linux/include/linux/writeback.h
<<
>>
Prefs
   1/*
   2 * include/linux/writeback.h
   3 */
   4#ifndef WRITEBACK_H
   5#define WRITEBACK_H
   6
   7#include <linux/sched.h>
   8#include <linux/workqueue.h>
   9#include <linux/fs.h>
  10#include <linux/flex_proportions.h>
  11#include <linux/backing-dev-defs.h>
  12#include <linux/blk_types.h>
  13
  14struct bio;
  15
  16DECLARE_PER_CPU(int, dirty_throttle_leaks);
  17
  18/*
  19 * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
  20 *
  21 *      (thresh - thresh/DIRTY_FULL_SCOPE, thresh)
  22 *
  23 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
  24 * time) for the dirty pages to drop, unless written enough pages.
  25 *
  26 * The global dirty threshold is normally equal to the global dirty limit,
  27 * except when the system suddenly allocates a lot of anonymous memory and
  28 * knocks down the global dirty threshold quickly, in which case the global
  29 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
  30 */
  31#define DIRTY_SCOPE             8
  32#define DIRTY_FULL_SCOPE        (DIRTY_SCOPE / 2)
  33
  34struct backing_dev_info;
  35
  36/*
  37 * fs/fs-writeback.c
  38 */
  39enum writeback_sync_modes {
  40        WB_SYNC_NONE,   /* Don't wait on anything */
  41        WB_SYNC_ALL,    /* Wait on every mapping */
  42};
  43
  44/*
  45 * why some writeback work was initiated
  46 */
  47enum wb_reason {
  48        WB_REASON_BACKGROUND,
  49        WB_REASON_VMSCAN,
  50        WB_REASON_SYNC,
  51        WB_REASON_PERIODIC,
  52        WB_REASON_LAPTOP_TIMER,
  53        WB_REASON_FREE_MORE_MEM,
  54        WB_REASON_FS_FREE_SPACE,
  55        /*
  56         * There is no bdi forker thread any more and works are done
  57         * by emergency worker, however, this is TPs userland visible
  58         * and we'll be exposing exactly the same information,
  59         * so it has a mismatch name.
  60         */
  61        WB_REASON_FORKER_THREAD,
  62
  63        WB_REASON_MAX,
  64};
  65
  66/*
  67 * A control structure which tells the writeback code what to do.  These are
  68 * always on the stack, and hence need no locking.  They are always initialised
  69 * in a manner such that unspecified fields are set to zero.
  70 */
  71struct writeback_control {
  72        long nr_to_write;               /* Write this many pages, and decrement
  73                                           this for each page written */
  74        long pages_skipped;             /* Pages which were not written */
  75
  76        /*
  77         * For a_ops->writepages(): if start or end are non-zero then this is
  78         * a hint that the filesystem need only write out the pages inside that
  79         * byterange.  The byte at `end' is included in the writeout request.
  80         */
  81        loff_t range_start;
  82        loff_t range_end;
  83
  84        enum writeback_sync_modes sync_mode;
  85
  86        unsigned for_kupdate:1;         /* A kupdate writeback */
  87        unsigned for_background:1;      /* A background writeback */
  88        unsigned tagged_writepages:1;   /* tag-and-write to avoid livelock */
  89        unsigned for_reclaim:1;         /* Invoked from the page allocator */
  90        unsigned range_cyclic:1;        /* range_start is cyclic */
  91        unsigned for_sync:1;            /* sync(2) WB_SYNC_ALL writeback */
  92#ifdef CONFIG_CGROUP_WRITEBACK
  93        struct bdi_writeback *wb;       /* wb this writeback is issued under */
  94        struct inode *inode;            /* inode being written out */
  95
  96        /* foreign inode detection, see wbc_detach_inode() */
  97        int wb_id;                      /* current wb id */
  98        int wb_lcand_id;                /* last foreign candidate wb id */
  99        int wb_tcand_id;                /* this foreign candidate wb id */
 100        size_t wb_bytes;                /* bytes written by current wb */
 101        size_t wb_lcand_bytes;          /* bytes written by last candidate */
 102        size_t wb_tcand_bytes;          /* bytes written by this candidate */
 103#endif
 104};
 105
 106static inline int wbc_to_write_flags(struct writeback_control *wbc)
 107{
 108        if (wbc->sync_mode == WB_SYNC_ALL)
 109                return REQ_SYNC;
 110        else if (wbc->for_kupdate || wbc->for_background)
 111                return REQ_BACKGROUND;
 112
 113        return 0;
 114}
 115
 116/*
 117 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
 118 * and are measured against each other in.  There always is one global
 119 * domain, global_wb_domain, that every wb in the system is a member of.
 120 * This allows measuring the relative bandwidth of each wb to distribute
 121 * dirtyable memory accordingly.
