linux/fs/sync.c
<<
>>
Prefs
   1/*
   2 * High-level sync()-related operations
   3 */
   4
   5#include <linux/kernel.h>
   6#include <linux/file.h>
   7#include <linux/fs.h>
   8#include <linux/slab.h>
   9#include <linux/export.h>
  10#include <linux/namei.h>
  11#include <linux/sched.h>
  12#include <linux/writeback.h>
  13#include <linux/syscalls.h>
  14#include <linux/linkage.h>
  15#include <linux/pagemap.h>
  16#include <linux/quotaops.h>
  17#include <linux/backing-dev.h>
  18#include "internal.h"
  19
  20#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
  21                        SYNC_FILE_RANGE_WAIT_AFTER)
  22
  23/*
  24 * Do the filesystem syncing work. For simple filesystems
  25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
  26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
  27 * wait == 1 case since in that case write_inode() functions do
  28 * sync_dirty_buffer() and thus effectively write one block at a time.
  29 */
  30static int __sync_filesystem(struct super_block *sb, int wait)
  31{
  32        if (wait)
  33                sync_inodes_sb(sb);
  34        else
  35                writeback_inodes_sb(sb, WB_REASON_SYNC);
  36
  37        if (sb->s_op->sync_fs)
  38                sb->s_op->sync_fs(sb, wait);
  39        return __sync_blockdev(sb->s_bdev, wait);
  40}
  41
  42/*
  43 * Write out and wait upon all dirty data associated with this
  44 * superblock.  Filesystem data as well as the underlying block
  45 * device.  Takes the superblock lock.
  46 */
  47int sync_filesystem(struct super_block *sb)
  48{
  49        int ret;
  50
  51        /*
  52         * We need to be protected against the filesystem going from
  53         * r/o to r/w or vice versa.
  54         */
  55        WARN_ON(!rwsem_is_locked(&sb->s_umount));
  56
  57        /*
  58         * No point in syncing out anything if the filesystem is read-only.
  59         */
  60        if (sb->s_flags & MS_RDONLY)
  61                return 0;
  62
  63        ret = __sync_filesystem(sb, 0);
  64        if (ret < 0)
  65                return ret;
  66        return __sync_filesystem(sb, 1);
  67}
  68EXPORT_SYMBOL(sync_filesystem);
  69
  70static void sync_inodes_one_sb(struct super_block *sb, void *arg)
  71{
  72        if (!(sb->s_flags & MS_RDONLY))
  73                sync_inodes_sb(sb);
  74}
  75
  76static void sync_fs_one_sb(struct super_block *sb, void *arg)
  77{
  78        if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
  79                sb->s_op->sync_fs(sb, *(int *)arg);
  80}
  81
  82static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
  83{
  84        filemap_fdatawrite(bdev->bd_inode->i_mapping);
  85}
  86
  87static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
  88{
  89        /*
  90         * We keep the error status of individual mapping so that
  91         * applications can catch the writeback error using fsync(2).
  92         * See filemap_fdatawait_keep_errors() for details.
  93         */
  94        filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
  95}
  96
  97/*
  98 * Sync everything. We start by waking flusher threads so that most of
  99 * writeback runs on all devices in parallel. Then we sync all inodes reliably
 100 * which effectively also waits for all flusher threads to finish doing
 101 * writeback. At this point all data is on disk so metadata should be stable
 102 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
 103 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
 104 * just write metadata (such as inodes or bitmaps) to block device page cache
 105 * and do not sync it on their own in ->sync_fs().
