66                WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
  67                if (transaction->delayed_refs.pending_csums)
  68                        btrfs_err(transaction->fs_info,
  69                                  "pending csums is %llu",
  70                                  transaction->delayed_refs.pending_csums);
  71                while (!list_empty(&transaction->pending_chunks)) {
  72                        struct extent_map *em;
  73
  74                        em = list_first_entry(&transaction->pending_chunks,
  75                                              struct extent_map, list);
  76                        list_del_init(&em->list);
  77                        free_extent_map(em);
  78                }
  79                /*
  80                 * If any block groups are found in ->deleted_bgs then it's
  81                 * because the transaction was aborted and a commit did not
  82                 * happen (things failed before writing the new superblock
  83                 * and calling btrfs_finish_extent_commit()), so we can not
  84                 * discard the physical locations of the block groups.
  85                 */
  86                while (!list_empty(&transaction->deleted_bgs)) {
  87                        struct btrfs_block_group_cache *cache;
  88
  89                        cache = list_first_entry(&transaction->deleted_bgs,
  90                                                 struct btrfs_block_group_cache,
  91                                                 bg_list);
  92                        list_del_init(&cache->bg_list);
  93                        btrfs_put_block_group_trimming(cache);
  94                        btrfs_put_block_group(cache);
  95                }
  96                kmem_cache_free(btrfs_transaction_cachep, transaction);
  97        }
  98}
  99
 100static void clear_btree_io_tree(struct extent_io_tree *tree)
 101{
 102        spin_lock(&tree->lock);
 103        /*
 104         * Do a single barrier for the waitqueue_active check here, the state
 105         * of the waitqueue should not change once clear_btree_io_tree is
 106         * called.
 107         */
 108        smp_mb();
 109        while (!RB_EMPTY_ROOT(&tree->state)) {
 110                struct rb_node *node;
 111                struct extent_state *state;
 112
 113                node = rb_first(&tree->state);
 114                state = rb_entry(node, struct extent_state, rb_node);
 115                rb_erase(&state->rb_node, &tree->state);
 116                RB_CLEAR_NODE(&state->rb_node);
 117                /*
 118                 * btree io trees aren't supposed to have tasks waiting for
 119                 * changes in the flags of extent states ever.
 120                 */
 121                ASSERT(!waitqueue_active(&state->wq));
 122                free_extent_state(state);
 123
 124                cond_resched_lock(&tree->lock);
 125        }
 126        spin_unlock(&tree->lock);
 127}
 128
 129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
 130                                         struct btrfs_fs_info *fs_info)
 131{
 132        struct btrfs_root *root, *tmp;
 133
 134        down_write(&fs_info->commit_root_sem);
 135        list_for_each_entry_safe(root, tmp, &trans->switch_commits,
 136                                 dirty_list) {
 137                list_del_init(&root->dirty_list);
 138                free_extent_buffer(root->commit_root);
 139                root->commit_root = btrfs_root_node(root);
 140                if (is_fstree(root->objectid))
 141                        btrfs_unpin_free_ino(root);
 142                clear_btree_io_tree(&root->dirty_log_pages);
 143        }
 144
 145        /* We can free old roots now. */
 146        spin_lock(&trans->dropped_roots_lock);
 147        while (!list_empty(&trans->dropped_roots)) {
 148                root = list_first_entry(&trans->dropped_roots,
 149                                        struct btrfs_root, root_list);
 150                list_del_init(&root->root_list);
 151                spin_unlock(&trans->dropped_roots_lock);
 152                btrfs_drop_and_free_fs_root(fs_info, root);
 153                spin_lock(&trans->dropped_roots_lock);
 154        }
 155        spin_unlock(&trans->dropped_roots_lock);
 156        up_write(&fs_info->commit_root_sem);
 157}
 158
 159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 160                                         unsigned int type)
 161{
 162        if (type & TRANS_EXTWRITERS)
 163                atomic_inc(&trans->num_extwriters);
 164}
 165
 166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 167                                         unsigned int type)
 168{
 169        if (type & TRANS_EXTWRITERS)
 170                atomic_dec(&trans->num_extwriters);
 171}
 172
 173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 174                                          unsigned int type)
 175{
 176        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 177}
 178
 179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 180{
 181        return atomic_read(&trans->num_extwriters);
 182}
 183
 184/*
 185 * either allocate a new transaction or hop into the existing one
 186 */
 187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 188                                     unsigned int type)
 189{
 190        struct btrfs_transaction *cur_trans;
 191
 192        spin_lock(&fs_info->trans_lock);
 193loop:
 194        /* The file system has been taken offline. No new transactions. */
 195        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 196                spin_unlock(&fs_info->trans_lock);
 197                return -EROFS;
 198        }
 199
 200        cur_trans = fs_info->running_transaction;
 201        if (cur_trans) {
 202                if (cur_trans->aborted) {
 203                        spin_unlock(&fs_info->trans_lock);
 204                        return cur_trans->aborted;
 205                }
 206                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 207                        spin_unlock(&fs_info->trans_lock);
 208                        return -EBUSY;
 209                }
 210                atomic_inc(&cur_trans->use_count);
 211                atomic_inc(&cur_trans->num_writers);
 212                extwriter_counter_inc(cur_trans, type);
 213                spin_unlock(&fs_info->trans_lock);
 214                return 0;
 215        }
 216        spin_unlock(&fs_info->trans_lock);
 217
 218        /*
 219         * If we are ATTACH, we just want to catch the current transaction,
 220         * and commit it. If there is no transaction, just return ENOENT.
 221         */
 222        if (type == TRANS_ATTACH)
 223                return -ENOENT;
 224
 225        /*
 226         * JOIN_NOLOCK only happens during the transaction commit, so
 227         * it is impossible that ->running_transaction is NULL
 228         */
 229        BUG_ON(type == TRANS_JOIN_NOLOCK);
 230
 231        cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 232        if (!cur_trans)
 233                return -ENOMEM;
 234
 235        spin_lock(&fs_info->trans_lock);
 236        if (fs_info->running_transaction) {
 237                /*
 238                 * someone started a transaction after we unlocked.  Make sure
 239                 * to redo the checks above
 240                 */
 241                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 242                goto loop;
 243        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 244                spin_unlock(&fs_info->trans_lock);
 245                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 246                return -EROFS;
 247        }
 248
 249        cur_trans->fs_info = fs_info;
 250        atomic_set(&cur_trans->num_writers, 1);
 251        extwriter_counter_init(cur_trans, type);
 252        init_waitqueue_head(&cur_trans->writer_wait);
 253        init_waitqueue_head(&cur_trans->commit_wait);
 254        init_waitqueue_head(&cur_trans->pending_wait);
 255        cur_trans->state = TRANS_STATE_RUNNING;
 256        /*
 257         * One for this trans handle, one so it will live on until we
 258         * commit the transaction.
 259         */
 260        atomic_set(&cur_trans->use_count, 2);
 261        atomic_set(&cur_trans->pending_ordered, 0);
 262        cur_trans->flags = 0;
 263        cur_trans->start_time = get_seconds();
 264
 265        memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 266
 267        cur_trans->delayed_refs.href_root = RB_ROOT;
 268        cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 269        atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 270
 271        /*
 272         * although the tree mod log is per file system and not per transaction,
 273         * the log must never go across transaction boundaries.
 274         */
 275        smp_mb();
 276        if (!list_empty(&fs_info->tree_mod_seq_list))
 277                WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 278        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 279                WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 280        atomic64_set(&fs_info->tree_mod_seq, 0);
 281
 282        spin_lock_init(&cur_trans->delayed_refs.lock);
 283
 284        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 285        INIT_LIST_HEAD(&cur_trans->pending_chunks);
 286        INIT_LIST_HEAD(&cur_trans->switch_commits);
 287        INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 288        INIT_LIST_HEAD(&cur_trans->io_bgs);
 289        INIT_LIST_HEAD(&cur_trans->dropped_roots);
 290        mutex_init(&cur_trans->cache_write_mutex);
 291        cur_trans->num_dirty_bgs = 0;
 292        spin_lock_init(&cur_trans->dirty_bgs_lock);
 293        INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 294        spin_lock_init(&cur_trans->dropped_roots_lock);
 295        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 296        extent_io_tree_init(&cur_trans->dirty_pages,
 297                             fs_info->btree_inode->i_mapping);
 298        fs_info->generation++;
 299        cur_trans->transid = fs_info->generation;
 300        fs_info->running_transaction = cur_trans;
 301        cur_trans->aborted = 0;
 302        spin_unlock(&fs_info->trans_lock);
 303
 304        return 0;
 305}
 306
 307/*
 308 * this does all the record keeping required to make sure that a reference
 309 * counted root is properly recorded in a given transaction.  This is required
 310 * to make sure the old root from before we joined the transaction is deleted
 311 * when the transaction commits
 312 */
 313static int record_root_in_trans(struct btrfs_trans_handle *trans,
 314                               struct btrfs_root *root,
 315                               int force)
 316{
 317        struct btrfs_fs_info *fs_info = root->fs_info;
 318
 319        if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 320            root->last_trans < trans->transid) || force) {
 321                WARN_ON(root == fs_info->extent_root);
 322                WARN_ON(root->commit_root != root->node);
 323
 324                /*
 325                 * see below for IN_TRANS_SETUP usage rules
 326                 * we have the reloc mutex held now, so there
 327                 * is only one writer in this function
 328                 */
 329                set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 330
 331                /* make sure readers find IN_TRANS_SETUP before
 332                 * they find our root->last_trans update
 333                 */
 334                smp_wmb();
 335
 336                spin_lock(&fs_info->fs_roots_radix_lock);
 337                if (root->last_trans == trans->transid && !force) {
 338                        spin_unlock(&fs_info->fs_roots_radix_lock);
 339                        return 0;
 340                }
 341                radix_tree_tag_set(&fs_info->fs_roots_radix,
 342                                   (unsigned long)root->root_key.objectid,
 343                                   BTRFS_ROOT_TRANS_TAG);
 344                spin_unlock(&fs_info->fs_roots_radix_lock);
 345                root->last_trans = trans->transid;
 346
 347                /* this is pretty tricky.  We don't want to
 348                 * take the relocation lock in btrfs_record_root_in_trans
 349                 * unless we're really doing the first setup for this root in
 350                 * this transaction.
