linux/kernel/rcu/tree_plugin.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/sched/debug.h>
  31#include <linux/smpboot.h>
  32#include <uapi/linux/sched/types.h>
  33#include "../time/tick-internal.h"
  34
  35#ifdef CONFIG_RCU_BOOST
  36
  37#include "../locking/rtmutex_common.h"
  38
  39/*
  40 * Control variables for per-CPU and per-rcu_node kthreads.  These
  41 * handle all flavors of RCU.
  42 */
  43static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  44DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  46DEFINE_PER_CPU(char, rcu_cpu_has_work);
  47
  48#else /* #ifdef CONFIG_RCU_BOOST */
  49
  50/*
  51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  52 * all uses are in dead code.  Provide a definition to keep the compiler
  53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  54 * This probably needs to be excluded from -rt builds.
  55 */
  56#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  57
  58#endif /* #else #ifdef CONFIG_RCU_BOOST */
  59
  60#ifdef CONFIG_RCU_NOCB_CPU
  61static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  62static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
  63static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  64#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  65
  66/*
  67 * Check the RCU kernel configuration parameters and print informative
  68 * messages about anything out of the ordinary.
  69 */
  70static void __init rcu_bootup_announce_oddness(void)
  71{
  72        if (IS_ENABLED(CONFIG_RCU_TRACE))
  73                pr_info("\tRCU debugfs-based tracing is enabled.\n");
  74        if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  75            (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  76                pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  77                       RCU_FANOUT);
  78        if (rcu_fanout_exact)
  79                pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  80        if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  81                pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  82        if (IS_ENABLED(CONFIG_PROVE_RCU))
  83                pr_info("\tRCU lockdep checking is enabled.\n");
  84        if (RCU_NUM_LVLS >= 4)
  85                pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  86        if (RCU_FANOUT_LEAF != 16)
  87                pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  88                        RCU_FANOUT_LEAF);
  89        if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  90                pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  91        if (nr_cpu_ids != NR_CPUS)
  92                pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  93        if (IS_ENABLED(CONFIG_RCU_BOOST))
  94                pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  95}
  96
  97#ifdef CONFIG_PREEMPT_RCU
  98
  99RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 100static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 101static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 102
 103static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 104                               bool wake);
 105
 106/*
 107 * Tell them what RCU they are running.
 108 */
 109static void __init rcu_bootup_announce(void)
 110{
 111        pr_info("Preemptible hierarchical RCU implementation.\n");
 112        rcu_bootup_announce_oddness();
 113}
 114
 115/* Flags for rcu_preempt_ctxt_queue() decision table. */
 116#define RCU_GP_TASKS    0x8
 117#define RCU_EXP_TASKS   0x4
 118#define RCU_GP_BLKD     0x2
 119#define RCU_EXP_BLKD    0x1
 120
 121/*
 122 * Queues a task preempted within an RCU-preempt read-side critical
 123 * section into the appropriate location within the ->blkd_tasks list,
 124 * depending on the states of any ongoing normal and expedited grace
 125 * periods.  The ->gp_tasks pointer indicates which element the normal
 126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 127 * indicates which element the expedited grace period is waiting on (again,
 128 * NULL if none).  If a grace period is waiting on a given element in the
 129 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 130 * adding a task to the tail of the list blocks any grace period that is
 131 * already waiting on one of the elements.  In contrast, adding a task
 132 * to the head of the list won't block any grace period that is already
 133 * waiting on one of the elements.
 134 *
 135 * This queuing is imprecise, and can sometimes make an ongoing grace
 136 * period wait for a task that is not strictly speaking blocking it.
 137 * Given the choice, we needlessly block a normal grace period rather than
 138 * blocking an expedited grace period.
 139 *
 140 * Note that an endless sequence of expedited grace periods still cannot
 141 * indefinitely postpone a normal grace period.  Eventually, all of the
 142 * fixed number of preempted tasks blocking the normal grace period that are
 143 * not also blocking the expedited grace period will resume and complete
 144 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 145 * pointer will equal the ->exp_tasks pointer, at which point the end of
 146 * the corresponding expedited grace period will also be the end of the
 147 * normal grace period.
 148 */
 149static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 150        __releases(rnp->lock) /* But leaves rrupts disabled. */
 151{
 152        int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 153                         (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 154                         (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 155                         (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 156        struct task_struct *t = current;
 157
 158        /*
 159         * Decide where to queue the newly blocked task.  In theory,
 160         * this could be an if-statement.  In practice, when I tried
 161         * that, it was quite messy.
 162         */
 163        switch (blkd_state) {
 164        case 0:
 165        case                RCU_EXP_TASKS:
 166        case                RCU_EXP_TASKS + RCU_GP_BLKD:
 167        case RCU_GP_TASKS:
 168        case RCU_GP_TASKS + RCU_EXP_TASKS:
 169
 170                /*
 171                 * Blocking neither GP, or first task blocking the normal
 172                 * GP but not blocking the already-waiting expedited GP.
 173                 * Queue at the head of the list to avoid unnecessarily
 174                 * blocking the already-waiting GPs.
