linux/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *              Probes initial implementation (includes suggestions from
  23 *              Rusty Russell).
  24 * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *              hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *              interface to access function arguments.
  28 * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *              exceptions notifier to be first on the priority list.
  30 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *              <prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
  51
  52#include <asm/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <linux/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67        addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81        raw_spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
  84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  85{
  86        return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/* Blacklist -- list of struct kprobe_blacklist_entry */
  90static LIST_HEAD(kprobe_blacklist);
  91
  92#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  93/*
  94 * kprobe->ainsn.insn points to the copy of the instruction to be
  95 * single-stepped. x86_64, POWER4 and above have no-exec support and
  96 * stepping on the instruction on a vmalloced/kmalloced/data page
  97 * is a recipe for disaster
  98 */
  99struct kprobe_insn_page {
 100        struct list_head list;
 101        kprobe_opcode_t *insns;         /* Page of instruction slots */
 102        struct kprobe_insn_cache *cache;
 103        int nused;
 104        int ngarbage;
 105        char slot_used[];
 106};
 107
 108#define KPROBE_INSN_PAGE_SIZE(slots)                    \
 109        (offsetof(struct kprobe_insn_page, slot_used) + \
 110         (sizeof(char) * (slots)))
 111
 112static int slots_per_page(struct kprobe_insn_cache *c)
 113{
 114        return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 115}
 116
 117enum kprobe_slot_state {
 118        SLOT_CLEAN = 0,
 119        SLOT_DIRTY = 1,
 120        SLOT_USED = 2,
 121};
 122
 123static void *alloc_insn_page(void)
 124{
 125        return module_alloc(PAGE_SIZE);
 126}
 127
 128static void free_insn_page(void *page)
 129{
 130        module_memfree(page);
 131}
 132
 133struct kprobe_insn_cache kprobe_insn_slots = {
 134        .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 135        .alloc = alloc_insn_page,
 136        .free = free_insn_page,
 137        .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 138        .insn_size = MAX_INSN_SIZE,
 139        .nr_garbage = 0,
 140};
 141static int collect_garbage_slots(struct kprobe_insn_cache *c);
 142
 143/**
 144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 145 * We allocate an executable page if there's no room on existing ones.
 146 */
 147kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 148{
 149        struct kprobe_insn_page *kip;
 150        kprobe_opcode_t *slot = NULL;
 151
 152        /* Since the slot array is not protected by rcu, we need a mutex */
 153        mutex_lock(&c->mutex);
 154 retry:
 155        rcu_read_lock();
 156        list_for_each_entry_rcu(kip, &c->pages, list) {
 157                if (kip->nused < slots_per_page(c)) {
 158                        int i;
 159                        for (i = 0; i < slots_per_page(c); i++) {
 160                                if (kip->slot_used[i] == SLOT_CLEAN) {
 161                                        kip->slot_used[i] = SLOT_USED;
 162                                        kip->nused++;
 163                                        slot = kip->insns + (i * c->insn_size);
 164                                        rcu_read_unlock();
 165                                        goto out;
 166                                }
 167                        }
 168                        /* kip->nused is broken. Fix it. */
 169                        kip->nused = slots_per_page(c);
 170                        WARN_ON(1);
 171                }
 172        }
 173        rcu_read_unlock();
 174
 175        /* If there are any garbage slots, collect it and try again. */
 176        if (c->nr_garbage && collect_garbage_slots(c) == 0)
 177                goto retry;
 178
 179        /* All out of space.  Need to allocate a new page. */
 180        kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 181        if (!kip)
 182                goto out;
 183
 184        /*
 185         * Use module_alloc so this page is within +/- 2GB of where the
 186         * kernel image and loaded module images reside. This is required
 187         * so x86_64 can correctly handle the %rip-relative fixups.
 188         */
 189        kip->insns = c->alloc();
 190        if (!kip->insns) {
 191                kfree(kip);
 192                goto out;
 193        }
 194        INIT_LIST_HEAD(&kip->list);
 195        memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 196        kip->slot_used[0] = SLOT_USED;
 197        kip->nused = 1;
 198        kip->ngarbage = 0;
 199        kip->cache = c;
 200        list_add_rcu(&kip->list, &c->pages);
 201        slot = kip->insns;
 202out:
 203        mutex_unlock(&c->mutex);
 204        return slot;
 205}
 206
 207/* Return 1 if all garbages are collected, otherwise 0. */
 208static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 209{
 210        kip->slot_used[idx] = SLOT_CLEAN;
 211        kip->nused--;
 212        if (kip->nused == 0) {
 213                /*
 214                 * Page is no longer in use.  Free it unless
 215                 * it's the last one.  We keep the last one
 216                 * so as not to have to set it up again the
 217                 * next time somebody inserts a probe.
 218                 */
 219                if (!list_is_singular(&kip->list)) {
 220                        list_del_rcu(&kip->list);
 221                        synchronize_rcu();
 222                        kip->cache->free(kip->insns);
 223                        kfree(kip);
 224                }
 225                return 1;
 226        }
 227        return 0;
 228}
 229
 230static int collect_garbage_slots(struct kprobe_insn_cache *c)
 231{
 232        struct kprobe_insn_page *kip, *next;
 233
 234        /* Ensure no-one is interrupted on the garbages */
 235        synchronize_sched();
 236
 237        list_for_each_entry_safe(kip, next, &c->pages, list) {
 238                int i;
 239                if (kip->ngarbage == 0)
 240                        continue;
 241                kip->ngarbage = 0;      /* we will collect all garbages */
 242                for (i = 0; i < slots_per_page(c); i++) {
 243                        if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 244                                break;
 245                }
 246        }
 247        c->nr_garbage = 0;
 248        return 0;
 249}
 250
 251void __free_insn_slot(struct kprobe_insn_cache *c,
 252                      kprobe_opcode_t *slot, int dirty)
 253{
 254        struct kprobe_insn_page *kip;
 255        long idx;
 256
 257        mutex_lock(&c->mutex);
 258        rcu_read_lock();
 259        list_for_each_entry_rcu(kip, &c->pages, list) {
 260                idx = ((long)slot - (long)kip->insns) /
 261                        (c->insn_size * sizeof(kprobe_opcode_t));
 262                if (idx >= 0 && idx < slots_per_page(c))
 263                        goto out;
 264        }
 265        /* Could not find this slot. */
 266        WARN_ON(1);
 267        kip = NULL;
 268out:
 269        rcu_read_unlock();
 270        /* Mark and sweep: this may sleep */
 271        if (kip) {
 272                /* Check double free */
 273                WARN_ON(kip->slot_used[idx] != SLOT_USED);
 274                if (dirty) {
 275                        kip->slot_used[idx] = SLOT_DIRTY;
 276                        kip->ngarbage++;
 277                        if (++c->nr_garbage > slots_per_page(c))
 278                                collect_garbage_slots(c);
 279                } else {
 280                        collect_one_slot(kip, idx);
 281                }
 282        }
 283        mutex_unlock(&c->mutex);
 284}
 285
 286/*
 287 * Check given address is on the page of kprobe instruction slots.
 288 * This will be used for checking whether the address on a stack
 289 * is on a text area or not.
 290 */
 291bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 292{
 293        struct kprobe_insn_page *kip;
 294        bool ret = false;
 295
 296        rcu_read_lock();
 297        list_for_each_entry_rcu(kip, &c->pages, list) {
 298                if (addr >= (unsigned long)kip->insns &&
 299                    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 300                        ret = true;
 301                        break;
 302                }
 303        }
 304        rcu_read_unlock();
 305
 306        return ret;
 307}
 308
 309#ifdef CONFIG_OPTPROBES
 310/* For optimized_kprobe buffer */
 311struct kprobe_insn_cache kprobe_optinsn_slots = {
 312        .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 313        .alloc = alloc_insn_page,
 314        .free = free_insn_page,
 315        .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 316        /* .insn_size is initialized later */
 317        .nr_garbage = 0,
 318};
 319#endif
 320#endif
 321
 322/* We have preemption disabled.. so it is safe to use __ versions */
 323static inline void set_kprobe_instance(struct kprobe *kp)
 324{
 325        __this_cpu_write(kprobe_instance, kp);
 326}
 327
 328static inline void reset_kprobe_instance(void)
 329{
 330        __this_cpu_write(kprobe_instance, NULL);
 331}
 332
 333/*
 334 * This routine is called either:
 335 *      - under the kprobe_mutex - during kprobe_[un]register()
 336 *                              OR
 337 *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
 338 */
 339struct kprobe *get_kprobe(void *addr)
 340{
 341        struct hlist_head *head;
 342        struct kprobe *p;
 343
 344        head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 345        hlist_for_each_entry_rcu(p, head, hlist) {
 346                if (p->addr == addr)
 347                        return p;
 348        }
 349
 350        return NULL;
 351}
 352NOKPROBE_SYMBOL(get_kprobe);
 353
 354static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 355
 356/* Return true if the kprobe is an aggregator */
 357static inline int kprobe_aggrprobe(struct kprobe *p)
 358{
 359        return p->pre_handler == aggr_pre_handler;
 360}
 361
 362/* Return true(!0) if the kprobe is unused */
 363static inline int kprobe_unused(struct kprobe *p)
 364{
 365        return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 366               list_empty(&p->list);
 367}
 368
 369/*
 370 * Keep all fields in the kprobe consistent
 371 */
 372static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 373{
 374        memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 375        memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 376}
 377
 378#ifdef CONFIG_OPTPROBES
 379/* NOTE: change this value only with kprobe_mutex held */
 380static bool kprobes_allow_optimization;
 381
 382/*
 383 * Call all pre_handler on the list, but ignores its return value.
 384 * This must be called from arch-dep optimized caller.