 351                 *
 352                 * Normally we'd use root->last_trans as a flag to decide
 353                 * if we want to take the expensive mutex.
 354                 *
 355                 * But, we have to set root->last_trans before we
 356                 * init the relocation root, otherwise, we trip over warnings
 357                 * in ctree.c.  The solution used here is to flag ourselves
 358                 * with root IN_TRANS_SETUP.  When this is 1, we're still
 359                 * fixing up the reloc trees and everyone must wait.
 360                 *
 361                 * When this is zero, they can trust root->last_trans and fly
 362                 * through btrfs_record_root_in_trans without having to take the
 363                 * lock.  smp_wmb() makes sure that all the writes above are
 364                 * done before we pop in the zero below
 365                 */
 366                btrfs_init_reloc_root(trans, root);
 367                smp_mb__before_atomic();
 368                clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 369        }
 370        return 0;
 371}
 372
 373
 374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 375                            struct btrfs_root *root)
 376{
 377        struct btrfs_fs_info *fs_info = root->fs_info;
 378        struct btrfs_transaction *cur_trans = trans->transaction;
 379
 380        /* Add ourselves to the transaction dropped list */
 381        spin_lock(&cur_trans->dropped_roots_lock);
 382        list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 383        spin_unlock(&cur_trans->dropped_roots_lock);
 384
 385        /* Make sure we don't try to update the root at commit time */
 386        spin_lock(&fs_info->fs_roots_radix_lock);
 387        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 388                             (unsigned long)root->root_key.objectid,
 389                             BTRFS_ROOT_TRANS_TAG);
 390        spin_unlock(&fs_info->fs_roots_radix_lock);
 391}
 392
 393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 394                               struct btrfs_root *root)
 395{
 396        struct btrfs_fs_info *fs_info = root->fs_info;
 397
 398        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 399                return 0;
 400
 401        /*
 402         * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 403         * and barriers
 404         */
 405        smp_rmb();
 406        if (root->last_trans == trans->transid &&
 407            !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 408                return 0;
 409
 410        mutex_lock(&fs_info->reloc_mutex);
 411        record_root_in_trans(trans, root, 0);
 412        mutex_unlock(&fs_info->reloc_mutex);
 413
 414        return 0;
 415}
 416
 417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 418{
 419        return (trans->state >= TRANS_STATE_BLOCKED &&
 420                trans->state < TRANS_STATE_UNBLOCKED &&
 421                !trans->aborted);
 422}
 423
 424/* wait for commit against the current transaction to become unblocked
 425 * when this is done, it is safe to start a new transaction, but the current
 426 * transaction might not be fully on disk.
 427 */
 428static void wait_current_trans(struct btrfs_fs_info *fs_info)
 429{
 430        struct btrfs_transaction *cur_trans;
 431
 432        spin_lock(&fs_info->trans_lock);
 433        cur_trans = fs_info->running_transaction;
 434        if (cur_trans && is_transaction_blocked(cur_trans)) {
 435                atomic_inc(&cur_trans->use_count);
 436                spin_unlock(&fs_info->trans_lock);
 437
 438                wait_event(fs_info->transaction_wait,
 439                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 440                           cur_trans->aborted);
 441                btrfs_put_transaction(cur_trans);
 442        } else {
 443                spin_unlock(&fs_info->trans_lock);
 444        }
 445}
 446
 447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 448{
 449        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 450                return 0;
 451
 452        if (type == TRANS_USERSPACE)
 453                return 1;
 454
 455        if (type == TRANS_START &&
 456            !atomic_read(&fs_info->open_ioctl_trans))
 457                return 1;
 458
 459        return 0;
 460}
 461
 462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 463{
 464        struct btrfs_fs_info *fs_info = root->fs_info;
 465
 466        if (!fs_info->reloc_ctl ||
 467            !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 468            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 469            root->reloc_root)
 470                return false;
 471
 472        return true;
 473}
 474
 475static struct btrfs_trans_handle *
 476start_transaction(struct btrfs_root *root, unsigned int num_items,
 477                  unsigned int type, enum btrfs_reserve_flush_enum flush,
 478                  bool enforce_qgroups)
 479{
 480        struct btrfs_fs_info *fs_info = root->fs_info;
 481
 482        struct btrfs_trans_handle *h;
 483        struct btrfs_transaction *cur_trans;
 484        u64 num_bytes = 0;
 485        u64 qgroup_reserved = 0;
 486        bool reloc_reserved = false;
 487        int ret;
 488
 489        /* Send isn't supposed to start transactions. */
 490        ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 491
 492        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 493                return ERR_PTR(-EROFS);
 494
 495        if (current->journal_info) {
 496                WARN_ON(type & TRANS_EXTWRITERS);
 497                h = current->journal_info;
 498                h->use_count++;
 499                WARN_ON(h->use_count > 2);
 500                h->orig_rsv = h->block_rsv;
 501                h->block_rsv = NULL;
 502                goto got_it;
 503        }
 504
 505        /*
 506         * Do the reservation before we join the transaction so we can do all
 507         * the appropriate flushing if need be.
 508         */
 509        if (num_items && root != fs_info->chunk_root) {
 510                qgroup_reserved = num_items * fs_info->nodesize;
 511                ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
 512                                                enforce_qgroups);
 513                if (ret)
 514                        return ERR_PTR(ret);
 515
 516                num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 517                /*
 518                 * Do the reservation for the relocation root creation
 519                 */
 520                if (need_reserve_reloc_root(root)) {
 521                        num_bytes += fs_info->nodesize;
 522                        reloc_reserved = true;
 523                }
 524
 525                ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
 526                                          num_bytes, flush);
 527                if (ret)
 528                        goto reserve_fail;
 529        }
 530again:
 531        h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 532        if (!h) {
 533                ret = -ENOMEM;
 534                goto alloc_fail;
 535        }
 536
 537        /*
 538         * If we are JOIN_NOLOCK we're already committing a transaction and
 539         * waiting on this guy, so we don't need to do the sb_start_intwrite
 540         * because we're already holding a ref.  We need this because we could
 541         * have raced in and did an fsync() on a file which can kick a commit
 542         * and then we deadlock with somebody doing a freeze.
 543         *
 544         * If we are ATTACH, it means we just want to catch the current
 545         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 546         */
 547        if (type & __TRANS_FREEZABLE)
 548                sb_start_intwrite(fs_info->sb);
 549
 550        if (may_wait_transaction(fs_info, type))
 551                wait_current_trans(fs_info);
 552
 553        do {
 554                ret = join_transaction(fs_info, type);
 555                if (ret == -EBUSY) {
 556                        wait_current_trans(fs_info);
 557                        if (unlikely(type == TRANS_ATTACH))
 558                                ret = -ENOENT;
 559                }
 560        } while (ret == -EBUSY);
 561
 562        if (ret < 0)
 563                goto join_fail;
 564
 565        cur_trans = fs_info->running_transaction;
 566
 567        h->transid = cur_trans->transid;
 568        h->transaction = cur_trans;
 569        h->root = root;
 570        h->use_count = 1;
 571        h->fs_info = root->fs_info;
 572
 573        h->type = type;
 574        h->can_flush_pending_bgs = true;
 575        INIT_LIST_HEAD(&h->qgroup_ref_list);
 576        INIT_LIST_HEAD(&h->new_bgs);
 577
 578        smp_mb();
 579        if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 580            may_wait_transaction(fs_info, type)) {
 581                current->journal_info = h;
 582                btrfs_commit_transaction(h);
 583                goto again;
 584        }
 585
 586        if (num_bytes) {
 587                trace_btrfs_space_reservation(fs_info, "transaction",
 588                                              h->transid, num_bytes, 1);
 589                h->block_rsv = &fs_info->trans_block_rsv;
 590                h->bytes_reserved = num_bytes;
 591                h->reloc_reserved = reloc_reserved;
 592        }
 593
 594got_it:
 595        btrfs_record_root_in_trans(h, root);
 596
 597        if (!current->journal_info && type != TRANS_USERSPACE)
 598                current->journal_info = h;
 599        return h;
 600
 601join_fail:
 602        if (type & __TRANS_FREEZABLE)
 603                sb_end_intwrite(fs_info->sb);
 604        kmem_cache_free(btrfs_trans_handle_cachep, h);
 605alloc_fail:
 606        if (num_bytes)
 607                btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 608                                        num_bytes);
 609reserve_fail:
 610        btrfs_qgroup_free_meta(root, qgroup_reserved);
 611        return ERR_PTR(ret);
 612}
 613
 614struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 615                                                   unsigned int num_items)
 616{
 617        return start_transaction(root, num_items, TRANS_START,
 618                                 BTRFS_RESERVE_FLUSH_ALL, true);
 619}
 620
 621struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 622                                        struct btrfs_root *root,
 623                                        unsigned int num_items,
 624                                        int min_factor)
 625{
 626        struct btrfs_fs_info *fs_info = root->fs_info;
 627        struct btrfs_trans_handle *trans;
 628        u64 num_bytes;
 629        int ret;
 630
 631        /*
 632         * We have two callers: unlink and block group removal.  The
 633         * former should succeed even if we will temporarily exceed
 634         * quota and the latter operates on the extent root so
 635         * qgroup enforcement is ignored anyway.