 175                 */
 176                list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 177                break;
 178
 179        case                                              RCU_EXP_BLKD:
 180        case                                RCU_GP_BLKD:
 181        case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 182        case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 183        case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 184        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 185
 186                /*
 187                 * First task arriving that blocks either GP, or first task
 188                 * arriving that blocks the expedited GP (with the normal
 189                 * GP already waiting), or a task arriving that blocks
 190                 * both GPs with both GPs already waiting.  Queue at the
 191                 * tail of the list to avoid any GP waiting on any of the
 192                 * already queued tasks that are not blocking it.
 193                 */
 194                list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 195                break;
 196
 197        case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 198        case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 199        case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 200
 201                /*
 202                 * Second or subsequent task blocking the expedited GP.
 203                 * The task either does not block the normal GP, or is the
 204                 * first task blocking the normal GP.  Queue just after
 205                 * the first task blocking the expedited GP.
 206                 */
 207                list_add(&t->rcu_node_entry, rnp->exp_tasks);
 208                break;
 209
 210        case RCU_GP_TASKS +                 RCU_GP_BLKD:
 211        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 212
 213                /*
 214                 * Second or subsequent task blocking the normal GP.
 215                 * The task does not block the expedited GP. Queue just
 216                 * after the first task blocking the normal GP.
 217                 */
 218                list_add(&t->rcu_node_entry, rnp->gp_tasks);
 219                break;
 220
 221        default:
 222
 223                /* Yet another exercise in excessive paranoia. */
 224                WARN_ON_ONCE(1);
 225                break;
 226        }
 227
 228        /*
 229         * We have now queued the task.  If it was the first one to
 230         * block either grace period, update the ->gp_tasks and/or
 231         * ->exp_tasks pointers, respectively, to reference the newly
 232         * blocked tasks.
 233         */
 234        if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 235                rnp->gp_tasks = &t->rcu_node_entry;
 236        if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 237                rnp->exp_tasks = &t->rcu_node_entry;
 238        raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 239
 240        /*
 241         * Report the quiescent state for the expedited GP.  This expedited
 242         * GP should not be able to end until we report, so there should be
 243         * no need to check for a subsequent expedited GP.  (Though we are
 244         * still in a quiescent state in any case.)
 245         */
 246        if (blkd_state & RCU_EXP_BLKD &&
 247            t->rcu_read_unlock_special.b.exp_need_qs) {
 248                t->rcu_read_unlock_special.b.exp_need_qs = false;
 249                rcu_report_exp_rdp(rdp->rsp, rdp, true);
 250        } else {
 251                WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 252        }
 253}
 254
 255/*
 256 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 257 * that this just means that the task currently running on the CPU is
 258 * not in a quiescent state.  There might be any number of tasks blocked
 259 * while in an RCU read-side critical section.
 260 *
 261 * As with the other rcu_*_qs() functions, callers to this function
 262 * must disable preemption.
 263 */
 264static void rcu_preempt_qs(void)
 265{
 266        if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 267                trace_rcu_grace_period(TPS("rcu_preempt"),
 268                                       __this_cpu_read(rcu_data_p->gpnum),
 269                                       TPS("cpuqs"));
 270                __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 271                barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 272                current->rcu_read_unlock_special.b.need_qs = false;
 273        }
 274}
 275
 276/*
 277 * We have entered the scheduler, and the current task might soon be
 278 * context-switched away from.  If this task is in an RCU read-side
 279 * critical section, we will no longer be able to rely on the CPU to
 280 * record that fact, so we enqueue the task on the blkd_tasks list.
 281 * The task will dequeue itself when it exits the outermost enclosing
 282 * RCU read-side critical section.  Therefore, the current grace period
 283 * cannot be permitted to complete until the blkd_tasks list entries
 284 * predating the current grace period drain, in other words, until
 285 * rnp->gp_tasks becomes NULL.
 286 *
 287 * Caller must disable interrupts.
 288 */
 289static void rcu_preempt_note_context_switch(void)
 290{
 291        struct task_struct *t = current;
 292        struct rcu_data *rdp;
 293        struct rcu_node *rnp;
 294
 295        if (t->rcu_read_lock_nesting > 0 &&
 296            !t->rcu_read_unlock_special.b.blocked) {
 297
 298                /* Possibly blocking in an RCU read-side critical section. */
 299                rdp = this_cpu_ptr(rcu_state_p->rda);
 300                rnp = rdp->mynode;
 301                raw_spin_lock_rcu_node(rnp);
 302                t->rcu_read_unlock_special.b.blocked = true;
 303                t->rcu_blocked_node = rnp;
 304
 305                /*
 306                 * Verify the CPU's sanity, trace the preemption, and
 307                 * then queue the task as required based on the states
 308                 * of any ongoing and expedited grace periods.
