linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 * (C) Linux Foundation 2008-2013
   8 *      Unified interface for all slab allocators
   9 */
  10
  11#ifndef _LINUX_SLAB_H
  12#define _LINUX_SLAB_H
  13
  14#include <linux/gfp.h>
  15#include <linux/types.h>
  16#include <linux/workqueue.h>
  17
  18
  19/*
  20 * Flags to pass to kmem_cache_create().
  21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
  22 */
  23#define SLAB_CONSISTENCY_CHECKS 0x00000100UL    /* DEBUG: Perform (expensive) checks on alloc/free */
  24#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  25#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  26#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  27#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  28#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  29#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  30/*
  31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  32 *
  33 * This delays freeing the SLAB page by a grace period, it does _NOT_
  34 * delay object freeing. This means that if you do kmem_cache_free()
  35 * that memory location is free to be reused at any time. Thus it may
  36 * be possible to see another object there in the same RCU grace period.
  37 *
  38 * This feature only ensures the memory location backing the object
  39 * stays valid, the trick to using this is relying on an independent
  40 * object validation pass. Something like:
  41 *
  42 *  rcu_read_lock()
  43 * again:
  44 *  obj = lockless_lookup(key);
  45 *  if (obj) {
  46 *    if (!try_get_ref(obj)) // might fail for free objects
  47 *      goto again;
  48 *
  49 *    if (obj->key != key) { // not the object we expected
  50 *      put_ref(obj);
  51 *      goto again;
  52 *    }
  53 *  }
  54 *  rcu_read_unlock();
  55 *
  56 * This is useful if we need to approach a kernel structure obliquely,
  57 * from its address obtained without the usual locking. We can lock
  58 * the structure to stabilize it and check it's still at the given address,
  59 * only if we can be sure that the memory has not been meanwhile reused
  60 * for some other kind of object (which our subsystem's lock might corrupt).
  61 *
  62 * rcu_read_lock before reading the address, then rcu_read_unlock after
  63 * taking the spinlock within the structure expected at that address.
  64 */
  65#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  66#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  67#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  68
  69/* Flag to prevent checks on free */
  70#ifdef CONFIG_DEBUG_OBJECTS
  71# define SLAB_DEBUG_OBJECTS     0x00400000UL
  72#else
  73# define SLAB_DEBUG_OBJECTS     0x00000000UL
  74#endif
  75
  76#define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
  77
  78/* Don't track use of uninitialized memory */
  79#ifdef CONFIG_KMEMCHECK
  80# define SLAB_NOTRACK           0x01000000UL
  81#else
  82# define SLAB_NOTRACK           0x00000000UL
  83#endif
  84#ifdef CONFIG_FAILSLAB
  85# define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
  86#else
  87# define SLAB_FAILSLAB          0x00000000UL
  88#endif
  89#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
  90# define SLAB_ACCOUNT           0x04000000UL    /* Account to memcg */
  91#else
  92# define SLAB_ACCOUNT           0x00000000UL
  93#endif
  94
  95#ifdef CONFIG_KASAN
  96#define SLAB_KASAN              0x08000000UL
  97#else
  98#define SLAB_KASAN              0x00000000UL
  99#endif
 100
 101/* The following flags affect the page allocator grouping pages by mobility */
 102#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
 103#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
 104/*
 105 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 106 *
 107 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 108 *
 109 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 110 * Both make kfree a no-op.
 111 */
 112#define ZERO_SIZE_PTR ((void *)16)
 113
 114#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 115                                (unsigned long)ZERO_SIZE_PTR)
 116
 117#include <linux/kmemleak.h>
 118#include <linux/kasan.h>
 119
 120struct mem_cgroup;
 121/*
 122 * struct kmem_cache related prototypes
 123 */
 124void __init kmem_cache_init(void);
 125bool slab_is_available(void);
 126
 127struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
 128                        unsigned long,
 129                        void (*)(void *));
 130void kmem_cache_destroy(struct kmem_cache *);
 131int kmem_cache_shrink(struct kmem_cache *);
 132
 133void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
 134void memcg_deactivate_kmem_caches(struct mem_cgroup *);
 135void memcg_destroy_kmem_caches(struct mem_cgroup *);
 136
 137/*
 138 * Please use this macro to create slab caches. Simply specify the
 139 * name of the structure and maybe some flags that are listed above.