 385 */
 386void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 387{
 388        struct kprobe *kp;
 389
 390        list_for_each_entry_rcu(kp, &p->list, list) {
 391                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 392                        set_kprobe_instance(kp);
 393                        kp->pre_handler(kp, regs);
 394                }
 395                reset_kprobe_instance();
 396        }
 397}
 398NOKPROBE_SYMBOL(opt_pre_handler);
 399
 400/* Free optimized instructions and optimized_kprobe */
 401static void free_aggr_kprobe(struct kprobe *p)
 402{
 403        struct optimized_kprobe *op;
 404
 405        op = container_of(p, struct optimized_kprobe, kp);
 406        arch_remove_optimized_kprobe(op);
 407        arch_remove_kprobe(p);
 408        kfree(op);
 409}
 410
 411/* Return true(!0) if the kprobe is ready for optimization. */
 412static inline int kprobe_optready(struct kprobe *p)
 413{
 414        struct optimized_kprobe *op;
 415
 416        if (kprobe_aggrprobe(p)) {
 417                op = container_of(p, struct optimized_kprobe, kp);
 418                return arch_prepared_optinsn(&op->optinsn);
 419        }
 420
 421        return 0;
 422}
 423
 424/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 425static inline int kprobe_disarmed(struct kprobe *p)
 426{
 427        struct optimized_kprobe *op;
 428
 429        /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 430        if (!kprobe_aggrprobe(p))
 431                return kprobe_disabled(p);
 432
 433        op = container_of(p, struct optimized_kprobe, kp);
 434
 435        return kprobe_disabled(p) && list_empty(&op->list);
 436}
 437
 438/* Return true(!0) if the probe is queued on (un)optimizing lists */
 439static int kprobe_queued(struct kprobe *p)
 440{
 441        struct optimized_kprobe *op;
 442
 443        if (kprobe_aggrprobe(p)) {
 444                op = container_of(p, struct optimized_kprobe, kp);
 445                if (!list_empty(&op->list))
 446                        return 1;
 447        }
 448        return 0;
 449}
 450
 451/*
 452 * Return an optimized kprobe whose optimizing code replaces
 453 * instructions including addr (exclude breakpoint).
 454 */
 455static struct kprobe *get_optimized_kprobe(unsigned long addr)
 456{
 457        int i;
 458        struct kprobe *p = NULL;
 459        struct optimized_kprobe *op;
 460
 461        /* Don't check i == 0, since that is a breakpoint case. */
 462        for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 463                p = get_kprobe((void *)(addr - i));
 464
 465        if (p && kprobe_optready(p)) {
 466                op = container_of(p, struct optimized_kprobe, kp);
 467                if (arch_within_optimized_kprobe(op, addr))
 468                        return p;
 469        }
 470
 471        return NULL;
 472}
 473
 474/* Optimization staging list, protected by kprobe_mutex */
 475static LIST_HEAD(optimizing_list);
 476static LIST_HEAD(unoptimizing_list);
 477static LIST_HEAD(freeing_list);
 478
 479static void kprobe_optimizer(struct work_struct *work);
 480static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 481#define OPTIMIZE_DELAY 5
 482
 483/*
 484 * Optimize (replace a breakpoint with a jump) kprobes listed on
 485 * optimizing_list.
 486 */
 487static void do_optimize_kprobes(void)
 488{
 489        /* Optimization never be done when disarmed */
 490        if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 491            list_empty(&optimizing_list))
 492                return;
 493
 494        /*
 495         * The optimization/unoptimization refers online_cpus via
 496         * stop_machine() and cpu-hotplug modifies online_cpus.
 497         * And same time, text_mutex will be held in cpu-hotplug and here.
 498         * This combination can cause a deadlock (cpu-hotplug try to lock
 499         * text_mutex but stop_machine can not be done because online_cpus
 500         * has been changed)
 501         * To avoid this deadlock, we need to call get_online_cpus()
 502         * for preventing cpu-hotplug outside of text_mutex locking.
 503         */
 504        get_online_cpus();
 505        mutex_lock(&text_mutex);
 506        arch_optimize_kprobes(&optimizing_list);
 507        mutex_unlock(&text_mutex);
 508        put_online_cpus();
 509}
 510
 511/*
 512 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 513 * if need) kprobes listed on unoptimizing_list.
 514 */
 515static void do_unoptimize_kprobes(void)
 516{
 517        struct optimized_kprobe *op, *tmp;
 518
 519        /* Unoptimization must be done anytime */
 520        if (list_empty(&unoptimizing_list))
 521                return;
 522
 523        /* Ditto to do_optimize_kprobes */
 524        get_online_cpus();
 525        mutex_lock(&text_mutex);
 526        arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 527        /* Loop free_list for disarming */
 528        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 529                /* Disarm probes if marked disabled */
 530                if (kprobe_disabled(&op->kp))
 531                        arch_disarm_kprobe(&op->kp);
 532                if (kprobe_unused(&op->kp)) {
 533                        /*
 534                         * Remove unused probes from hash list. After waiting
 535                         * for synchronization, these probes are reclaimed.
 536                         * (reclaiming is done by do_free_cleaned_kprobes.)
 537                         */
 538                        hlist_del_rcu(&op->kp.hlist);
 539                } else
 540                        list_del_init(&op->list);
 541        }
 542        mutex_unlock(&text_mutex);
 543        put_online_cpus();
 544}
 545
 546/* Reclaim all kprobes on the free_list */
 547static void do_free_cleaned_kprobes(void)
 548{
 549        struct optimized_kprobe *op, *tmp;
 550
 551        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 552                BUG_ON(!kprobe_unused(&op->kp));
 553                list_del_init(&op->list);
 554                free_aggr_kprobe(&op->kp);
 555        }
 556}
 557
 558/* Start optimizer after OPTIMIZE_DELAY passed */
 559static void kick_kprobe_optimizer(void)
 560{
 561        schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 562}
 563
 564/* Kprobe jump optimizer */
 565static void kprobe_optimizer(struct work_struct *work)
 566{
 567        mutex_lock(&kprobe_mutex);
 568        /* Lock modules while optimizing kprobes */
 569        mutex_lock(&module_mutex);
 570
 571        /*
 572         * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 573         * kprobes before waiting for quiesence period.
 574         */
 575        do_unoptimize_kprobes();
 576
 577        /*
 578         * Step 2: Wait for quiesence period to ensure all running interrupts
 579         * are done. Because optprobe may modify multiple instructions
 580         * there is a chance that Nth instruction is interrupted. In that
 581         * case, running interrupt can return to 2nd-Nth byte of jump
 582         * instruction. This wait is for avoiding it.
 583         */
 584        synchronize_sched();
 585
 586        /* Step 3: Optimize kprobes after quiesence period */
 587        do_optimize_kprobes();
 588
 589        /* Step 4: Free cleaned kprobes after quiesence period */
 590        do_free_cleaned_kprobes();
 591
 592        mutex_unlock(&module_mutex);
 593        mutex_unlock(&kprobe_mutex);
 594
 595        /* Step 5: Kick optimizer again if needed */
 596        if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 597                kick_kprobe_optimizer();
 598}
 599
 600/* Wait for completing optimization and unoptimization */
 601static void wait_for_kprobe_optimizer(void)
 602{
 603        mutex_lock(&kprobe_mutex);
 604
 605        while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 606                mutex_unlock(&kprobe_mutex);
 607
 608                /* this will also make optimizing_work execute immmediately */
 609                flush_delayed_work(&optimizing_work);
 610                /* @optimizing_work might not have been queued yet, relax */
 611                cpu_relax();
 612
 613                mutex_lock(&kprobe_mutex);
 614        }
 615
 616        mutex_unlock(&kprobe_mutex);
 617}
 618
 619/* Optimize kprobe if p is ready to be optimized */
 620static void optimize_kprobe(struct kprobe *p)
 621{
 622        struct optimized_kprobe *op;
 623
 624        /* Check if the kprobe is disabled or not ready for optimization. */
 625        if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 626            (kprobe_disabled(p) || kprobes_all_disarmed))
 627                return;
 628
 629        /* Both of break_handler and post_handler are not supported. */
 630        if (p->break_handler || p->post_handler)
 631                return;
 632
 633        op = container_of(p, struct optimized_kprobe, kp);
 634
 635        /* Check there is no other kprobes at the optimized instructions */
 636        if (arch_check_optimized_kprobe(op) < 0)
 637                return;
 638
 639        /* Check if it is already optimized. */
 640        if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 641                return;
 642        op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 643
 644        if (!list_empty(&op->list))
 645                /* This is under unoptimizing. Just dequeue the probe */
 646                list_del_init(&op->list);
 647        else {
 648                list_add(&op->list, &optimizing_list);
 649                kick_kprobe_optimizer();
 650        }
 651}
 652
 653/* Short cut to direct unoptimizing */
 654static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 655{
 656        get_online_cpus();
 657        arch_unoptimize_kprobe(op);
 658        put_online_cpus();
 659        if (kprobe_disabled(&op->kp))
 660                arch_disarm_kprobe(&op->kp);
 661}
 662
 663/* Unoptimize a kprobe if p is optimized */
 664static void unoptimize_kprobe(struct kprobe *p, bool force)
 665{
 666        struct optimized_kprobe *op;
 667
 668        if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 669                return; /* This is not an optprobe nor optimized */
 670
 671        op = container_of(p, struct optimized_kprobe, kp);
 672        if (!kprobe_optimized(p)) {
 673                /* Unoptimized or unoptimizing case */
 674                if (force && !list_empty(&op->list)) {
 675                        /*
 676                         * Only if this is unoptimizing kprobe and forced,
 677                         * forcibly unoptimize it. (No need to unoptimize
 678                         * unoptimized kprobe again :)
 679                         */
 680                        list_del_init(&op->list);
 681                        force_unoptimize_kprobe(op);
 682                }
 683                return;
 684        }
 685
 686        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 687        if (!list_empty(&op->list)) {
 688                /* Dequeue from the optimization queue */
 689                list_del_init(&op->list);
 690                return;
 691        }
 692        /* Optimized kprobe case */
 693        if (force)
 694                /* Forcibly update the code: this is a special case */
 695                force_unoptimize_kprobe(op);
 696        else {
 697                list_add(&op->list, &unoptimizing_list);
 698                kick_kprobe_optimizer();
 699        }
 700}
 701
 702/* Cancel unoptimizing for reusing */
 703static void reuse_unused_kprobe(struct kprobe *ap)
 704{
 705        struct optimized_kprobe *op;
 706
 707        BUG_ON(!kprobe_unused(ap));
 708        /*
 709         * Unused kprobe MUST be on the way of delayed unoptimizing (means
 710         * there is still a relative jump) and disabled.