 636         */
 637        trans = start_transaction(root, num_items, TRANS_START,
 638                                  BTRFS_RESERVE_FLUSH_ALL, false);
 639        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
 640                return trans;
 641
 642        trans = btrfs_start_transaction(root, 0);
 643        if (IS_ERR(trans))
 644                return trans;
 645
 646        num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 647        ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
 648                                       num_bytes, min_factor);
 649        if (ret) {
 650                btrfs_end_transaction(trans);
 651                return ERR_PTR(ret);
 652        }
 653
 654        trans->block_rsv = &fs_info->trans_block_rsv;
 655        trans->bytes_reserved = num_bytes;
 656        trace_btrfs_space_reservation(fs_info, "transaction",
 657                                      trans->transid, num_bytes, 1);
 658
 659        return trans;
 660}
 661
 662struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 663                                        struct btrfs_root *root,
 664                                        unsigned int num_items)
 665{
 666        return start_transaction(root, num_items, TRANS_START,
 667                                 BTRFS_RESERVE_FLUSH_LIMIT, true);
 668}
 669
 670struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 671{
 672        return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 673                                 true);
 674}
 675
 676struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 677{
 678        return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 679                                 BTRFS_RESERVE_NO_FLUSH, true);
 680}
 681
 682struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 683{
 684        return start_transaction(root, 0, TRANS_USERSPACE,
 685                                 BTRFS_RESERVE_NO_FLUSH, true);
 686}
 687
 688/*
 689 * btrfs_attach_transaction() - catch the running transaction
 690 *
 691 * It is used when we want to commit the current the transaction, but
 692 * don't want to start a new one.
 693 *
 694 * Note: If this function return -ENOENT, it just means there is no
 695 * running transaction. But it is possible that the inactive transaction
 696 * is still in the memory, not fully on disk. If you hope there is no
 697 * inactive transaction in the fs when -ENOENT is returned, you should
 698 * invoke
 699 *     btrfs_attach_transaction_barrier()
 700 */
 701struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 702{
 703        return start_transaction(root, 0, TRANS_ATTACH,
 704                                 BTRFS_RESERVE_NO_FLUSH, true);
 705}
 706
 707/*
 708 * btrfs_attach_transaction_barrier() - catch the running transaction
 709 *
 710 * It is similar to the above function, the differentia is this one
 711 * will wait for all the inactive transactions until they fully
 712 * complete.
 713 */
 714struct btrfs_trans_handle *
 715btrfs_attach_transaction_barrier(struct btrfs_root *root)
 716{
 717        struct btrfs_trans_handle *trans;
 718
 719        trans = start_transaction(root, 0, TRANS_ATTACH,
 720                                  BTRFS_RESERVE_NO_FLUSH, true);
 721        if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 722                btrfs_wait_for_commit(root->fs_info, 0);
 723
 724        return trans;
 725}
 726
 727/* wait for a transaction commit to be fully complete */
 728static noinline void wait_for_commit(struct btrfs_transaction *commit)
 729{
 730        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 731}
 732
 733int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 734{
 735        struct btrfs_transaction *cur_trans = NULL, *t;
 736        int ret = 0;
 737
 738        if (transid) {
 739                if (transid <= fs_info->last_trans_committed)
 740                        goto out;
 741
 742                /* find specified transaction */
 743                spin_lock(&fs_info->trans_lock);
 744                list_for_each_entry(t, &fs_info->trans_list, list) {
 745                        if (t->transid == transid) {
 746                                cur_trans = t;
 747                                atomic_inc(&cur_trans->use_count);
 748                                ret = 0;
 749                                break;
 750                        }
 751                        if (t->transid > transid) {
 752                                ret = 0;
 753                                break;
 754                        }
 755                }
 756                spin_unlock(&fs_info->trans_lock);
 757
 758                /*
 759                 * The specified transaction doesn't exist, or we
 760                 * raced with btrfs_commit_transaction
 761                 */
 762                if (!cur_trans) {
 763                        if (transid > fs_info->last_trans_committed)
 764                                ret = -EINVAL;
 765                        goto out;
 766                }
 767        } else {
 768                /* find newest transaction that is committing | committed */
 769                spin_lock(&fs_info->trans_lock);
 770                list_for_each_entry_reverse(t, &fs_info->trans_list,
 771                                            list) {
 772                        if (t->state >= TRANS_STATE_COMMIT_START) {
 773                                if (t->state == TRANS_STATE_COMPLETED)
 774                                        break;
 775                                cur_trans = t;
 776                                atomic_inc(&cur_trans->use_count);
 777                                break;
 778                        }
 779                }
 780                spin_unlock(&fs_info->trans_lock);
 781                if (!cur_trans)
 782                        goto out;  /* nothing committing|committed */
 783        }
 784
 785        wait_for_commit(cur_trans);
 786        btrfs_put_transaction(cur_trans);
 787out:
 788        return ret;
 789}
 790
 791void btrfs_throttle(struct btrfs_fs_info *fs_info)
 792{
 793        if (!atomic_read(&fs_info->open_ioctl_trans))
 794                wait_current_trans(fs_info);
 795}
 796
 797static int should_end_transaction(struct btrfs_trans_handle *trans)
 798{
 799        struct btrfs_fs_info *fs_info = trans->fs_info;
 800
 801        if (fs_info->global_block_rsv.space_info->full &&
 802            btrfs_check_space_for_delayed_refs(trans, fs_info))
 803                return 1;
 804
 805        return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 806}
 807
 808int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 809{
 810        struct btrfs_transaction *cur_trans = trans->transaction;
 811        struct btrfs_fs_info *fs_info = trans->fs_info;
 812        int updates;
 813        int err;
 814
 815        smp_mb();
 816        if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 817            cur_trans->delayed_refs.flushing)
 818                return 1;
 819
 820        updates = trans->delayed_ref_updates;
 821        trans->delayed_ref_updates = 0;
 822        if (updates) {
 823                err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
 824                if (err) /* Error code will also eval true */
 825                        return err;
 826        }
 827
 828        return should_end_transaction(trans);
 829}
 830
 831static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 832                                   int throttle)
 833{
 834        struct btrfs_fs_info *info = trans->fs_info;
 835        struct btrfs_transaction *cur_trans = trans->transaction;
 836        u64 transid = trans->transid;
 837        unsigned long cur = trans->delayed_ref_updates;
 838        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 839        int err = 0;
 840        int must_run_delayed_refs = 0;
 841
 842        if (trans->use_count > 1) {
 843                trans->use_count--;
 844                trans->block_rsv = trans->orig_rsv;
 845                return 0;
 846        }
 847
 848        btrfs_trans_release_metadata(trans, info);
 849        trans->block_rsv = NULL;
 850
 851        if (!list_empty(&trans->new_bgs))
 852                btrfs_create_pending_block_groups(trans, info);
 853
 854        trans->delayed_ref_updates = 0;
 855        if (!trans->sync) {
 856                must_run_delayed_refs =
 857                        btrfs_should_throttle_delayed_refs(trans, info);
 858                cur = max_t(unsigned long, cur, 32);
 859
 860                /*
 861                 * don't make the caller wait if they are from a NOLOCK
 862                 * or ATTACH transaction, it will deadlock with commit
 863                 */
 864                if (must_run_delayed_refs == 1 &&
 865                    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
 866                        must_run_delayed_refs = 2;
 867        }
 868
 869        btrfs_trans_release_metadata(trans, info);
 870        trans->block_rsv = NULL;
 871
 872        if (!list_empty(&trans->new_bgs))
 873                btrfs_create_pending_block_groups(trans, info);
 874
 875        btrfs_trans_release_chunk_metadata(trans);
 876
 877        if (lock && !atomic_read(&info->open_ioctl_trans) &&
 878            should_end_transaction(trans) &&
 879            READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 880                spin_lock(&info->trans_lock);
 881                if (cur_trans->state == TRANS_STATE_RUNNING)
 882                        cur_trans->state = TRANS_STATE_BLOCKED;
 883                spin_unlock(&info->trans_lock);
 884        }
 885
 886        if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 887                if (throttle)
 888                        return btrfs_commit_transaction(trans);
 889                else
 890                        wake_up_process(info->transaction_kthread);
 891        }
 892
 893        if (trans->type & __TRANS_FREEZABLE)
 894                sb_end_intwrite(info->sb);
 895
 896        WARN_ON(cur_trans != info->running_transaction);
 897        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 898        atomic_dec(&cur_trans->num_writers);
 899        extwriter_counter_dec(cur_trans, trans->type);
 900
 901        /*
 902         * Make sure counter is updated before we wake up waiters.
