linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/dax.h>
  29#include <linux/blkdev.h>
  30#include <linux/quotaops.h>
  31#include <linux/writeback.h>
  32#include <linux/buffer_head.h>
  33#include <linux/mpage.h>
  34#include <linux/fiemap.h>
  35#include <linux/iomap.h>
  36#include <linux/namei.h>
  37#include <linux/uio.h>
  38#include "ext2.h"
  39#include "acl.h"
  40#include "xattr.h"
  41
  42static int __ext2_write_inode(struct inode *inode, int do_sync);
  43
  44/*
  45 * Test whether an inode is a fast symlink.
  46 */
  47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  48{
  49        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  50                (inode->i_sb->s_blocksize >> 9) : 0;
  51
  52        return (S_ISLNK(inode->i_mode) &&
  53                inode->i_blocks - ea_blocks == 0);
  54}
  55
  56static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  57
  58static void ext2_write_failed(struct address_space *mapping, loff_t to)
  59{
  60        struct inode *inode = mapping->host;
  61
  62        if (to > inode->i_size) {
  63                truncate_pagecache(inode, inode->i_size);
  64                ext2_truncate_blocks(inode, inode->i_size);
  65        }
  66}
  67
  68/*
  69 * Called at the last iput() if i_nlink is zero.
  70 */
  71void ext2_evict_inode(struct inode * inode)
  72{
  73        struct ext2_block_alloc_info *rsv;
  74        int want_delete = 0;
  75
  76        if (!inode->i_nlink && !is_bad_inode(inode)) {
  77                want_delete = 1;
  78                dquot_initialize(inode);
  79        } else {
  80                dquot_drop(inode);
  81        }
  82
  83        truncate_inode_pages_final(&inode->i_data);
  84
  85        if (want_delete) {
  86                sb_start_intwrite(inode->i_sb);
  87                /* set dtime */
  88                EXT2_I(inode)->i_dtime  = get_seconds();
  89                mark_inode_dirty(inode);
  90                __ext2_write_inode(inode, inode_needs_sync(inode));
  91                /* truncate to 0 */
  92                inode->i_size = 0;
  93                if (inode->i_blocks)
  94                        ext2_truncate_blocks(inode, 0);
  95                ext2_xattr_delete_inode(inode);
  96        }
  97
  98        invalidate_inode_buffers(inode);
  99        clear_inode(inode);
 100
 101        ext2_discard_reservation(inode);
 102        rsv = EXT2_I(inode)->i_block_alloc_info;
 103        EXT2_I(inode)->i_block_alloc_info = NULL;
 104        if (unlikely(rsv))
 105                kfree(rsv);
 106
 107        if (want_delete) {
 108                ext2_free_inode(inode);
 109                sb_end_intwrite(inode->i_sb);
 110        }
 111}
 112
 113typedef struct {
 114        __le32  *p;
 115        __le32  key;
 116        struct buffer_head *bh;
 117} Indirect;
 118
 119static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 120{
 121        p->key = *(p->p = v);
 122        p->bh = bh;
 123}
 124
 125static inline int verify_chain(Indirect *from, Indirect *to)
 126{
 127        while (from <= to && from->key == *from->p)
 128                from++;
 129        return (from > to);
 130}
 131
 132/**
 133 *      ext2_block_to_path - parse the block number into array of offsets
 134 *      @inode: inode in question (we are only interested in its superblock)
 135 *      @i_block: block number to be parsed
 136 *      @offsets: array to store the offsets in
 137 *      @boundary: set this non-zero if the referred-to block is likely to be
 138 *             followed (on disk) by an indirect block.
 139 *      To store the locations of file's data ext2 uses a data structure common
 140 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 141 *      data blocks at leaves and indirect blocks in intermediate nodes.
 142 *      This function translates the block number into path in that tree -
 143 *      return value is the path length and @offsets[n] is the offset of
 144 *      pointer to (n+1)th node in the nth one. If @block is out of range
 145 *      (negative or too large) warning is printed and zero returned.
 146 *
 147 *      Note: function doesn't find node addresses, so no IO is needed. All
 148 *      we need to know is the capacity of indirect blocks (taken from the
 149 *      inode->i_sb).
 150 */
 151
 152/*
 153 * Portability note: the last comparison (check that we fit into triple
 154 * indirect block) is spelled differently, because otherwise on an
 155 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 156 * if our filesystem had 8Kb blocks. We might use long long, but that would
 157 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 158 * i_block would have to be negative in the very beginning, so we would not
 159 * get there at all.
 160 */
 161
 162static int ext2_block_to_path(struct inode *inode,
 163                        long i_block, int offsets[4], int *boundary)
 164{
 165        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 166        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 167        const long direct_blocks = EXT2_NDIR_BLOCKS,
 168                indirect_blocks = ptrs,
 169                double_blocks = (1 << (ptrs_bits * 2));
 170        int n = 0;
 171        int final = 0;
 172
 173        if (i_block < 0) {
 174                ext2_msg(inode->i_sb, KERN_WARNING,
 175                        "warning: %s: block < 0", __func__);
 176        } else if (i_block < direct_blocks) {
 177                offsets[n++] = i_block;
 178                final = direct_blocks;
 179        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 180                offsets[n++] = EXT2_IND_BLOCK;
 181                offsets[n++] = i_block;
 182                final = ptrs;
 183        } else if ((i_block -= indirect_blocks) < double_blocks) {
 184                offsets[n++] = EXT2_DIND_BLOCK;
 185                offsets[n++] = i_block >> ptrs_bits;
 186                offsets[n++] = i_block & (ptrs - 1);
 187                final = ptrs;
 188        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 189                offsets[n++] = EXT2_TIND_BLOCK;
 190                offsets[n++] = i_block >> (ptrs_bits * 2);
 191                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 192                offsets[n++] = i_block & (ptrs - 1);
 193                final = ptrs;
 194        } else {
 195                ext2_msg(inode->i_sb, KERN_WARNING,
 196                        "warning: %s: block is too big", __func__);
 197        }
 198        if (boundary)
 199                *boundary = final - 1 - (i_block & (ptrs - 1));
 200
 201        return n;
 202}
 203
 204/**
 205 *      ext2_get_branch - read the chain of indirect blocks leading to data
 206 *      @inode: inode in question
 207 *      @depth: depth of the chain (1 - direct pointer, etc.)
 208 *      @offsets: offsets of pointers in inode/indirect blocks
 209 *      @chain: place to store the result
 210 *      @err: here we store the error value
 211 *
 212 *      Function fills the array of triples <key, p, bh> and returns %NULL
 213 *      if everything went OK or the pointer to the last filled triple
 214 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 215 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 216 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 217 *      number (it points into struct inode for i==0 and into the bh->b_data
 218 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 219 *      block for i>0 and NULL for i==0. In other words, it holds the block
 220 *      numbers of the chain, addresses they were taken from (and where we can
 221 *      verify that chain did not change) and buffer_heads hosting these
 222 *      numbers.