 711         */
 712        op = container_of(ap, struct optimized_kprobe, kp);
 713        if (unlikely(list_empty(&op->list)))
 714                printk(KERN_WARNING "Warning: found a stray unused "
 715                        "aggrprobe@%p\n", ap->addr);
 716        /* Enable the probe again */
 717        ap->flags &= ~KPROBE_FLAG_DISABLED;
 718        /* Optimize it again (remove from op->list) */
 719        BUG_ON(!kprobe_optready(ap));
 720        optimize_kprobe(ap);
 721}
 722
 723/* Remove optimized instructions */
 724static void kill_optimized_kprobe(struct kprobe *p)
 725{
 726        struct optimized_kprobe *op;
 727
 728        op = container_of(p, struct optimized_kprobe, kp);
 729        if (!list_empty(&op->list))
 730                /* Dequeue from the (un)optimization queue */
 731                list_del_init(&op->list);
 732        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 733
 734        if (kprobe_unused(p)) {
 735                /* Enqueue if it is unused */
 736                list_add(&op->list, &freeing_list);
 737                /*
 738                 * Remove unused probes from the hash list. After waiting
 739                 * for synchronization, this probe is reclaimed.
 740                 * (reclaiming is done by do_free_cleaned_kprobes().)
 741                 */
 742                hlist_del_rcu(&op->kp.hlist);
 743        }
 744
 745        /* Don't touch the code, because it is already freed. */
 746        arch_remove_optimized_kprobe(op);
 747}
 748
 749/* Try to prepare optimized instructions */
 750static void prepare_optimized_kprobe(struct kprobe *p)
 751{
 752        struct optimized_kprobe *op;
 753
 754        op = container_of(p, struct optimized_kprobe, kp);
 755        arch_prepare_optimized_kprobe(op, p);
 756}
 757
 758/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 759static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 760{
 761        struct optimized_kprobe *op;
 762
 763        op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 764        if (!op)
 765                return NULL;
 766
 767        INIT_LIST_HEAD(&op->list);
 768        op->kp.addr = p->addr;
 769        arch_prepare_optimized_kprobe(op, p);
 770
 771        return &op->kp;
 772}
 773
 774static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 775
 776/*
 777 * Prepare an optimized_kprobe and optimize it
 778 * NOTE: p must be a normal registered kprobe
 779 */
 780static void try_to_optimize_kprobe(struct kprobe *p)
 781{
 782        struct kprobe *ap;
 783        struct optimized_kprobe *op;
 784
 785        /* Impossible to optimize ftrace-based kprobe */
 786        if (kprobe_ftrace(p))
 787                return;
 788
 789        /* For preparing optimization, jump_label_text_reserved() is called */
 790        jump_label_lock();
 791        mutex_lock(&text_mutex);
 792
 793        ap = alloc_aggr_kprobe(p);
 794        if (!ap)
 795                goto out;
 796
 797        op = container_of(ap, struct optimized_kprobe, kp);
 798        if (!arch_prepared_optinsn(&op->optinsn)) {
 799                /* If failed to setup optimizing, fallback to kprobe */
 800                arch_remove_optimized_kprobe(op);
 801                kfree(op);
 802                goto out;
 803        }
 804
 805        init_aggr_kprobe(ap, p);
 806        optimize_kprobe(ap);    /* This just kicks optimizer thread */
 807
 808out:
 809        mutex_unlock(&text_mutex);
 810        jump_label_unlock();
 811}
 812
 813#ifdef CONFIG_SYSCTL
 814static void optimize_all_kprobes(void)
 815{
 816        struct hlist_head *head;
 817        struct kprobe *p;
 818        unsigned int i;
 819
 820        mutex_lock(&kprobe_mutex);
 821        /* If optimization is already allowed, just return */
 822        if (kprobes_allow_optimization)
 823                goto out;
 824
 825        kprobes_allow_optimization = true;
 826        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 827                head = &kprobe_table[i];
 828                hlist_for_each_entry_rcu(p, head, hlist)
 829                        if (!kprobe_disabled(p))
 830                                optimize_kprobe(p);
 831        }
 832        printk(KERN_INFO "Kprobes globally optimized\n");
 833out:
 834        mutex_unlock(&kprobe_mutex);
 835}
 836
 837static void unoptimize_all_kprobes(void)
 838{
 839        struct hlist_head *head;
 840        struct kprobe *p;
 841        unsigned int i;
 842
 843        mutex_lock(&kprobe_mutex);
 844        /* If optimization is already prohibited, just return */
 845        if (!kprobes_allow_optimization) {
 846                mutex_unlock(&kprobe_mutex);
 847                return;
 848        }
 849
 850        kprobes_allow_optimization = false;
 851        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 852                head = &kprobe_table[i];
 853                hlist_for_each_entry_rcu(p, head, hlist) {
 854                        if (!kprobe_disabled(p))
 855                                unoptimize_kprobe(p, false);
 856                }
 857        }
 858        mutex_unlock(&kprobe_mutex);
 859
 860        /* Wait for unoptimizing completion */
 861        wait_for_kprobe_optimizer();
 862        printk(KERN_INFO "Kprobes globally unoptimized\n");
 863}
 864
 865static DEFINE_MUTEX(kprobe_sysctl_mutex);
 866int sysctl_kprobes_optimization;
 867int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 868                                      void __user *buffer, size_t *length,
 869                                      loff_t *ppos)
 870{
 871        int ret;
 872
 873        mutex_lock(&kprobe_sysctl_mutex);
 874        sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 875        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 876
 877        if (sysctl_kprobes_optimization)
 878                optimize_all_kprobes();
 879        else
 880                unoptimize_all_kprobes();
 881        mutex_unlock(&kprobe_sysctl_mutex);
 882
 883        return ret;
 884}
 885#endif /* CONFIG_SYSCTL */
 886
 887/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 888static void __arm_kprobe(struct kprobe *p)
 889{
 890        struct kprobe *_p;
 891
 892        /* Check collision with other optimized kprobes */
 893        _p = get_optimized_kprobe((unsigned long)p->addr);
 894        if (unlikely(_p))
 895                /* Fallback to unoptimized kprobe */
 896                unoptimize_kprobe(_p, true);
 897
 898        arch_arm_kprobe(p);
 899        optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
 900}
 901
 902/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 903static void __disarm_kprobe(struct kprobe *p, bool reopt)
 904{
 905        struct kprobe *_p;
 906
 907        /* Try to unoptimize */
 908        unoptimize_kprobe(p, kprobes_all_disarmed);
 909
 910        if (!kprobe_queued(p)) {
 911                arch_disarm_kprobe(p);
 912                /* If another kprobe was blocked, optimize it. */
 913                _p = get_optimized_kprobe((unsigned long)p->addr);
 914                if (unlikely(_p) && reopt)
 915                        optimize_kprobe(_p);
 916        }
 917        /* TODO: reoptimize others after unoptimized this probe */
 918}
 919
 920#else /* !CONFIG_OPTPROBES */
 921
 922#define optimize_kprobe(p)                      do {} while (0)
 923#define unoptimize_kprobe(p, f)                 do {} while (0)
 924#define kill_optimized_kprobe(p)                do {} while (0)
 925#define prepare_optimized_kprobe(p)             do {} while (0)
 926#define try_to_optimize_kprobe(p)               do {} while (0)
 927#define __arm_kprobe(p)                         arch_arm_kprobe(p)
 928#define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
 929#define kprobe_disarmed(p)                      kprobe_disabled(p)
 930#define wait_for_kprobe_optimizer()             do {} while (0)
 931
 932/* There should be no unused kprobes can be reused without optimization */
 933static void reuse_unused_kprobe(struct kprobe *ap)
 934{
 935        printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 936        BUG_ON(kprobe_unused(ap));
 937}
 938
 939static void free_aggr_kprobe(struct kprobe *p)
 940{
 941        arch_remove_kprobe(p);
 942        kfree(p);
 943}
 944
 945static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 946{
 947        return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 948}
 949#endif /* CONFIG_OPTPROBES */
 950
 951#ifdef CONFIG_KPROBES_ON_FTRACE
 952static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 953        .func = kprobe_ftrace_handler,
 954        .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 955};
 956static int kprobe_ftrace_enabled;
 957
 958/* Must ensure p->addr is really on ftrace */
 959static int prepare_kprobe(struct kprobe *p)
 960{
 961        if (!kprobe_ftrace(p))
 962                return arch_prepare_kprobe(p);
 963
 964        return arch_prepare_kprobe_ftrace(p);
 965}
 966
 967/* Caller must lock kprobe_mutex */
 968static void arm_kprobe_ftrace(struct kprobe *p)
 969{
 970        int ret;
 971
 972        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 973                                   (unsigned long)p->addr, 0, 0);
 974        WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 975        kprobe_ftrace_enabled++;
 976        if (kprobe_ftrace_enabled == 1) {
 977                ret = register_ftrace_function(&kprobe_ftrace_ops);
 978                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 979        }
 980}
 981
 982/* Caller must lock kprobe_mutex */
 983static void disarm_kprobe_ftrace(struct kprobe *p)
 984{
 985        int ret;
 986
 987        kprobe_ftrace_enabled--;
 988        if (kprobe_ftrace_enabled == 0) {
 989                ret = unregister_ftrace_function(&kprobe_ftrace_ops);
 990                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 991        }
 992        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 993                           (unsigned long)p->addr, 1, 0);
 994        WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 995}
 996#else   /* !CONFIG_KPROBES_ON_FTRACE */
 997#define prepare_kprobe(p)       arch_prepare_kprobe(p)
 998#define arm_kprobe_ftrace(p)    do {} while (0)
 999#define disarm_kprobe_ftrace(p) do {} while (0)
1000#endif
1001
1002/* Arm a kprobe with text_mutex */
1003static void arm_kprobe(struct kprobe *kp)
1004{
1005        if (unlikely(kprobe_ftrace(kp))) {
1006                arm_kprobe_ftrace(kp);
1007                return;
1008        }
1009        /*
1010         * Here, since __arm_kprobe() doesn't use stop_machine(),
1011         * this doesn't cause deadlock on text_mutex. So, we don't
1012         * need get_online_cpus().