 903         */
 904        smp_mb();
 905        if (waitqueue_active(&cur_trans->writer_wait))
 906                wake_up(&cur_trans->writer_wait);
 907        btrfs_put_transaction(cur_trans);
 908
 909        if (current->journal_info == trans)
 910                current->journal_info = NULL;
 911
 912        if (throttle)
 913                btrfs_run_delayed_iputs(info);
 914
 915        if (trans->aborted ||
 916            test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 917                wake_up_process(info->transaction_kthread);
 918                err = -EIO;
 919        }
 920        assert_qgroups_uptodate(trans);
 921
 922        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 923        if (must_run_delayed_refs) {
 924                btrfs_async_run_delayed_refs(info, cur, transid,
 925                                             must_run_delayed_refs == 1);
 926        }
 927        return err;
 928}
 929
 930int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 931{
 932        return __btrfs_end_transaction(trans, 0);
 933}
 934
 935int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 936{
 937        return __btrfs_end_transaction(trans, 1);
 938}
 939
 940/*
 941 * when btree blocks are allocated, they have some corresponding bits set for
 942 * them in one of two extent_io trees.  This is used to make sure all of
 943 * those extents are sent to disk but does not wait on them
 944 */
 945int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 946                               struct extent_io_tree *dirty_pages, int mark)
 947{
 948        int err = 0;
 949        int werr = 0;
 950        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 951        struct extent_state *cached_state = NULL;
 952        u64 start = 0;
 953        u64 end;
 954
 955        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 956                                      mark, &cached_state)) {
 957                bool wait_writeback = false;
 958
 959                err = convert_extent_bit(dirty_pages, start, end,
 960                                         EXTENT_NEED_WAIT,
 961                                         mark, &cached_state);
 962                /*
 963                 * convert_extent_bit can return -ENOMEM, which is most of the
 964                 * time a temporary error. So when it happens, ignore the error
 965                 * and wait for writeback of this range to finish - because we
 966                 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 967                 * to __btrfs_wait_marked_extents() would not know that
 968                 * writeback for this range started and therefore wouldn't
 969                 * wait for it to finish - we don't want to commit a
 970                 * superblock that points to btree nodes/leafs for which
 971                 * writeback hasn't finished yet (and without errors).
 972                 * We cleanup any entries left in the io tree when committing
 973                 * the transaction (through clear_btree_io_tree()).
 974                 */
 975                if (err == -ENOMEM) {
 976                        err = 0;
 977                        wait_writeback = true;
 978                }
 979                if (!err)
 980                        err = filemap_fdatawrite_range(mapping, start, end);
 981                if (err)
 982                        werr = err;
 983                else if (wait_writeback)
 984                        werr = filemap_fdatawait_range(mapping, start, end);
 985                free_extent_state(cached_state);
 986                cached_state = NULL;
 987                cond_resched();
 988                start = end + 1;
 989        }
 990        return werr;
 991}
 992
 993/*
 994 * when btree blocks are allocated, they have some corresponding bits set for
 995 * them in one of two extent_io trees.  This is used to make sure all of
 996 * those extents are on disk for transaction or log commit.  We wait
 997 * on all the pages and clear them from the dirty pages state tree
 998 */
 999static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1000                                       struct extent_io_tree *dirty_pages)
1001{
1002        int err = 0;
1003        int werr = 0;
1004        struct address_space *mapping = fs_info->btree_inode->i_mapping;
1005        struct extent_state *cached_state = NULL;
1006        u64 start = 0;
1007        u64 end;
1008
1009        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1010                                      EXTENT_NEED_WAIT, &cached_state)) {
1011                /*
1012                 * Ignore -ENOMEM errors returned by clear_extent_bit().
1013                 * When committing the transaction, we'll remove any entries
1014                 * left in the io tree. For a log commit, we don't remove them
1015                 * after committing the log because the tree can be accessed
1016                 * concurrently - we do it only at transaction commit time when
1017                 * it's safe to do it (through clear_btree_io_tree()).
1018                 */
1019                err = clear_extent_bit(dirty_pages, start, end,
1020                                       EXTENT_NEED_WAIT,
1021                                       0, 0, &cached_state, GFP_NOFS);
1022                if (err == -ENOMEM)
1023                        err = 0;
1024                if (!err)
1025                        err = filemap_fdatawait_range(mapping, start, end);
1026                if (err)
1027                        werr = err;
1028                free_extent_state(cached_state);
1029                cached_state = NULL;
1030                cond_resched();
1031                start = end + 1;
1032        }
1033        if (err)
1034                werr = err;
1035        return werr;
1036}
1037
1038int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1039                       struct extent_io_tree *dirty_pages)
1040{
1041        bool errors = false;
1042        int err;
1043
1044        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1045        if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1046                errors = true;
1047
1048        if (errors && !err)
1049                err = -EIO;
1050        return err;
1051}
1052
1053int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1054{
1055        struct btrfs_fs_info *fs_info = log_root->fs_info;
1056        struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1057        bool errors = false;
1058        int err;
1059
1060        ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1061
1062        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1063        if ((mark & EXTENT_DIRTY) &&
1064            test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1065                errors = true;
1066
1067        if ((mark & EXTENT_NEW) &&
1068            test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1069                errors = true;
1070
1071        if (errors && !err)
1072                err = -EIO;
1073        return err;
1074}
1075
1076/*
1077 * when btree blocks are allocated, they have some corresponding bits set for
1078 * them in one of two extent_io trees.  This is used to make sure all of
1079 * those extents are on disk for transaction or log commit
1080 */
1081static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1082                                struct extent_io_tree *dirty_pages, int mark)
1083{
1084        int ret;
1085        int ret2;
1086        struct blk_plug plug;
1087
1088        blk_start_plug(&plug);
1089        ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1090        blk_finish_plug(&plug);
1091        ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1092
1093        if (ret)
1094                return ret;
1095        if (ret2)
1096                return ret2;
1097        return 0;
1098}
1099
1100static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1101                                            struct btrfs_fs_info *fs_info)
1102{
1103        int ret;
1104
1105        ret = btrfs_write_and_wait_marked_extents(fs_info,
1106                                           &trans->transaction->dirty_pages,
1107                                           EXTENT_DIRTY);
1108        clear_btree_io_tree(&trans->transaction->dirty_pages);
1109
1110        return ret;
1111}
1112
1113/*
1114 * this is used to update the root pointer in the tree of tree roots.
1115 *
1116 * But, in the case of the extent allocation tree, updating the root
1117 * pointer may allocate blocks which may change the root of the extent
1118 * allocation tree.
1119 *
1120 * So, this loops and repeats and makes sure the cowonly root didn't
1121 * change while the root pointer was being updated in the metadata.
1122 */
1123static int update_cowonly_root(struct btrfs_trans_handle *trans,
1124                               struct btrfs_root *root)
1125{
1126        int ret;
1127        u64 old_root_bytenr;
1128        u64 old_root_used;
1129        struct btrfs_fs_info *fs_info = root->fs_info;
1130        struct btrfs_root *tree_root = fs_info->tree_root;
1131
1132        old_root_used = btrfs_root_used(&root->root_item);
1133
1134        while (1) {
1135                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1136                if (old_root_bytenr == root->node->start &&
1137                    old_root_used == btrfs_root_used(&root->root_item))
1138                        break;
1139
1140                btrfs_set_root_node(&root->root_item, root->node);
1141                ret = btrfs_update_root(trans, tree_root,
1142                                        &root->root_key,
1143                                        &root->root_item);
1144                if (ret)
1145                        return ret;
1146
1147                old_root_used = btrfs_root_used(&root->root_item);
1148        }
1149
1150        return 0;
1151}
1152
1153/*
1154 * update all the cowonly tree roots on disk
1155 *
1156 * The error handling in this function may not be obvious. Any of the
1157 * failures will cause the file system to go offline. We still need
1158 * to clean up the delayed refs.
1159 */
1160static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1161                                         struct btrfs_fs_info *fs_info)
1162{
1163        struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1164        struct list_head *io_bgs = &trans->transaction->io_bgs;
1165        struct list_head *next;
1166        struct extent_buffer *eb;
1167        int ret;
1168
1169        eb = btrfs_lock_root_node(fs_info->tree_root);
1170        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1171                              0, &eb);
1172        btrfs_tree_unlock(eb);
1173        free_extent_buffer(eb);
1174
1175        if (ret)
1176                return ret;
1177
1178        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1179        if (ret)
1180                return ret;
1181
1182        ret = btrfs_run_dev_stats(trans, fs_info);
1183        if (ret)
1184                return ret;
1185        ret = btrfs_run_dev_replace(trans, fs_info);
1186        if (ret)
1187                return ret;
1188        ret = btrfs_run_qgroups(trans, fs_info);
1189        if (ret)
1190                return ret;
1191
1192        ret = btrfs_setup_space_cache(trans, fs_info);
1193        if (ret)
1194                return ret;
1195
1196        /* run_qgroups might have added some more refs */
1197        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1198        if (ret)
1199                return ret;
1200again:
1201        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1202                struct btrfs_root *root;
1203                next = fs_info->dirty_cowonly_roots.next;
1204                list_del_init(next);
1205                root = list_entry(next, struct btrfs_root, dirty_list);
1206                clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1207
1208                if (root != fs_info->extent_root)
1209                        list_add_tail(&root->dirty_list,
1210                                      &trans->transaction->switch_commits);
1211                ret = update_cowonly_root(trans, root);
1212                if (ret)
1213                        return ret;
1214                ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1215                if (ret)
1216                        return ret;
1217        }
1218
1219        while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1220                ret = btrfs_write_dirty_block_groups(trans, fs_info);
1221                if (ret)
1222                        return ret;
1223                ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1224                if (ret)
1225                        return ret;
1226        }
1227
1228        if (!list_empty(&fs_info->dirty_cowonly_roots))
1229                goto again;
1230
1231        list_add_tail(&fs_info->extent_root->dirty_list,
1232                      &trans->transaction->switch_commits);
1233        btrfs_after_dev_replace_commit(fs_info);
1234
1235        return 0;
1236}
1237
1238/*
1239 * dead roots are old snapshots that need to be deleted.  This allocates
1240 * a dirty root struct and adds it into the list of dead roots that need to
1241 * be deleted
1242 */
1243void btrfs_add_dead_root(struct btrfs_root *root)
1244{
1245        struct btrfs_fs_info *fs_info = root->fs_info;
1246
1247        spin_lock(&fs_info->trans_lock);
1248        if (list_empty(&root->root_list))
1249                list_add_tail(&root->root_list, &fs_info->dead_roots);
1250        spin_unlock(&fs_info->trans_lock);
1251}
1252
1253/*
1254 * update all the cowonly tree roots on disk
1255 */
1256static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1257                                    struct btrfs_fs_info *fs_info)
1258{
1259        struct btrfs_root *gang[8];
1260        int i;
1261        int ret;
1262        int err = 0;
1263
1264        spin_lock(&fs_info->fs_roots_radix_lock);
1265        while (1) {
1266                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1267                                                 (void **)gang, 0,
1268                                                 ARRAY_SIZE(gang),
1269                                                 BTRFS_ROOT_TRANS_TAG);
1270                if (ret == 0)
1271                        break;
1272                for (i = 0; i < ret; i++) {
1273                        struct btrfs_root *root = gang[i];
1274                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1275                                        (unsigned long)root->root_key.objectid,
1276                                        BTRFS_ROOT_TRANS_TAG);
1277                        spin_unlock(&fs_info->fs_roots_radix_lock);
1278
1279                        btrfs_free_log(trans, root);
1280                        btrfs_update_reloc_root(trans, root);
1281                        btrfs_orphan_commit_root(trans, root);
1282
1283                        btrfs_save_ino_cache(root, trans);
1284
1285                        /* see comments in should_cow_block() */
1286                        clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1287                        smp_mb__after_atomic();
1288
1289                        if (root->commit_root != root->node) {
1290                                list_add_tail(&root->dirty_list,
1291                                        &trans->transaction->switch_commits);
1292                                btrfs_set_root_node(&root->root_item,
1293                                                    root->node);
1294                        }
1295
1296                        err = btrfs_update_root(trans, fs_info->tree_root,
1297                                                &root->root_key,
1298                                                &root->root_item);
1299                        spin_lock(&fs_info->fs_roots_radix_lock);
1300                        if (err)
1301                                break;
1302                        btrfs_qgroup_free_meta_all(root);
1303                }
1304        }
1305        spin_unlock(&fs_info->fs_roots_radix_lock);
1306        return err;
1307}
1308
1309/*
1310 * defrag a given btree.