 140 *
 141 * The alignment of the struct determines object alignment. If you
 142 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 143 * then the objects will be properly aligned in SMP configurations.
 144 */
 145#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
 146                sizeof(struct __struct), __alignof__(struct __struct),\
 147                (__flags), NULL)
 148
 149/*
 150 * Common kmalloc functions provided by all allocators
 151 */
 152void * __must_check __krealloc(const void *, size_t, gfp_t);
 153void * __must_check krealloc(const void *, size_t, gfp_t);
 154void kfree(const void *);
 155void kzfree(const void *);
 156size_t ksize(const void *);
 157
 158#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
 159const char *__check_heap_object(const void *ptr, unsigned long n,
 160                                struct page *page);
 161#else
 162static inline const char *__check_heap_object(const void *ptr,
 163                                              unsigned long n,
 164                                              struct page *page)
 165{
 166        return NULL;
 167}
 168#endif
 169
 170/*
 171 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 172 * alignment larger than the alignment of a 64-bit integer.
 173 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 174 */
 175#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 176#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 177#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 178#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 179#else
 180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 181#endif
 182
 183/*
 184 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 185 * Intended for arches that get misalignment faults even for 64 bit integer
 186 * aligned buffers.
 187 */
 188#ifndef ARCH_SLAB_MINALIGN
 189#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 190#endif
 191
 192/*
 193 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 194 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 195 * aligned pointers.
 196 */
 197#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
 198#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
 199#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
 200
 201/*
 202 * Kmalloc array related definitions
 203 */
 204
 205#ifdef CONFIG_SLAB
 206/*
 207 * The largest kmalloc size supported by the SLAB allocators is
 208 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 209 * less than 32 MB.
 210 *
 211 * WARNING: Its not easy to increase this value since the allocators have
 212 * to do various tricks to work around compiler limitations in order to
 213 * ensure proper constant folding.
 214 */
 215#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 216                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 217#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 218#ifndef KMALLOC_SHIFT_LOW
 219#define KMALLOC_SHIFT_LOW       5
 220#endif
 221#endif
 222
 223#ifdef CONFIG_SLUB
 224/*
 225 * SLUB directly allocates requests fitting in to an order-1 page
 226 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 227 */
 228#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 229#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 230#ifndef KMALLOC_SHIFT_LOW
 231#define KMALLOC_SHIFT_LOW       3
 232#endif
 233#endif
 234
 235#ifdef CONFIG_SLOB
 236/*
 237 * SLOB passes all requests larger than one page to the page allocator.
 238 * No kmalloc array is necessary since objects of different sizes can
 239 * be allocated from the same page.
 240 */
 241#define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
 242#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT - 1)
 243#ifndef KMALLOC_SHIFT_LOW
 244#define KMALLOC_SHIFT_LOW       3
 245#endif
 246#endif
 247
 248/* Maximum allocatable size */
 249#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 250/* Maximum size for which we actually use a slab cache */
 251#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 252/* Maximum order allocatable via the slab allocagtor */
 253#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 254
 255/*
 256 * Kmalloc subsystem.
 257 */
 258#ifndef KMALLOC_MIN_SIZE
 259#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 260#endif
 261
 262/*
 263 * This restriction comes from byte sized index implementation.
 264 * Page size is normally 2^12 bytes and, in this case, if we want to use
 265 * byte sized index which can represent 2^8 entries, the size of the object
 266 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 267 * If minimum size of kmalloc is less than 16, we use it as minimum object
 268 * size and give up to use byte sized index.
 269 */
 270#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
 271                               (KMALLOC_MIN_SIZE) : 16)
 272
 273#ifndef CONFIG_SLOB
 274extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 275#ifdef CONFIG_ZONE_DMA
 276extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 277#endif
 278
 279/*
 280 * Figure out which kmalloc slab an allocation of a certain size
 281 * belongs to.
