linux/kernel/bpf/core.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <linux/bpf.h>
  30#include <linux/frame.h>
  31#include <linux/rbtree_latch.h>
  32#include <linux/kallsyms.h>
  33#include <linux/rcupdate.h>
  34
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0  regs[BPF_REG_0]
  39#define BPF_R1  regs[BPF_REG_1]
  40#define BPF_R2  regs[BPF_REG_2]
  41#define BPF_R3  regs[BPF_REG_3]
  42#define BPF_R4  regs[BPF_REG_4]
  43#define BPF_R5  regs[BPF_REG_5]
  44#define BPF_R6  regs[BPF_REG_6]
  45#define BPF_R7  regs[BPF_REG_7]
  46#define BPF_R8  regs[BPF_REG_8]
  47#define BPF_R9  regs[BPF_REG_9]
  48#define BPF_R10 regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST     regs[insn->dst_reg]
  52#define SRC     regs[insn->src_reg]
  53#define FP      regs[BPF_REG_FP]
  54#define ARG1    regs[BPF_REG_ARG1]
  55#define CTX     regs[BPF_REG_CTX]
  56#define IMM     insn->imm
  57
  58/* No hurry in this branch
  59 *
  60 * Exported for the bpf jit load helper.
  61 */
  62void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63{
  64        u8 *ptr = NULL;
  65
  66        if (k >= SKF_NET_OFF)
  67                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68        else if (k >= SKF_LL_OFF)
  69                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70
  71        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72                return ptr;
  73
  74        return NULL;
  75}
  76
  77struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  78{
  79        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  80                          gfp_extra_flags;
  81        struct bpf_prog_aux *aux;
  82        struct bpf_prog *fp;
  83
  84        size = round_up(size, PAGE_SIZE);
  85        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  86        if (fp == NULL)
  87                return NULL;
  88
  89        kmemcheck_annotate_bitfield(fp, meta);
  90
  91        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  92        if (aux == NULL) {
  93                vfree(fp);
  94                return NULL;
  95        }
  96
  97        fp->pages = size / PAGE_SIZE;
  98        fp->aux = aux;
  99        fp->aux->prog = fp;
 100
 101        INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 102
 103        return fp;
 104}
 105EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 106
 107struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 108                                  gfp_t gfp_extra_flags)
 109{
 110        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 111                          gfp_extra_flags;
 112        struct bpf_prog *fp;
 113        u32 pages, delta;
 114        int ret;
 115
 116        BUG_ON(fp_old == NULL);
 117
 118        size = round_up(size, PAGE_SIZE);
 119        pages = size / PAGE_SIZE;
 120        if (pages <= fp_old->pages)
 121                return fp_old;
 122
 123        delta = pages - fp_old->pages;
 124        ret = __bpf_prog_charge(fp_old->aux->user, delta);
 125        if (ret)
 126                return NULL;
 127
 128        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 129        if (fp == NULL) {
 130                __bpf_prog_uncharge(fp_old->aux->user, delta);
 131        } else {
 132                kmemcheck_annotate_bitfield(fp, meta);
 133
 134                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 135                fp->pages = pages;
 136                fp->aux->prog = fp;
 137
 138                /* We keep fp->aux from fp_old around in the new
 139                 * reallocated structure.
 140                 */
 141                fp_old->aux = NULL;
 142                __bpf_prog_free(fp_old);
 143        }
 144
 145        return fp;
 146}
 147
 148void __bpf_prog_free(struct bpf_prog *fp)
 149{
 150        kfree(fp->aux);
 151        vfree(fp);
 152}
 153
 154int bpf_prog_calc_tag(struct bpf_prog *fp)
 155{
 156        const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 157        u32 raw_size = bpf_prog_tag_scratch_size(fp);
 158        u32 digest[SHA_DIGEST_WORDS];
 159        u32 ws[SHA_WORKSPACE_WORDS];
 160        u32 i, bsize, psize, blocks;
 161        struct bpf_insn *dst;
 162        bool was_ld_map;
 163        u8 *raw, *todo;
 164        __be32 *result;
 165        __be64 *bits;
 166
 167        raw = vmalloc(raw_size);
 168        if (!raw)
 169                return -ENOMEM;
 170
 171        sha_init(digest);
 172        memset(ws, 0, sizeof(ws));
 173
 174        /* We need to take out the map fd for the digest calculation
 175         * since they are unstable from user space side.