 223 *
 224 *      Function stops when it stumbles upon zero pointer (absent block)
 225 *              (pointer to last triple returned, *@err == 0)
 226 *      or when it gets an IO error reading an indirect block
 227 *              (ditto, *@err == -EIO)
 228 *      or when it notices that chain had been changed while it was reading
 229 *              (ditto, *@err == -EAGAIN)
 230 *      or when it reads all @depth-1 indirect blocks successfully and finds
 231 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 232 */
 233static Indirect *ext2_get_branch(struct inode *inode,
 234                                 int depth,
 235                                 int *offsets,
 236                                 Indirect chain[4],
 237                                 int *err)
 238{
 239        struct super_block *sb = inode->i_sb;
 240        Indirect *p = chain;
 241        struct buffer_head *bh;
 242
 243        *err = 0;
 244        /* i_data is not going away, no lock needed */
 245        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 246        if (!p->key)
 247                goto no_block;
 248        while (--depth) {
 249                bh = sb_bread(sb, le32_to_cpu(p->key));
 250                if (!bh)
 251                        goto failure;
 252                read_lock(&EXT2_I(inode)->i_meta_lock);
 253                if (!verify_chain(chain, p))
 254                        goto changed;
 255                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 256                read_unlock(&EXT2_I(inode)->i_meta_lock);
 257                if (!p->key)
 258                        goto no_block;
 259        }
 260        return NULL;
 261
 262changed:
 263        read_unlock(&EXT2_I(inode)->i_meta_lock);
 264        brelse(bh);
 265        *err = -EAGAIN;
 266        goto no_block;
 267failure:
 268        *err = -EIO;
 269no_block:
 270        return p;
 271}
 272
 273/**
 274 *      ext2_find_near - find a place for allocation with sufficient locality
 275 *      @inode: owner
 276 *      @ind: descriptor of indirect block.
 277 *
 278 *      This function returns the preferred place for block allocation.
 279 *      It is used when heuristic for sequential allocation fails.
 280 *      Rules are:
 281 *        + if there is a block to the left of our position - allocate near it.
 282 *        + if pointer will live in indirect block - allocate near that block.
 283 *        + if pointer will live in inode - allocate in the same cylinder group.
 284 *
 285 * In the latter case we colour the starting block by the callers PID to
 286 * prevent it from clashing with concurrent allocations for a different inode
 287 * in the same block group.   The PID is used here so that functionally related
 288 * files will be close-by on-disk.
 289 *
 290 *      Caller must make sure that @ind is valid and will stay that way.
 291 */
 292
 293static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 294{
 295        struct ext2_inode_info *ei = EXT2_I(inode);
 296        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 297        __le32 *p;
 298        ext2_fsblk_t bg_start;
 299        ext2_fsblk_t colour;
 300
 301        /* Try to find previous block */
 302        for (p = ind->p - 1; p >= start; p--)
 303                if (*p)
 304                        return le32_to_cpu(*p);
 305
 306        /* No such thing, so let's try location of indirect block */
 307        if (ind->bh)
 308                return ind->bh->b_blocknr;
 309
 310        /*
 311         * It is going to be referred from inode itself? OK, just put it into
 312         * the same cylinder group then.
 313         */
 314        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 315        colour = (current->pid % 16) *
 316                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 317        return bg_start + colour;
 318}
 319
 320/**
 321 *      ext2_find_goal - find a preferred place for allocation.
 322 *      @inode: owner
 323 *      @block:  block we want
 324 *      @partial: pointer to the last triple within a chain
 325 *
 326 *      Returns preferred place for a block (the goal).
 327 */
 328
 329static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 330                                          Indirect *partial)
 331{
 332        struct ext2_block_alloc_info *block_i;
 333
 334        block_i = EXT2_I(inode)->i_block_alloc_info;
 335
 336        /*
 337         * try the heuristic for sequential allocation,
 338         * failing that at least try to get decent locality.
 339         */
 340        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 341                && (block_i->last_alloc_physical_block != 0)) {
 342                return block_i->last_alloc_physical_block + 1;
 343        }
 344
 345        return ext2_find_near(inode, partial);
 346}
 347
 348/**
 349 *      ext2_blks_to_allocate: Look up the block map and count the number
 350 *      of direct blocks need to be allocated for the given branch.
 351 *
 352 *      @branch: chain of indirect blocks
 353 *      @k: number of blocks need for indirect blocks
 354 *      @blks: number of data blocks to be mapped.
 355 *      @blocks_to_boundary:  the offset in the indirect block
 356 *
 357 *      return the total number of blocks to be allocate, including the
 358 *      direct and indirect blocks.
 359 */
 360static int
 361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 362                int blocks_to_boundary)
 363{
 364        unsigned long count = 0;
 365
 366        /*
 367         * Simple case, [t,d]Indirect block(s) has not allocated yet
 368         * then it's clear blocks on that path have not allocated
 369         */
 370        if (k > 0) {
 371                /* right now don't hanel cross boundary allocation */
 372                if (blks < blocks_to_boundary + 1)
 373                        count += blks;
 374                else
 375                        count += blocks_to_boundary + 1;
 376                return count;
 377        }
 378
 379        count++;
 380        while (count < blks && count <= blocks_to_boundary
 381                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 382                count++;
 383        }
 384        return count;
 385}
 386
 387/**
 388 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 389 *      @indirect_blks: the number of blocks need to allocate for indirect
 390 *                      blocks
 391 *
 392 *      @new_blocks: on return it will store the new block numbers for
 393 *      the indirect blocks(if needed) and the first direct block,
 394 *      @blks:  on return it will store the total number of allocated
 395 *              direct blocks
 396 */
 397static int ext2_alloc_blocks(struct inode *inode,
 398                        ext2_fsblk_t goal, int indirect_blks, int blks,
 399                        ext2_fsblk_t new_blocks[4], int *err)
 400{
 401        int target, i;
 402        unsigned long count = 0;
 403        int index = 0;
 404        ext2_fsblk_t current_block = 0;
 405        int ret = 0;
 406
 407        /*
 408         * Here we try to allocate the requested multiple blocks at once,
 409         * on a best-effort basis.
 410         * To build a branch, we should allocate blocks for
 411         * the indirect blocks(if not allocated yet), and at least
 412         * the first direct block of this branch.  That's the
 413         * minimum number of blocks need to allocate(required)
 414         */
 415        target = blks + indirect_blks;
 416
 417        while (1) {
 418                count = target;
 419                /* allocating blocks for indirect blocks and direct blocks */
 420                current_block = ext2_new_blocks(inode,goal,&count,err);
 421                if (*err)
 422                        goto failed_out;
 423
 424                target -= count;
 425                /* allocate blocks for indirect blocks */
 426                while (index < indirect_blks && count) {
 427                        new_blocks[index++] = current_block++;
 428                        count--;
 429                }
 430
 431                if (count > 0)
 432                        break;
 433        }
 434
 435        /* save the new block number for the first direct block */
 436        new_blocks[index] = current_block;
 437
 438        /* total number of blocks allocated for direct blocks */
 439        ret = count;
 440        *err = 0;
 441        return ret;
 442failed_out:
 443        for (i = 0; i <index; i++)
 444                ext2_free_blocks(inode, new_blocks[i], 1);
 445        if (index)
 446                mark_inode_dirty(inode);
 447        return ret;
 448}
 449
 450/**
 451 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 452 *      @inode: owner
 453 *      @num: depth of the chain (number of blocks to allocate)
 454 *      @offsets: offsets (in the blocks) to store the pointers to next.