 106 */
 107SYSCALL_DEFINE0(sync)
 108{
 109        int nowait = 0, wait = 1;
 110
 111        wakeup_flusher_threads(0, WB_REASON_SYNC);
 112        iterate_supers(sync_inodes_one_sb, NULL);
 113        iterate_supers(sync_fs_one_sb, &nowait);
 114        iterate_supers(sync_fs_one_sb, &wait);
 115        iterate_bdevs(fdatawrite_one_bdev, NULL);
 116        iterate_bdevs(fdatawait_one_bdev, NULL);
 117        if (unlikely(laptop_mode))
 118                laptop_sync_completion();
 119        return 0;
 120}
 121
 122static void do_sync_work(struct work_struct *work)
 123{
 124        int nowait = 0;
 125
 126        /*
 127         * Sync twice to reduce the possibility we skipped some inodes / pages
 128         * because they were temporarily locked
 129         */
 130        iterate_supers(sync_inodes_one_sb, &nowait);
 131        iterate_supers(sync_fs_one_sb, &nowait);
 132        iterate_bdevs(fdatawrite_one_bdev, NULL);
 133        iterate_supers(sync_inodes_one_sb, &nowait);
 134        iterate_supers(sync_fs_one_sb, &nowait);
 135        iterate_bdevs(fdatawrite_one_bdev, NULL);
 136        printk("Emergency Sync complete\n");
 137        kfree(work);
 138}
 139
 140void emergency_sync(void)
 141{
 142        struct work_struct *work;
 143
 144        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 145        if (work) {
 146                INIT_WORK(work, do_sync_work);
 147                schedule_work(work);
 148        }
 149}
 150
 151/*
 152 * sync a single super
 153 */
 154SYSCALL_DEFINE1(syncfs, int, fd)
 155{
 156        struct fd f = fdget(fd);
 157        struct super_block *sb;
 158        int ret;
 159
 160        if (!f.file)
 161                return -EBADF;
 162        sb = f.file->f_path.dentry->d_sb;
 163
 164        down_read(&sb->s_umount);
 165        ret = sync_filesystem(sb);
 166        up_read(&sb->s_umount);
 167
 168        fdput(f);
 169        return ret;
 170}
 171
 172/**
 173 * vfs_fsync_range - helper to sync a range of data & metadata to disk
 174 * @file:               file to sync
 175 * @start:              offset in bytes of the beginning of data range to sync
 176 * @end:                offset in bytes of the end of data range (inclusive)
 177 * @datasync:           perform only datasync
 178 *
 179 * Write back data in range @start..@end and metadata for @file to disk.  If
 180 * @datasync is set only metadata needed to access modified file data is
 181 * written.
 182 */
 183int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
 184{
 185        struct inode *inode = file->f_mapping->host;
 186
 187        if (!file->f_op->fsync)
 188                return -EINVAL;
 189        if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
 190                spin_lock(&inode->i_lock);
 191                inode->i_state &= ~I_DIRTY_TIME;
 192                spin_unlock(&inode->i_lock);
 193                mark_inode_dirty_sync(inode);
 194        }
 195        return call_fsync(file, start, end, datasync);
 196}
 197EXPORT_SYMBOL(vfs_fsync_range);
 198
 199/**
 200 * vfs_fsync - perform a fsync or fdatasync on a file
 201 * @file:               file to sync
 202 * @datasync:           only perform a fdatasync operation
 203 *
 204 * Write back data and metadata for @file to disk.  If @datasync is
 205 * set only metadata needed to access modified file data is written.
 206 */
 207int vfs_fsync(struct file *file, int datasync)
 208{
 209        return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
 210}
 211EXPORT_SYMBOL(vfs_fsync);
 212
 213static int do_fsync(unsigned int fd, int datasync)
 214{
 215        struct fd f = fdget(fd);
 216        int ret = -EBADF;
 217
 218        if (f.file) {
 219                ret = vfs_fsync(f.file, datasync);
 220                fdput(f);
 221        }
 222        return ret;
 223}
 224
 225SYSCALL_DEFINE1(fsync, unsigned int, fd)
 226{
 227        return do_fsync(fd, 0);
 228}
 229
 230SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
 231{
 232        return do_fsync(fd, 1);
 233}
 234
 235/*
 236 * sys_sync_file_range() permits finely controlled syncing over a segment of
 237 * a file in the range offset .. (offset+nbytes-1) inclusive.  If nbytes is
 238 * zero then sys_sync_file_range() will operate from offset out to EOF.