 176         */
 177        dst = (void *)raw;
 178        for (i = 0, was_ld_map = false; i < fp->len; i++) {
 179                dst[i] = fp->insnsi[i];
 180                if (!was_ld_map &&
 181                    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 182                    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
 183                        was_ld_map = true;
 184                        dst[i].imm = 0;
 185                } else if (was_ld_map &&
 186                           dst[i].code == 0 &&
 187                           dst[i].dst_reg == 0 &&
 188                           dst[i].src_reg == 0 &&
 189                           dst[i].off == 0) {
 190                        was_ld_map = false;
 191                        dst[i].imm = 0;
 192                } else {
 193                        was_ld_map = false;
 194                }
 195        }
 196
 197        psize = bpf_prog_insn_size(fp);
 198        memset(&raw[psize], 0, raw_size - psize);
 199        raw[psize++] = 0x80;
 200
 201        bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 202        blocks = bsize / SHA_MESSAGE_BYTES;
 203        todo   = raw;
 204        if (bsize - psize >= sizeof(__be64)) {
 205                bits = (__be64 *)(todo + bsize - sizeof(__be64));
 206        } else {
 207                bits = (__be64 *)(todo + bsize + bits_offset);
 208                blocks++;
 209        }
 210        *bits = cpu_to_be64((psize - 1) << 3);
 211
 212        while (blocks--) {
 213                sha_transform(digest, todo, ws);
 214                todo += SHA_MESSAGE_BYTES;
 215        }
 216
 217        result = (__force __be32 *)digest;
 218        for (i = 0; i < SHA_DIGEST_WORDS; i++)
 219                result[i] = cpu_to_be32(digest[i]);
 220        memcpy(fp->tag, result, sizeof(fp->tag));
 221
 222        vfree(raw);
 223        return 0;
 224}
 225
 226static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
 227{
 228        return BPF_CLASS(insn->code) == BPF_JMP  &&
 229               /* Call and Exit are both special jumps with no
 230                * target inside the BPF instruction image.
 231                */
 232               BPF_OP(insn->code) != BPF_CALL &&
 233               BPF_OP(insn->code) != BPF_EXIT;
 234}
 235
 236static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
 237{
 238        struct bpf_insn *insn = prog->insnsi;
 239        u32 i, insn_cnt = prog->len;
 240
 241        for (i = 0; i < insn_cnt; i++, insn++) {
 242                if (!bpf_is_jmp_and_has_target(insn))
 243                        continue;
 244
 245                /* Adjust offset of jmps if we cross boundaries. */
 246                if (i < pos && i + insn->off + 1 > pos)
 247                        insn->off += delta;
 248                else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
 249                        insn->off -= delta;
 250        }
 251}
 252
 253struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 254                                       const struct bpf_insn *patch, u32 len)
 255{
 256        u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 257        struct bpf_prog *prog_adj;
 258
 259        /* Since our patchlet doesn't expand the image, we're done. */
 260        if (insn_delta == 0) {
 261                memcpy(prog->insnsi + off, patch, sizeof(*patch));
 262                return prog;
 263        }
 264
 265        insn_adj_cnt = prog->len + insn_delta;
 266
 267        /* Several new instructions need to be inserted. Make room
 268         * for them. Likely, there's no need for a new allocation as
 269         * last page could have large enough tailroom.
 270         */
 271        prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 272                                    GFP_USER);
 273        if (!prog_adj)
 274                return NULL;
 275
 276        prog_adj->len = insn_adj_cnt;
 277
 278        /* Patching happens in 3 steps:
 279         *
 280         * 1) Move over tail of insnsi from next instruction onwards,
 281         *    so we can patch the single target insn with one or more
 282         *    new ones (patching is always from 1 to n insns, n > 0).
 283         * 2) Inject new instructions at the target location.
 284         * 3) Adjust branch offsets if necessary.
 285         */
 286        insn_rest = insn_adj_cnt - off - len;
 287
 288        memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 289                sizeof(*patch) * insn_rest);
 290        memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 291
 292        bpf_adj_branches(prog_adj, off, insn_delta);
 293
 294        return prog_adj;
 295}
 296
 297#ifdef CONFIG_BPF_JIT
 298static __always_inline void
 299bpf_get_prog_addr_region(const struct bpf_prog *prog,
 300                         unsigned long *symbol_start,
 301                         unsigned long *symbol_end)
 302{
 303        const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 304        unsigned long addr = (unsigned long)hdr;
 305
 306        WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 307
 308        *symbol_start = addr;
 309        *symbol_end   = addr + hdr->pages * PAGE_SIZE;
 310}
 311
 312static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 313{
 314        BUILD_BUG_ON(sizeof("bpf_prog_") +
 315                     sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
 316
 317        sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 318        sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 319        *sym = 0;
 320}
 321
 322static __always_inline unsigned long
 323bpf_get_prog_addr_start(struct latch_tree_node *n)
 324{
 325        unsigned long symbol_start, symbol_end;
 326        const struct bpf_prog_aux *aux;
 327
 328        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 329        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 330
 331        return symbol_start;
 332}
 333
 334static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 335                                          struct latch_tree_node *b)
 336{
 337        return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 338}
 339
 340static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 341{