 455 *      @branch: place to store the chain in.
 456 *
 457 *      This function allocates @num blocks, zeroes out all but the last one,
 458 *      links them into chain and (if we are synchronous) writes them to disk.
 459 *      In other words, it prepares a branch that can be spliced onto the
 460 *      inode. It stores the information about that chain in the branch[], in
 461 *      the same format as ext2_get_branch() would do. We are calling it after
 462 *      we had read the existing part of chain and partial points to the last
 463 *      triple of that (one with zero ->key). Upon the exit we have the same
 464 *      picture as after the successful ext2_get_block(), except that in one
 465 *      place chain is disconnected - *branch->p is still zero (we did not
 466 *      set the last link), but branch->key contains the number that should
 467 *      be placed into *branch->p to fill that gap.
 468 *
 469 *      If allocation fails we free all blocks we've allocated (and forget
 470 *      their buffer_heads) and return the error value the from failed
 471 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 472 *      as described above and return 0.
 473 */
 474
 475static int ext2_alloc_branch(struct inode *inode,
 476                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 477                        int *offsets, Indirect *branch)
 478{
 479        int blocksize = inode->i_sb->s_blocksize;
 480        int i, n = 0;
 481        int err = 0;
 482        struct buffer_head *bh;
 483        int num;
 484        ext2_fsblk_t new_blocks[4];
 485        ext2_fsblk_t current_block;
 486
 487        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 488                                *blks, new_blocks, &err);
 489        if (err)
 490                return err;
 491
 492        branch[0].key = cpu_to_le32(new_blocks[0]);
 493        /*
 494         * metadata blocks and data blocks are allocated.
 495         */
 496        for (n = 1; n <= indirect_blks;  n++) {
 497                /*
 498                 * Get buffer_head for parent block, zero it out
 499                 * and set the pointer to new one, then send
 500                 * parent to disk.
 501                 */
 502                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 503                if (unlikely(!bh)) {
 504                        err = -ENOMEM;
 505                        goto failed;
 506                }
 507                branch[n].bh = bh;
 508                lock_buffer(bh);
 509                memset(bh->b_data, 0, blocksize);
 510                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 511                branch[n].key = cpu_to_le32(new_blocks[n]);
 512                *branch[n].p = branch[n].key;
 513                if ( n == indirect_blks) {
 514                        current_block = new_blocks[n];
 515                        /*
 516                         * End of chain, update the last new metablock of
 517                         * the chain to point to the new allocated
 518                         * data blocks numbers
 519                         */
 520                        for (i=1; i < num; i++)
 521                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 522                }
 523                set_buffer_uptodate(bh);
 524                unlock_buffer(bh);
 525                mark_buffer_dirty_inode(bh, inode);
 526                /* We used to sync bh here if IS_SYNC(inode).
 527                 * But we now rely upon generic_write_sync()
 528                 * and b_inode_buffers.  But not for directories.
 529                 */
 530                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 531                        sync_dirty_buffer(bh);
 532        }
 533        *blks = num;
 534        return err;
 535
 536failed:
 537        for (i = 1; i < n; i++)
 538                bforget(branch[i].bh);
 539        for (i = 0; i < indirect_blks; i++)
 540                ext2_free_blocks(inode, new_blocks[i], 1);
 541        ext2_free_blocks(inode, new_blocks[i], num);
 542        return err;
 543}
 544
 545/**
 546 * ext2_splice_branch - splice the allocated branch onto inode.
 547 * @inode: owner
 548 * @block: (logical) number of block we are adding
 549 * @where: location of missing link
 550 * @num:   number of indirect blocks we are adding
 551 * @blks:  number of direct blocks we are adding
 552 *
 553 * This function fills the missing link and does all housekeeping needed in
 554 * inode (->i_blocks, etc.). In case of success we end up with the full
 555 * chain to new block and return 0.
 556 */
 557static void ext2_splice_branch(struct inode *inode,
 558                        long block, Indirect *where, int num, int blks)
 559{
 560        int i;
 561        struct ext2_block_alloc_info *block_i;
 562        ext2_fsblk_t current_block;
 563
 564        block_i = EXT2_I(inode)->i_block_alloc_info;
 565
 566        /* XXX LOCKING probably should have i_meta_lock ?*/
 567        /* That's it */
 568
 569        *where->p = where->key;
 570
 571        /*
 572         * Update the host buffer_head or inode to point to more just allocated
 573         * direct blocks blocks
 574         */
 575        if (num == 0 && blks > 1) {
 576                current_block = le32_to_cpu(where->key) + 1;
 577                for (i = 1; i < blks; i++)
 578                        *(where->p + i ) = cpu_to_le32(current_block++);
 579        }
 580
 581        /*
 582         * update the most recently allocated logical & physical block
 583         * in i_block_alloc_info, to assist find the proper goal block for next
 584         * allocation
 585         */
 586        if (block_i) {
 587                block_i->last_alloc_logical_block = block + blks - 1;
 588                block_i->last_alloc_physical_block =
 589                                le32_to_cpu(where[num].key) + blks - 1;
 590        }
 591
 592        /* We are done with atomic stuff, now do the rest of housekeeping */
 593
 594        /* had we spliced it onto indirect block? */
 595        if (where->bh)
 596                mark_buffer_dirty_inode(where->bh, inode);
 597
 598        inode->i_ctime = current_time(inode);
 599        mark_inode_dirty(inode);
 600}
 601
 602/*
 603 * Allocation strategy is simple: if we have to allocate something, we will
 604 * have to go the whole way to leaf. So let's do it before attaching anything
 605 * to tree, set linkage between the newborn blocks, write them if sync is
 606 * required, recheck the path, free and repeat if check fails, otherwise
 607 * set the last missing link (that will protect us from any truncate-generated
 608 * removals - all blocks on the path are immune now) and possibly force the
 609 * write on the parent block.
 610 * That has a nice additional property: no special recovery from the failed
 611 * allocations is needed - we simply release blocks and do not touch anything
 612 * reachable from inode.
 613 *
 614 * `handle' can be NULL if create == 0.
 615 *
 616 * return > 0, # of blocks mapped or allocated.
 617 * return = 0, if plain lookup failed.
 618 * return < 0, error case.