 309                 */
 310                WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312                trace_rcu_preempt_task(rdp->rsp->name,
 313                                       t->pid,
 314                                       (rnp->qsmask & rdp->grpmask)
 315                                       ? rnp->gpnum
 316                                       : rnp->gpnum + 1);
 317                rcu_preempt_ctxt_queue(rnp, rdp);
 318        } else if (t->rcu_read_lock_nesting < 0 &&
 319                   t->rcu_read_unlock_special.s) {
 320
 321                /*
 322                 * Complete exit from RCU read-side critical section on
 323                 * behalf of preempted instance of __rcu_read_unlock().
 324                 */
 325                rcu_read_unlock_special(t);
 326        }
 327
 328        /*
 329         * Either we were not in an RCU read-side critical section to
 330         * begin with, or we have now recorded that critical section
 331         * globally.  Either way, we can now note a quiescent state
 332         * for this CPU.  Again, if we were in an RCU read-side critical
 333         * section, and if that critical section was blocking the current
 334         * grace period, then the fact that the task has been enqueued
 335         * means that we continue to block the current grace period.
 336         */
 337        rcu_preempt_qs();
 338}
 339
 340/*
 341 * Check for preempted RCU readers blocking the current grace period
 342 * for the specified rcu_node structure.  If the caller needs a reliable
 343 * answer, it must hold the rcu_node's ->lock.
 344 */
 345static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 346{
 347        return rnp->gp_tasks != NULL;
 348}
 349
 350/*
 351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 352 * returning NULL if at the end of the list.
 353 */
 354static struct list_head *rcu_next_node_entry(struct task_struct *t,
 355                                             struct rcu_node *rnp)
 356{
 357        struct list_head *np;
 358
 359        np = t->rcu_node_entry.next;
 360        if (np == &rnp->blkd_tasks)
 361                np = NULL;
 362        return np;
 363}
 364
 365/*
 366 * Return true if the specified rcu_node structure has tasks that were
 367 * preempted within an RCU read-side critical section.
 368 */
 369static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 370{
 371        return !list_empty(&rnp->blkd_tasks);
 372}
 373
 374/*
 375 * Handle special cases during rcu_read_unlock(), such as needing to
 376 * notify RCU core processing or task having blocked during the RCU
 377 * read-side critical section.
 378 */
 379void rcu_read_unlock_special(struct task_struct *t)
 380{
 381        bool empty_exp;
 382        bool empty_norm;
 383        bool empty_exp_now;
 384        unsigned long flags;
 385        struct list_head *np;
 386        bool drop_boost_mutex = false;
 387        struct rcu_data *rdp;
 388        struct rcu_node *rnp;
 389        union rcu_special special;
 390
 391        /* NMI handlers cannot block and cannot safely manipulate state. */
 392        if (in_nmi())
 393                return;
 394
 395        local_irq_save(flags);
 396
 397        /*
 398         * If RCU core is waiting for this CPU to exit its critical section,
 399         * report the fact that it has exited.  Because irqs are disabled,
 400         * t->rcu_read_unlock_special cannot change.
 401         */
 402        special = t->rcu_read_unlock_special;
 403        if (special.b.need_qs) {
 404                rcu_preempt_qs();
 405                t->rcu_read_unlock_special.b.need_qs = false;
 406                if (!t->rcu_read_unlock_special.s) {
 407                        local_irq_restore(flags);
 408                        return;
 409                }
 410        }
 411
 412        /*
 413         * Respond to a request for an expedited grace period, but only if
 414         * we were not preempted, meaning that we were running on the same
 415         * CPU throughout.  If we were preempted, the exp_need_qs flag
 416         * would have been cleared at the time of the first preemption,
 417         * and the quiescent state would be reported when we were dequeued.
 418         */
 419        if (special.b.exp_need_qs) {
 420                WARN_ON_ONCE(special.b.blocked);
 421                t->rcu_read_unlock_special.b.exp_need_qs = false;
 422                rdp = this_cpu_ptr(rcu_state_p->rda);
 423                rcu_report_exp_rdp(rcu_state_p, rdp, true);
 424                if (!t->rcu_read_unlock_special.s) {
 425                        local_irq_restore(flags);
 426                        return;
 427                }
 428        }
 429
 430        /* Hardware IRQ handlers cannot block, complain if they get here. */
 431        if (in_irq() || in_serving_softirq()) {
 432                lockdep_rcu_suspicious(__FILE__, __LINE__,
 433                                       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 434                pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 435                         t->rcu_read_unlock_special.s,
 436                         t->rcu_read_unlock_special.b.blocked,
 437                         t->rcu_read_unlock_special.b.exp_need_qs,
 438                         t->rcu_read_unlock_special.b.need_qs);
 439                local_irq_restore(flags);
 440                return;
 441        }
 442
 443        /* Clean up if blocked during RCU read-side critical section. */
 444        if (special.b.blocked) {
 445                t->rcu_read_unlock_special.b.blocked = false;
 446
 447                /*
 448                 * Remove this task from the list it blocked on.  The task
 449                 * now remains queued on the rcu_node corresponding to the
 450                 * CPU it first blocked on, so there is no longer any need
 451                 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 452                 */
 453                rnp = t->rcu_blocked_node;
 454                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 455                WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 456                empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 457                empty_exp = sync_rcu_preempt_exp_done(rnp);
 458                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 459                np = rcu_next_node_entry(t, rnp);
 460                list_del_init(&t->rcu_node_entry);
 461                t->rcu_blocked_node = NULL;
 462                trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 463                                                rnp->gpnum, t->pid);
 464                if (&t->rcu_node_entry == rnp->gp_tasks)
 465                        rnp->gp_tasks = np;
 466                if (&t->rcu_node_entry == rnp->exp_tasks)
 467                        rnp->exp_tasks = np;
 468                if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 469                        if (&t->rcu_node_entry == rnp->boost_tasks)
 470                                rnp->boost_tasks = np;
 471                        /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 472                        drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 473                }
 474
 475                /*
 476                 * If this was the last task on the current list, and if
 477                 * we aren't waiting on any CPUs, report the quiescent state.