 342        unsigned long val = (unsigned long)key;
 343        unsigned long symbol_start, symbol_end;
 344        const struct bpf_prog_aux *aux;
 345
 346        aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 347        bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 348
 349        if (val < symbol_start)
 350                return -1;
 351        if (val >= symbol_end)
 352                return  1;
 353
 354        return 0;
 355}
 356
 357static const struct latch_tree_ops bpf_tree_ops = {
 358        .less   = bpf_tree_less,
 359        .comp   = bpf_tree_comp,
 360};
 361
 362static DEFINE_SPINLOCK(bpf_lock);
 363static LIST_HEAD(bpf_kallsyms);
 364static struct latch_tree_root bpf_tree __cacheline_aligned;
 365
 366int bpf_jit_kallsyms __read_mostly;
 367
 368static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 369{
 370        WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 371        list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 372        latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 373}
 374
 375static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 376{
 377        if (list_empty(&aux->ksym_lnode))
 378                return;
 379
 380        latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 381        list_del_rcu(&aux->ksym_lnode);
 382}
 383
 384static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 385{
 386        return fp->jited && !bpf_prog_was_classic(fp);
 387}
 388
 389static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 390{
 391        return list_empty(&fp->aux->ksym_lnode) ||
 392               fp->aux->ksym_lnode.prev == LIST_POISON2;
 393}
 394
 395void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 396{
 397        unsigned long flags;
 398
 399        if (!bpf_prog_kallsyms_candidate(fp) ||
 400            !capable(CAP_SYS_ADMIN))
 401                return;
 402
 403        spin_lock_irqsave(&bpf_lock, flags);
 404        bpf_prog_ksym_node_add(fp->aux);
 405        spin_unlock_irqrestore(&bpf_lock, flags);
 406}
 407
 408void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 409{
 410        unsigned long flags;
 411
 412        if (!bpf_prog_kallsyms_candidate(fp))
 413                return;
 414
 415        spin_lock_irqsave(&bpf_lock, flags);
 416        bpf_prog_ksym_node_del(fp->aux);
 417        spin_unlock_irqrestore(&bpf_lock, flags);
 418}
 419
 420static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 421{
 422        struct latch_tree_node *n;
 423
 424        if (!bpf_jit_kallsyms_enabled())
 425                return NULL;
 426
 427        n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 428        return n ?
 429               container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 430               NULL;
 431}
 432
 433const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 434                                 unsigned long *off, char *sym)
 435{
 436        unsigned long symbol_start, symbol_end;
 437        struct bpf_prog *prog;
 438        char *ret = NULL;
 439
 440        rcu_read_lock();
 441        prog = bpf_prog_kallsyms_find(addr);
 442        if (prog) {
 443                bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 444                bpf_get_prog_name(prog, sym);
 445
 446                ret = sym;
 447                if (size)
 448                        *size = symbol_end - symbol_start;
 449                if (off)
 450                        *off  = addr - symbol_start;
 451        }
 452        rcu_read_unlock();
 453
 454        return ret;
 455}
 456
 457bool is_bpf_text_address(unsigned long addr)
 458{
 459        bool ret;
 460
 461        rcu_read_lock();
 462        ret = bpf_prog_kallsyms_find(addr) != NULL;
 463        rcu_read_unlock();
 464
 465        return ret;
 466}
 467
 468int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 469                    char *sym)
 470{
 471        unsigned long symbol_start, symbol_end;
 472        struct bpf_prog_aux *aux;
 473        unsigned int it = 0;
 474        int ret = -ERANGE;
 475
 476        if (!bpf_jit_kallsyms_enabled())
 477                return ret;
 478
 479        rcu_read_lock();
 480        list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 481                if (it++ != symnum)
 482                        continue;
 483
 484                bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 485                bpf_get_prog_name(aux->prog, sym);
 486
 487                *value = symbol_start;
 488                *type  = BPF_SYM_ELF_TYPE;
 489
 490                ret = 0;
 491                break;
 492        }
 493        rcu_read_unlock();
 494
 495        return ret;
 496}
 497
 498struct bpf_binary_header *
 499bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 500                     unsigned int alignment,
 501                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 502{
 503        struct bpf_binary_header *hdr;
 504        unsigned int size, hole, start;
 505
 506        /* Most of BPF filters are really small, but if some of them
 507         * fill a page, allow at least 128 extra bytes to insert a
 508         * random section of illegal instructions.
 509         */
 510        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 511        hdr = module_alloc(size);
 512        if (hdr == NULL)
 513                return NULL;
 514
 515        /* Fill space with illegal/arch-dep instructions. */
 516        bpf_fill_ill_insns(hdr, size);
 517
 518        hdr->pages = size / PAGE_SIZE;
 519        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 520                     PAGE_SIZE - sizeof(*hdr));
 521        start = (get_random_int() % hole) & ~(alignment - 1);
 522
 523        /* Leave a random number of instructions before BPF code. */
 524        *image_ptr = &hdr->image[start];
 525
 526        return hdr;
 527}
 528
 529void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 530{
 531        module_memfree(hdr);
 532}
 533
 534/* This symbol is only overridden by archs that have different
 535 * requirements than the usual eBPF JITs, f.e. when they only
 536 * implement cBPF JIT, do not set images read-only, etc.