 619 */
 620static int ext2_get_blocks(struct inode *inode,
 621                           sector_t iblock, unsigned long maxblocks,
 622                           u32 *bno, bool *new, bool *boundary,
 623                           int create)
 624{
 625        int err;
 626        int offsets[4];
 627        Indirect chain[4];
 628        Indirect *partial;
 629        ext2_fsblk_t goal;
 630        int indirect_blks;
 631        int blocks_to_boundary = 0;
 632        int depth;
 633        struct ext2_inode_info *ei = EXT2_I(inode);
 634        int count = 0;
 635        ext2_fsblk_t first_block = 0;
 636
 637        BUG_ON(maxblocks == 0);
 638
 639        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 640
 641        if (depth == 0)
 642                return -EIO;
 643
 644        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 645        /* Simplest case - block found, no allocation needed */
 646        if (!partial) {
 647                first_block = le32_to_cpu(chain[depth - 1].key);
 648                count++;
 649                /*map more blocks*/
 650                while (count < maxblocks && count <= blocks_to_boundary) {
 651                        ext2_fsblk_t blk;
 652
 653                        if (!verify_chain(chain, chain + depth - 1)) {
 654                                /*
 655                                 * Indirect block might be removed by
 656                                 * truncate while we were reading it.
 657                                 * Handling of that case: forget what we've
 658                                 * got now, go to reread.
 659                                 */
 660                                err = -EAGAIN;
 661                                count = 0;
 662                                break;
 663                        }
 664                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 665                        if (blk == first_block + count)
 666                                count++;
 667                        else
 668                                break;
 669                }
 670                if (err != -EAGAIN)
 671                        goto got_it;
 672        }
 673
 674        /* Next simple case - plain lookup or failed read of indirect block */
 675        if (!create || err == -EIO)
 676                goto cleanup;
 677
 678        mutex_lock(&ei->truncate_mutex);
 679        /*
 680         * If the indirect block is missing while we are reading
 681         * the chain(ext2_get_branch() returns -EAGAIN err), or
 682         * if the chain has been changed after we grab the semaphore,
 683         * (either because another process truncated this branch, or
 684         * another get_block allocated this branch) re-grab the chain to see if
 685         * the request block has been allocated or not.
 686         *
 687         * Since we already block the truncate/other get_block
 688         * at this point, we will have the current copy of the chain when we
 689         * splice the branch into the tree.
 690         */
 691        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 692                while (partial > chain) {
 693                        brelse(partial->bh);
 694                        partial--;
 695                }
 696                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 697                if (!partial) {
 698                        count++;
 699                        mutex_unlock(&ei->truncate_mutex);
 700                        if (err)
 701                                goto cleanup;
 702                        goto got_it;
 703                }
 704        }
 705
 706        /*
 707         * Okay, we need to do block allocation.  Lazily initialize the block
 708         * allocation info here if necessary
 709        */
 710        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 711                ext2_init_block_alloc_info(inode);
 712
 713        goal = ext2_find_goal(inode, iblock, partial);
 714
 715        /* the number of blocks need to allocate for [d,t]indirect blocks */
 716        indirect_blks = (chain + depth) - partial - 1;
 717        /*
 718         * Next look up the indirect map to count the totoal number of
 719         * direct blocks to allocate for this branch.
 720         */
 721        count = ext2_blks_to_allocate(partial, indirect_blks,
 722                                        maxblocks, blocks_to_boundary);
 723        /*
 724         * XXX ???? Block out ext2_truncate while we alter the tree
 725         */
 726        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 727                                offsets + (partial - chain), partial);
 728
 729        if (err) {
 730                mutex_unlock(&ei->truncate_mutex);
 731                goto cleanup;
 732        }
 733
 734        if (IS_DAX(inode)) {
 735                /*
 736                 * We must unmap blocks before zeroing so that writeback cannot
 737                 * overwrite zeros with stale data from block device page cache.
 738                 */
 739                clean_bdev_aliases(inode->i_sb->s_bdev,
 740                                   le32_to_cpu(chain[depth-1].key),
 741                                   count);
 742                /*
 743                 * block must be initialised before we put it in the tree
 744                 * so that it's not found by another thread before it's
 745                 * initialised
 746                 */
 747                err = sb_issue_zeroout(inode->i_sb,
 748                                le32_to_cpu(chain[depth-1].key), count,
 749                                GFP_NOFS);
 750                if (err) {
 751                        mutex_unlock(&ei->truncate_mutex);
 752                        goto cleanup;
 753                }
 754        }
 755        *new = true;
 756
 757        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 758        mutex_unlock(&ei->truncate_mutex);
 759got_it:
 760        if (count > blocks_to_boundary)
 761                *boundary = true;
 762        err = count;
 763        /* Clean up and exit */
 764        partial = chain + depth - 1;    /* the whole chain */
 765cleanup:
 766        while (partial > chain) {
 767                brelse(partial->bh);
 768                partial--;
 769        }
 770        if (err > 0)
 771                *bno = le32_to_cpu(chain[depth-1].key);
 772        return err;
 773}
 774
 775int ext2_get_block(struct inode *inode, sector_t iblock,
 776                struct buffer_head *bh_result, int create)
 777{
 778        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 779        bool new = false, boundary = false;
 780        u32 bno;
 781        int ret;
 782
 783        ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 784                        create);
 785        if (ret <= 0)
 786                return ret;
 787
 788        map_bh(bh_result, inode->i_sb, bno);
 789        bh_result->b_size = (ret << inode->i_blkbits);
 790        if (new)
 791                set_buffer_new(bh_result);
 792        if (boundary)
 793                set_buffer_boundary(bh_result);
 794        return 0;
 795
 796}
 797
 798#ifdef CONFIG_FS_DAX
 799static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 800                unsigned flags, struct iomap *iomap)
 801{
 802        unsigned int blkbits = inode->i_blkbits;
 803        unsigned long first_block = offset >> blkbits;
 804        unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 805        bool new = false, boundary = false;
 806        u32 bno;
 807        int ret;
 808
 809        ret = ext2_get_blocks(inode, first_block, max_blocks,
 810                        &bno, &new, &boundary, flags & IOMAP_WRITE);
 811        if (ret < 0)
 812                return ret;
 813
 814        iomap->flags = 0;
 815        iomap->bdev = inode->i_sb->s_bdev;
 816        iomap->offset = (u64)first_block << blkbits;
 817
 818        if (ret == 0) {
 819                iomap->type = IOMAP_HOLE;
 820                iomap->blkno = IOMAP_NULL_BLOCK;
 821                iomap->length = 1 << blkbits;
 822        } else {
 823                iomap->type = IOMAP_MAPPED;