1311 * Every leaf in the btree is read and defragged.
1312 */
1313int btrfs_defrag_root(struct btrfs_root *root)
1314{
1315        struct btrfs_fs_info *info = root->fs_info;
1316        struct btrfs_trans_handle *trans;
1317        int ret;
1318
1319        if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1320                return 0;
1321
1322        while (1) {
1323                trans = btrfs_start_transaction(root, 0);
1324                if (IS_ERR(trans))
1325                        return PTR_ERR(trans);
1326
1327                ret = btrfs_defrag_leaves(trans, root);
1328
1329                btrfs_end_transaction(trans);
1330                btrfs_btree_balance_dirty(info);
1331                cond_resched();
1332
1333                if (btrfs_fs_closing(info) || ret != -EAGAIN)
1334                        break;
1335
1336                if (btrfs_defrag_cancelled(info)) {
1337                        btrfs_debug(info, "defrag_root cancelled");
1338                        ret = -EAGAIN;
1339                        break;
1340                }
1341        }
1342        clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1343        return ret;
1344}
1345
1346/*
1347 * Do all special snapshot related qgroup dirty hack.
1348 *
1349 * Will do all needed qgroup inherit and dirty hack like switch commit
1350 * roots inside one transaction and write all btree into disk, to make
1351 * qgroup works.
1352 */
1353static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1354                                   struct btrfs_root *src,
1355                                   struct btrfs_root *parent,
1356                                   struct btrfs_qgroup_inherit *inherit,
1357                                   u64 dst_objectid)
1358{
1359        struct btrfs_fs_info *fs_info = src->fs_info;
1360        int ret;
1361
1362        /*
1363         * Save some performance in the case that qgroups are not
1364         * enabled. If this check races with the ioctl, rescan will
1365         * kick in anyway.
1366         */
1367        if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1368                return 0;
1369
1370        /*
1371         * We are going to commit transaction, see btrfs_commit_transaction()
1372         * comment for reason locking tree_log_mutex
1373         */
1374        mutex_lock(&fs_info->tree_log_mutex);
1375
1376        ret = commit_fs_roots(trans, fs_info);
1377        if (ret)
1378                goto out;
1379        ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1380        if (ret < 0)
1381                goto out;
1382        ret = btrfs_qgroup_account_extents(trans, fs_info);
1383        if (ret < 0)
1384                goto out;
1385
1386        /* Now qgroup are all updated, we can inherit it to new qgroups */
1387        ret = btrfs_qgroup_inherit(trans, fs_info,
1388                                   src->root_key.objectid, dst_objectid,
1389                                   inherit);
1390        if (ret < 0)
1391                goto out;
1392
1393        /*
1394         * Now we do a simplified commit transaction, which will:
1395         * 1) commit all subvolume and extent tree
1396         *    To ensure all subvolume and extent tree have a valid
1397         *    commit_root to accounting later insert_dir_item()
1398         * 2) write all btree blocks onto disk
1399         *    This is to make sure later btree modification will be cowed
1400         *    Or commit_root can be populated and cause wrong qgroup numbers
1401         * In this simplified commit, we don't really care about other trees
1402         * like chunk and root tree, as they won't affect qgroup.
1403         * And we don't write super to avoid half committed status.
1404         */
1405        ret = commit_cowonly_roots(trans, fs_info);
1406        if (ret)
1407                goto out;
1408        switch_commit_roots(trans->transaction, fs_info);
1409        ret = btrfs_write_and_wait_transaction(trans, fs_info);
1410        if (ret)
1411                btrfs_handle_fs_error(fs_info, ret,
1412                        "Error while writing out transaction for qgroup");
1413
1414out:
1415        mutex_unlock(&fs_info->tree_log_mutex);
1416
1417        /*
1418         * Force parent root to be updated, as we recorded it before so its
1419         * last_trans == cur_transid.
1420         * Or it won't be committed again onto disk after later
1421         * insert_dir_item()
1422         */
1423        if (!ret)
1424                record_root_in_trans(trans, parent, 1);
1425        return ret;
1426}
1427
1428/*
1429 * new snapshots need to be created at a very specific time in the
1430 * transaction commit.  This does the actual creation.
1431 *
1432 * Note:
1433 * If the error which may affect the commitment of the current transaction
1434 * happens, we should return the error number. If the error which just affect
1435 * the creation of the pending snapshots, just return 0.
1436 */
1437static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1438                                   struct btrfs_fs_info *fs_info,
1439                                   struct btrfs_pending_snapshot *pending)
1440{
1441        struct btrfs_key key;
1442        struct btrfs_root_item *new_root_item;
1443        struct btrfs_root *tree_root = fs_info->tree_root;
1444        struct btrfs_root *root = pending->root;
1445        struct btrfs_root *parent_root;
1446        struct btrfs_block_rsv *rsv;
1447        struct inode *parent_inode;
1448        struct btrfs_path *path;
1449        struct btrfs_dir_item *dir_item;
1450        struct dentry *dentry;
1451        struct extent_buffer *tmp;
1452        struct extent_buffer *old;
1453        struct timespec cur_time;
1454        int ret = 0;
1455        u64 to_reserve = 0;
1456        u64 index = 0;
1457        u64 objectid;
1458        u64 root_flags;
1459        uuid_le new_uuid;
1460
1461        ASSERT(pending->path);
1462        path = pending->path;
1463
1464        ASSERT(pending->root_item);
1465        new_root_item = pending->root_item;
1466
1467        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1468        if (pending->error)
1469                goto no_free_objectid;
1470
1471        /*
1472         * Make qgroup to skip current new snapshot's qgroupid, as it is
1473         * accounted by later btrfs_qgroup_inherit().