1013         */
1014        mutex_lock(&text_mutex);
1015        __arm_kprobe(kp);
1016        mutex_unlock(&text_mutex);
1017}
1018
1019/* Disarm a kprobe with text_mutex */
1020static void disarm_kprobe(struct kprobe *kp, bool reopt)
1021{
1022        if (unlikely(kprobe_ftrace(kp))) {
1023                disarm_kprobe_ftrace(kp);
1024                return;
1025        }
1026        /* Ditto */
1027        mutex_lock(&text_mutex);
1028        __disarm_kprobe(kp, reopt);
1029        mutex_unlock(&text_mutex);
1030}
1031
1032/*
1033 * Aggregate handlers for multiple kprobes support - these handlers
1034 * take care of invoking the individual kprobe handlers on p->list
1035 */
1036static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1037{
1038        struct kprobe *kp;
1039
1040        list_for_each_entry_rcu(kp, &p->list, list) {
1041                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1042                        set_kprobe_instance(kp);
1043                        if (kp->pre_handler(kp, regs))
1044                                return 1;
1045                }
1046                reset_kprobe_instance();
1047        }
1048        return 0;
1049}
1050NOKPROBE_SYMBOL(aggr_pre_handler);
1051
1052static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1053                              unsigned long flags)
1054{
1055        struct kprobe *kp;
1056
1057        list_for_each_entry_rcu(kp, &p->list, list) {
1058                if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1059                        set_kprobe_instance(kp);
1060                        kp->post_handler(kp, regs, flags);
1061                        reset_kprobe_instance();
1062                }
1063        }
1064}
1065NOKPROBE_SYMBOL(aggr_post_handler);
1066
1067static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1068                              int trapnr)
1069{
1070        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1071
1072        /*
1073         * if we faulted "during" the execution of a user specified
1074         * probe handler, invoke just that probe's fault handler
1075         */
1076        if (cur && cur->fault_handler) {
1077                if (cur->fault_handler(cur, regs, trapnr))
1078                        return 1;
1079        }
1080        return 0;
1081}
1082NOKPROBE_SYMBOL(aggr_fault_handler);
1083
1084static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1085{
1086        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1087        int ret = 0;
1088
1089        if (cur && cur->break_handler) {
1090                if (cur->break_handler(cur, regs))
1091                        ret = 1;
1092        }
1093        reset_kprobe_instance();
1094        return ret;
1095}
1096NOKPROBE_SYMBOL(aggr_break_handler);
1097
1098/* Walks the list and increments nmissed count for multiprobe case */
1099void kprobes_inc_nmissed_count(struct kprobe *p)
1100{
1101        struct kprobe *kp;
1102        if (!kprobe_aggrprobe(p)) {
1103                p->nmissed++;
1104        } else {
1105                list_for_each_entry_rcu(kp, &p->list, list)
1106                        kp->nmissed++;
1107        }
1108        return;
1109}
1110NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1111
1112void recycle_rp_inst(struct kretprobe_instance *ri,
1113                     struct hlist_head *head)
1114{
1115        struct kretprobe *rp = ri->rp;
1116
1117        /* remove rp inst off the rprobe_inst_table */
1118        hlist_del(&ri->hlist);
1119        INIT_HLIST_NODE(&ri->hlist);
1120        if (likely(rp)) {
1121                raw_spin_lock(&rp->lock);
1122                hlist_add_head(&ri->hlist, &rp->free_instances);
1123                raw_spin_unlock(&rp->lock);
1124        } else
1125                /* Unregistering */
1126                hlist_add_head(&ri->hlist, head);
1127}
1128NOKPROBE_SYMBOL(recycle_rp_inst);
1129
1130void kretprobe_hash_lock(struct task_struct *tsk,
1131                         struct hlist_head **head, unsigned long *flags)
1132__acquires(hlist_lock)
1133{
1134        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1135        raw_spinlock_t *hlist_lock;
1136
1137        *head = &kretprobe_inst_table[hash];
1138        hlist_lock = kretprobe_table_lock_ptr(hash);
1139        raw_spin_lock_irqsave(hlist_lock, *flags);
1140}
1141NOKPROBE_SYMBOL(kretprobe_hash_lock);
1142
1143static void kretprobe_table_lock(unsigned long hash,
1144                                 unsigned long *flags)
1145__acquires(hlist_lock)
1146{
1147        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1148        raw_spin_lock_irqsave(hlist_lock, *flags);
1149}
1150NOKPROBE_SYMBOL(kretprobe_table_lock);
1151
1152void kretprobe_hash_unlock(struct task_struct *tsk,
1153                           unsigned long *flags)
1154__releases(hlist_lock)
1155{
1156        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1157        raw_spinlock_t *hlist_lock;
1158
1159        hlist_lock = kretprobe_table_lock_ptr(hash);
1160        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1161}
1162NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1163
1164static void kretprobe_table_unlock(unsigned long hash,
1165                                   unsigned long *flags)
1166__releases(hlist_lock)
1167{
1168        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1170}
1171NOKPROBE_SYMBOL(kretprobe_table_unlock);
1172
1173/*
1174 * This function is called from finish_task_switch when task tk becomes dead,
1175 * so that we can recycle any function-return probe instances associated
1176 * with this task. These left over instances represent probed functions
1177 * that have been called but will never return.
1178 */
1179void kprobe_flush_task(struct task_struct *tk)
1180{
1181        struct kretprobe_instance *ri;
1182        struct hlist_head *head, empty_rp;
1183        struct hlist_node *tmp;
1184        unsigned long hash, flags = 0;
1185
1186        if (unlikely(!kprobes_initialized))
1187                /* Early boot.  kretprobe_table_locks not yet initialized. */
1188                return;
1189
1190        INIT_HLIST_HEAD(&empty_rp);
1191        hash = hash_ptr(tk, KPROBE_HASH_BITS);
1192        head = &kretprobe_inst_table[hash];
1193        kretprobe_table_lock(hash, &flags);
1194        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1195                if (ri->task == tk)
1196                        recycle_rp_inst(ri, &empty_rp);
1197        }
1198        kretprobe_table_unlock(hash, &flags);
1199        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1200                hlist_del(&ri->hlist);
1201                kfree(ri);
1202        }
1203}
1204NOKPROBE_SYMBOL(kprobe_flush_task);
1205
1206static inline void free_rp_inst(struct kretprobe *rp)
1207{
1208        struct kretprobe_instance *ri;
1209        struct hlist_node *next;
1210
1211        hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1212                hlist_del(&ri->hlist);
1213                kfree(ri);
1214        }
1215}
1216
1217static void cleanup_rp_inst(struct kretprobe *rp)
1218{
1219        unsigned long flags, hash;
1220        struct kretprobe_instance *ri;
1221        struct hlist_node *next;
1222        struct hlist_head *head;
1223
1224        /* No race here */
1225        for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1226                kretprobe_table_lock(hash, &flags);
1227                head = &kretprobe_inst_table[hash];
1228                hlist_for_each_entry_safe(ri, next, head, hlist) {
1229                        if (ri->rp == rp)
1230                                ri->rp = NULL;
1231                }
1232                kretprobe_table_unlock(hash, &flags);
1233        }
1234        free_rp_inst(rp);
1235}
1236NOKPROBE_SYMBOL(cleanup_rp_inst);
1237
1238/*
1239* Add the new probe to ap->list. Fail if this is the
1240* second jprobe at the address - two jprobes can't coexist
1241*/
1242static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1243{
1244        BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1245
1246        if (p->break_handler || p->post_handler)
1247                unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1248
1249        if (p->break_handler) {
1250                if (ap->break_handler)
1251                        return -EEXIST;
1252                list_add_tail_rcu(&p->list, &ap->list);
1253                ap->break_handler = aggr_break_handler;
1254        } else
1255                list_add_rcu(&p->list, &ap->list);
1256        if (p->post_handler && !ap->post_handler)
1257                ap->post_handler = aggr_post_handler;
1258
1259        return 0;
1260}
1261
1262/*
1263 * Fill in the required fields of the "manager kprobe". Replace the
1264 * earlier kprobe in the hlist with the manager kprobe
1265 */
1266static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1267{
1268        /* Copy p's insn slot to ap */
1269        copy_kprobe(p, ap);
1270        flush_insn_slot(ap);
1271        ap->addr = p->addr;
1272        ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1273        ap->pre_handler = aggr_pre_handler;
1274        ap->fault_handler = aggr_fault_handler;
1275        /* We don't care the kprobe which has gone. */
1276        if (p->post_handler && !kprobe_gone(p))
1277                ap->post_handler = aggr_post_handler;
1278        if (p->break_handler && !kprobe_gone(p))
1279                ap->break_handler = aggr_break_handler;
1280
1281        INIT_LIST_HEAD(&ap->list);
1282        INIT_HLIST_NODE(&ap->hlist);
1283
1284        list_add_rcu(&p->list, &ap->list);
1285        hlist_replace_rcu(&p->hlist, &ap->hlist);
1286}
1287
1288/*
1289 * This is the second or subsequent kprobe at the address - handle
1290 * the intricacies
1291 */
1292static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1293{
1294        int ret = 0;
1295        struct kprobe *ap = orig_p;
1296
1297        /* For preparing optimization, jump_label_text_reserved() is called */
1298        jump_label_lock();
1299        /*
1300         * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1301         * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1302         */
1303        get_online_cpus();
1304        mutex_lock(&text_mutex);
1305
1306        if (!kprobe_aggrprobe(orig_p)) {
1307                /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1308                ap = alloc_aggr_kprobe(orig_p);
1309                if (!ap) {
1310                        ret = -ENOMEM;
1311                        goto out;
1312                }
1313                init_aggr_kprobe(ap, orig_p);
1314        } else if (kprobe_unused(ap))
1315                /* This probe is going to die. Rescue it */
1316                reuse_unused_kprobe(ap);
1317
1318        if (kprobe_gone(ap)) {
1319                /*
1320                 * Attempting to insert new probe at the same location that
1321                 * had a probe in the module vaddr area which already
1322                 * freed. So, the instruction slot has already been
1323                 * released. We need a new slot for the new probe.