 824                iomap->blkno = (sector_t)bno << (blkbits - 9);
 825                iomap->length = (u64)ret << blkbits;
 826                iomap->flags |= IOMAP_F_MERGED;
 827        }
 828
 829        if (new)
 830                iomap->flags |= IOMAP_F_NEW;
 831        return 0;
 832}
 833
 834static int
 835ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 836                ssize_t written, unsigned flags, struct iomap *iomap)
 837{
 838        if (iomap->type == IOMAP_MAPPED &&
 839            written < length &&
 840            (flags & IOMAP_WRITE))
 841                ext2_write_failed(inode->i_mapping, offset + length);
 842        return 0;
 843}
 844
 845const struct iomap_ops ext2_iomap_ops = {
 846        .iomap_begin            = ext2_iomap_begin,
 847        .iomap_end              = ext2_iomap_end,
 848};
 849#else
 850/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
 851const struct iomap_ops ext2_iomap_ops;
 852#endif /* CONFIG_FS_DAX */
 853
 854int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 855                u64 start, u64 len)
 856{
 857        return generic_block_fiemap(inode, fieinfo, start, len,
 858                                    ext2_get_block);
 859}
 860
 861static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 862{
 863        return block_write_full_page(page, ext2_get_block, wbc);
 864}
 865
 866static int ext2_readpage(struct file *file, struct page *page)
 867{
 868        return mpage_readpage(page, ext2_get_block);
 869}
 870
 871static int
 872ext2_readpages(struct file *file, struct address_space *mapping,
 873                struct list_head *pages, unsigned nr_pages)
 874{
 875        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 876}
 877
 878static int
 879ext2_write_begin(struct file *file, struct address_space *mapping,
 880                loff_t pos, unsigned len, unsigned flags,
 881                struct page **pagep, void **fsdata)
 882{
 883        int ret;
 884
 885        ret = block_write_begin(mapping, pos, len, flags, pagep,
 886                                ext2_get_block);
 887        if (ret < 0)
 888                ext2_write_failed(mapping, pos + len);
 889        return ret;
 890}
 891
 892static int ext2_write_end(struct file *file, struct address_space *mapping,
 893                        loff_t pos, unsigned len, unsigned copied,
 894                        struct page *page, void *fsdata)
 895{
 896        int ret;
 897
 898        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 899        if (ret < len)
 900                ext2_write_failed(mapping, pos + len);
 901        return ret;
 902}
 903
 904static int
 905ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 906                loff_t pos, unsigned len, unsigned flags,
 907                struct page **pagep, void **fsdata)
 908{
 909        int ret;
 910
 911        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 912                               ext2_get_block);
 913        if (ret < 0)
 914                ext2_write_failed(mapping, pos + len);
 915        return ret;
 916}
 917
 918static int ext2_nobh_writepage(struct page *page,
 919                        struct writeback_control *wbc)
 920{
 921        return nobh_writepage(page, ext2_get_block, wbc);
 922}
 923
 924static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 925{
 926        return generic_block_bmap(mapping,block,ext2_get_block);
 927}
 928
 929static ssize_t
 930ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 931{
 932        struct file *file = iocb->ki_filp;
 933        struct address_space *mapping = file->f_mapping;
 934        struct inode *inode = mapping->host;
 935        size_t count = iov_iter_count(iter);
 936        loff_t offset = iocb->ki_pos;
 937        ssize_t ret;
 938
 939        if (WARN_ON_ONCE(IS_DAX(inode)))
 940                return -EIO;
 941
 942        ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 943        if (ret < 0 && iov_iter_rw(iter) == WRITE)
 944                ext2_write_failed(mapping, offset + count);
 945        return ret;
 946}
 947
 948static int
 949ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 950{
 951#ifdef CONFIG_FS_DAX
 952        if (dax_mapping(mapping)) {
 953                return dax_writeback_mapping_range(mapping,
 954                                                   mapping->host->i_sb->s_bdev,
 955                                                   wbc);
 956        }
 957#endif
 958
 959        return mpage_writepages(mapping, wbc, ext2_get_block);
 960}
 961
 962const struct address_space_operations ext2_aops = {
 963        .readpage               = ext2_readpage,
 964        .readpages              = ext2_readpages,
 965        .writepage              = ext2_writepage,
 966        .write_begin            = ext2_write_begin,
 967        .write_end              = ext2_write_end,
 968        .bmap                   = ext2_bmap,
 969        .direct_IO              = ext2_direct_IO,
 970        .writepages             = ext2_writepages,
 971        .migratepage            = buffer_migrate_page,
 972        .is_partially_uptodate  = block_is_partially_uptodate,
 973        .error_remove_page      = generic_error_remove_page,
 974};
 975
 976const struct address_space_operations ext2_nobh_aops = {
 977        .readpage               = ext2_readpage,
 978        .readpages              = ext2_readpages,
 979        .writepage              = ext2_nobh_writepage,
 980        .write_begin            = ext2_nobh_write_begin,
 981        .write_end              = nobh_write_end,
 982        .bmap                   = ext2_bmap,
 983        .direct_IO              = ext2_direct_IO,
 984        .writepages             = ext2_writepages,
 985        .migratepage            = buffer_migrate_page,
 986        .error_remove_page      = generic_error_remove_page,
 987};
 988
 989/*
 990 * Probably it should be a library function... search for first non-zero word
 991 * or memcmp with zero_page, whatever is better for particular architecture.
 992 * Linus?
 993 */
 994static inline int all_zeroes(__le32 *p, __le32 *q)
 995{
 996        while (p < q)
 997                if (*p++)
 998                        return 0;
 999        return 1;
1000}
1001
1002/**
1003 *      ext2_find_shared - find the indirect blocks for partial truncation.
1004 *      @inode:   inode in question
1005 *      @depth:   depth of the affected branch
1006 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1007 *      @chain:   place to store the pointers to partial indirect blocks
1008 *      @top:     place to the (detached) top of branch
1009 *
1010 *      This is a helper function used by ext2_truncate().
1011 *
1012 *      When we do truncate() we may have to clean the ends of several indirect
1013 *      blocks but leave the blocks themselves alive. Block is partially
1014 *      truncated if some data below the new i_size is referred from it (and
1015 *      it is on the path to the first completely truncated data block, indeed).
1016 *      We have to free the top of that path along with everything to the right
1017 *      of the path. Since no allocation past the truncation point is possible
1018 *      until ext2_truncate() finishes, we may safely do the latter, but top
1019 *      of branch may require special attention - pageout below the truncation
1020 *      point might try to populate it.
1021 *
1022 *      We atomically detach the top of branch from the tree, store the block
1023 *      number of its root in *@top, pointers to buffer_heads of partially
1024 *      truncated blocks - in @chain[].bh and pointers to their last elements
1025 *      that should not be removed - in @chain[].p. Return value is the pointer
1026 *      to last filled element of @chain.
1027 *
1028 *      The work left to caller to do the actual freeing of subtrees:
1029 *              a) free the subtree starting from *@top
1030 *              b) free the subtrees whose roots are stored in
1031 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1032 *              c) free the subtrees growing from the inode past the @chain[0].p
1033 *                      (no partially truncated stuff there).