1474         */
1475        btrfs_set_skip_qgroup(trans, objectid);
1476
1477        btrfs_reloc_pre_snapshot(pending, &to_reserve);
1478
1479        if (to_reserve > 0) {
1480                pending->error = btrfs_block_rsv_add(root,
1481                                                     &pending->block_rsv,
1482                                                     to_reserve,
1483                                                     BTRFS_RESERVE_NO_FLUSH);
1484                if (pending->error)
1485                        goto clear_skip_qgroup;
1486        }
1487
1488        key.objectid = objectid;
1489        key.offset = (u64)-1;
1490        key.type = BTRFS_ROOT_ITEM_KEY;
1491
1492        rsv = trans->block_rsv;
1493        trans->block_rsv = &pending->block_rsv;
1494        trans->bytes_reserved = trans->block_rsv->reserved;
1495        trace_btrfs_space_reservation(fs_info, "transaction",
1496                                      trans->transid,
1497                                      trans->bytes_reserved, 1);
1498        dentry = pending->dentry;
1499        parent_inode = pending->dir;
1500        parent_root = BTRFS_I(parent_inode)->root;
1501        record_root_in_trans(trans, parent_root, 0);
1502
1503        cur_time = current_time(parent_inode);
1504
1505        /*
1506         * insert the directory item
1507         */
1508        ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1509        BUG_ON(ret); /* -ENOMEM */
1510
1511        /* check if there is a file/dir which has the same name. */
1512        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1513                                         btrfs_ino(BTRFS_I(parent_inode)),
1514                                         dentry->d_name.name,
1515                                         dentry->d_name.len, 0);
1516        if (dir_item != NULL && !IS_ERR(dir_item)) {
1517                pending->error = -EEXIST;
1518                goto dir_item_existed;
1519        } else if (IS_ERR(dir_item)) {
1520                ret = PTR_ERR(dir_item);
1521                btrfs_abort_transaction(trans, ret);
1522                goto fail;
1523        }
1524        btrfs_release_path(path);
1525
1526        /*
1527         * pull in the delayed directory update
1528         * and the delayed inode item
1529         * otherwise we corrupt the FS during
1530         * snapshot
1531         */
1532        ret = btrfs_run_delayed_items(trans, fs_info);
1533        if (ret) {      /* Transaction aborted */
1534                btrfs_abort_transaction(trans, ret);
1535                goto fail;
1536        }
1537
1538        record_root_in_trans(trans, root, 0);
1539        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1540        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1541        btrfs_check_and_init_root_item(new_root_item);
1542
1543        root_flags = btrfs_root_flags(new_root_item);
1544        if (pending->readonly)
1545                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1546        else
1547                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1548        btrfs_set_root_flags(new_root_item, root_flags);
1549
1550        btrfs_set_root_generation_v2(new_root_item,
1551                        trans->transid);
1552        uuid_le_gen(&new_uuid);
1553        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1554        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1555                        BTRFS_UUID_SIZE);
1556        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1557                memset(new_root_item->received_uuid, 0,
1558                       sizeof(new_root_item->received_uuid));
1559                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1560                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1561                btrfs_set_root_stransid(new_root_item, 0);
1562                btrfs_set_root_rtransid(new_root_item, 0);
1563        }
1564        btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1565        btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1566        btrfs_set_root_otransid(new_root_item, trans->transid);
1567
1568        old = btrfs_lock_root_node(root);
1569        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1570        if (ret) {
1571                btrfs_tree_unlock(old);
1572                free_extent_buffer(old);
1573                btrfs_abort_transaction(trans, ret);
1574                goto fail;
1575        }
1576
1577        btrfs_set_lock_blocking(old);
1578
1579        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1580        /* clean up in any case */
1581        btrfs_tree_unlock(old);
1582        free_extent_buffer(old);
1583        if (ret) {
1584                btrfs_abort_transaction(trans, ret);
1585                goto fail;
1586        }
1587        /* see comments in should_cow_block() */
1588        set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1589        smp_wmb();
1590
1591        btrfs_set_root_node(new_root_item, tmp);
1592        /* record when the snapshot was created in key.offset */
1593        key.offset = trans->transid;
1594        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1595        btrfs_tree_unlock(tmp);
1596        free_extent_buffer(tmp);
1597        if (ret) {
1598                btrfs_abort_transaction(trans, ret);
1599                goto fail;
1600        }
1601
1602        /*
1603         * insert root back/forward references
1604         */
1605        ret = btrfs_add_root_ref(trans, fs_info, objectid,
1606                                 parent_root->root_key.objectid,
1607                                 btrfs_ino(BTRFS_I(parent_inode)), index,
1608                                 dentry->d_name.name, dentry->d_name.len);
1609        if (ret) {
1610                btrfs_abort_transaction(trans, ret);
1611                goto fail;
1612        }
1613
1614        key.offset = (u64)-1;
1615        pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1616        if (IS_ERR(pending->snap)) {
1617                ret = PTR_ERR(pending->snap);
1618                btrfs_abort_transaction(trans, ret);
1619                goto fail;
1620        }
1621
1622        ret = btrfs_reloc_post_snapshot(trans, pending);
1623        if (ret) {
1624                btrfs_abort_transaction(trans, ret);
1625                goto fail;
1626        }
1627
1628        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1629        if (ret) {
1630                btrfs_abort_transaction(trans, ret);
1631                goto fail;
1632        }
1633
1634        /*
1635         * Do special qgroup accounting for snapshot, as we do some qgroup
1636         * snapshot hack to do fast snapshot.
1637         * To co-operate with that hack, we do hack again.
1638         * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1639         */
1640        ret = qgroup_account_snapshot(trans, root, parent_root,
1641                                      pending->inherit, objectid);
1642        if (ret < 0)
1643                goto fail;
1644
1645        ret = btrfs_insert_dir_item(trans, parent_root,
1646                                    dentry->d_name.name, dentry->d_name.len,
1647                                    BTRFS_I(parent_inode), &key,
1648                                    BTRFS_FT_DIR, index);
1649        /* We have check then name at the beginning, so it is impossible. */
1650        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1651        if (ret) {
1652                btrfs_abort_transaction(trans, ret);
1653                goto fail;
1654        }
1655
1656        btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1657                                         dentry->d_name.len * 2);
1658        parent_inode->i_mtime = parent_inode->i_ctime =
1659                current_time(parent_inode);
1660        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1661        if (ret) {
1662                btrfs_abort_transaction(trans, ret);
1663                goto fail;
1664        }
1665        ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1666                                  BTRFS_UUID_KEY_SUBVOL, objectid);
1667        if (ret) {
1668                btrfs_abort_transaction(trans, ret);
1669                goto fail;
1670        }
1671        if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1672                ret = btrfs_uuid_tree_add(trans, fs_info,
1673                                          new_root_item->received_uuid,
1674                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1675                                          objectid);
1676                if (ret && ret != -EEXIST) {
1677                        btrfs_abort_transaction(trans, ret);
1678                        goto fail;
1679                }
1680        }
1681
1682        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1683        if (ret) {
1684                btrfs_abort_transaction(trans, ret);
1685                goto fail;
1686        }
1687
1688fail:
1689        pending->error = ret;
1690dir_item_existed:
1691        trans->block_rsv = rsv;
1692        trans->bytes_reserved = 0;
1693clear_skip_qgroup:
1694        btrfs_clear_skip_qgroup(trans);
1695no_free_objectid:
1696        kfree(new_root_item);
1697        pending->root_item = NULL;
1698        btrfs_free_path(path);
1699        pending->path = NULL;
1700
1701        return ret;
1702}
1703
1704/*
1705 * create all the snapshots we've scheduled for creation
1706 */
1707static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1708                                             struct btrfs_fs_info *fs_info)
1709{
1710        struct btrfs_pending_snapshot *pending, *next;
1711        struct list_head *head = &trans->transaction->pending_snapshots;
1712        int ret = 0;
1713
1714        list_for_each_entry_safe(pending, next, head, list) {
1715                list_del(&pending->list);
1716                ret = create_pending_snapshot(trans, fs_info, pending);
1717                if (ret)
1718                        break;
1719        }
1720        return ret;
1721}
1722
1723static void update_super_roots(struct btrfs_fs_info *fs_info)
1724{
1725        struct btrfs_root_item *root_item;
1726        struct btrfs_super_block *super;
1727
1728        super = fs_info->super_copy;
1729
1730        root_item = &fs_info->chunk_root->root_item;
1731        super->chunk_root = root_item->bytenr;
1732        super->chunk_root_generation = root_item->generation;
1733        super->chunk_root_level = root_item->level;
1734
1735        root_item = &fs_info->tree_root->root_item;
1736        super->root = root_item->bytenr;
1737        super->generation = root_item->generation;
1738        super->root_level = root_item->level;
1739        if (btrfs_test_opt(fs_info, SPACE_CACHE))
1740                super->cache_generation = root_item->generation;
1741        if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1742                super->uuid_tree_generation = root_item->generation;
1743}
1744
1745int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1746{
1747        struct btrfs_transaction *trans;
1748        int ret = 0;
1749
1750        spin_lock(&info->trans_lock);
1751        trans = info->running_transaction;
1752        if (trans)
1753                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1754        spin_unlock(&info->trans_lock);
1755        return ret;
1756}
1757
1758int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1759{
1760        struct btrfs_transaction *trans;
1761        int ret = 0;
1762
1763        spin_lock(&info->trans_lock);
1764        trans = info->running_transaction;
1765        if (trans)
1766                ret = is_transaction_blocked(trans);
1767        spin_unlock(&info->trans_lock);
1768        return ret;
1769}
1770
1771/*
1772 * wait for the current transaction commit to start and block subsequent
1773 * transaction joins
1774 */
1775static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1776                                            struct btrfs_transaction *trans)
1777{
1778        wait_event(fs_info->transaction_blocked_wait,
1779                   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1780}
1781
1782/*
1783 * wait for the current transaction to start and then become unblocked.
1784 * caller holds ref.
1785 */
1786static void wait_current_trans_commit_start_and_unblock(
1787                                        struct btrfs_fs_info *fs_info,
1788                                        struct btrfs_transaction *trans)
1789{
1790        wait_event(fs_info->transaction_wait,
1791                   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1792}
1793
1794/*
1795 * commit transactions asynchronously. once btrfs_commit_transaction_async
1796 * returns, any subsequent transaction will not be allowed to join.
1797 */
1798struct btrfs_async_commit {
1799        struct btrfs_trans_handle *newtrans;
1800        struct work_struct work;
1801};
1802
1803static void do_async_commit(struct work_struct *work)
1804{
1805        struct btrfs_async_commit *ac =
1806                container_of(work, struct btrfs_async_commit, work);
1807
1808        /*
1809         * We've got freeze protection passed with the transaction.
1810         * Tell lockdep about it.
