linux/kernel/pid_namespace.c
<<
>>
Prefs
   1/*
   2 * Pid namespaces
   3 *
   4 * Authors:
   5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   7 *     Many thanks to Oleg Nesterov for comments and help
   8 *
   9 */
  10
  11#include <linux/pid.h>
  12#include <linux/pid_namespace.h>
  13#include <linux/user_namespace.h>
  14#include <linux/syscalls.h>
  15#include <linux/cred.h>
  16#include <linux/err.h>
  17#include <linux/acct.h>
  18#include <linux/slab.h>
  19#include <linux/proc_ns.h>
  20#include <linux/reboot.h>
  21#include <linux/export.h>
  22#include <linux/sched/task.h>
  23#include <linux/sched/signal.h>
  24
  25struct pid_cache {
  26        int nr_ids;
  27        char name[16];
  28        struct kmem_cache *cachep;
  29        struct list_head list;
  30};
  31
  32static LIST_HEAD(pid_caches_lh);
  33static DEFINE_MUTEX(pid_caches_mutex);
  34static struct kmem_cache *pid_ns_cachep;
  35
  36/*
  37 * creates the kmem cache to allocate pids from.
  38 * @nr_ids: the number of numerical ids this pid will have to carry
  39 */
  40
  41static struct kmem_cache *create_pid_cachep(int nr_ids)
  42{
  43        struct pid_cache *pcache;
  44        struct kmem_cache *cachep;
  45
  46        mutex_lock(&pid_caches_mutex);
  47        list_for_each_entry(pcache, &pid_caches_lh, list)
  48                if (pcache->nr_ids == nr_ids)
  49                        goto out;
  50
  51        pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
  52        if (pcache == NULL)
  53                goto err_alloc;
  54
  55        snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
  56        cachep = kmem_cache_create(pcache->name,
  57                        sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
  58                        0, SLAB_HWCACHE_ALIGN, NULL);
  59        if (cachep == NULL)
  60                goto err_cachep;
  61
  62        pcache->nr_ids = nr_ids;
  63        pcache->cachep = cachep;
  64        list_add(&pcache->list, &pid_caches_lh);
  65out:
  66        mutex_unlock(&pid_caches_mutex);
  67        return pcache->cachep;
  68
  69err_cachep:
  70        kfree(pcache);
  71err_alloc:
  72        mutex_unlock(&pid_caches_mutex);
  73        return NULL;
  74}
  75
  76static void proc_cleanup_work(struct work_struct *work)
  77{
  78        struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
  79        pid_ns_release_proc(ns);
  80}
  81
  82/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
  83#define MAX_PID_NS_LEVEL 32
  84
  85static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  86{
  87        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  88}
  89
  90static void dec_pid_namespaces(struct ucounts *ucounts)
  91{
  92        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  93}
  94
  95static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  96        struct pid_namespace *parent_pid_ns)
  97{
  98        struct pid_namespace *ns;
  99        unsigned int level = parent_pid_ns->level + 1;
 100        struct ucounts *ucounts;
 101        int i;
 102        int err;
 103
 104        err = -ENOSPC;
 105        if (level > MAX_PID_NS_LEVEL)
 106                goto out;
 107        ucounts = inc_pid_namespaces(user_ns);
 108        if (!ucounts)
 109                goto out;
 110
 111        err = -ENOMEM;
 112        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 113        if (ns == NULL)
 114                goto out_dec;
 115
 116        ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 117        if (!ns->pidmap[0].page)
 118                goto out_free;
 119
 120        ns->pid_cachep = create_pid_cachep(level + 1);
 121        if (ns->pid_cachep == NULL)
 122                goto out_free_map;
 123
 124        err = ns_alloc_inum(&ns->ns);
 125        if (err)
 126                goto out_free_map;
 127        ns->ns.ops = &pidns_operations;
 128
 129        kref_init(&ns->kref);
 130        ns->level = level;
 131        ns->parent = get_pid_ns(parent_pid_ns);
 132        ns->user_ns = get_user_ns(user_ns);
 133        ns->ucounts = ucounts;
 134        ns->nr_hashed = PIDNS_HASH_ADDING;
 135        INIT_WORK(&ns->proc_work, proc_cleanup_work);
 136
 137        set_bit(0, ns->pidmap[0].page);
 138        atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
 139
 140        for (i = 1; i < PIDMAP_ENTRIES; i++)
 141                atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
 142
 143        return ns;
 144
 145out_free_map:
 146        kfree(ns->pidmap[0].page);
 147out_free:
 148        kmem_cache_free(pid_ns_cachep, ns);
 149out_dec:
 150        dec_pid_namespaces(ucounts);
 151out:
 152        return ERR_PTR(err);
 153}
 154
 155static void delayed_free_pidns(struct rcu_head *p)
 156{
 157        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 158
 159        dec_pid_namespaces(ns->ucounts);
 160        put_user_ns(ns->user_ns);
 161
 162        kmem_cache_free(pid_ns_cachep, ns);
 163}
 164
 165static void destroy_pid_namespace(struct pid_namespace *ns)
 166{
 167        int i;
 168
 169        ns_free_inum(&ns->ns);
 170        for (i = 0; i < PIDMAP_ENTRIES; i++)
 171                kfree(ns->pidmap[i].page);
 172        call_rcu(&ns->rcu, delayed_free_pidns);
 173}
 174