1034 */
1035
1036static Indirect *ext2_find_shared(struct inode *inode,
1037                                int depth,
1038                                int offsets[4],
1039                                Indirect chain[4],
1040                                __le32 *top)
1041{
1042        Indirect *partial, *p;
1043        int k, err;
1044
1045        *top = 0;
1046        for (k = depth; k > 1 && !offsets[k-1]; k--)
1047                ;
1048        partial = ext2_get_branch(inode, k, offsets, chain, &err);
1049        if (!partial)
1050                partial = chain + k-1;
1051        /*
1052         * If the branch acquired continuation since we've looked at it -
1053         * fine, it should all survive and (new) top doesn't belong to us.
1054         */
1055        write_lock(&EXT2_I(inode)->i_meta_lock);
1056        if (!partial->key && *partial->p) {
1057                write_unlock(&EXT2_I(inode)->i_meta_lock);
1058                goto no_top;
1059        }
1060        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1061                ;
1062        /*
1063         * OK, we've found the last block that must survive. The rest of our
1064         * branch should be detached before unlocking. However, if that rest
1065         * of branch is all ours and does not grow immediately from the inode
1066         * it's easier to cheat and just decrement partial->p.
1067         */
1068        if (p == chain + k - 1 && p > chain) {
1069                p->p--;
1070        } else {
1071                *top = *p->p;
1072                *p->p = 0;
1073        }
1074        write_unlock(&EXT2_I(inode)->i_meta_lock);
1075
1076        while(partial > p)
1077        {
1078                brelse(partial->bh);
1079                partial--;
1080        }
1081no_top:
1082        return partial;
1083}
1084
1085/**
1086 *      ext2_free_data - free a list of data blocks
1087 *      @inode: inode we are dealing with
1088 *      @p:     array of block numbers
1089 *      @q:     points immediately past the end of array
1090 *
1091 *      We are freeing all blocks referred from that array (numbers are
1092 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1093 *      appropriately.
1094 */
1095static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1096{
1097        unsigned long block_to_free = 0, count = 0;
1098        unsigned long nr;
1099
1100        for ( ; p < q ; p++) {
1101                nr = le32_to_cpu(*p);
1102                if (nr) {
1103                        *p = 0;
1104                        /* accumulate blocks to free if they're contiguous */
1105                        if (count == 0)
1106                                goto free_this;
1107                        else if (block_to_free == nr - count)
1108                                count++;
1109                        else {
1110                                ext2_free_blocks (inode, block_to_free, count);
1111                                mark_inode_dirty(inode);
1112                        free_this:
1113                                block_to_free = nr;
1114                                count = 1;
1115                        }
1116                }
1117        }
1118        if (count > 0) {
1119                ext2_free_blocks (inode, block_to_free, count);
1120                mark_inode_dirty(inode);
1121        }
1122}
1123
1124/**
1125 *      ext2_free_branches - free an array of branches
1126 *      @inode: inode we are dealing with
1127 *      @p:     array of block numbers
1128 *      @q:     pointer immediately past the end of array
1129 *      @depth: depth of the branches to free
1130 *
1131 *      We are freeing all blocks referred from these branches (numbers are
1132 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1133 *      appropriately.
1134 */
1135static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1136{
1137        struct buffer_head * bh;
1138        unsigned long nr;
1139
1140        if (depth--) {
1141                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1142                for ( ; p < q ; p++) {
1143                        nr = le32_to_cpu(*p);
1144                        if (!nr)
1145                                continue;
1146                        *p = 0;
1147                        bh = sb_bread(inode->i_sb, nr);
1148                        /*
1149                         * A read failure? Report error and clear slot
1150                         * (should be rare).
1151                         */ 
1152                        if (!bh) {
1153                                ext2_error(inode->i_sb, "ext2_free_branches",
1154                                        "Read failure, inode=%ld, block=%ld",
1155                                        inode->i_ino, nr);
1156                                continue;
1157                        }
1158                        ext2_free_branches(inode,
1159                                           (__le32*)bh->b_data,
1160                                           (__le32*)bh->b_data + addr_per_block,
1161                                           depth);
1162                        bforget(bh);
1163                        ext2_free_blocks(inode, nr, 1);
1164                        mark_inode_dirty(inode);
1165                }
1166        } else
1167                ext2_free_data(inode, p, q);
1168}
1169
1170/* dax_sem must be held when calling this function */
1171static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1172{
1173        __le32 *i_data = EXT2_I(inode)->i_data;
1174        struct ext2_inode_info *ei = EXT2_I(inode);
1175        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1176        int offsets[4];
1177        Indirect chain[4];
1178        Indirect *partial;
1179        __le32 nr = 0;
1180        int n;
1181        long iblock;
1182        unsigned blocksize;
1183        blocksize = inode->i_sb->s_blocksize;
1184        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1185
1186#ifdef CONFIG_FS_DAX
1187        WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1188#endif
1189
1190        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1191        if (n == 0)
1192                return;
1193
1194        /*
1195         * From here we block out all ext2_get_block() callers who want to
1196         * modify the block allocation tree.
1197         */
1198        mutex_lock(&ei->truncate_mutex);
1199
1200        if (n == 1) {
1201                ext2_free_data(inode, i_data+offsets[0],
1202                                        i_data + EXT2_NDIR_BLOCKS);
1203                goto do_indirects;
1204        }
1205
1206        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1207        /* Kill the top of shared branch (already detached) */
1208        if (nr) {
1209                if (partial == chain)
1210                        mark_inode_dirty(inode);
1211                else
1212                        mark_buffer_dirty_inode(partial->bh, inode);
1213                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1214        }
1215        /* Clear the ends of indirect blocks on the shared branch */
1216        while (partial > chain) {
1217                ext2_free_branches(inode,
1218                                   partial->p + 1,
1219                                   (__le32*)partial->bh->b_data+addr_per_block,
1220                                   (chain+n-1) - partial);
1221                mark_buffer_dirty_inode(partial->bh, inode);
1222                brelse (partial->bh);
1223                partial--;
1224        }
1225do_indirects:
1226        /* Kill the remaining (whole) subtrees */
1227        switch (offsets[0]) {
1228                default:
1229                        nr = i_data[EXT2_IND_BLOCK];
1230                        if (nr) {
1231                                i_data[EXT2_IND_BLOCK] = 0;
1232                                mark_inode_dirty(inode);
1233                                ext2_free_branches(inode, &nr, &nr+1, 1);
1234                        }
1235                case EXT2_IND_BLOCK:
1236                        nr = i_data[EXT2_DIND_BLOCK];
1237                        if (nr) {
1238                                i_data[EXT2_DIND_BLOCK] = 0;
1239                                mark_inode_dirty(inode);
1240                                ext2_free_branches(inode, &nr, &nr+1, 2);
1241                        }
1242                case EXT2_DIND_BLOCK:
1243                        nr = i_data[EXT2_TIND_BLOCK];
1244                        if (nr) {
1245                                i_data[EXT2_TIND_BLOCK] = 0;
1246                                mark_inode_dirty(inode);
1247                                ext2_free_branches(inode, &nr, &nr+1, 3);
1248                        }
1249                case EXT2_TIND_BLOCK:
1250                        ;
1251        }
1252
1253        ext2_discard_reservation(inode);
1254
1255        mutex_unlock(&ei->truncate_mutex);
1256}
1257
1258static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1259{
1260        /*
1261         * XXX: it seems like a bug here that we don't allow
1262         * IS_APPEND inode to have blocks-past-i_size trimmed off.