 537 */
 538void __weak bpf_jit_free(struct bpf_prog *fp)
 539{
 540        if (fp->jited) {
 541                struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 542
 543                bpf_jit_binary_unlock_ro(hdr);
 544                bpf_jit_binary_free(hdr);
 545
 546                WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 547        }
 548
 549        bpf_prog_unlock_free(fp);
 550}
 551
 552int bpf_jit_harden __read_mostly;
 553
 554static int bpf_jit_blind_insn(const struct bpf_insn *from,
 555                              const struct bpf_insn *aux,
 556                              struct bpf_insn *to_buff)
 557{
 558        struct bpf_insn *to = to_buff;
 559        u32 imm_rnd = get_random_int();
 560        s16 off;
 561
 562        BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 563        BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 564
 565        if (from->imm == 0 &&
 566            (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 567             from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 568                *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 569                goto out;
 570        }
 571
 572        switch (from->code) {
 573        case BPF_ALU | BPF_ADD | BPF_K:
 574        case BPF_ALU | BPF_SUB | BPF_K:
 575        case BPF_ALU | BPF_AND | BPF_K:
 576        case BPF_ALU | BPF_OR  | BPF_K:
 577        case BPF_ALU | BPF_XOR | BPF_K:
 578        case BPF_ALU | BPF_MUL | BPF_K:
 579        case BPF_ALU | BPF_MOV | BPF_K:
 580        case BPF_ALU | BPF_DIV | BPF_K:
 581        case BPF_ALU | BPF_MOD | BPF_K:
 582                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 583                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 584                *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 585                break;
 586
 587        case BPF_ALU64 | BPF_ADD | BPF_K:
 588        case BPF_ALU64 | BPF_SUB | BPF_K:
 589        case BPF_ALU64 | BPF_AND | BPF_K:
 590        case BPF_ALU64 | BPF_OR  | BPF_K:
 591        case BPF_ALU64 | BPF_XOR | BPF_K:
 592        case BPF_ALU64 | BPF_MUL | BPF_K:
 593        case BPF_ALU64 | BPF_MOV | BPF_K:
 594        case BPF_ALU64 | BPF_DIV | BPF_K:
 595        case BPF_ALU64 | BPF_MOD | BPF_K:
 596                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 597                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 598                *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 599                break;
 600
 601        case BPF_JMP | BPF_JEQ  | BPF_K:
 602        case BPF_JMP | BPF_JNE  | BPF_K:
 603        case BPF_JMP | BPF_JGT  | BPF_K:
 604        case BPF_JMP | BPF_JGE  | BPF_K:
 605        case BPF_JMP | BPF_JSGT | BPF_K:
 606        case BPF_JMP | BPF_JSGE | BPF_K:
 607        case BPF_JMP | BPF_JSET | BPF_K:
 608                /* Accommodate for extra offset in case of a backjump. */
 609                off = from->off;
 610                if (off < 0)
 611                        off -= 2;
 612                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 613                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 614                *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 615                break;
 616
 617        case BPF_LD | BPF_ABS | BPF_W:
 618        case BPF_LD | BPF_ABS | BPF_H:
 619        case BPF_LD | BPF_ABS | BPF_B:
 620                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 621                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 622                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 623                break;
 624
 625        case BPF_LD | BPF_IND | BPF_W:
 626        case BPF_LD | BPF_IND | BPF_H:
 627        case BPF_LD | BPF_IND | BPF_B:
 628                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 629                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 630                *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
 631                *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
 632                break;
 633
 634        case BPF_LD | BPF_IMM | BPF_DW:
 635                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 636                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 637                *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
 638                *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
 639                break;
 640        case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
 641                *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
 642                *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 643                *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
 644                break;
 645
 646        case BPF_ST | BPF_MEM | BPF_DW:
 647        case BPF_ST | BPF_MEM | BPF_W:
 648        case BPF_ST | BPF_MEM | BPF_H:
 649        case BPF_ST | BPF_MEM | BPF_B:
 650                *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 651                *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 652                *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
 653                break;
 654        }
 655out:
 656        return to - to_buff;
 657}
 658
 659static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
 660                                              gfp_t gfp_extra_flags)
 661{
 662        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 663                          gfp_extra_flags;
 664        struct bpf_prog *fp;
 665
 666        fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
 667        if (fp != NULL) {
 668                kmemcheck_annotate_bitfield(fp, meta);
 669
 670                /* aux->prog still points to the fp_other one, so
 671                 * when promoting the clone to the real program,
 672                 * this still needs to be adapted.
 673                 */
 674                memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
 675        }
 676
 677        return fp;
 678}
 679
 680static void bpf_prog_clone_free(struct bpf_prog *fp)
 681{
 682        /* aux was stolen by the other clone, so we cannot free
 683         * it from this path! It will be freed eventually by the
 684         * other program on release.
 685         *
 686         * At this point, we don't need a deferred release since
 687         * clone is guaranteed to not be locked.
 688         */
 689        fp->aux = NULL;
 690        __bpf_prog_free(fp);
 691}
 692
 693void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
 694{
 695        /* We have to repoint aux->prog to self, as we don't
 696         * know whether fp here is the clone or the original.