1324                 */
1325                ret = arch_prepare_kprobe(ap);
1326                if (ret)
1327                        /*
1328                         * Even if fail to allocate new slot, don't need to
1329                         * free aggr_probe. It will be used next time, or
1330                         * freed by unregister_kprobe.
1331                         */
1332                        goto out;
1333
1334                /* Prepare optimized instructions if possible. */
1335                prepare_optimized_kprobe(ap);
1336
1337                /*
1338                 * Clear gone flag to prevent allocating new slot again, and
1339                 * set disabled flag because it is not armed yet.
1340                 */
1341                ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1342                            | KPROBE_FLAG_DISABLED;
1343        }
1344
1345        /* Copy ap's insn slot to p */
1346        copy_kprobe(ap, p);
1347        ret = add_new_kprobe(ap, p);
1348
1349out:
1350        mutex_unlock(&text_mutex);
1351        put_online_cpus();
1352        jump_label_unlock();
1353
1354        if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1355                ap->flags &= ~KPROBE_FLAG_DISABLED;
1356                if (!kprobes_all_disarmed)
1357                        /* Arm the breakpoint again. */
1358                        arm_kprobe(ap);
1359        }
1360        return ret;
1361}
1362
1363bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1364{
1365        /* The __kprobes marked functions and entry code must not be probed */
1366        return addr >= (unsigned long)__kprobes_text_start &&
1367               addr < (unsigned long)__kprobes_text_end;
1368}
1369
1370bool within_kprobe_blacklist(unsigned long addr)
1371{
1372        struct kprobe_blacklist_entry *ent;
1373
1374        if (arch_within_kprobe_blacklist(addr))
1375                return true;
1376        /*
1377         * If there exists a kprobe_blacklist, verify and
1378         * fail any probe registration in the prohibited area
1379         */
1380        list_for_each_entry(ent, &kprobe_blacklist, list) {
1381                if (addr >= ent->start_addr && addr < ent->end_addr)
1382                        return true;
1383        }
1384
1385        return false;
1386}
1387
1388/*
1389 * If we have a symbol_name argument, look it up and add the offset field
1390 * to it. This way, we can specify a relative address to a symbol.
1391 * This returns encoded errors if it fails to look up symbol or invalid
1392 * combination of parameters.
1393 */
1394static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1395{
1396        kprobe_opcode_t *addr = p->addr;
1397
1398        if ((p->symbol_name && p->addr) ||
1399            (!p->symbol_name && !p->addr))
1400                goto invalid;
1401
1402        if (p->symbol_name) {
1403                kprobe_lookup_name(p->symbol_name, addr);
1404                if (!addr)
1405                        return ERR_PTR(-ENOENT);
1406        }
1407
1408        addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1409        if (addr)
1410                return addr;
1411
1412invalid:
1413        return ERR_PTR(-EINVAL);
1414}
1415
1416/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1417static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1418{
1419        struct kprobe *ap, *list_p;
1420
1421        ap = get_kprobe(p->addr);
1422        if (unlikely(!ap))
1423                return NULL;
1424
1425        if (p != ap) {
1426                list_for_each_entry_rcu(list_p, &ap->list, list)
1427                        if (list_p == p)
1428                        /* kprobe p is a valid probe */
1429                                goto valid;
1430                return NULL;
1431        }
1432valid:
1433        return ap;
1434}
1435
1436/* Return error if the kprobe is being re-registered */
1437static inline int check_kprobe_rereg(struct kprobe *p)
1438{
1439        int ret = 0;
1440
1441        mutex_lock(&kprobe_mutex);
1442        if (__get_valid_kprobe(p))
1443                ret = -EINVAL;
1444        mutex_unlock(&kprobe_mutex);
1445
1446        return ret;
1447}
1448
1449int __weak arch_check_ftrace_location(struct kprobe *p)
1450{
1451        unsigned long ftrace_addr;
1452
1453        ftrace_addr = ftrace_location((unsigned long)p->addr);
1454        if (ftrace_addr) {
1455#ifdef CONFIG_KPROBES_ON_FTRACE
1456                /* Given address is not on the instruction boundary */
1457                if ((unsigned long)p->addr != ftrace_addr)
1458                        return -EILSEQ;
1459                p->flags |= KPROBE_FLAG_FTRACE;
1460#else   /* !CONFIG_KPROBES_ON_FTRACE */
1461                return -EINVAL;
1462#endif
1463        }
1464        return 0;
1465}
1466
1467static int check_kprobe_address_safe(struct kprobe *p,
1468                                     struct module **probed_mod)
1469{
1470        int ret;
1471
1472        ret = arch_check_ftrace_location(p);
1473        if (ret)
1474                return ret;
1475        jump_label_lock();
1476        preempt_disable();
1477
1478        /* Ensure it is not in reserved area nor out of text */
1479        if (!kernel_text_address((unsigned long) p->addr) ||
1480            within_kprobe_blacklist((unsigned long) p->addr) ||
1481            jump_label_text_reserved(p->addr, p->addr)) {
1482                ret = -EINVAL;
1483                goto out;
1484        }
1485
1486        /* Check if are we probing a module */
1487        *probed_mod = __module_text_address((unsigned long) p->addr);
1488        if (*probed_mod) {
1489                /*
1490                 * We must hold a refcount of the probed module while updating
1491                 * its code to prohibit unexpected unloading.
1492                 */
1493                if (unlikely(!try_module_get(*probed_mod))) {
1494                        ret = -ENOENT;
1495                        goto out;
1496                }
1497
1498                /*
1499                 * If the module freed .init.text, we couldn't insert
1500                 * kprobes in there.
1501                 */
1502                if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1503                    (*probed_mod)->state != MODULE_STATE_COMING) {
1504                        module_put(*probed_mod);
1505                        *probed_mod = NULL;
1506                        ret = -ENOENT;
1507                }
1508        }
1509out:
1510        preempt_enable();
1511        jump_label_unlock();
1512
1513        return ret;
1514}
1515
1516int register_kprobe(struct kprobe *p)
1517{
1518        int ret;
1519        struct kprobe *old_p;
1520        struct module *probed_mod;
1521        kprobe_opcode_t *addr;
1522
1523        /* Adjust probe address from symbol */
1524        addr = kprobe_addr(p);
1525        if (IS_ERR(addr))
1526                return PTR_ERR(addr);
1527        p->addr = addr;
1528
1529        ret = check_kprobe_rereg(p);
1530        if (ret)
1531                return ret;
1532
1533        /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1534        p->flags &= KPROBE_FLAG_DISABLED;
1535        p->nmissed = 0;
1536        INIT_LIST_HEAD(&p->list);
1537
1538        ret = check_kprobe_address_safe(p, &probed_mod);
1539        if (ret)
1540                return ret;
1541
1542        mutex_lock(&kprobe_mutex);
1543
1544        old_p = get_kprobe(p->addr);
1545        if (old_p) {
1546                /* Since this may unoptimize old_p, locking text_mutex. */
1547                ret = register_aggr_kprobe(old_p, p);
1548                goto out;
1549        }
1550
1551        mutex_lock(&text_mutex);        /* Avoiding text modification */
1552        ret = prepare_kprobe(p);
1553        mutex_unlock(&text_mutex);
1554        if (ret)
1555                goto out;
1556
1557        INIT_HLIST_NODE(&p->hlist);
1558        hlist_add_head_rcu(&p->hlist,
1559                       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1560
1561        if (!kprobes_all_disarmed && !kprobe_disabled(p))
1562                arm_kprobe(p);
1563
1564        /* Try to optimize kprobe */
1565        try_to_optimize_kprobe(p);
1566
1567out:
1568        mutex_unlock(&kprobe_mutex);
1569
1570        if (probed_mod)
1571                module_put(probed_mod);
1572
1573        return ret;
1574}
1575EXPORT_SYMBOL_GPL(register_kprobe);
1576
1577/* Check if all probes on the aggrprobe are disabled */
1578static int aggr_kprobe_disabled(struct kprobe *ap)
1579{
1580        struct kprobe *kp;
1581
1582        list_for_each_entry_rcu(kp, &ap->list, list)
1583                if (!kprobe_disabled(kp))
1584                        /*
1585                         * There is an active probe on the list.
1586                         * We can't disable this ap.
1587                         */
1588                        return 0;
1589
1590        return 1;
1591}
1592
1593/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1594static struct kprobe *__disable_kprobe(struct kprobe *p)
1595{
1596        struct kprobe *orig_p;
1597
1598        /* Get an original kprobe for return */
1599        orig_p = __get_valid_kprobe(p);
1600        if (unlikely(orig_p == NULL))
1601                return NULL;
1602
1603        if (!kprobe_disabled(p)) {
1604                /* Disable probe if it is a child probe */
1605                if (p != orig_p)
1606                        p->flags |= KPROBE_FLAG_DISABLED;
1607
1608                /* Try to disarm and disable this/parent probe */
1609                if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1610                        /*
1611                         * If kprobes_all_disarmed is set, orig_p
1612                         * should have already been disarmed, so
1613                         * skip unneed disarming process.