 478                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 479                 * so we must take a snapshot of the expedited state.
 480                 */
 481                empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 482                if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 483                        trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 484                                                         rnp->gpnum,
 485                                                         0, rnp->qsmask,
 486                                                         rnp->level,
 487                                                         rnp->grplo,
 488                                                         rnp->grphi,
 489                                                         !!rnp->gp_tasks);
 490                        rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 491                } else {
 492                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 493                }
 494
 495                /* Unboost if we were boosted. */
 496                if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 497                        rt_mutex_unlock(&rnp->boost_mtx);
 498
 499                /*
 500                 * If this was the last task on the expedited lists,
 501                 * then we need to report up the rcu_node hierarchy.
 502                 */
 503                if (!empty_exp && empty_exp_now)
 504                        rcu_report_exp_rnp(rcu_state_p, rnp, true);
 505        } else {
 506                local_irq_restore(flags);
 507        }
 508}
 509
 510/*
 511 * Dump detailed information for all tasks blocking the current RCU
 512 * grace period on the specified rcu_node structure.
 513 */
 514static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 515{
 516        unsigned long flags;
 517        struct task_struct *t;
 518
 519        raw_spin_lock_irqsave_rcu_node(rnp, flags);
 520        if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 521                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522                return;
 523        }
 524        t = list_entry(rnp->gp_tasks->prev,
 525                       struct task_struct, rcu_node_entry);
 526        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 527                sched_show_task(t);
 528        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 529}
 530
 531/*
 532 * Dump detailed information for all tasks blocking the current RCU
 533 * grace period.
 534 */
 535static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 536{
 537        struct rcu_node *rnp = rcu_get_root(rsp);
 538
 539        rcu_print_detail_task_stall_rnp(rnp);
 540        rcu_for_each_leaf_node(rsp, rnp)
 541                rcu_print_detail_task_stall_rnp(rnp);
 542}
 543
 544static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 545{
 546        pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 547               rnp->level, rnp->grplo, rnp->grphi);
 548}
 549
 550static void rcu_print_task_stall_end(void)
 551{
 552        pr_cont("\n");
 553}
 554
 555/*
 556 * Scan the current list of tasks blocked within RCU read-side critical
 557 * sections, printing out the tid of each.
 558 */
 559static int rcu_print_task_stall(struct rcu_node *rnp)
 560{
 561        struct task_struct *t;
 562        int ndetected = 0;
 563
 564        if (!rcu_preempt_blocked_readers_cgp(rnp))
 565                return 0;
 566        rcu_print_task_stall_begin(rnp);
 567        t = list_entry(rnp->gp_tasks->prev,
 568                       struct task_struct, rcu_node_entry);
 569        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 570                pr_cont(" P%d", t->pid);
 571                ndetected++;
 572        }
 573        rcu_print_task_stall_end();
 574        return ndetected;
 575}
 576
 577/*
 578 * Scan the current list of tasks blocked within RCU read-side critical
 579 * sections, printing out the tid of each that is blocking the current
 580 * expedited grace period.
 581 */
 582static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 583{
 584        struct task_struct *t;
 585        int ndetected = 0;
 586
 587        if (!rnp->exp_tasks)
 588                return 0;
 589        t = list_entry(rnp->exp_tasks->prev,
 590                       struct task_struct, rcu_node_entry);
 591        list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 592                pr_cont(" P%d", t->pid);
 593                ndetected++;
 594        }
 595        return ndetected;
 596}
 597
 598/*
 599 * Check that the list of blocked tasks for the newly completed grace
 600 * period is in fact empty.  It is a serious bug to complete a grace
 601 * period that still has RCU readers blocked!  This function must be
 602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 603 * must be held by the caller.
 604 *
 605 * Also, if there are blocked tasks on the list, they automatically
 606 * block the newly created grace period, so set up ->gp_tasks accordingly.
 607 */
 608static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 609{
 610        WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 611        if (rcu_preempt_has_tasks(rnp))
 612                rnp->gp_tasks = rnp->blkd_tasks.next;
 613        WARN_ON_ONCE(rnp->qsmask);
 614}
 615
 616/*
 617 * Check for a quiescent state from the current CPU.  When a task blocks,
 618 * the task is recorded in the corresponding CPU's rcu_node structure,
 619 * which is checked elsewhere.
 620 *
 621 * Caller must disable hard irqs.