 122 */
 123struct wb_domain {
 124        spinlock_t lock;
 125
 126        /*
 127         * Scale the writeback cache size proportional to the relative
 128         * writeout speed.
 129         *
 130         * We do this by keeping a floating proportion between BDIs, based
 131         * on page writeback completions [end_page_writeback()]. Those
 132         * devices that write out pages fastest will get the larger share,
 133         * while the slower will get a smaller share.
 134         *
 135         * We use page writeout completions because we are interested in
 136         * getting rid of dirty pages. Having them written out is the
 137         * primary goal.
 138         *
 139         * We introduce a concept of time, a period over which we measure
 140         * these events, because demand can/will vary over time. The length
 141         * of this period itself is measured in page writeback completions.
 142         */
 143        struct fprop_global completions;
 144        struct timer_list period_timer; /* timer for aging of completions */
 145        unsigned long period_time;
 146
 147        /*
 148         * The dirtyable memory and dirty threshold could be suddenly
 149         * knocked down by a large amount (eg. on the startup of KVM in a
 150         * swapless system). This may throw the system into deep dirty
 151         * exceeded state and throttle heavy/light dirtiers alike. To
 152         * retain good responsiveness, maintain global_dirty_limit for
 153         * tracking slowly down to the knocked down dirty threshold.
 154         *
 155         * Both fields are protected by ->lock.
 156         */
 157        unsigned long dirty_limit_tstamp;
 158        unsigned long dirty_limit;
 159};
 160
 161/**
 162 * wb_domain_size_changed - memory available to a wb_domain has changed
 163 * @dom: wb_domain of interest
 164 *
 165 * This function should be called when the amount of memory available to
 166 * @dom has changed.  It resets @dom's dirty limit parameters to prevent
 167 * the past values which don't match the current configuration from skewing
 168 * dirty throttling.  Without this, when memory size of a wb_domain is
 169 * greatly reduced, the dirty throttling logic may allow too many pages to
 170 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
 171 * that situation.
 172 */
 173static inline void wb_domain_size_changed(struct wb_domain *dom)
 174{
 175        spin_lock(&dom->lock);
 176        dom->dirty_limit_tstamp = jiffies;
 177        dom->dirty_limit = 0;
 178        spin_unlock(&dom->lock);
 179}
 180
 181/*
 182 * fs/fs-writeback.c
 183 */     
 184struct bdi_writeback;
 185void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
 186void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
 187                                                        enum wb_reason reason);
 188bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason);
 189bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
 190                                   enum wb_reason reason);
 191void sync_inodes_sb(struct super_block *);
 192void wakeup_flusher_threads(long nr_pages, enum wb_reason reason);
 193void inode_wait_for_writeback(struct inode *inode);
 194
 195/* writeback.h requires fs.h; it, too, is not included from here. */
 196static inline void wait_on_inode(struct inode *inode)
 197{
 198        might_sleep();
 199        wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
 200}
 201
 202#ifdef CONFIG_CGROUP_WRITEBACK
 203
 204#include <linux/cgroup.h>
 205#include <linux/bio.h>
 206
 207void __inode_attach_wb(struct inode *inode, struct page *page);
 208void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 209                                 struct inode *inode)
 210        __releases(&inode->i_lock);
 211void wbc_detach_inode(struct writeback_control *wbc);
 212void wbc_account_io(struct writeback_control *wbc, struct page *page,
 213                    size_t bytes);
 214void cgroup_writeback_umount(void);
 215
 216/**
 217 * inode_attach_wb - associate an inode with its wb
 218 * @inode: inode of interest
 219 * @page: page being dirtied (may be NULL)
 220 *
 221 * If @inode doesn't have its wb, associate it with the wb matching the
 222 * memcg of @page or, if @page is NULL, %current.  May be called w/ or w/o
 223 * @inode->i_lock.
 224 */
 225static inline void inode_attach_wb(struct inode *inode, struct page *page)
 226{
 227        if (!inode->i_wb)
 228                __inode_attach_wb(inode, page);
 229}
 230
 231/**
 232 * inode_detach_wb - disassociate an inode from its wb
 233 * @inode: inode of interest
 234 *
 235 * @inode is being freed.  Detach from its wb.
 236 */
 237static inline void inode_detach_wb(struct inode *inode)
 238{
 239        if (inode->i_wb) {
 240                wb_put(inode->i_wb);
 241                inode->i_wb = NULL;
 242        }
 243}
 244
 245/**
 246 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
 247 * @wbc: writeback_control of interest
 248 * @inode: target inode
 249 *
 250 * This function is to be used by __filemap_fdatawrite_range(), which is an
 251 * alternative entry point into writeback code, and first ensures @inode is
 252 * associated with a bdi_writeback and attaches it to @wbc.