 282 * 0 = zero alloc
 283 * 1 =  65 .. 96 bytes
 284 * 2 = 129 .. 192 bytes
 285 * n = 2^(n-1)+1 .. 2^n
 286 */
 287static __always_inline int kmalloc_index(size_t size)
 288{
 289        if (!size)
 290                return 0;
 291
 292        if (size <= KMALLOC_MIN_SIZE)
 293                return KMALLOC_SHIFT_LOW;
 294
 295        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 296                return 1;
 297        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 298                return 2;
 299        if (size <=          8) return 3;
 300        if (size <=         16) return 4;
 301        if (size <=         32) return 5;
 302        if (size <=         64) return 6;
 303        if (size <=        128) return 7;
 304        if (size <=        256) return 8;
 305        if (size <=        512) return 9;
 306        if (size <=       1024) return 10;
 307        if (size <=   2 * 1024) return 11;
 308        if (size <=   4 * 1024) return 12;
 309        if (size <=   8 * 1024) return 13;
 310        if (size <=  16 * 1024) return 14;
 311        if (size <=  32 * 1024) return 15;
 312        if (size <=  64 * 1024) return 16;
 313        if (size <= 128 * 1024) return 17;
 314        if (size <= 256 * 1024) return 18;
 315        if (size <= 512 * 1024) return 19;
 316        if (size <= 1024 * 1024) return 20;
 317        if (size <=  2 * 1024 * 1024) return 21;
 318        if (size <=  4 * 1024 * 1024) return 22;
 319        if (size <=  8 * 1024 * 1024) return 23;
 320        if (size <=  16 * 1024 * 1024) return 24;
 321        if (size <=  32 * 1024 * 1024) return 25;
 322        if (size <=  64 * 1024 * 1024) return 26;
 323        BUG();
 324
 325        /* Will never be reached. Needed because the compiler may complain */
 326        return -1;
 327}
 328#endif /* !CONFIG_SLOB */
 329
 330void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
 331void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
 332void kmem_cache_free(struct kmem_cache *, void *);
 333
 334/*
 335 * Bulk allocation and freeing operations. These are accelerated in an
 336 * allocator specific way to avoid taking locks repeatedly or building
 337 * metadata structures unnecessarily.
 338 *
 339 * Note that interrupts must be enabled when calling these functions.
 340 */
 341void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 342int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 343
 344/*
 345 * Caller must not use kfree_bulk() on memory not originally allocated
 346 * by kmalloc(), because the SLOB allocator cannot handle this.
 347 */
 348static __always_inline void kfree_bulk(size_t size, void **p)
 349{
 350        kmem_cache_free_bulk(NULL, size, p);
 351}
 352
 353#ifdef CONFIG_NUMA
 354void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
 355void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
 356#else
 357static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 358{
 359        return __kmalloc(size, flags);
 360}
 361
 362static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
 363{
 364        return kmem_cache_alloc(s, flags);
 365}
 366#endif
 367
 368#ifdef CONFIG_TRACING
 369extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
 370
 371#ifdef CONFIG_NUMA
 372extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 373                                           gfp_t gfpflags,
 374                                           int node, size_t size) __assume_slab_alignment __malloc;
 375#else
 376static __always_inline void *
 377kmem_cache_alloc_node_trace(struct kmem_cache *s,
 378                              gfp_t gfpflags,
 379                              int node, size_t size)
 380{
 381        return kmem_cache_alloc_trace(s, gfpflags, size);
 382}
 383#endif /* CONFIG_NUMA */
 384
 385#else /* CONFIG_TRACING */
 386static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
 387                gfp_t flags, size_t size)
 388{
 389        void *ret = kmem_cache_alloc(s, flags);
 390
 391        kasan_kmalloc(s, ret, size, flags);
 392        return ret;
 393}
 394
 395static __always_inline void *
 396kmem_cache_alloc_node_trace(struct kmem_cache *s,
 397                              gfp_t gfpflags,
 398                              int node, size_t size)
 399{
 400        void *ret = kmem_cache_alloc_node(s, gfpflags, node);
 401
 402        kasan_kmalloc(s, ret, size, gfpflags);
 403        return ret;
 404}
 405#endif /* CONFIG_TRACING */
 406
 407extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
 408
 409#ifdef CONFIG_TRACING
 410extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
 411#else
 412static __always_inline void *
 413kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 414{
 415        return kmalloc_order(size, flags, order);
 416}
 417#endif
 418
 419static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
 420{
 421        unsigned int order = get_order(size);
 422        return kmalloc_order_trace(size, flags, order);
 423}
 424
 425/**
 426 * kmalloc - allocate memory
 427 * @size: how many bytes of memory are required.