 622 */
 623static void rcu_preempt_check_callbacks(void)
 624{
 625        struct task_struct *t = current;
 626
 627        if (t->rcu_read_lock_nesting == 0) {
 628                rcu_preempt_qs();
 629                return;
 630        }
 631        if (t->rcu_read_lock_nesting > 0 &&
 632            __this_cpu_read(rcu_data_p->core_needs_qs) &&
 633            __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 634                t->rcu_read_unlock_special.b.need_qs = true;
 635}
 636
 637#ifdef CONFIG_RCU_BOOST
 638
 639static void rcu_preempt_do_callbacks(void)
 640{
 641        rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 642}
 643
 644#endif /* #ifdef CONFIG_RCU_BOOST */
 645
 646/*
 647 * Queue a preemptible-RCU callback for invocation after a grace period.
 648 */
 649void call_rcu(struct rcu_head *head, rcu_callback_t func)
 650{
 651        __call_rcu(head, func, rcu_state_p, -1, 0);
 652}
 653EXPORT_SYMBOL_GPL(call_rcu);
 654
 655/**
 656 * synchronize_rcu - wait until a grace period has elapsed.
 657 *
 658 * Control will return to the caller some time after a full grace
 659 * period has elapsed, in other words after all currently executing RCU
 660 * read-side critical sections have completed.  Note, however, that
 661 * upon return from synchronize_rcu(), the caller might well be executing
 662 * concurrently with new RCU read-side critical sections that began while
 663 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 665 *
 666 * See the description of synchronize_sched() for more detailed information
 667 * on memory ordering guarantees.
 668 */
 669void synchronize_rcu(void)
 670{
 671        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 672                         lock_is_held(&rcu_lock_map) ||
 673                         lock_is_held(&rcu_sched_lock_map),
 674                         "Illegal synchronize_rcu() in RCU read-side critical section");
 675        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 676                return;
 677        if (rcu_gp_is_expedited())
 678                synchronize_rcu_expedited();
 679        else
 680                wait_rcu_gp(call_rcu);
 681}
 682EXPORT_SYMBOL_GPL(synchronize_rcu);
 683
 684/**
 685 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 686 *
 687 * Note that this primitive does not necessarily wait for an RCU grace period
 688 * to complete.  For example, if there are no RCU callbacks queued anywhere
 689 * in the system, then rcu_barrier() is within its rights to return
 690 * immediately, without waiting for anything, much less an RCU grace period.
 691 */
 692void rcu_barrier(void)
 693{
 694        _rcu_barrier(rcu_state_p);
 695}
 696EXPORT_SYMBOL_GPL(rcu_barrier);
 697
 698/*
 699 * Initialize preemptible RCU's state structures.
 700 */
 701static void __init __rcu_init_preempt(void)
 702{
 703        rcu_init_one(rcu_state_p);
 704}
 705
 706/*
 707 * Check for a task exiting while in a preemptible-RCU read-side
 708 * critical section, clean up if so.  No need to issue warnings,
 709 * as debug_check_no_locks_held() already does this if lockdep
 710 * is enabled.
 711 */
 712void exit_rcu(void)
 713{
 714        struct task_struct *t = current;
 715
 716        if (likely(list_empty(&current->rcu_node_entry)))
 717                return;
 718        t->rcu_read_lock_nesting = 1;
 719        barrier();
 720        t->rcu_read_unlock_special.b.blocked = true;
 721        __rcu_read_unlock();
 722}
 723
 724#else /* #ifdef CONFIG_PREEMPT_RCU */
 725
 726static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 727
 728/*
 729 * Tell them what RCU they are running.
 730 */
 731static void __init rcu_bootup_announce(void)
 732{
 733        pr_info("Hierarchical RCU implementation.\n");
 734        rcu_bootup_announce_oddness();
 735}
 736
 737/*
 738 * Because preemptible RCU does not exist, we never have to check for
 739 * CPUs being in quiescent states.
 740 */
 741static void rcu_preempt_note_context_switch(void)
 742{
 743}
 744
 745/*
 746 * Because preemptible RCU does not exist, there are never any preempted
 747 * RCU readers.
 748 */
 749static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 750{
 751        return 0;
 752}
 753
 754/*
 755 * Because there is no preemptible RCU, there can be no readers blocked.
 756 */
 757static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 758{
 759        return false;
 760}
 761
 762/*
 763 * Because preemptible RCU does not exist, we never have to check for
 764 * tasks blocked within RCU read-side critical sections.
 765 */
 766static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 767{
 768}
 769
 770/*
 771 * Because preemptible RCU does not exist, we never have to check for
 772 * tasks blocked within RCU read-side critical sections.
 773 */
 774static int rcu_print_task_stall(struct rcu_node *rnp)
 775{
 776        return 0;
 777}
 778
 779/*
 780 * Because preemptible RCU does not exist, we never have to check for
 781 * tasks blocked within RCU read-side critical sections that are
 782 * blocking the current expedited grace period.