1614                         */
1615                        if (!kprobes_all_disarmed)
1616                                disarm_kprobe(orig_p, true);
1617                        orig_p->flags |= KPROBE_FLAG_DISABLED;
1618                }
1619        }
1620
1621        return orig_p;
1622}
1623
1624/*
1625 * Unregister a kprobe without a scheduler synchronization.
1626 */
1627static int __unregister_kprobe_top(struct kprobe *p)
1628{
1629        struct kprobe *ap, *list_p;
1630
1631        /* Disable kprobe. This will disarm it if needed. */
1632        ap = __disable_kprobe(p);
1633        if (ap == NULL)
1634                return -EINVAL;
1635
1636        if (ap == p)
1637                /*
1638                 * This probe is an independent(and non-optimized) kprobe
1639                 * (not an aggrprobe). Remove from the hash list.
1640                 */
1641                goto disarmed;
1642
1643        /* Following process expects this probe is an aggrprobe */
1644        WARN_ON(!kprobe_aggrprobe(ap));
1645
1646        if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1647                /*
1648                 * !disarmed could be happen if the probe is under delayed
1649                 * unoptimizing.
1650                 */
1651                goto disarmed;
1652        else {
1653                /* If disabling probe has special handlers, update aggrprobe */
1654                if (p->break_handler && !kprobe_gone(p))
1655                        ap->break_handler = NULL;
1656                if (p->post_handler && !kprobe_gone(p)) {
1657                        list_for_each_entry_rcu(list_p, &ap->list, list) {
1658                                if ((list_p != p) && (list_p->post_handler))
1659                                        goto noclean;
1660                        }
1661                        ap->post_handler = NULL;
1662                }
1663noclean:
1664                /*
1665                 * Remove from the aggrprobe: this path will do nothing in
1666                 * __unregister_kprobe_bottom().
1667                 */
1668                list_del_rcu(&p->list);
1669                if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1670                        /*
1671                         * Try to optimize this probe again, because post
1672                         * handler may have been changed.
1673                         */
1674                        optimize_kprobe(ap);
1675        }
1676        return 0;
1677
1678disarmed:
1679        BUG_ON(!kprobe_disarmed(ap));
1680        hlist_del_rcu(&ap->hlist);
1681        return 0;
1682}
1683
1684static void __unregister_kprobe_bottom(struct kprobe *p)
1685{
1686        struct kprobe *ap;
1687
1688        if (list_empty(&p->list))
1689                /* This is an independent kprobe */
1690                arch_remove_kprobe(p);
1691        else if (list_is_singular(&p->list)) {
1692                /* This is the last child of an aggrprobe */
1693                ap = list_entry(p->list.next, struct kprobe, list);
1694                list_del(&p->list);
1695                free_aggr_kprobe(ap);
1696        }
1697        /* Otherwise, do nothing. */
1698}
1699
1700int register_kprobes(struct kprobe **kps, int num)
1701{
1702        int i, ret = 0;
1703
1704        if (num <= 0)
1705                return -EINVAL;
1706        for (i = 0; i < num; i++) {
1707                ret = register_kprobe(kps[i]);
1708                if (ret < 0) {
1709                        if (i > 0)
1710                                unregister_kprobes(kps, i);
1711                        break;
1712                }
1713        }
1714        return ret;
1715}
1716EXPORT_SYMBOL_GPL(register_kprobes);
1717
1718void unregister_kprobe(struct kprobe *p)
1719{
1720        unregister_kprobes(&p, 1);
1721}
1722EXPORT_SYMBOL_GPL(unregister_kprobe);
1723
1724void unregister_kprobes(struct kprobe **kps, int num)
1725{
1726        int i;
1727
1728        if (num <= 0)
1729                return;
1730        mutex_lock(&kprobe_mutex);
1731        for (i = 0; i < num; i++)
1732                if (__unregister_kprobe_top(kps[i]) < 0)
1733                        kps[i]->addr = NULL;
1734        mutex_unlock(&kprobe_mutex);
1735
1736        synchronize_sched();
1737        for (i = 0; i < num; i++)
1738                if (kps[i]->addr)
1739                        __unregister_kprobe_bottom(kps[i]);
1740}
1741EXPORT_SYMBOL_GPL(unregister_kprobes);
1742
1743int __weak __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1744                                              unsigned long val, void *data)
1745{
1746        return NOTIFY_DONE;
1747}
1748
1749static struct notifier_block kprobe_exceptions_nb = {
1750        .notifier_call = kprobe_exceptions_notify,
1751        .priority = 0x7fffffff /* we need to be notified first */
1752};
1753
1754unsigned long __weak arch_deref_entry_point(void *entry)
1755{
1756        return (unsigned long)entry;
1757}
1758
1759int register_jprobes(struct jprobe **jps, int num)
1760{
1761        struct jprobe *jp;
1762        int ret = 0, i;
1763
1764        if (num <= 0)
1765                return -EINVAL;
1766        for (i = 0; i < num; i++) {
1767                unsigned long addr, offset;
1768                jp = jps[i];
1769                addr = arch_deref_entry_point(jp->entry);
1770
1771                /* Verify probepoint is a function entry point */
1772                if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1773                    offset == 0) {
1774                        jp->kp.pre_handler = setjmp_pre_handler;
1775                        jp->kp.break_handler = longjmp_break_handler;
1776                        ret = register_kprobe(&jp->kp);
1777                } else
1778                        ret = -EINVAL;
1779
1780                if (ret < 0) {
1781                        if (i > 0)
1782                                unregister_jprobes(jps, i);
1783                        break;
1784                }
1785        }
1786        return ret;
1787}
1788EXPORT_SYMBOL_GPL(register_jprobes);
1789
1790int register_jprobe(struct jprobe *jp)
1791{
1792        return register_jprobes(&jp, 1);
1793}
1794EXPORT_SYMBOL_GPL(register_jprobe);
1795
1796void unregister_jprobe(struct jprobe *jp)
1797{
1798        unregister_jprobes(&jp, 1);
1799}
1800EXPORT_SYMBOL_GPL(unregister_jprobe);
1801
1802void unregister_jprobes(struct jprobe **jps, int num)
1803{
1804        int i;
1805
1806        if (num <= 0)
1807                return;
1808        mutex_lock(&kprobe_mutex);
1809        for (i = 0; i < num; i++)
1810                if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1811                        jps[i]->kp.addr = NULL;
1812        mutex_unlock(&kprobe_mutex);
1813
1814        synchronize_sched();
1815        for (i = 0; i < num; i++) {
1816                if (jps[i]->kp.addr)
1817                        __unregister_kprobe_bottom(&jps[i]->kp);
1818        }
1819}
1820EXPORT_SYMBOL_GPL(unregister_jprobes);
1821
1822#ifdef CONFIG_KRETPROBES
1823/*
1824 * This kprobe pre_handler is registered with every kretprobe. When probe
1825 * hits it will set up the return probe.