 175struct pid_namespace *copy_pid_ns(unsigned long flags,
 176        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 177{
 178        if (!(flags & CLONE_NEWPID))
 179                return get_pid_ns(old_ns);
 180        if (task_active_pid_ns(current) != old_ns)
 181                return ERR_PTR(-EINVAL);
 182        return create_pid_namespace(user_ns, old_ns);
 183}
 184
 185static void free_pid_ns(struct kref *kref)
 186{
 187        struct pid_namespace *ns;
 188
 189        ns = container_of(kref, struct pid_namespace, kref);
 190        destroy_pid_namespace(ns);
 191}
 192
 193void put_pid_ns(struct pid_namespace *ns)
 194{
 195        struct pid_namespace *parent;
 196
 197        while (ns != &init_pid_ns) {
 198                parent = ns->parent;
 199                if (!kref_put(&ns->kref, free_pid_ns))
 200                        break;
 201                ns = parent;
 202        }
 203}
 204EXPORT_SYMBOL_GPL(put_pid_ns);
 205
 206void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 207{
 208        int nr;
 209        int rc;
 210        struct task_struct *task, *me = current;
 211        int init_pids = thread_group_leader(me) ? 1 : 2;
 212
 213        /* Don't allow any more processes into the pid namespace */
 214        disable_pid_allocation(pid_ns);
 215
 216        /*
 217         * Ignore SIGCHLD causing any terminated children to autoreap.
 218         * This speeds up the namespace shutdown, plus see the comment
 219         * below.
 220         */
 221        spin_lock_irq(&me->sighand->siglock);
 222        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 223        spin_unlock_irq(&me->sighand->siglock);
 224
 225        /*
 226         * The last thread in the cgroup-init thread group is terminating.
 227         * Find remaining pid_ts in the namespace, signal and wait for them
 228         * to exit.
 229         *
 230         * Note:  This signals each threads in the namespace - even those that
 231         *        belong to the same thread group, To avoid this, we would have
 232         *        to walk the entire tasklist looking a processes in this
 233         *        namespace, but that could be unnecessarily expensive if the
 234         *        pid namespace has just a few processes. Or we need to
 235         *        maintain a tasklist for each pid namespace.
 236         *
 237         */
 238        read_lock(&tasklist_lock);
 239        nr = next_pidmap(pid_ns, 1);
 240        while (nr > 0) {
 241                rcu_read_lock();
 242
 243                task = pid_task(find_vpid(nr), PIDTYPE_PID);
 244                if (task && !__fatal_signal_pending(task))
 245                        send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
 246
 247                rcu_read_unlock();
 248
 249                nr = next_pidmap(pid_ns, nr);
 250        }
 251        read_unlock(&tasklist_lock);
 252
 253        /*
 254         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 255         * sys_wait4() will also block until our children traced from the
 256         * parent namespace are detached and become EXIT_DEAD.
 257         */
 258        do {
 259                clear_thread_flag(TIF_SIGPENDING);
 260                rc = sys_wait4(-1, NULL, __WALL, NULL);
 261        } while (rc != -ECHILD);
 262
 263        /*
 264         * sys_wait4() above can't reap the EXIT_DEAD children but we do not
 265         * really care, we could reparent them to the global init. We could
 266         * exit and reap ->child_reaper even if it is not the last thread in
 267         * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
 268         * pid_ns can not go away until proc_kill_sb() drops the reference.
 269         *
 270         * But this ns can also have other tasks injected by setns()+fork().
 271         * Again, ignoring the user visible semantics we do not really need
 272         * to wait until they are all reaped, but they can be reparented to
 273         * us and thus we need to ensure that pid->child_reaper stays valid
 274         * until they all go away. See free_pid()->wake_up_process().
 275         *
 276         * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
 277         * if reparented.
 278         */
 279        for (;;) {
 280                set_current_state(TASK_UNINTERRUPTIBLE);
 281                if (pid_ns->nr_hashed == init_pids)
 282                        break;
 283                schedule();
 284        }
 285        __set_current_state(TASK_RUNNING);
 286
 287        if (pid_ns->reboot)
 288                current->signal->group_exit_code = pid_ns->reboot;
 289
 290        acct_exit_ns(pid_ns);
 291        return;
 292}
 293
 294#ifdef CONFIG_CHECKPOINT_RESTORE
 295static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 296                void __user *buffer, size_t *lenp, loff_t *ppos)
 297{
 298        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 299        struct ctl_table tmp = *table;
 300
 301        if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
 302                return -EPERM;
 303
 304        /*
 305         * Writing directly to ns' last_pid field is OK, since this field
 306         * is volatile in a living namespace anyway and a code writing to
 307         * it should synchronize its usage with external means.