 783 */
 784static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 785{
 786        return 0;
 787}
 788
 789/*
 790 * Because there is no preemptible RCU, there can be no readers blocked,
 791 * so there is no need to check for blocked tasks.  So check only for
 792 * bogus qsmask values.
 793 */
 794static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 795{
 796        WARN_ON_ONCE(rnp->qsmask);
 797}
 798
 799/*
 800 * Because preemptible RCU does not exist, it never has any callbacks
 801 * to check.
 802 */
 803static void rcu_preempt_check_callbacks(void)
 804{
 805}
 806
 807/*
 808 * Because preemptible RCU does not exist, rcu_barrier() is just
 809 * another name for rcu_barrier_sched().
 810 */
 811void rcu_barrier(void)
 812{
 813        rcu_barrier_sched();
 814}
 815EXPORT_SYMBOL_GPL(rcu_barrier);
 816
 817/*
 818 * Because preemptible RCU does not exist, it need not be initialized.
 819 */
 820static void __init __rcu_init_preempt(void)
 821{
 822}
 823
 824/*
 825 * Because preemptible RCU does not exist, tasks cannot possibly exit
 826 * while in preemptible RCU read-side critical sections.
 827 */
 828void exit_rcu(void)
 829{
 830}
 831
 832#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 833
 834#ifdef CONFIG_RCU_BOOST
 835
 836#include "../locking/rtmutex_common.h"
 837
 838#ifdef CONFIG_RCU_TRACE
 839
 840static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 841{
 842        if (!rcu_preempt_has_tasks(rnp))
 843                rnp->n_balk_blkd_tasks++;
 844        else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 845                rnp->n_balk_exp_gp_tasks++;
 846        else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 847                rnp->n_balk_boost_tasks++;
 848        else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 849                rnp->n_balk_notblocked++;
 850        else if (rnp->gp_tasks != NULL &&
 851                 ULONG_CMP_LT(jiffies, rnp->boost_time))
 852                rnp->n_balk_notyet++;
 853        else
 854                rnp->n_balk_nos++;
 855}
 856
 857#else /* #ifdef CONFIG_RCU_TRACE */
 858
 859static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 860{
 861}
 862
 863#endif /* #else #ifdef CONFIG_RCU_TRACE */
 864
 865static void rcu_wake_cond(struct task_struct *t, int status)
 866{
 867        /*
 868         * If the thread is yielding, only wake it when this
 869         * is invoked from idle
 870         */
 871        if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 872                wake_up_process(t);
 873}
 874
 875/*
 876 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 877 * or ->boost_tasks, advancing the pointer to the next task in the
 878 * ->blkd_tasks list.
 879 *
 880 * Note that irqs must be enabled: boosting the task can block.
 881 * Returns 1 if there are more tasks needing to be boosted.
 882 */
 883static int rcu_boost(struct rcu_node *rnp)
 884{
 885        unsigned long flags;
 886        struct task_struct *t;
 887        struct list_head *tb;
 888
 889        if (READ_ONCE(rnp->exp_tasks) == NULL &&
 890            READ_ONCE(rnp->boost_tasks) == NULL)
 891                return 0;  /* Nothing left to boost. */
 892
 893        raw_spin_lock_irqsave_rcu_node(rnp, flags);
 894
 895        /*
 896         * Recheck under the lock: all tasks in need of boosting
 897         * might exit their RCU read-side critical sections on their own.
 898         */
 899        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 900                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 901                return 0;
 902        }
 903
 904        /*
 905         * Preferentially boost tasks blocking expedited grace periods.
 906         * This cannot starve the normal grace periods because a second
 907         * expedited grace period must boost all blocked tasks, including
 908         * those blocking the pre-existing normal grace period.
 909         */
 910        if (rnp->exp_tasks != NULL) {
 911                tb = rnp->exp_tasks;
 912                rnp->n_exp_boosts++;
 913        } else {
 914                tb = rnp->boost_tasks;
 915                rnp->n_normal_boosts++;
 916        }
 917        rnp->n_tasks_boosted++;
 918
 919        /*
 920         * We boost task t by manufacturing an rt_mutex that appears to
 921         * be held by task t.  We leave a pointer to that rt_mutex where
 922         * task t can find it, and task t will release the mutex when it
 923         * exits its outermost RCU read-side critical section.  Then
 924         * simply acquiring this artificial rt_mutex will boost task
 925         * t's priority.  (Thanks to tglx for suggesting this approach!)
 926         *
 927         * Note that task t must acquire rnp->lock to remove itself from
 928         * the ->blkd_tasks list, which it will do from exit() if from
 929         * nowhere else.  We therefore are guaranteed that task t will
 930         * stay around at least until we drop rnp->lock.  Note that
 931         * rnp->lock also resolves races between our priority boosting
 932         * and task t's exiting its outermost RCU read-side critical
 933         * section.
 934         */
 935        t = container_of(tb, struct task_struct, rcu_node_entry);
 936        rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 937        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 938        /* Lock only for side effect: boosts task t's priority. */
 939        rt_mutex_lock(&rnp->boost_mtx);
 940        rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 941
 942        return READ_ONCE(rnp->exp_tasks) != NULL ||
 943               READ_ONCE(rnp->boost_tasks) != NULL;
 944}
 945
 946/*
 947 * Priority-boosting kthread, one per leaf rcu_node.