1811         */
1812        if (ac->newtrans->type & __TRANS_FREEZABLE)
1813                __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1814
1815        current->journal_info = ac->newtrans;
1816
1817        btrfs_commit_transaction(ac->newtrans);
1818        kfree(ac);
1819}
1820
1821int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1822                                   int wait_for_unblock)
1823{
1824        struct btrfs_fs_info *fs_info = trans->fs_info;
1825        struct btrfs_async_commit *ac;
1826        struct btrfs_transaction *cur_trans;
1827
1828        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1829        if (!ac)
1830                return -ENOMEM;
1831
1832        INIT_WORK(&ac->work, do_async_commit);
1833        ac->newtrans = btrfs_join_transaction(trans->root);
1834        if (IS_ERR(ac->newtrans)) {
1835                int err = PTR_ERR(ac->newtrans);
1836                kfree(ac);
1837                return err;
1838        }
1839
1840        /* take transaction reference */
1841        cur_trans = trans->transaction;
1842        atomic_inc(&cur_trans->use_count);
1843
1844        btrfs_end_transaction(trans);
1845
1846        /*
1847         * Tell lockdep we've released the freeze rwsem, since the
1848         * async commit thread will be the one to unlock it.
1849         */
1850        if (ac->newtrans->type & __TRANS_FREEZABLE)
1851                __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1852
1853        schedule_work(&ac->work);
1854
1855        /* wait for transaction to start and unblock */
1856        if (wait_for_unblock)
1857                wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1858        else
1859                wait_current_trans_commit_start(fs_info, cur_trans);
1860
1861        if (current->journal_info == trans)
1862                current->journal_info = NULL;
1863
1864        btrfs_put_transaction(cur_trans);
1865        return 0;
1866}
1867
1868
1869static void cleanup_transaction(struct btrfs_trans_handle *trans,
1870                                struct btrfs_root *root, int err)
1871{
1872        struct btrfs_fs_info *fs_info = root->fs_info;
1873        struct btrfs_transaction *cur_trans = trans->transaction;
1874        DEFINE_WAIT(wait);
1875
1876        WARN_ON(trans->use_count > 1);
1877
1878        btrfs_abort_transaction(trans, err);
1879
1880        spin_lock(&fs_info->trans_lock);
1881
1882        /*
1883         * If the transaction is removed from the list, it means this
1884         * transaction has been committed successfully, so it is impossible
1885         * to call the cleanup function.
1886         */
1887        BUG_ON(list_empty(&cur_trans->list));
1888
1889        list_del_init(&cur_trans->list);
1890        if (cur_trans == fs_info->running_transaction) {
1891                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1892                spin_unlock(&fs_info->trans_lock);
1893                wait_event(cur_trans->writer_wait,
1894                           atomic_read(&cur_trans->num_writers) == 1);
1895
1896                spin_lock(&fs_info->trans_lock);
1897        }
1898        spin_unlock(&fs_info->trans_lock);
1899
1900        btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1901
1902        spin_lock(&fs_info->trans_lock);
1903        if (cur_trans == fs_info->running_transaction)
1904                fs_info->running_transaction = NULL;
1905        spin_unlock(&fs_info->trans_lock);
1906
1907        if (trans->type & __TRANS_FREEZABLE)
1908                sb_end_intwrite(fs_info->sb);
1909        btrfs_put_transaction(cur_trans);
1910        btrfs_put_transaction(cur_trans);
1911
1912        trace_btrfs_transaction_commit(root);
1913
1914        if (current->journal_info == trans)
1915                current->journal_info = NULL;
1916        btrfs_scrub_cancel(fs_info);
1917
1918        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1919}
1920
1921static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1922{
1923        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1924                return btrfs_start_delalloc_roots(fs_info, 1, -1);
1925        return 0;
1926}
1927
1928static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1929{
1930        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1931                btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1932}
1933
1934static inline void
1935btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1936{
1937        wait_event(cur_trans->pending_wait,
1938                   atomic_read(&cur_trans->pending_ordered) == 0);
1939}
1940
1941int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1942{
1943        struct btrfs_fs_info *fs_info = trans->fs_info;
1944        struct btrfs_transaction *cur_trans = trans->transaction;
1945        struct btrfs_transaction *prev_trans = NULL;
1946        int ret;
1947
1948        /* Stop the commit early if ->aborted is set */
1949        if (unlikely(READ_ONCE(cur_trans->aborted))) {
1950                ret = cur_trans->aborted;
1951                btrfs_end_transaction(trans);
1952                return ret;
1953        }
1954
1955        /* make a pass through all the delayed refs we have so far
1956         * any runnings procs may add more while we are here
1957         */
1958        ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1959        if (ret) {
1960                btrfs_end_transaction(trans);
1961                return ret;
1962        }
1963
1964        btrfs_trans_release_metadata(trans, fs_info);
1965        trans->block_rsv = NULL;
1966
1967        cur_trans = trans->transaction;
1968
1969        /*
1970         * set the flushing flag so procs in this transaction have to
1971         * start sending their work down.
1972         */
1973        cur_trans->delayed_refs.flushing = 1;
1974        smp_wmb();
1975
1976        if (!list_empty(&trans->new_bgs))
1977                btrfs_create_pending_block_groups(trans, fs_info);
1978
1979        ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1980        if (ret) {
1981                btrfs_end_transaction(trans);
1982                return ret;
1983        }
1984
1985        if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1986                int run_it = 0;
1987
1988                /* this mutex is also taken before trying to set
1989                 * block groups readonly.  We need to make sure
1990                 * that nobody has set a block group readonly
1991                 * after a extents from that block group have been
1992                 * allocated for cache files.  btrfs_set_block_group_ro
1993                 * will wait for the transaction to commit if it
1994                 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1995                 *
1996                 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1997                 * only one process starts all the block group IO.  It wouldn't
1998                 * hurt to have more than one go through, but there's no
1999                 * real advantage to it either.
2000                 */
2001                mutex_lock(&fs_info->ro_block_group_mutex);
2002                if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2003                                      &cur_trans->flags))
2004                        run_it = 1;
2005                mutex_unlock(&fs_info->ro_block_group_mutex);
2006
2007                if (run_it)
2008                        ret = btrfs_start_dirty_block_groups(trans, fs_info);
2009        }
2010        if (ret) {
2011                btrfs_end_transaction(trans);
2012                return ret;
2013        }
2014
2015        spin_lock(&fs_info->trans_lock);
2016        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2017                spin_unlock(&fs_info->trans_lock);
2018                atomic_inc(&cur_trans->use_count);
2019                ret = btrfs_end_transaction(trans);
2020
2021                wait_for_commit(cur_trans);
2022
2023                if (unlikely(cur_trans->aborted))
2024                        ret = cur_trans->aborted;
2025
2026                btrfs_put_transaction(cur_trans);
2027
2028                return ret;
2029        }
2030
2031        cur_trans->state = TRANS_STATE_COMMIT_START;
2032        wake_up(&fs_info->transaction_blocked_wait);
2033
2034        if (cur_trans->list.prev != &fs_info->trans_list) {
2035                prev_trans = list_entry(cur_trans->list.prev,
2036                                        struct btrfs_transaction, list);
2037                if (prev_trans->state != TRANS_STATE_COMPLETED) {
2038                        atomic_inc(&prev_trans->use_count);
2039                        spin_unlock(&fs_info->trans_lock);
2040
2041                        wait_for_commit(prev_trans);
2042                        ret = prev_trans->aborted;
2043
2044                        btrfs_put_transaction(prev_trans);
2045                        if (ret)
2046                                goto cleanup_transaction;
2047                } else {
2048                        spin_unlock(&fs_info->trans_lock);
2049                }
2050        } else {
2051                spin_unlock(&fs_info->trans_lock);
2052        }
2053
2054        extwriter_counter_dec(cur_trans, trans->type);
2055
2056        ret = btrfs_start_delalloc_flush(fs_info);
2057        if (ret)
2058                goto cleanup_transaction;
2059
2060        ret = btrfs_run_delayed_items(trans, fs_info);
2061        if (ret)
2062                goto cleanup_transaction;
2063
2064        wait_event(cur_trans->writer_wait,
2065                   extwriter_counter_read(cur_trans) == 0);
2066
2067        /* some pending stuffs might be added after the previous flush. */
2068        ret = btrfs_run_delayed_items(trans, fs_info);
2069        if (ret)
2070                goto cleanup_transaction;
2071
2072        btrfs_wait_delalloc_flush(fs_info);
2073
2074        btrfs_wait_pending_ordered(cur_trans);
2075
2076        btrfs_scrub_pause(fs_info);
2077        /*
2078         * Ok now we need to make sure to block out any other joins while we
2079         * commit the transaction.  We could have started a join before setting
2080         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2081         */
2082        spin_lock(&fs_info->trans_lock);
2083        cur_trans->state = TRANS_STATE_COMMIT_DOING;
2084        spin_unlock(&fs_info->trans_lock);
2085        wait_event(cur_trans->writer_wait,
2086                   atomic_read(&cur_trans->num_writers) == 1);
2087
2088        /* ->aborted might be set after the previous check, so check it */
2089        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2090                ret = cur_trans->aborted;
2091                goto scrub_continue;
2092        }
2093        /*
2094         * the reloc mutex makes sure that we stop
2095         * the balancing code from coming in and moving
2096         * extents around in the middle of the commit
2097         */
2098        mutex_lock(&fs_info->reloc_mutex);
2099
2100        /*
2101         * We needn't worry about the delayed items because we will
2102         * deal with them in create_pending_snapshot(), which is the
2103         * core function of the snapshot creation.
2104         */
2105        ret = create_pending_snapshots(trans, fs_info);
2106        if (ret) {
2107                mutex_unlock(&fs_info->reloc_mutex);
2108                goto scrub_continue;
2109        }
2110
2111        /*
2112         * We insert the dir indexes of the snapshots and update the inode
2113         * of the snapshots' parents after the snapshot creation, so there
2114         * are some delayed items which are not dealt with. Now deal with
2115         * them.