 697         */
 698        fp->aux->prog = fp;
 699        bpf_prog_clone_free(fp_other);
 700}
 701
 702struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
 703{
 704        struct bpf_insn insn_buff[16], aux[2];
 705        struct bpf_prog *clone, *tmp;
 706        int insn_delta, insn_cnt;
 707        struct bpf_insn *insn;
 708        int i, rewritten;
 709
 710        if (!bpf_jit_blinding_enabled())
 711                return prog;
 712
 713        clone = bpf_prog_clone_create(prog, GFP_USER);
 714        if (!clone)
 715                return ERR_PTR(-ENOMEM);
 716
 717        insn_cnt = clone->len;
 718        insn = clone->insnsi;
 719
 720        for (i = 0; i < insn_cnt; i++, insn++) {
 721                /* We temporarily need to hold the original ld64 insn
 722                 * so that we can still access the first part in the
 723                 * second blinding run.
 724                 */
 725                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 726                    insn[1].code == 0)
 727                        memcpy(aux, insn, sizeof(aux));
 728
 729                rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
 730                if (!rewritten)
 731                        continue;
 732
 733                tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
 734                if (!tmp) {
 735                        /* Patching may have repointed aux->prog during
 736                         * realloc from the original one, so we need to
 737                         * fix it up here on error.
 738                         */
 739                        bpf_jit_prog_release_other(prog, clone);
 740                        return ERR_PTR(-ENOMEM);
 741                }
 742
 743                clone = tmp;
 744                insn_delta = rewritten - 1;
 745
 746                /* Walk new program and skip insns we just inserted. */
 747                insn = clone->insnsi + i + insn_delta;
 748                insn_cnt += insn_delta;
 749                i        += insn_delta;
 750        }
 751
 752        return clone;
 753}
 754#endif /* CONFIG_BPF_JIT */
 755
 756/* Base function for offset calculation. Needs to go into .text section,
 757 * therefore keeping it non-static as well; will also be used by JITs
 758 * anyway later on, so do not let the compiler omit it.
 759 */
 760noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 761{
 762        return 0;
 763}
 764EXPORT_SYMBOL_GPL(__bpf_call_base);
 765
 766/**
 767 *      __bpf_prog_run - run eBPF program on a given context
 768 *      @ctx: is the data we are operating on
 769 *      @insn: is the array of eBPF instructions
 770 *
 771 * Decode and execute eBPF instructions.
 772 */
 773static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
 774{
 775        u64 stack[MAX_BPF_STACK / sizeof(u64)];
 776        u64 regs[MAX_BPF_REG], tmp;
 777        static const void *jumptable[256] = {
 778                [0 ... 255] = &&default_label,
 779                /* Now overwrite non-defaults ... */
 780                /* 32 bit ALU operations */
 781                [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 782                [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 783                [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 784                [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 785                [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 786                [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 787                [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 788                [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 789                [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 790                [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 791                [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 792                [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 793                [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 794                [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 795                [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 796                [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 797                [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 798                [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 799                [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 800                [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 801                [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 802                [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 803                [BPF_ALU | BPF_NEG] = &&ALU_NEG,
 804                [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 805                [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 806                /* 64 bit ALU operations */
 807                [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 808                [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 809                [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 810                [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 811                [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 812                [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 813                [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 814                [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 815                [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 816                [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 817                [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 818                [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 819                [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 820                [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 821                [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 822                [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 823                [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 824                [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 825                [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 826                [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 827                [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 828                [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 829                [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 830                [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 831                [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 832                /* Call instruction */
 833                [BPF_JMP | BPF_CALL] = &&JMP_CALL,
 834                [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
 835                /* Jumps */
 836                [BPF_JMP | BPF_JA] = &&JMP_JA,
 837                [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 838                [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 839                [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 840                [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 841                [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 842                [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 843                [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 844                [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 845                [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 846                [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 847                [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 848                [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 849                [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 850                [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 851                /* Program return */