1826 */
1827static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1828{
1829        struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1830        unsigned long hash, flags = 0;
1831        struct kretprobe_instance *ri;
1832
1833        /*
1834         * To avoid deadlocks, prohibit return probing in NMI contexts,
1835         * just skip the probe and increase the (inexact) 'nmissed'
1836         * statistical counter, so that the user is informed that
1837         * something happened:
1838         */
1839        if (unlikely(in_nmi())) {
1840                rp->nmissed++;
1841                return 0;
1842        }
1843
1844        /* TODO: consider to only swap the RA after the last pre_handler fired */
1845        hash = hash_ptr(current, KPROBE_HASH_BITS);
1846        raw_spin_lock_irqsave(&rp->lock, flags);
1847        if (!hlist_empty(&rp->free_instances)) {
1848                ri = hlist_entry(rp->free_instances.first,
1849                                struct kretprobe_instance, hlist);
1850                hlist_del(&ri->hlist);
1851                raw_spin_unlock_irqrestore(&rp->lock, flags);
1852
1853                ri->rp = rp;
1854                ri->task = current;
1855
1856                if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1857                        raw_spin_lock_irqsave(&rp->lock, flags);
1858                        hlist_add_head(&ri->hlist, &rp->free_instances);
1859                        raw_spin_unlock_irqrestore(&rp->lock, flags);
1860                        return 0;
1861                }
1862
1863                arch_prepare_kretprobe(ri, regs);
1864
1865                /* XXX(hch): why is there no hlist_move_head? */
1866                INIT_HLIST_NODE(&ri->hlist);
1867                kretprobe_table_lock(hash, &flags);
1868                hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1869                kretprobe_table_unlock(hash, &flags);
1870        } else {
1871                rp->nmissed++;
1872                raw_spin_unlock_irqrestore(&rp->lock, flags);
1873        }
1874        return 0;
1875}
1876NOKPROBE_SYMBOL(pre_handler_kretprobe);
1877
1878int register_kretprobe(struct kretprobe *rp)
1879{
1880        int ret = 0;
1881        struct kretprobe_instance *inst;
1882        int i;
1883        void *addr;
1884
1885        if (kretprobe_blacklist_size) {
1886                addr = kprobe_addr(&rp->kp);
1887                if (IS_ERR(addr))
1888                        return PTR_ERR(addr);
1889
1890                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1891                        if (kretprobe_blacklist[i].addr == addr)
1892                                return -EINVAL;
1893                }
1894        }
1895
1896        rp->kp.pre_handler = pre_handler_kretprobe;
1897        rp->kp.post_handler = NULL;
1898        rp->kp.fault_handler = NULL;
1899        rp->kp.break_handler = NULL;
1900
1901        /* Pre-allocate memory for max kretprobe instances */
1902        if (rp->maxactive <= 0) {
1903#ifdef CONFIG_PREEMPT
1904                rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1905#else
1906                rp->maxactive = num_possible_cpus();
1907#endif
1908        }
1909        raw_spin_lock_init(&rp->lock);
1910        INIT_HLIST_HEAD(&rp->free_instances);
1911        for (i = 0; i < rp->maxactive; i++) {
1912                inst = kmalloc(sizeof(struct kretprobe_instance) +
1913                               rp->data_size, GFP_KERNEL);
1914                if (inst == NULL) {
1915                        free_rp_inst(rp);
1916                        return -ENOMEM;
1917                }
1918                INIT_HLIST_NODE(&inst->hlist);
1919                hlist_add_head(&inst->hlist, &rp->free_instances);
1920        }
1921
1922        rp->nmissed = 0;
1923        /* Establish function entry probe point */
1924        ret = register_kprobe(&rp->kp);
1925        if (ret != 0)
1926                free_rp_inst(rp);
1927        return ret;
1928}
1929EXPORT_SYMBOL_GPL(register_kretprobe);
1930
1931int register_kretprobes(struct kretprobe **rps, int num)
1932{
1933        int ret = 0, i;
1934
1935        if (num <= 0)
1936                return -EINVAL;
1937        for (i = 0; i < num; i++) {
1938                ret = register_kretprobe(rps[i]);
1939                if (ret < 0) {
1940                        if (i > 0)
1941                                unregister_kretprobes(rps, i);
1942                        break;
1943                }
1944        }
1945        return ret;
1946}
1947EXPORT_SYMBOL_GPL(register_kretprobes);
1948
1949void unregister_kretprobe(struct kretprobe *rp)
1950{
1951        unregister_kretprobes(&rp, 1);
1952}
1953EXPORT_SYMBOL_GPL(unregister_kretprobe);
1954
1955void unregister_kretprobes(struct kretprobe **rps, int num)
1956{
1957        int i;
1958
1959        if (num <= 0)
1960                return;
1961        mutex_lock(&kprobe_mutex);
1962        for (i = 0; i < num; i++)
1963                if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1964                        rps[i]->kp.addr = NULL;
1965        mutex_unlock(&kprobe_mutex);
1966
1967        synchronize_sched();
1968        for (i = 0; i < num; i++) {
1969                if (rps[i]->kp.addr) {
1970                        __unregister_kprobe_bottom(&rps[i]->kp);
1971                        cleanup_rp_inst(rps[i]);
1972                }
1973        }
1974}
1975EXPORT_SYMBOL_GPL(unregister_kretprobes);
1976
1977#else /* CONFIG_KRETPROBES */
1978int register_kretprobe(struct kretprobe *rp)
1979{
1980        return -ENOSYS;
1981}
1982EXPORT_SYMBOL_GPL(register_kretprobe);
1983
1984int register_kretprobes(struct kretprobe **rps, int num)
1985{
1986        return -ENOSYS;
1987}
1988EXPORT_SYMBOL_GPL(register_kretprobes);
1989
1990void unregister_kretprobe(struct kretprobe *rp)
1991{
1992}
1993EXPORT_SYMBOL_GPL(unregister_kretprobe);
1994
1995void unregister_kretprobes(struct kretprobe **rps, int num)
1996{
1997}
1998EXPORT_SYMBOL_GPL(unregister_kretprobes);
1999
2000static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2001{
2002        return 0;
2003}
2004NOKPROBE_SYMBOL(pre_handler_kretprobe);
2005
2006#endif /* CONFIG_KRETPROBES */
2007
2008/* Set the kprobe gone and remove its instruction buffer. */
2009static void kill_kprobe(struct kprobe *p)
2010{
2011        struct kprobe *kp;
2012
2013        p->flags |= KPROBE_FLAG_GONE;
2014        if (kprobe_aggrprobe(p)) {
2015                /*
2016                 * If this is an aggr_kprobe, we have to list all the
2017                 * chained probes and mark them GONE.
2018                 */
2019                list_for_each_entry_rcu(kp, &p->list, list)
2020                        kp->flags |= KPROBE_FLAG_GONE;
2021                p->post_handler = NULL;
2022                p->break_handler = NULL;
2023                kill_optimized_kprobe(p);
2024        }
2025        /*
2026         * Here, we can remove insn_slot safely, because no thread calls
2027         * the original probed function (which will be freed soon) any more.
2028         */
2029        arch_remove_kprobe(p);
2030}
2031
2032/* Disable one kprobe */
2033int disable_kprobe(struct kprobe *kp)
2034{
2035        int ret = 0;
2036
2037        mutex_lock(&kprobe_mutex);
2038
2039        /* Disable this kprobe */
2040        if (__disable_kprobe(kp) == NULL)
2041                ret = -EINVAL;
2042
2043        mutex_unlock(&kprobe_mutex);
2044        return ret;
2045}
2046EXPORT_SYMBOL_GPL(disable_kprobe);
2047
2048/* Enable one kprobe */
2049int enable_kprobe(struct kprobe *kp)
2050{
2051        int ret = 0;
2052        struct kprobe *p;
2053
2054        mutex_lock(&kprobe_mutex);
2055
2056        /* Check whether specified probe is valid. */
2057        p = __get_valid_kprobe(kp);
2058        if (unlikely(p == NULL)) {
2059                ret = -EINVAL;
2060                goto out;
2061        }
2062
2063        if (kprobe_gone(kp)) {
2064                /* This kprobe has gone, we couldn't enable it. */
2065                ret = -EINVAL;
2066                goto out;
2067        }
2068
2069        if (p != kp)
2070                kp->flags &= ~KPROBE_FLAG_DISABLED;
2071
2072        if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2073                p->flags &= ~KPROBE_FLAG_DISABLED;
2074                arm_kprobe(p);
2075        }
2076out:
2077        mutex_unlock(&kprobe_mutex);
2078        return ret;
2079}
2080EXPORT_SYMBOL_GPL(enable_kprobe);
2081
2082void dump_kprobe(struct kprobe *kp)
2083{
2084        printk(KERN_WARNING "Dumping kprobe:\n");
2085        printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2086               kp->symbol_name, kp->addr, kp->offset);
2087}
2088NOKPROBE_SYMBOL(dump_kprobe);
2089
2090/*
2091 * Lookup and populate the kprobe_blacklist.
2092 *
2093 * Unlike the kretprobe blacklist, we'll need to determine
2094 * the range of addresses that belong to the said functions,
2095 * since a kprobe need not necessarily be at the beginning
2096 * of a function.
2097 */
2098static int __init populate_kprobe_blacklist(unsigned long *start,
2099                                             unsigned long *end)
2100{
2101        unsigned long *iter;
2102        struct kprobe_blacklist_entry *ent;
2103        unsigned long entry, offset = 0, size = 0;
2104
2105        for (iter = start; iter < end; iter++) {
2106                entry = arch_deref_entry_point((void *)*iter);
2107
2108                if (!kernel_text_address(entry) ||
2109                    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2110                        pr_err("Failed to find blacklist at %p\n",
2111                                (void *)entry);
2112                        continue;
2113                }
2114
2115                ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2116                if (!ent)
2117                        return -ENOMEM;
2118                ent->start_addr = entry;
2119                ent->end_addr = entry + size;
2120                INIT_LIST_HEAD(&ent->list);
2121                list_add_tail(&ent->list, &kprobe_blacklist);
2122        }
2123        return 0;
2124}
2125
2126/* Module notifier call back, checking kprobes on the module */
2127static int kprobes_module_callback(struct notifier_block *nb,
2128                                   unsigned long val, void *data)
2129{
2130        struct module *mod = data;
2131        struct hlist_head *head;
2132        struct kprobe *p;
2133        unsigned int i;
2134        int checkcore = (val == MODULE_STATE_GOING);
2135
2136        if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2137                return NOTIFY_DONE;
2138
2139        /*
2140         * When MODULE_STATE_GOING was notified, both of module .text and
2141         * .init.text sections would be freed. When MODULE_STATE_LIVE was
2142         * notified, only .init.text section would be freed. We need to
2143         * disable kprobes which have been inserted in the sections.
2144         */
2145        mutex_lock(&kprobe_mutex);
2146        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2147                head = &kprobe_table[i];
2148                hlist_for_each_entry_rcu(p, head, hlist)
2149                        if (within_module_init((unsigned long)p->addr, mod) ||
2150                            (checkcore &&
2151                             within_module_core((unsigned long)p->addr, mod))) {
2152                                /*
2153                                 * The vaddr this probe is installed will soon
2154                                 * be vfreed buy not synced to disk. Hence,
2155                                 * disarming the breakpoint isn't needed.