 948 */
 949static int rcu_boost_kthread(void *arg)
 950{
 951        struct rcu_node *rnp = (struct rcu_node *)arg;
 952        int spincnt = 0;
 953        int more2boost;
 954
 955        trace_rcu_utilization(TPS("Start boost kthread@init"));
 956        for (;;) {
 957                rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
 958                trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
 959                rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
 960                trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
 961                rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
 962                more2boost = rcu_boost(rnp);
 963                if (more2boost)
 964                        spincnt++;
 965                else
 966                        spincnt = 0;
 967                if (spincnt > 10) {
 968                        rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
 969                        trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
 970                        schedule_timeout_interruptible(2);
 971                        trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
 972                        spincnt = 0;
 973                }
 974        }
 975        /* NOTREACHED */
 976        trace_rcu_utilization(TPS("End boost kthread@notreached"));
 977        return 0;
 978}
 979
 980/*
 981 * Check to see if it is time to start boosting RCU readers that are
 982 * blocking the current grace period, and, if so, tell the per-rcu_node
 983 * kthread to start boosting them.  If there is an expedited grace
 984 * period in progress, it is always time to boost.
 985 *
 986 * The caller must hold rnp->lock, which this function releases.
 987 * The ->boost_kthread_task is immortal, so we don't need to worry
 988 * about it going away.
 989 */
 990static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 991        __releases(rnp->lock)
 992{
 993        struct task_struct *t;
 994
 995        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 996                rnp->n_balk_exp_gp_tasks++;
 997                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 998                return;
 999        }
1000        if (rnp->exp_tasks != NULL ||
1001            (rnp->gp_tasks != NULL &&
1002             rnp->boost_tasks == NULL &&
1003             rnp->qsmask == 0 &&
1004             ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1005                if (rnp->exp_tasks == NULL)
1006                        rnp->boost_tasks = rnp->gp_tasks;
1007                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1008                t = rnp->boost_kthread_task;
1009                if (t)
1010                        rcu_wake_cond(t, rnp->boost_kthread_status);
1011        } else {
1012                rcu_initiate_boost_trace(rnp);
1013                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014        }
1015}
1016
1017/*
1018 * Wake up the per-CPU kthread to invoke RCU callbacks.
1019 */
1020static void invoke_rcu_callbacks_kthread(void)
1021{
1022        unsigned long flags;
1023
1024        local_irq_save(flags);
1025        __this_cpu_write(rcu_cpu_has_work, 1);
1026        if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1027            current != __this_cpu_read(rcu_cpu_kthread_task)) {
1028                rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1029                              __this_cpu_read(rcu_cpu_kthread_status));
1030        }
1031        local_irq_restore(flags);
1032}
1033
1034/*
1035 * Is the current CPU running the RCU-callbacks kthread?
1036 * Caller must have preemption disabled.
1037 */
1038static bool rcu_is_callbacks_kthread(void)
1039{
1040        return __this_cpu_read(rcu_cpu_kthread_task) == current;
1041}
1042
1043#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1044
1045/*
1046 * Do priority-boost accounting for the start of a new grace period.
1047 */
1048static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1049{
1050        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1051}
1052
1053/*
1054 * Create an RCU-boost kthread for the specified node if one does not
1055 * already exist.  We only create this kthread for preemptible RCU.
1056 * Returns zero if all is well, a negated errno otherwise.
1057 */
1058static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1059                                       struct rcu_node *rnp)
1060{
1061        int rnp_index = rnp - &rsp->node[0];
1062        unsigned long flags;
1063        struct sched_param sp;
1064        struct task_struct *t;
1065
1066        if (rcu_state_p != rsp)
1067                return 0;
1068
1069        if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1070                return 0;
1071
1072        rsp->boost = 1;
1073        if (rnp->boost_kthread_task != NULL)
1074                return 0;
1075        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1076                           "rcub/%d", rnp_index);
1077        if (IS_ERR(t))
1078                return PTR_ERR(t);
1079        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1080        rnp->boost_kthread_task = t;
1081        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082        sp.sched_priority = kthread_prio;
1083        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1084        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1085        return 0;
1086}
1087
1088static void rcu_kthread_do_work(void)
1089{
1090        rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1091        rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1092        rcu_preempt_do_callbacks();
1093}
1094
1095static void rcu_cpu_kthread_setup(unsigned int cpu)
1096{
1097        struct sched_param sp;
1098
1099        sp.sched_priority = kthread_prio;
1100        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1101}
1102
1103static void rcu_cpu_kthread_park(unsigned int cpu)
1104{
1105        per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1106}
1107
1108static int rcu_cpu_kthread_should_run(unsigned int cpu)
1109{
1110        return __this_cpu_read(rcu_cpu_has_work);
1111}
1112
1113/*
1114 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1115 * RCU softirq used in flavors and configurations of RCU that do not
1116 * support RCU priority boosting.