1263         * review and fix this.
1264         *
1265         * Also would be nice to be able to handle IO errors and such,
1266         * but that's probably too much to ask.
1267         */
1268        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1269            S_ISLNK(inode->i_mode)))
1270                return;
1271        if (ext2_inode_is_fast_symlink(inode))
1272                return;
1273        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1274                return;
1275
1276        dax_sem_down_write(EXT2_I(inode));
1277        __ext2_truncate_blocks(inode, offset);
1278        dax_sem_up_write(EXT2_I(inode));
1279}
1280
1281static int ext2_setsize(struct inode *inode, loff_t newsize)
1282{
1283        int error;
1284
1285        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1286            S_ISLNK(inode->i_mode)))
1287                return -EINVAL;
1288        if (ext2_inode_is_fast_symlink(inode))
1289                return -EINVAL;
1290        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1291                return -EPERM;
1292
1293        inode_dio_wait(inode);
1294
1295        if (IS_DAX(inode)) {
1296                error = iomap_zero_range(inode, newsize,
1297                                         PAGE_ALIGN(newsize) - newsize, NULL,
1298                                         &ext2_iomap_ops);
1299        } else if (test_opt(inode->i_sb, NOBH))
1300                error = nobh_truncate_page(inode->i_mapping,
1301                                newsize, ext2_get_block);
1302        else
1303                error = block_truncate_page(inode->i_mapping,
1304                                newsize, ext2_get_block);
1305        if (error)
1306                return error;
1307
1308        dax_sem_down_write(EXT2_I(inode));
1309        truncate_setsize(inode, newsize);
1310        __ext2_truncate_blocks(inode, newsize);
1311        dax_sem_up_write(EXT2_I(inode));
1312
1313        inode->i_mtime = inode->i_ctime = current_time(inode);
1314        if (inode_needs_sync(inode)) {
1315                sync_mapping_buffers(inode->i_mapping);
1316                sync_inode_metadata(inode, 1);
1317        } else {
1318                mark_inode_dirty(inode);
1319        }
1320
1321        return 0;
1322}
1323
1324static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1325                                        struct buffer_head **p)
1326{
1327        struct buffer_head * bh;
1328        unsigned long block_group;
1329        unsigned long block;
1330        unsigned long offset;
1331        struct ext2_group_desc * gdp;
1332
1333        *p = NULL;
1334        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1335            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1336                goto Einval;
1337
1338        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1339        gdp = ext2_get_group_desc(sb, block_group, NULL);
1340        if (!gdp)
1341                goto Egdp;
1342        /*
1343         * Figure out the offset within the block group inode table
1344         */
1345        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1346        block = le32_to_cpu(gdp->bg_inode_table) +
1347                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1348        if (!(bh = sb_bread(sb, block)))
1349                goto Eio;
1350
1351        *p = bh;
1352        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1353        return (struct ext2_inode *) (bh->b_data + offset);
1354
1355Einval:
1356        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1357                   (unsigned long) ino);
1358        return ERR_PTR(-EINVAL);
1359Eio:
1360        ext2_error(sb, "ext2_get_inode",
1361                   "unable to read inode block - inode=%lu, block=%lu",
1362                   (unsigned long) ino, block);
1363Egdp:
1364        return ERR_PTR(-EIO);
1365}
1366
1367void ext2_set_inode_flags(struct inode *inode)
1368{
1369        unsigned int flags = EXT2_I(inode)->i_flags;
1370
1371        inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1372                                S_DIRSYNC | S_DAX);
1373        if (flags & EXT2_SYNC_FL)
1374                inode->i_flags |= S_SYNC;
1375        if (flags & EXT2_APPEND_FL)
1376                inode->i_flags |= S_APPEND;
1377        if (flags & EXT2_IMMUTABLE_FL)
1378                inode->i_flags |= S_IMMUTABLE;
1379        if (flags & EXT2_NOATIME_FL)
1380                inode->i_flags |= S_NOATIME;
1381        if (flags & EXT2_DIRSYNC_FL)
1382                inode->i_flags |= S_DIRSYNC;
1383        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1384                inode->i_flags |= S_DAX;
1385}
1386
1387/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1388void ext2_get_inode_flags(struct ext2_inode_info *ei)
1389{
1390        unsigned int flags = ei->vfs_inode.i_flags;
1391
1392        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1393                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1394        if (flags & S_SYNC)
1395                ei->i_flags |= EXT2_SYNC_FL;
1396        if (flags & S_APPEND)
1397                ei->i_flags |= EXT2_APPEND_FL;
1398        if (flags & S_IMMUTABLE)
1399                ei->i_flags |= EXT2_IMMUTABLE_FL;
1400        if (flags & S_NOATIME)
1401                ei->i_flags |= EXT2_NOATIME_FL;
1402        if (flags & S_DIRSYNC)
1403                ei->i_flags |= EXT2_DIRSYNC_FL;
1404}
1405
1406struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1407{
1408        struct ext2_inode_info *ei;
1409        struct buffer_head * bh;
1410        struct ext2_inode *raw_inode;
1411        struct inode *inode;
1412        long ret = -EIO;
1413        int n;
1414        uid_t i_uid;
1415        gid_t i_gid;
1416
1417        inode = iget_locked(sb, ino);
1418        if (!inode)
1419                return ERR_PTR(-ENOMEM);
1420        if (!(inode->i_state & I_NEW))
1421                return inode;
1422
1423        ei = EXT2_I(inode);
1424        ei->i_block_alloc_info = NULL;
1425
1426        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1427        if (IS_ERR(raw_inode)) {
1428                ret = PTR_ERR(raw_inode);
1429                goto bad_inode;
1430        }
1431
1432        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1433        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1434        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1435        if (!(test_opt (inode->i_sb, NO_UID32))) {
1436                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1437                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1438        }
1439        i_uid_write(inode, i_uid);
1440        i_gid_write(inode, i_gid);
1441        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1442        inode->i_size = le32_to_cpu(raw_inode->i_size);
1443        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1444        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1445        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1446        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1447        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1448        /* We now have enough fields to check if the inode was active or not.