2156                                 */
2157                                kill_kprobe(p);
2158                        }
2159        }
2160        mutex_unlock(&kprobe_mutex);
2161        return NOTIFY_DONE;
2162}
2163
2164static struct notifier_block kprobe_module_nb = {
2165        .notifier_call = kprobes_module_callback,
2166        .priority = 0
2167};
2168
2169/* Markers of _kprobe_blacklist section */
2170extern unsigned long __start_kprobe_blacklist[];
2171extern unsigned long __stop_kprobe_blacklist[];
2172
2173static int __init init_kprobes(void)
2174{
2175        int i, err = 0;
2176
2177        /* FIXME allocate the probe table, currently defined statically */
2178        /* initialize all list heads */
2179        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2180                INIT_HLIST_HEAD(&kprobe_table[i]);
2181                INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2182                raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2183        }
2184
2185        err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2186                                        __stop_kprobe_blacklist);
2187        if (err) {
2188                pr_err("kprobes: failed to populate blacklist: %d\n", err);
2189                pr_err("Please take care of using kprobes.\n");
2190        }
2191
2192        if (kretprobe_blacklist_size) {
2193                /* lookup the function address from its name */
2194                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2195                        kprobe_lookup_name(kretprobe_blacklist[i].name,
2196                                           kretprobe_blacklist[i].addr);
2197                        if (!kretprobe_blacklist[i].addr)
2198                                printk("kretprobe: lookup failed: %s\n",
2199                                       kretprobe_blacklist[i].name);
2200                }
2201        }
2202
2203#if defined(CONFIG_OPTPROBES)
2204#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2205        /* Init kprobe_optinsn_slots */
2206        kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2207#endif
2208        /* By default, kprobes can be optimized */
2209        kprobes_allow_optimization = true;
2210#endif
2211
2212        /* By default, kprobes are armed */
2213        kprobes_all_disarmed = false;
2214
2215        err = arch_init_kprobes();
2216        if (!err)
2217                err = register_die_notifier(&kprobe_exceptions_nb);
2218        if (!err)
2219                err = register_module_notifier(&kprobe_module_nb);
2220
2221        kprobes_initialized = (err == 0);
2222
2223        if (!err)
2224                init_test_probes();
2225        return err;
2226}
2227
2228#ifdef CONFIG_DEBUG_FS
2229static void report_probe(struct seq_file *pi, struct kprobe *p,
2230                const char *sym, int offset, char *modname, struct kprobe *pp)
2231{
2232        char *kprobe_type;
2233
2234        if (p->pre_handler == pre_handler_kretprobe)
2235                kprobe_type = "r";
2236        else if (p->pre_handler == setjmp_pre_handler)
2237                kprobe_type = "j";
2238        else
2239                kprobe_type = "k";
2240
2241        if (sym)
2242                seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2243                        p->addr, kprobe_type, sym, offset,
2244                        (modname ? modname : " "));
2245        else
2246                seq_printf(pi, "%p  %s  %p ",
2247                        p->addr, kprobe_type, p->addr);
2248
2249        if (!pp)
2250                pp = p;
2251        seq_printf(pi, "%s%s%s%s\n",
2252                (kprobe_gone(p) ? "[GONE]" : ""),
2253                ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2254                (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2255                (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2256}
2257
2258static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2259{
2260        return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2261}
2262
2263static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2264{
2265        (*pos)++;
2266        if (*pos >= KPROBE_TABLE_SIZE)
2267                return NULL;
2268        return pos;
2269}
2270
2271static void kprobe_seq_stop(struct seq_file *f, void *v)
2272{
2273        /* Nothing to do */
2274}
2275
2276static int show_kprobe_addr(struct seq_file *pi, void *v)
2277{
2278        struct hlist_head *head;
2279        struct kprobe *p, *kp;
2280        const char *sym = NULL;
2281        unsigned int i = *(loff_t *) v;
2282        unsigned long offset = 0;
2283        char *modname, namebuf[KSYM_NAME_LEN];
2284
2285        head = &kprobe_table[i];
2286        preempt_disable();
2287        hlist_for_each_entry_rcu(p, head, hlist) {
2288                sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2289                                        &offset, &modname, namebuf);
2290                if (kprobe_aggrprobe(p)) {
2291                        list_for_each_entry_rcu(kp, &p->list, list)
2292                                report_probe(pi, kp, sym, offset, modname, p);
2293                } else
2294                        report_probe(pi, p, sym, offset, modname, NULL);
2295        }
2296        preempt_enable();
2297        return 0;
2298}
2299
2300static const struct seq_operations kprobes_seq_ops = {
2301        .start = kprobe_seq_start,
2302        .next  = kprobe_seq_next,
2303        .stop  = kprobe_seq_stop,
2304        .show  = show_kprobe_addr
2305};
2306
2307static int kprobes_open(struct inode *inode, struct file *filp)
2308{
2309        return seq_open(filp, &kprobes_seq_ops);
2310}
2311
2312static const struct file_operations debugfs_kprobes_operations = {
2313        .open           = kprobes_open,
2314        .read           = seq_read,
2315        .llseek         = seq_lseek,
2316        .release        = seq_release,
2317};
2318
2319/* kprobes/blacklist -- shows which functions can not be probed */
2320static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2321{
2322        return seq_list_start(&kprobe_blacklist, *pos);
2323}
2324
2325static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2326{
2327        return seq_list_next(v, &kprobe_blacklist, pos);
2328}
2329
2330static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2331{
2332        struct kprobe_blacklist_entry *ent =
2333                list_entry(v, struct kprobe_blacklist_entry, list);
2334
2335        seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2336                   (void *)ent->end_addr, (void *)ent->start_addr);
2337        return 0;
2338}
2339
2340static const struct seq_operations kprobe_blacklist_seq_ops = {
2341        .start = kprobe_blacklist_seq_start,
2342        .next  = kprobe_blacklist_seq_next,
2343        .stop  = kprobe_seq_stop,       /* Reuse void function */
2344        .show  = kprobe_blacklist_seq_show,
2345};
2346
2347static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2348{
2349        return seq_open(filp, &kprobe_blacklist_seq_ops);
2350}
2351
2352static const struct file_operations debugfs_kprobe_blacklist_ops = {
2353        .open           = kprobe_blacklist_open,
2354        .read           = seq_read,
2355        .llseek         = seq_lseek,
2356        .release        = seq_release,
2357};
2358
2359static void arm_all_kprobes(void)
2360{
2361        struct hlist_head *head;
2362        struct kprobe *p;
2363        unsigned int i;
2364
2365        mutex_lock(&kprobe_mutex);
2366
2367        /* If kprobes are armed, just return */
2368        if (!kprobes_all_disarmed)
2369                goto already_enabled;
2370
2371        /*
2372         * optimize_kprobe() called by arm_kprobe() checks
2373         * kprobes_all_disarmed, so set kprobes_all_disarmed before
2374         * arm_kprobe.
2375         */
2376        kprobes_all_disarmed = false;
2377        /* Arming kprobes doesn't optimize kprobe itself */
2378        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2379                head = &kprobe_table[i];
2380                hlist_for_each_entry_rcu(p, head, hlist)
2381                        if (!kprobe_disabled(p))
2382                                arm_kprobe(p);
2383        }
2384
2385        printk(KERN_INFO "Kprobes globally enabled\n");
2386
2387already_enabled:
2388        mutex_unlock(&kprobe_mutex);
2389        return;
2390}
2391
2392static void disarm_all_kprobes(void)
2393{
2394        struct hlist_head *head;
2395        struct kprobe *p;
2396        unsigned int i;
2397
2398        mutex_lock(&kprobe_mutex);
2399
2400        /* If kprobes are already disarmed, just return */
2401        if (kprobes_all_disarmed) {
2402                mutex_unlock(&kprobe_mutex);
2403                return;
2404        }
2405
2406        kprobes_all_disarmed = true;
2407        printk(KERN_INFO "Kprobes globally disabled\n");
2408
2409        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2410                head = &kprobe_table[i];
2411                hlist_for_each_entry_rcu(p, head, hlist) {
2412                        if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2413                                disarm_kprobe(p, false);
2414                }
2415        }
2416        mutex_unlock(&kprobe_mutex);
2417
2418        /* Wait for disarming all kprobes by optimizer */
2419        wait_for_kprobe_optimizer();
2420}
2421
2422/*
2423 * XXX: The debugfs bool file interface doesn't allow for callbacks
2424 * when the bool state is switched. We can reuse that facility when
2425 * available
2426 */
2427static ssize_t read_enabled_file_bool(struct file *file,
2428               char __user *user_buf, size_t count, loff_t *ppos)
2429{
2430        char buf[3];
2431
2432        if (!kprobes_all_disarmed)
2433                buf[0] = '1';
2434        else
2435                buf[0] = '0';
2436        buf[1] = '\n';
2437        buf[2] = 0x00;
2438        return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2439}
2440
2441static ssize_t write_enabled_file_bool(struct file *file,
2442               const char __user *user_buf, size_t count, loff_t *ppos)
2443{
2444        char buf[32];
2445        size_t buf_size;
2446
2447        buf_size = min(count, (sizeof(buf)-1));
2448        if (copy_from_user(buf, user_buf, buf_size))
2449                return -EFAULT;
2450
2451        buf[buf_size] = '\0';
2452        switch (buf[0]) {
2453        case 'y':
2454        case 'Y':
2455        case '1':
2456                arm_all_kprobes();
2457                break;
2458        case 'n':
2459        case 'N':
2460        case '0':
2461                disarm_all_kprobes();
2462                break;
2463        default:
2464                return -EINVAL;
2465        }
2466
2467        return count;
2468}
2469
2470static const struct file_operations fops_kp = {
2471        .read =         read_enabled_file_bool,
2472        .write =        write_enabled_file_bool,
2473        .llseek =       default_llseek,
2474};
2475
2476static int __init debugfs_kprobe_init(void)
2477{
2478        struct dentry *dir, *file;
2479        unsigned int value = 1;
2480
2481        dir = debugfs_create_dir("kprobes", NULL);
2482        if (!dir)
2483                return -ENOMEM;
2484
2485        file = debugfs_create_file("list", 0444, dir, NULL,
2486                                &debugfs_kprobes_operations);
2487        if (!file)
2488                goto error;
2489
2490        file = debugfs_create_file("enabled", 0600, dir,
2491                                        &value, &fops_kp);
2492        if (!file)
2493                goto error;
2494
2495        file = debugfs_create_file("blacklist", 0444, dir, NULL,
2496                                &debugfs_kprobe_blacklist_ops);
2497        if (!file)
2498                goto error;
2499
2500        return 0;
2501
2502error:
2503        debugfs_remove(dir);
2504        return -ENOMEM;
2505}
2506
2507late_initcall(debugfs_kprobe_init);
2508#endif /* CONFIG_DEBUG_FS */
2509
2510module_init(init_kprobes);
2511
2512/* defined in arch/.../kernel/kprobes.c */
2513EXPORT_SYMBOL_GPL(jprobe_return);
2514