 253 */
 254static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
 255                                               struct inode *inode)
 256{
 257        spin_lock(&inode->i_lock);
 258        inode_attach_wb(inode, NULL);
 259        wbc_attach_and_unlock_inode(wbc, inode);
 260}
 261
 262/**
 263 * wbc_init_bio - writeback specific initializtion of bio
 264 * @wbc: writeback_control for the writeback in progress
 265 * @bio: bio to be initialized
 266 *
 267 * @bio is a part of the writeback in progress controlled by @wbc.  Perform
 268 * writeback specific initialization.  This is used to apply the cgroup
 269 * writeback context.
 270 */
 271static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
 272{
 273        /*
 274         * pageout() path doesn't attach @wbc to the inode being written
 275         * out.  This is intentional as we don't want the function to block
 276         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 277         * regular writeback instead of writing things out itself.
 278         */
 279        if (wbc->wb)
 280                bio_associate_blkcg(bio, wbc->wb->blkcg_css);
 281}
 282
 283#else   /* CONFIG_CGROUP_WRITEBACK */
 284
 285static inline void inode_attach_wb(struct inode *inode, struct page *page)
 286{
 287}
 288
 289static inline void inode_detach_wb(struct inode *inode)
 290{
 291}
 292
 293static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 294                                               struct inode *inode)
 295        __releases(&inode->i_lock)
 296{
 297        spin_unlock(&inode->i_lock);
 298}
 299
 300static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
 301                                               struct inode *inode)
 302{
 303}
 304
 305static inline void wbc_detach_inode(struct writeback_control *wbc)
 306{
 307}
 308
 309static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
 310{
 311}
 312
 313static inline void wbc_account_io(struct writeback_control *wbc,
 314                                  struct page *page, size_t bytes)
 315{
 316}
 317
 318static inline void cgroup_writeback_umount(void)
 319{
 320}
 321
 322#endif  /* CONFIG_CGROUP_WRITEBACK */
 323
 324/*
 325 * mm/page-writeback.c
 326 */
 327#ifdef CONFIG_BLOCK
 328void laptop_io_completion(struct backing_dev_info *info);
 329void laptop_sync_completion(void);
 330void laptop_mode_sync(struct work_struct *work);
 331void laptop_mode_timer_fn(unsigned long data);
 332#else
 333static inline void laptop_sync_completion(void) { }
 334#endif
 335bool node_dirty_ok(struct pglist_data *pgdat);
 336int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
 337#ifdef CONFIG_CGROUP_WRITEBACK
 338void wb_domain_exit(struct wb_domain *dom);
 339#endif
 340
 341extern struct wb_domain global_wb_domain;
 342
 343/* These are exported to sysctl. */
 344extern int dirty_background_ratio;
 345extern unsigned long dirty_background_bytes;
 346extern int vm_dirty_ratio;
 347extern unsigned long vm_dirty_bytes;
 348extern unsigned int dirty_writeback_interval;
 349extern unsigned int dirty_expire_interval;
 350extern unsigned int dirtytime_expire_interval;
 351extern int vm_highmem_is_dirtyable;
 352extern int block_dump;
 353extern int laptop_mode;
 354
 355extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
 356                void __user *buffer, size_t *lenp,
 357                loff_t *ppos);
 358extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
 359                void __user *buffer, size_t *lenp,
 360                loff_t *ppos);
 361extern int dirty_ratio_handler(struct ctl_table *table, int write,
 362                void __user *buffer, size_t *lenp,
 363                loff_t *ppos);
 364extern int dirty_bytes_handler(struct ctl_table *table, int write,
 365                void __user *buffer, size_t *lenp,
 366                loff_t *ppos);
 367int dirtytime_interval_handler(struct ctl_table *table, int write,
 368                               void __user *buffer, size_t *lenp, loff_t *ppos);
 369
 370struct ctl_table;
 371int dirty_writeback_centisecs_handler(struct ctl_table *, int,
 372                                      void __user *, size_t *, loff_t *);
 373
 374void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
 375unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
 376
 377void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time);
 378void balance_dirty_pages_ratelimited(struct address_space *mapping);
 379bool wb_over_bg_thresh(struct bdi_writeback *wb);
 380
 381typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
 382                                void *data);
 383
 384int generic_writepages(struct address_space *mapping,
 385                       struct writeback_control *wbc);
 386void tag_pages_for_writeback(struct address_space *mapping,
 387                             pgoff_t start, pgoff_t end);
 388int write_cache_pages(struct address_space *mapping,
 389                      struct writeback_control *wbc, writepage_t writepage,
 390                      void *data);
 391int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
 392void writeback_set_ratelimit(void);
 393void tag_pages_for_writeback(struct address_space *mapping,
 394                             pgoff_t start, pgoff_t end);
 395
 396void account_page_redirty(struct page *page);
 397
 398void sb_mark_inode_writeback(struct inode *inode);
 399void sb_clear_inode_writeback(struct inode *inode);
 400
 401#endif          /* WRITEBACK_H */
 402