 308         */
 309
 310        tmp.data = &pid_ns->last_pid;
 311        return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 312}
 313
 314extern int pid_max;
 315static int zero = 0;
 316static struct ctl_table pid_ns_ctl_table[] = {
 317        {
 318                .procname = "ns_last_pid",
 319                .maxlen = sizeof(int),
 320                .mode = 0666, /* permissions are checked in the handler */
 321                .proc_handler = pid_ns_ctl_handler,
 322                .extra1 = &zero,
 323                .extra2 = &pid_max,
 324        },
 325        { }
 326};
 327static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 328#endif  /* CONFIG_CHECKPOINT_RESTORE */
 329
 330int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 331{
 332        if (pid_ns == &init_pid_ns)
 333                return 0;
 334
 335        switch (cmd) {
 336        case LINUX_REBOOT_CMD_RESTART2:
 337        case LINUX_REBOOT_CMD_RESTART:
 338                pid_ns->reboot = SIGHUP;
 339                break;
 340
 341        case LINUX_REBOOT_CMD_POWER_OFF:
 342        case LINUX_REBOOT_CMD_HALT:
 343                pid_ns->reboot = SIGINT;
 344                break;
 345        default:
 346                return -EINVAL;
 347        }
 348
 349        read_lock(&tasklist_lock);
 350        force_sig(SIGKILL, pid_ns->child_reaper);
 351        read_unlock(&tasklist_lock);
 352
 353        do_exit(0);
 354
 355        /* Not reached */
 356        return 0;
 357}
 358
 359static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 360{
 361        return container_of(ns, struct pid_namespace, ns);
 362}
 363
 364static struct ns_common *pidns_get(struct task_struct *task)
 365{
 366        struct pid_namespace *ns;
 367
 368        rcu_read_lock();
 369        ns = task_active_pid_ns(task);
 370        if (ns)
 371                get_pid_ns(ns);
 372        rcu_read_unlock();
 373
 374        return ns ? &ns->ns : NULL;
 375}
 376
 377static void pidns_put(struct ns_common *ns)
 378{
 379        put_pid_ns(to_pid_ns(ns));
 380}
 381
 382static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 383{
 384        struct pid_namespace *active = task_active_pid_ns(current);
 385        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 386
 387        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 388            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 389                return -EPERM;
 390
 391        /*
 392         * Only allow entering the current active pid namespace
 393         * or a child of the current active pid namespace.
 394         *
 395         * This is required for fork to return a usable pid value and
 396         * this maintains the property that processes and their
 397         * children can not escape their current pid namespace.
 398         */
 399        if (new->level < active->level)
 400                return -EINVAL;
 401
 402        ancestor = new;
 403        while (ancestor->level > active->level)
 404                ancestor = ancestor->parent;
 405        if (ancestor != active)
 406                return -EINVAL;
 407
 408        put_pid_ns(nsproxy->pid_ns_for_children);
 409        nsproxy->pid_ns_for_children = get_pid_ns(new);
 410        return 0;
 411}
 412
 413static struct ns_common *pidns_get_parent(struct ns_common *ns)
 414{
 415        struct pid_namespace *active = task_active_pid_ns(current);
 416        struct pid_namespace *pid_ns, *p;
 417
 418        /* See if the parent is in the current namespace */
 419        pid_ns = p = to_pid_ns(ns)->parent;
 420        for (;;) {
 421                if (!p)
 422                        return ERR_PTR(-EPERM);
 423                if (p == active)
 424                        break;
 425                p = p->parent;
 426        }
 427
 428        return &get_pid_ns(pid_ns)->ns;
 429}
 430
 431static struct user_namespace *pidns_owner(struct ns_common *ns)
 432{
 433        return to_pid_ns(ns)->user_ns;
 434}
 435
 436const struct proc_ns_operations pidns_operations = {
 437        .name           = "pid",
 438        .type           = CLONE_NEWPID,
 439        .get            = pidns_get,
 440        .put            = pidns_put,
 441        .install        = pidns_install,
 442        .owner          = pidns_owner,
 443        .get_parent     = pidns_get_parent,
 444};
 445
 446static __init int pid_namespaces_init(void)
 447{
 448        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 449
 450#ifdef CONFIG_CHECKPOINT_RESTORE
 451        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 452#endif
 453        return 0;
 454}
 455
 456__initcall(pid_namespaces_init);
 457