2116         *
2117         * We needn't worry that this operation will corrupt the snapshots,
2118         * because all the tree which are snapshoted will be forced to COW
2119         * the nodes and leaves.
2120         */
2121        ret = btrfs_run_delayed_items(trans, fs_info);
2122        if (ret) {
2123                mutex_unlock(&fs_info->reloc_mutex);
2124                goto scrub_continue;
2125        }
2126
2127        ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2128        if (ret) {
2129                mutex_unlock(&fs_info->reloc_mutex);
2130                goto scrub_continue;
2131        }
2132
2133        /* Reocrd old roots for later qgroup accounting */
2134        ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2135        if (ret) {
2136                mutex_unlock(&fs_info->reloc_mutex);
2137                goto scrub_continue;
2138        }
2139
2140        /*
2141         * make sure none of the code above managed to slip in a
2142         * delayed item
2143         */
2144        btrfs_assert_delayed_root_empty(fs_info);
2145
2146        WARN_ON(cur_trans != trans->transaction);
2147
2148        /* btrfs_commit_tree_roots is responsible for getting the
2149         * various roots consistent with each other.  Every pointer
2150         * in the tree of tree roots has to point to the most up to date
2151         * root for every subvolume and other tree.  So, we have to keep
2152         * the tree logging code from jumping in and changing any
2153         * of the trees.
2154         *
2155         * At this point in the commit, there can't be any tree-log
2156         * writers, but a little lower down we drop the trans mutex
2157         * and let new people in.  By holding the tree_log_mutex
2158         * from now until after the super is written, we avoid races
2159         * with the tree-log code.
2160         */
2161        mutex_lock(&fs_info->tree_log_mutex);
2162
2163        ret = commit_fs_roots(trans, fs_info);
2164        if (ret) {
2165                mutex_unlock(&fs_info->tree_log_mutex);
2166                mutex_unlock(&fs_info->reloc_mutex);
2167                goto scrub_continue;
2168        }
2169
2170        /*
2171         * Since the transaction is done, we can apply the pending changes
2172         * before the next transaction.
2173         */
2174        btrfs_apply_pending_changes(fs_info);
2175
2176        /* commit_fs_roots gets rid of all the tree log roots, it is now
2177         * safe to free the root of tree log roots
2178         */
2179        btrfs_free_log_root_tree(trans, fs_info);
2180
2181        /*
2182         * Since fs roots are all committed, we can get a quite accurate
2183         * new_roots. So let's do quota accounting.
2184         */
2185        ret = btrfs_qgroup_account_extents(trans, fs_info);
2186        if (ret < 0) {
2187                mutex_unlock(&fs_info->tree_log_mutex);
2188                mutex_unlock(&fs_info->reloc_mutex);
2189                goto scrub_continue;
2190        }
2191
2192        ret = commit_cowonly_roots(trans, fs_info);
2193        if (ret) {
2194                mutex_unlock(&fs_info->tree_log_mutex);
2195                mutex_unlock(&fs_info->reloc_mutex);
2196                goto scrub_continue;
2197        }
2198
2199        /*
2200         * The tasks which save the space cache and inode cache may also
2201         * update ->aborted, check it.
2202         */
2203        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2204                ret = cur_trans->aborted;
2205                mutex_unlock(&fs_info->tree_log_mutex);
2206                mutex_unlock(&fs_info->reloc_mutex);
2207                goto scrub_continue;
2208        }
2209
2210        btrfs_prepare_extent_commit(fs_info);
2211
2212        cur_trans = fs_info->running_transaction;
2213
2214        btrfs_set_root_node(&fs_info->tree_root->root_item,
2215                            fs_info->tree_root->node);
2216        list_add_tail(&fs_info->tree_root->dirty_list,
2217                      &cur_trans->switch_commits);
2218
2219        btrfs_set_root_node(&fs_info->chunk_root->root_item,
2220                            fs_info->chunk_root->node);
2221        list_add_tail(&fs_info->chunk_root->dirty_list,
2222                      &cur_trans->switch_commits);
2223
2224        switch_commit_roots(cur_trans, fs_info);
2225
2226        assert_qgroups_uptodate(trans);
2227        ASSERT(list_empty(&cur_trans->dirty_bgs));
2228        ASSERT(list_empty(&cur_trans->io_bgs));
2229        update_super_roots(fs_info);
2230
2231        btrfs_set_super_log_root(fs_info->super_copy, 0);
2232        btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2233        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2234               sizeof(*fs_info->super_copy));
2235
2236        btrfs_update_commit_device_size(fs_info);
2237        btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2238
2239        clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2240        clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2241
2242        btrfs_trans_release_chunk_metadata(trans);
2243
2244        spin_lock(&fs_info->trans_lock);
2245        cur_trans->state = TRANS_STATE_UNBLOCKED;
2246        fs_info->running_transaction = NULL;
2247        spin_unlock(&fs_info->trans_lock);
2248        mutex_unlock(&fs_info->reloc_mutex);
2249
2250        wake_up(&fs_info->transaction_wait);
2251
2252        ret = btrfs_write_and_wait_transaction(trans, fs_info);
2253        if (ret) {
2254                btrfs_handle_fs_error(fs_info, ret,
2255                                      "Error while writing out transaction");
2256                mutex_unlock(&fs_info->tree_log_mutex);
2257                goto scrub_continue;
2258        }
2259
2260        ret = write_all_supers(fs_info, 0);
2261        if (ret) {
2262                mutex_unlock(&fs_info->tree_log_mutex);
2263                goto scrub_continue;
2264        }
2265
2266        /*
2267         * the super is written, we can safely allow the tree-loggers
2268         * to go about their business
2269         */
2270        mutex_unlock(&fs_info->tree_log_mutex);
2271
2272        btrfs_finish_extent_commit(trans, fs_info);
2273
2274        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2275                btrfs_clear_space_info_full(fs_info);
2276
2277        fs_info->last_trans_committed = cur_trans->transid;
2278        /*
2279         * We needn't acquire the lock here because there is no other task
2280         * which can change it.
2281         */
2282        cur_trans->state = TRANS_STATE_COMPLETED;
2283        wake_up(&cur_trans->commit_wait);
2284
2285        spin_lock(&fs_info->trans_lock);
2286        list_del_init(&cur_trans->list);
2287        spin_unlock(&fs_info->trans_lock);
2288
2289        btrfs_put_transaction(cur_trans);
2290        btrfs_put_transaction(cur_trans);
2291
2292        if (trans->type & __TRANS_FREEZABLE)
2293                sb_end_intwrite(fs_info->sb);
2294
2295        trace_btrfs_transaction_commit(trans->root);
2296
2297        btrfs_scrub_continue(fs_info);
2298
2299        if (current->journal_info == trans)
2300                current->journal_info = NULL;
2301
2302        kmem_cache_free(btrfs_trans_handle_cachep, trans);
2303
2304        /*
2305         * If fs has been frozen, we can not handle delayed iputs, otherwise
2306         * it'll result in deadlock about SB_FREEZE_FS.
2307         */
2308        if (current != fs_info->transaction_kthread &&
2309            current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2310                btrfs_run_delayed_iputs(fs_info);
2311
2312        return ret;
2313
2314scrub_continue:
2315        btrfs_scrub_continue(fs_info);
2316cleanup_transaction:
2317        btrfs_trans_release_metadata(trans, fs_info);
2318        btrfs_trans_release_chunk_metadata(trans);
2319        trans->block_rsv = NULL;
2320        btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2321        if (current->journal_info == trans)
2322                current->journal_info = NULL;
2323        cleanup_transaction(trans, trans->root, ret);
2324
2325        return ret;
2326}
2327
2328/*
2329 * return < 0 if error
2330 * 0 if there are no more dead_roots at the time of call
2331 * 1 there are more to be processed, call me again
2332 *
2333 * The return value indicates there are certainly more snapshots to delete, but
2334 * if there comes a new one during processing, it may return 0. We don't mind,
2335 * because btrfs_commit_super will poke cleaner thread and it will process it a
2336 * few seconds later.
2337 */
2338int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2339{
2340        int ret;
2341        struct btrfs_fs_info *fs_info = root->fs_info;
2342
2343        spin_lock(&fs_info->trans_lock);
2344        if (list_empty(&fs_info->dead_roots)) {
2345                spin_unlock(&fs_info->trans_lock);
2346                return 0;
2347        }
2348        root = list_first_entry(&fs_info->dead_roots,
2349                        struct btrfs_root, root_list);
2350        list_del_init(&root->root_list);
2351        spin_unlock(&fs_info->trans_lock);
2352
2353        btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2354
2355        btrfs_kill_all_delayed_nodes(root);
2356
2357        if (btrfs_header_backref_rev(root->node) <
2358                        BTRFS_MIXED_BACKREF_REV)
2359                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2360        else
2361                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2362
2363        return (ret < 0) ? 0 : 1;
2364}
2365
2366void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2367{
2368        unsigned long prev;
2369        unsigned long bit;
2370
2371        prev = xchg(&fs_info->pending_changes, 0);
2372        if (!prev)
2373                return;
2374
2375        bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2376        if (prev & bit)
2377                btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2378        prev &= ~bit;
2379
2380        bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2381        if (prev & bit)
2382                btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383        prev &= ~bit;
2384
2385        bit = 1 << BTRFS_PENDING_COMMIT;
2386        if (prev & bit)
2387                btrfs_debug(fs_info, "pending commit done");
2388        prev &= ~bit;
2389
2390        if (prev)
2391                btrfs_warn(fs_info,
2392                        "unknown pending changes left 0x%lx, ignoring", prev);
2393}
2394