 239 *
 240 * The flag bits are:
 241 *
 242 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
 243 * before performing the write.
 244 *
 245 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
 246 * range which are not presently under writeback. Note that this may block for
 247 * significant periods due to exhaustion of disk request structures.
 248 *
 249 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
 250 * after performing the write.
 251 *
 252 * Useful combinations of the flag bits are:
 253 *
 254 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
 255 * in the range which were dirty on entry to sys_sync_file_range() are placed
 256 * under writeout.  This is a start-write-for-data-integrity operation.
 257 *
 258 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
 259 * are not presently under writeout.  This is an asynchronous flush-to-disk
 260 * operation.  Not suitable for data integrity operations.
 261 *
 262 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
 263 * completion of writeout of all pages in the range.  This will be used after an
 264 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
 265 * for that operation to complete and to return the result.
 266 *
 267 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
 268 * a traditional sync() operation.  This is a write-for-data-integrity operation
 269 * which will ensure that all pages in the range which were dirty on entry to
 270 * sys_sync_file_range() are committed to disk.
 271 *
 272 *
 273 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
 274 * I/O errors or ENOSPC conditions and will return those to the caller, after
 275 * clearing the EIO and ENOSPC flags in the address_space.
 276 *
 277 * It should be noted that none of these operations write out the file's
 278 * metadata.  So unless the application is strictly performing overwrites of
 279 * already-instantiated disk blocks, there are no guarantees here that the data
 280 * will be available after a crash.
 281 */
 282SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
 283                                unsigned int, flags)
 284{
 285        int ret;
 286        struct fd f;
 287        struct address_space *mapping;
 288        loff_t endbyte;                 /* inclusive */
 289        umode_t i_mode;
 290
 291        ret = -EINVAL;
 292        if (flags & ~VALID_FLAGS)
 293                goto out;
 294
 295        endbyte = offset + nbytes;
 296
 297        if ((s64)offset < 0)
 298                goto out;
 299        if ((s64)endbyte < 0)
 300                goto out;
 301        if (endbyte < offset)
 302                goto out;
 303
 304        if (sizeof(pgoff_t) == 4) {
 305                if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
 306                        /*
 307                         * The range starts outside a 32 bit machine's
 308                         * pagecache addressing capabilities.  Let it "succeed"
 309                         */
 310                        ret = 0;
 311                        goto out;
 312                }
 313                if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
 314                        /*
 315                         * Out to EOF
 316                         */
 317                        nbytes = 0;
 318                }
 319        }
 320
 321        if (nbytes == 0)
 322                endbyte = LLONG_MAX;
 323        else
 324                endbyte--;              /* inclusive */
 325
 326        ret = -EBADF;
 327        f = fdget(fd);
 328        if (!f.file)
 329                goto out;
 330
 331        i_mode = file_inode(f.file)->i_mode;
 332        ret = -ESPIPE;
 333        if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
 334                        !S_ISLNK(i_mode))
 335                goto out_put;
 336
 337        mapping = f.file->f_mapping;
 338        if (!mapping) {
 339                ret = -EINVAL;
 340                goto out_put;
 341        }
 342
 343        ret = 0;
 344        if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
 345                ret = filemap_fdatawait_range(mapping, offset, endbyte);
 346                if (ret < 0)
 347                        goto out_put;
 348        }
 349
 350        if (flags & SYNC_FILE_RANGE_WRITE) {
 351                ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
 352                                                 WB_SYNC_NONE);
 353                if (ret < 0)
 354                        goto out_put;
 355        }
 356
 357        if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
 358                ret = filemap_fdatawait_range(mapping, offset, endbyte);
 359
 360out_put:
 361        fdput(f);
 362out:
 363        return ret;
 364}
 365
 366/* It would be nice if people remember that not all the world's an i386
 367   when they introduce new system calls */
 368SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
 369                                 loff_t, offset, loff_t, nbytes)
 370{
 371        return sys_sync_file_range(fd, offset, nbytes, flags);
 372}
 373