1449         * This is needed because nfsd might try to access dead inodes
1450         * the test is that same one that e2fsck uses
1451         * NeilBrown 1999oct15
1452         */
1453        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1454                /* this inode is deleted */
1455                brelse (bh);
1456                ret = -ESTALE;
1457                goto bad_inode;
1458        }
1459        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1460        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1461        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1462        ei->i_frag_no = raw_inode->i_frag;
1463        ei->i_frag_size = raw_inode->i_fsize;
1464        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1465        ei->i_dir_acl = 0;
1466
1467        if (ei->i_file_acl &&
1468            !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1469                ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1470                           ei->i_file_acl);
1471                brelse(bh);
1472                ret = -EFSCORRUPTED;
1473                goto bad_inode;
1474        }
1475
1476        if (S_ISREG(inode->i_mode))
1477                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1478        else
1479                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1480        if (i_size_read(inode) < 0) {
1481                ret = -EFSCORRUPTED;
1482                goto bad_inode;
1483        }
1484        ei->i_dtime = 0;
1485        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1486        ei->i_state = 0;
1487        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1488        ei->i_dir_start_lookup = 0;
1489
1490        /*
1491         * NOTE! The in-memory inode i_data array is in little-endian order
1492         * even on big-endian machines: we do NOT byteswap the block numbers!
1493         */
1494        for (n = 0; n < EXT2_N_BLOCKS; n++)
1495                ei->i_data[n] = raw_inode->i_block[n];
1496
1497        if (S_ISREG(inode->i_mode)) {
1498                inode->i_op = &ext2_file_inode_operations;
1499                if (test_opt(inode->i_sb, NOBH)) {
1500                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1501                        inode->i_fop = &ext2_file_operations;
1502                } else {
1503                        inode->i_mapping->a_ops = &ext2_aops;
1504                        inode->i_fop = &ext2_file_operations;
1505                }
1506        } else if (S_ISDIR(inode->i_mode)) {
1507                inode->i_op = &ext2_dir_inode_operations;
1508                inode->i_fop = &ext2_dir_operations;
1509                if (test_opt(inode->i_sb, NOBH))
1510                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1511                else
1512                        inode->i_mapping->a_ops = &ext2_aops;
1513        } else if (S_ISLNK(inode->i_mode)) {
1514                if (ext2_inode_is_fast_symlink(inode)) {
1515                        inode->i_link = (char *)ei->i_data;
1516                        inode->i_op = &ext2_fast_symlink_inode_operations;
1517                        nd_terminate_link(ei->i_data, inode->i_size,
1518                                sizeof(ei->i_data) - 1);
1519                } else {
1520                        inode->i_op = &ext2_symlink_inode_operations;
1521                        inode_nohighmem(inode);
1522                        if (test_opt(inode->i_sb, NOBH))
1523                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1524                        else
1525                                inode->i_mapping->a_ops = &ext2_aops;
1526                }
1527        } else {
1528                inode->i_op = &ext2_special_inode_operations;
1529                if (raw_inode->i_block[0])
1530                        init_special_inode(inode, inode->i_mode,
1531                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1532                else 
1533                        init_special_inode(inode, inode->i_mode,
1534                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1535        }
1536        brelse (bh);
1537        ext2_set_inode_flags(inode);
1538        unlock_new_inode(inode);
1539        return inode;
1540        
1541bad_inode:
1542        iget_failed(inode);
1543        return ERR_PTR(ret);
1544}
1545
1546static int __ext2_write_inode(struct inode *inode, int do_sync)
1547{
1548        struct ext2_inode_info *ei = EXT2_I(inode);
1549        struct super_block *sb = inode->i_sb;
1550        ino_t ino = inode->i_ino;
1551        uid_t uid = i_uid_read(inode);
1552        gid_t gid = i_gid_read(inode);
1553        struct buffer_head * bh;
1554        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1555        int n;
1556        int err = 0;
1557
1558        if (IS_ERR(raw_inode))
1559                return -EIO;
1560
1561        /* For fields not not tracking in the in-memory inode,
1562         * initialise them to zero for new inodes. */
1563        if (ei->i_state & EXT2_STATE_NEW)
1564                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1565
1566        ext2_get_inode_flags(ei);
1567        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1568        if (!(test_opt(sb, NO_UID32))) {
1569                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1570                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1571/*
1572 * Fix up interoperability with old kernels. Otherwise, old inodes get
1573 * re-used with the upper 16 bits of the uid/gid intact
1574 */
1575                if (!ei->i_dtime) {
1576                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1577                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1578                } else {
1579                        raw_inode->i_uid_high = 0;
1580                        raw_inode->i_gid_high = 0;
1581                }
1582        } else {
1583                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1584                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1585                raw_inode->i_uid_high = 0;
1586                raw_inode->i_gid_high = 0;
1587        }
1588        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1589        raw_inode->i_size = cpu_to_le32(inode->i_size);
1590        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1591        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1592        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1593
1594        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1595        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1596        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1597        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1598        raw_inode->i_frag = ei->i_frag_no;
1599        raw_inode->i_fsize = ei->i_frag_size;
1600        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1601        if (!S_ISREG(inode->i_mode))
1602                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1603        else {
1604                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1605                if (inode->i_size > 0x7fffffffULL) {
1606                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1607                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1608                            EXT2_SB(sb)->s_es->s_rev_level ==
1609                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1610                               /* If this is the first large file
1611                                * created, add a flag to the superblock.
1612                                */
1613                                spin_lock(&EXT2_SB(sb)->s_lock);
1614                                ext2_update_dynamic_rev(sb);
1615                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1616                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1617                                spin_unlock(&EXT2_SB(sb)->s_lock);
1618                                ext2_write_super(sb);
1619                        }
1620                }
1621        }
1622        
1623        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1624        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1625                if (old_valid_dev(inode->i_rdev)) {
1626                        raw_inode->i_block[0] =
1627                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1628                        raw_inode->i_block[1] = 0;
1629                } else {
1630                        raw_inode->i_block[0] = 0;
1631                        raw_inode->i_block[1] =
1632                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1633                        raw_inode->i_block[2] = 0;
1634                }
1635        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1636                raw_inode->i_block[n] = ei->i_data[n];
1637        mark_buffer_dirty(bh);
1638        if (do_sync) {
1639                sync_dirty_buffer(bh);
1640                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1641                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1642                                sb->s_id, (unsigned long) ino);
1643                        err = -EIO;
1644                }
1645        }
1646        ei->i_state &= ~EXT2_STATE_NEW;
1647        brelse (bh);
1648        return err;
1649}
1650
1651int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1652{
1653        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1654}
1655
1656int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1657{
1658        struct inode *inode = d_inode(dentry);
1659        int error;
1660
1661        error = setattr_prepare(dentry, iattr);
1662        if (error)
1663                return error;
1664
1665        if (is_quota_modification(inode, iattr)) {
1666                error = dquot_initialize(inode);
1667                if (error)
1668                        return error;
1669        }
1670        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1671            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1672                error = dquot_transfer(inode, iattr);
1673                if (error)
1674                        return error;
1675        }
1676        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1677                error = ext2_setsize(inode, iattr->ia_size);
1678                if (error)
1679                        return error;
1680        }
1681        setattr_copy(inode, iattr);
1682        if (iattr->ia_valid & ATTR_MODE)
1683                error = posix_acl_chmod(inode, inode->i_mode);
1684        mark_inode_dirty(inode);
1685
1686        return error;
1687}
1688