 852                [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 853                /* Store instructions */
 854                [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 855                [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 856                [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 857                [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 858                [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 859                [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 860                [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 861                [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 862                [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 863                [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 864                /* Load instructions */
 865                [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 866                [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 867                [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 868                [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 869                [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 870                [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 871                [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 872                [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 873                [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 874                [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 875                [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 876        };
 877        u32 tail_call_cnt = 0;
 878        void *ptr;
 879        int off;
 880
 881#define CONT     ({ insn++; goto select_insn; })
 882#define CONT_JMP ({ insn++; goto select_insn; })
 883
 884        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
 885        ARG1 = (u64) (unsigned long) ctx;
 886
 887select_insn:
 888        goto *jumptable[insn->code];
 889
 890        /* ALU */
 891#define ALU(OPCODE, OP)                 \
 892        ALU64_##OPCODE##_X:             \
 893                DST = DST OP SRC;       \
 894                CONT;                   \
 895        ALU_##OPCODE##_X:               \
 896                DST = (u32) DST OP (u32) SRC;   \
 897                CONT;                   \
 898        ALU64_##OPCODE##_K:             \
 899                DST = DST OP IMM;               \
 900                CONT;                   \
 901        ALU_##OPCODE##_K:               \
 902                DST = (u32) DST OP (u32) IMM;   \
 903                CONT;
 904
 905        ALU(ADD,  +)
 906        ALU(SUB,  -)
 907        ALU(AND,  &)
 908        ALU(OR,   |)
 909        ALU(LSH, <<)
 910        ALU(RSH, >>)
 911        ALU(XOR,  ^)
 912        ALU(MUL,  *)
 913#undef ALU
 914        ALU_NEG:
 915                DST = (u32) -DST;
 916                CONT;
 917        ALU64_NEG:
 918                DST = -DST;
 919                CONT;
 920        ALU_MOV_X:
 921                DST = (u32) SRC;
 922                CONT;
 923        ALU_MOV_K:
 924                DST = (u32) IMM;
 925                CONT;
 926        ALU64_MOV_X:
 927                DST = SRC;
 928                CONT;
 929        ALU64_MOV_K:
 930                DST = IMM;
 931                CONT;
 932        LD_IMM_DW:
 933                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 934                insn++;
 935                CONT;
 936        ALU64_ARSH_X:
 937                (*(s64 *) &DST) >>= SRC;
 938                CONT;
 939        ALU64_ARSH_K:
 940                (*(s64 *) &DST) >>= IMM;
 941                CONT;
 942        ALU64_MOD_X:
 943                if (unlikely(SRC == 0))
 944                        return 0;
 945                div64_u64_rem(DST, SRC, &tmp);
 946                DST = tmp;
 947                CONT;
 948        ALU_MOD_X:
 949                if (unlikely(SRC == 0))
 950                        return 0;
 951                tmp = (u32) DST;
 952                DST = do_div(tmp, (u32) SRC);
 953                CONT;
 954        ALU64_MOD_K:
 955                div64_u64_rem(DST, IMM, &tmp);
 956                DST = tmp;
 957                CONT;
 958        ALU_MOD_K:
 959                tmp = (u32) DST;
 960                DST = do_div(tmp, (u32) IMM);
 961                CONT;
 962        ALU64_DIV_X:
 963                if (unlikely(SRC == 0))
 964                        return 0;
 965                DST = div64_u64(DST, SRC);
 966                CONT;
 967        ALU_DIV_X:
 968                if (unlikely(SRC == 0))
 969                        return 0;
 970                tmp = (u32) DST;
 971                do_div(tmp, (u32) SRC);
 972                DST = (u32) tmp;
 973                CONT;
 974        ALU64_DIV_K:
 975                DST = div64_u64(DST, IMM);
 976                CONT;
 977        ALU_DIV_K:
 978                tmp = (u32) DST;
 979                do_div(tmp, (u32) IMM);
 980                DST = (u32) tmp;
 981                CONT;
 982        ALU_END_TO_BE:
 983                switch (IMM) {
 984                case 16:
 985                        DST = (__force u16) cpu_to_be16(DST);
 986                        break;
 987                case 32:
 988                        DST = (__force u32) cpu_to_be32(DST);
 989                        break;
 990                case 64:
 991                        DST = (__force u64) cpu_to_be64(DST);
 992                        break;
 993                }
 994                CONT;
 995        ALU_END_TO_LE:
 996                switch (IMM) {
 997                case 16:
 998                        DST = (__force u16) cpu_to_le16(DST);
 999                        break;
1000                case 32:
1001                        DST = (__force u32) cpu_to_le32(DST);
1002                        break;
1003                case 64:
1004                        DST = (__force u64) cpu_to_le64(DST);
1005                        break;
1006                }
1007                CONT;
1008
1009        /* CALL */
1010        JMP_CALL:
1011                /* Function call scratches BPF_R1-BPF_R5 registers,
1012                 * preserves BPF_R6-BPF_R9, and stores return value
1013                 * into BPF_R0.
1014                 */
1015                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1016                                                       BPF_R4, BPF_R5);
1017                CONT;
1018
1019        JMP_TAIL_CALL: {
1020                struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1021                struct bpf_array *array = container_of(map, struct bpf_array, map);
1022                struct bpf_prog *prog;
1023                u64 index = BPF_R3;
1024
1025                if (unlikely(index >= array->map.max_entries))
1026                        goto out;
1027                if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1028                        goto out;
1029
1030                tail_call_cnt++;
1031
1032                prog = READ_ONCE(array->ptrs[index]);
1033                if (!prog)
1034                        goto out;
1035
1036                /* ARG1 at this point is guaranteed to point to CTX from
1037                 * the verifier side due to the fact that the tail call is
1038                 * handeled like a helper, that is, bpf_tail_call_proto,
1039                 * where arg1_type is ARG_PTR_TO_CTX.