 428 * @flags: the type of memory to allocate.
 429 *
 430 * kmalloc is the normal method of allocating memory
 431 * for objects smaller than page size in the kernel.
 432 *
 433 * The @flags argument may be one of:
 434 *
 435 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 436 *
 437 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 438 *
 439 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 440 *   For example, use this inside interrupt handlers.
 441 *
 442 * %GFP_HIGHUSER - Allocate pages from high memory.
 443 *
 444 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 445 *
 446 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 447 *
 448 * %GFP_NOWAIT - Allocation will not sleep.
 449 *
 450 * %__GFP_THISNODE - Allocate node-local memory only.
 451 *
 452 * %GFP_DMA - Allocation suitable for DMA.
 453 *   Should only be used for kmalloc() caches. Otherwise, use a
 454 *   slab created with SLAB_DMA.
 455 *
 456 * Also it is possible to set different flags by OR'ing
 457 * in one or more of the following additional @flags:
 458 *
 459 * %__GFP_COLD - Request cache-cold pages instead of
 460 *   trying to return cache-warm pages.
 461 *
 462 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 463 *
 464 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 465 *   (think twice before using).
 466 *
 467 * %__GFP_NORETRY - If memory is not immediately available,
 468 *   then give up at once.
 469 *
 470 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 471 *
 472 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 473 *
 474 * There are other flags available as well, but these are not intended
 475 * for general use, and so are not documented here. For a full list of
 476 * potential flags, always refer to linux/gfp.h.
 477 */
 478static __always_inline void *kmalloc(size_t size, gfp_t flags)
 479{
 480        if (__builtin_constant_p(size)) {
 481                if (size > KMALLOC_MAX_CACHE_SIZE)
 482                        return kmalloc_large(size, flags);
 483#ifndef CONFIG_SLOB
 484                if (!(flags & GFP_DMA)) {
 485                        int index = kmalloc_index(size);
 486
 487                        if (!index)
 488                                return ZERO_SIZE_PTR;
 489
 490                        return kmem_cache_alloc_trace(kmalloc_caches[index],
 491                                        flags, size);
 492                }
 493#endif
 494        }
 495        return __kmalloc(size, flags);
 496}
 497
 498/*
 499 * Determine size used for the nth kmalloc cache.
 500 * return size or 0 if a kmalloc cache for that
 501 * size does not exist
 502 */
 503static __always_inline int kmalloc_size(int n)
 504{
 505#ifndef CONFIG_SLOB
 506        if (n > 2)
 507                return 1 << n;
 508
 509        if (n == 1 && KMALLOC_MIN_SIZE <= 32)
 510                return 96;
 511
 512        if (n == 2 && KMALLOC_MIN_SIZE <= 64)
 513                return 192;
 514#endif
 515        return 0;
 516}
 517
 518static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 519{
 520#ifndef CONFIG_SLOB
 521        if (__builtin_constant_p(size) &&
 522                size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
 523                int i = kmalloc_index(size);
 524
 525                if (!i)
 526                        return ZERO_SIZE_PTR;
 527
 528                return kmem_cache_alloc_node_trace(kmalloc_caches[i],
 529                                                flags, node, size);
 530        }
 531#endif
 532        return __kmalloc_node(size, flags, node);
 533}
 534
 535struct memcg_cache_array {
 536        struct rcu_head rcu;
 537        struct kmem_cache *entries[0];
 538};
 539
 540/*
 541 * This is the main placeholder for memcg-related information in kmem caches.
 542 * Both the root cache and the child caches will have it. For the root cache,
 543 * this will hold a dynamically allocated array large enough to hold
 544 * information about the currently limited memcgs in the system. To allow the
 545 * array to be accessed without taking any locks, on relocation we free the old
 546 * version only after a grace period.
 547 *
 548 * Root and child caches hold different metadata.
 549 *
 550 * @root_cache: Common to root and child caches.  NULL for root, pointer to
 551 *              the root cache for children.
 552 *
 553 * The following fields are specific to root caches.
 554 *
 555 * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 556 *              used to index child cachces during allocation and cleared
 557 *              early during shutdown.
 558 *
 559 * @root_caches_node: List node for slab_root_caches list.