1040                 */
1041                insn = prog->insnsi;
1042                goto select_insn;
1043out:
1044                CONT;
1045        }
1046        /* JMP */
1047        JMP_JA:
1048                insn += insn->off;
1049                CONT;
1050        JMP_JEQ_X:
1051                if (DST == SRC) {
1052                        insn += insn->off;
1053                        CONT_JMP;
1054                }
1055                CONT;
1056        JMP_JEQ_K:
1057                if (DST == IMM) {
1058                        insn += insn->off;
1059                        CONT_JMP;
1060                }
1061                CONT;
1062        JMP_JNE_X:
1063                if (DST != SRC) {
1064                        insn += insn->off;
1065                        CONT_JMP;
1066                }
1067                CONT;
1068        JMP_JNE_K:
1069                if (DST != IMM) {
1070                        insn += insn->off;
1071                        CONT_JMP;
1072                }
1073                CONT;
1074        JMP_JGT_X:
1075                if (DST > SRC) {
1076                        insn += insn->off;
1077                        CONT_JMP;
1078                }
1079                CONT;
1080        JMP_JGT_K:
1081                if (DST > IMM) {
1082                        insn += insn->off;
1083                        CONT_JMP;
1084                }
1085                CONT;
1086        JMP_JGE_X:
1087                if (DST >= SRC) {
1088                        insn += insn->off;
1089                        CONT_JMP;
1090                }
1091                CONT;
1092        JMP_JGE_K:
1093                if (DST >= IMM) {
1094                        insn += insn->off;
1095                        CONT_JMP;
1096                }
1097                CONT;
1098        JMP_JSGT_X:
1099                if (((s64) DST) > ((s64) SRC)) {
1100                        insn += insn->off;
1101                        CONT_JMP;
1102                }
1103                CONT;
1104        JMP_JSGT_K:
1105                if (((s64) DST) > ((s64) IMM)) {
1106                        insn += insn->off;
1107                        CONT_JMP;
1108                }
1109                CONT;
1110        JMP_JSGE_X:
1111                if (((s64) DST) >= ((s64) SRC)) {
1112                        insn += insn->off;
1113                        CONT_JMP;
1114                }
1115                CONT;
1116        JMP_JSGE_K:
1117                if (((s64) DST) >= ((s64) IMM)) {
1118                        insn += insn->off;
1119                        CONT_JMP;
1120                }
1121                CONT;
1122        JMP_JSET_X:
1123                if (DST & SRC) {
1124                        insn += insn->off;
1125                        CONT_JMP;
1126                }
1127                CONT;
1128        JMP_JSET_K:
1129                if (DST & IMM) {
1130                        insn += insn->off;
1131                        CONT_JMP;
1132                }
1133                CONT;
1134        JMP_EXIT:
1135                return BPF_R0;
1136
1137        /* STX and ST and LDX*/
1138#define LDST(SIZEOP, SIZE)                                              \
1139        STX_MEM_##SIZEOP:                                               \
1140                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1141                CONT;                                                   \
1142        ST_MEM_##SIZEOP:                                                \
1143                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1144                CONT;                                                   \
1145        LDX_MEM_##SIZEOP:                                               \
1146                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1147                CONT;
1148
1149        LDST(B,   u8)
1150        LDST(H,  u16)
1151        LDST(W,  u32)
1152        LDST(DW, u64)
1153#undef LDST
1154        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1155                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1156                           (DST + insn->off));
1157                CONT;
1158        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1159                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1160                             (DST + insn->off));
1161                CONT;
1162        LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1163                off = IMM;
1164load_word:
1165                /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1166                 * appearing in the programs where ctx == skb
1167                 * (see may_access_skb() in the verifier). All programs
1168                 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1169                 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1170                 * verifier will check that BPF_R6 == ctx.
1171                 *
1172                 * BPF_ABS and BPF_IND are wrappers of function calls,
1173                 * so they scratch BPF_R1-BPF_R5 registers, preserve
1174                 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1175                 *
1176                 * Implicit input:
1177                 *   ctx == skb == BPF_R6 == CTX
1178                 *
1179                 * Explicit input:
1180                 *   SRC == any register
1181                 *   IMM == 32-bit immediate
1182                 *
1183                 * Output:
1184                 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1185                 */
1186
1187                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1188                if (likely(ptr != NULL)) {
1189                        BPF_R0 = get_unaligned_be32(ptr);
1190                        CONT;
1191                }
1192
1193                return 0;
1194        LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1195                off = IMM;
1196load_half:
1197                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1198                if (likely(ptr != NULL)) {
1199                        BPF_R0 = get_unaligned_be16(ptr);
1200                        CONT;
1201                }
1202
1203                return 0;
1204        LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1205                off = IMM;
1206load_byte:
1207                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1208                if (likely(ptr != NULL)) {
1209                        BPF_R0 = *(u8 *)ptr;
1210                        CONT;
1211                }
1212
1213                return 0;
1214        LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1215                off = IMM + SRC;
1216                goto load_word;
1217        LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1218                off = IMM + SRC;
1219                goto load_half;
1220        LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1221                off = IMM + SRC;
1222                goto load_byte;
1223
1224        default_label:
1225                /* If we ever reach this, we have a bug somewhere. */
1226                WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1227                return 0;
1228}
1229STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1230
1231bool bpf_prog_array_compatible(struct bpf_array *array,
1232                               const struct bpf_prog *fp)
1233{
1234        if (!array->owner_prog_type) {
1235                /* There's no owner yet where we could check for
1236                 * compatibility.