 560 *
 561 * @children:   List of all child caches.  While the child caches are also
 562 *              reachable through @memcg_caches, a child cache remains on
 563 *              this list until it is actually destroyed.
 564 *
 565 * The following fields are specific to child caches.
 566 *
 567 * @memcg:      Pointer to the memcg this cache belongs to.
 568 *
 569 * @children_node: List node for @root_cache->children list.
 570 *
 571 * @kmem_caches_node: List node for @memcg->kmem_caches list.
 572 */
 573struct memcg_cache_params {
 574        struct kmem_cache *root_cache;
 575        union {
 576                struct {
 577                        struct memcg_cache_array __rcu *memcg_caches;
 578                        struct list_head __root_caches_node;
 579                        struct list_head children;
 580                };
 581                struct {
 582                        struct mem_cgroup *memcg;
 583                        struct list_head children_node;
 584                        struct list_head kmem_caches_node;
 585
 586                        void (*deact_fn)(struct kmem_cache *);
 587                        union {
 588                                struct rcu_head deact_rcu_head;
 589                                struct work_struct deact_work;
 590                        };
 591                };
 592        };
 593};
 594
 595int memcg_update_all_caches(int num_memcgs);
 596
 597/**
 598 * kmalloc_array - allocate memory for an array.
 599 * @n: number of elements.
 600 * @size: element size.
 601 * @flags: the type of memory to allocate (see kmalloc).
 602 */
 603static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 604{
 605        if (size != 0 && n > SIZE_MAX / size)
 606                return NULL;
 607        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 608                return kmalloc(n * size, flags);
 609        return __kmalloc(n * size, flags);
 610}
 611
 612/**
 613 * kcalloc - allocate memory for an array. The memory is set to zero.
 614 * @n: number of elements.
 615 * @size: element size.
 616 * @flags: the type of memory to allocate (see kmalloc).
 617 */
 618static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 619{
 620        return kmalloc_array(n, size, flags | __GFP_ZERO);
 621}
 622
 623/*
 624 * kmalloc_track_caller is a special version of kmalloc that records the
 625 * calling function of the routine calling it for slab leak tracking instead
 626 * of just the calling function (confusing, eh?).
 627 * It's useful when the call to kmalloc comes from a widely-used standard
 628 * allocator where we care about the real place the memory allocation
 629 * request comes from.
 630 */
 631extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
 632#define kmalloc_track_caller(size, flags) \
 633        __kmalloc_track_caller(size, flags, _RET_IP_)
 634
 635#ifdef CONFIG_NUMA
 636extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
 637#define kmalloc_node_track_caller(size, flags, node) \
 638        __kmalloc_node_track_caller(size, flags, node, \
 639                        _RET_IP_)
 640
 641#else /* CONFIG_NUMA */
 642
 643#define kmalloc_node_track_caller(size, flags, node) \
 644        kmalloc_track_caller(size, flags)
 645
 646#endif /* CONFIG_NUMA */
 647
 648/*
 649 * Shortcuts
 650 */
 651static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 652{
 653        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 654}
 655
 656/**
 657 * kzalloc - allocate memory. The memory is set to zero.
 658 * @size: how many bytes of memory are required.
 659 * @flags: the type of memory to allocate (see kmalloc).
 660 */
 661static inline void *kzalloc(size_t size, gfp_t flags)
 662{
 663        return kmalloc(size, flags | __GFP_ZERO);
 664}
 665
 666/**
 667 * kzalloc_node - allocate zeroed memory from a particular memory node.
 668 * @size: how many bytes of memory are required.
 669 * @flags: the type of memory to allocate (see kmalloc).
 670 * @node: memory node from which to allocate
 671 */
 672static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
 673{
 674        return kmalloc_node(size, flags | __GFP_ZERO, node);
 675}
 676
 677unsigned int kmem_cache_size(struct kmem_cache *s);
 678void __init kmem_cache_init_late(void);
 679
 680#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
 681int slab_prepare_cpu(unsigned int cpu);
 682int slab_dead_cpu(unsigned int cpu);
 683#else
 684#define slab_prepare_cpu        NULL
 685#define slab_dead_cpu           NULL
 686#endif
 687
 688#endif  /* _LINUX_SLAB_H */
 689