1237                 */
1238                array->owner_prog_type = fp->type;
1239                array->owner_jited = fp->jited;
1240
1241                return true;
1242        }
1243
1244        return array->owner_prog_type == fp->type &&
1245               array->owner_jited == fp->jited;
1246}
1247
1248static int bpf_check_tail_call(const struct bpf_prog *fp)
1249{
1250        struct bpf_prog_aux *aux = fp->aux;
1251        int i;
1252
1253        for (i = 0; i < aux->used_map_cnt; i++) {
1254                struct bpf_map *map = aux->used_maps[i];
1255                struct bpf_array *array;
1256
1257                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1258                        continue;
1259
1260                array = container_of(map, struct bpf_array, map);
1261                if (!bpf_prog_array_compatible(array, fp))
1262                        return -EINVAL;
1263        }
1264
1265        return 0;
1266}
1267
1268/**
1269 *      bpf_prog_select_runtime - select exec runtime for BPF program
1270 *      @fp: bpf_prog populated with internal BPF program
1271 *      @err: pointer to error variable
1272 *
1273 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1274 * The BPF program will be executed via BPF_PROG_RUN() macro.
1275 */
1276struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1277{
1278        fp->bpf_func = (void *) __bpf_prog_run;
1279
1280        /* eBPF JITs can rewrite the program in case constant
1281         * blinding is active. However, in case of error during
1282         * blinding, bpf_int_jit_compile() must always return a
1283         * valid program, which in this case would simply not
1284         * be JITed, but falls back to the interpreter.
1285         */
1286        fp = bpf_int_jit_compile(fp);
1287        bpf_prog_lock_ro(fp);
1288
1289        /* The tail call compatibility check can only be done at
1290         * this late stage as we need to determine, if we deal
1291         * with JITed or non JITed program concatenations and not
1292         * all eBPF JITs might immediately support all features.
1293         */
1294        *err = bpf_check_tail_call(fp);
1295
1296        return fp;
1297}
1298EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1299
1300static void bpf_prog_free_deferred(struct work_struct *work)
1301{
1302        struct bpf_prog_aux *aux;
1303
1304        aux = container_of(work, struct bpf_prog_aux, work);
1305        bpf_jit_free(aux->prog);
1306}
1307
1308/* Free internal BPF program */
1309void bpf_prog_free(struct bpf_prog *fp)
1310{
1311        struct bpf_prog_aux *aux = fp->aux;
1312
1313        INIT_WORK(&aux->work, bpf_prog_free_deferred);
1314        schedule_work(&aux->work);
1315}
1316EXPORT_SYMBOL_GPL(bpf_prog_free);
1317
1318/* RNG for unpriviledged user space with separated state from prandom_u32(). */
1319static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1320
1321void bpf_user_rnd_init_once(void)
1322{
1323        prandom_init_once(&bpf_user_rnd_state);
1324}
1325
1326BPF_CALL_0(bpf_user_rnd_u32)
1327{
1328        /* Should someone ever have the rather unwise idea to use some
1329         * of the registers passed into this function, then note that
1330         * this function is called from native eBPF and classic-to-eBPF
1331         * transformations. Register assignments from both sides are
1332         * different, f.e. classic always sets fn(ctx, A, X) here.
1333         */
1334        struct rnd_state *state;
1335        u32 res;
1336
1337        state = &get_cpu_var(bpf_user_rnd_state);
1338        res = prandom_u32_state(state);
1339        put_cpu_var(bpf_user_rnd_state);
1340
1341        return res;
1342}
1343
1344/* Weak definitions of helper functions in case we don't have bpf syscall. */
1345const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1346const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1347const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1348
1349const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1350const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1351const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1352const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1353
1354const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1355const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1356const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1357
1358const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1359{
1360        return NULL;
1361}
1362
1363u64 __weak
1364bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1365                 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1366{
1367        return -ENOTSUPP;
1368}
1369
1370/* Always built-in helper functions. */
1371const struct bpf_func_proto bpf_tail_call_proto = {
1372        .func           = NULL,
1373        .gpl_only       = false,
1374        .ret_type       = RET_VOID,
1375        .arg1_type      = ARG_PTR_TO_CTX,
1376        .arg2_type      = ARG_CONST_MAP_PTR,
1377        .arg3_type      = ARG_ANYTHING,
1378};
1379
1380/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1381 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1382 * eBPF and implicitly also cBPF can get JITed!
1383 */
1384struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1385{
1386        return prog;
1387}
1388
1389/* Stub for JITs that support eBPF. All cBPF code gets transformed into
1390 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1391 */
1392void __weak bpf_jit_compile(struct bpf_prog *prog)
1393{
1394}
1395
1396bool __weak bpf_helper_changes_pkt_data(void *func)
1397{
1398        return false;
1399}
1400
1401/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1402 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1403 */
1404int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1405                         int len)
1406{
1407        return -EFAULT;
1408}
1409
1410/* All definitions of tracepoints related to BPF. */
1411#define CREATE_TRACE_POINTS
1412#include <linux/bpf_trace.h>
1413
1414EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1415
1416EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1417EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1418