1117 */
1118static void rcu_cpu_kthread(unsigned int cpu)
1119{
1120        unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1121        char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1122        int spincnt;
1123
1124        for (spincnt = 0; spincnt < 10; spincnt++) {
1125                trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1126                local_bh_disable();
1127                *statusp = RCU_KTHREAD_RUNNING;
1128                this_cpu_inc(rcu_cpu_kthread_loops);
1129                local_irq_disable();
1130                work = *workp;
1131                *workp = 0;
1132                local_irq_enable();
1133                if (work)
1134                        rcu_kthread_do_work();
1135                local_bh_enable();
1136                if (*workp == 0) {
1137                        trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1138                        *statusp = RCU_KTHREAD_WAITING;
1139                        return;
1140                }
1141        }
1142        *statusp = RCU_KTHREAD_YIELDING;
1143        trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1144        schedule_timeout_interruptible(2);
1145        trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1146        *statusp = RCU_KTHREAD_WAITING;
1147}
1148
1149/*
1150 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1151 * served by the rcu_node in question.  The CPU hotplug lock is still
1152 * held, so the value of rnp->qsmaskinit will be stable.
1153 *
1154 * We don't include outgoingcpu in the affinity set, use -1 if there is
1155 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1156 * this function allows the kthread to execute on any CPU.
1157 */
1158static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1159{
1160        struct task_struct *t = rnp->boost_kthread_task;
1161        unsigned long mask = rcu_rnp_online_cpus(rnp);
1162        cpumask_var_t cm;
1163        int cpu;
1164
1165        if (!t)
1166                return;
1167        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1168                return;
1169        for_each_leaf_node_possible_cpu(rnp, cpu)
1170                if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1171                    cpu != outgoingcpu)
1172                        cpumask_set_cpu(cpu, cm);
1173        if (cpumask_weight(cm) == 0)
1174                cpumask_setall(cm);
1175        set_cpus_allowed_ptr(t, cm);
1176        free_cpumask_var(cm);
1177}
1178
1179static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1180        .store                  = &rcu_cpu_kthread_task,
1181        .thread_should_run      = rcu_cpu_kthread_should_run,
1182        .thread_fn              = rcu_cpu_kthread,
1183        .thread_comm            = "rcuc/%u",
1184        .setup                  = rcu_cpu_kthread_setup,
1185        .park                   = rcu_cpu_kthread_park,
1186};
1187
1188/*
1189 * Spawn boost kthreads -- called as soon as the scheduler is running.
1190 */
1191static void __init rcu_spawn_boost_kthreads(void)
1192{
1193        struct rcu_node *rnp;
1194        int cpu;
1195
1196        for_each_possible_cpu(cpu)
1197                per_cpu(rcu_cpu_has_work, cpu) = 0;
1198        BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1199        rcu_for_each_leaf_node(rcu_state_p, rnp)
1200                (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1201}
1202
1203static void rcu_prepare_kthreads(int cpu)
1204{
1205        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1206        struct rcu_node *rnp = rdp->mynode;
1207
1208        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209        if (rcu_scheduler_fully_active)
1210                (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1211}
1212
1213#else /* #ifdef CONFIG_RCU_BOOST */
1214
1215static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216        __releases(rnp->lock)
1217{
1218        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219}
1220
1221static void invoke_rcu_callbacks_kthread(void)
1222{
1223        WARN_ON_ONCE(1);
1224}
1225
1226static bool rcu_is_callbacks_kthread(void)
1227{
1228        return false;
1229}
1230
1231static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1232{
1233}
1234
1235static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1236{
1237}
1238
1239static void __init rcu_spawn_boost_kthreads(void)
1240{
1241}
1242
1243static void rcu_prepare_kthreads(int cpu)
1244{
1245}
1246
1247#endif /* #else #ifdef CONFIG_RCU_BOOST */
1248
1249#if !defined(CONFIG_RCU_FAST_NO_HZ)
1250
1251/*
1252 * Check to see if any future RCU-related work will need to be done
1253 * by the current CPU, even if none need be done immediately, returning
1254 * 1 if so.  This function is part of the RCU implementation; it is -not-
1255 * an exported member of the RCU API.
1256 *
1257 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1258 * any flavor of RCU.
1259 */
1260int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1261{
1262        *nextevt = KTIME_MAX;
1263        return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1264               ? 0 : rcu_cpu_has_callbacks(NULL);
1265}
1266
1267/*
1268 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1269 * after it.
1270 */
1271static void rcu_cleanup_after_idle(void)
1272{
1273}
1274
1275/*
1276 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1277 * is nothing.
1278 */
1279static void rcu_prepare_for_idle(void)
1280{
1281}
1282
1283/*
1284 * Don't bother keeping a running count of the number of RCU callbacks
1285 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1286 */
1287static void rcu_idle_count_callbacks_posted(void)
1288{
1289}
1290
1291#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292
1293/*
1294 * This code is invoked when a CPU goes idle, at which point we want
1295 * to have the CPU do everything required for RCU so that it can enter
1296 * the energy-efficient dyntick-idle mode.  This is handled by a
1297 * state machine implemented by rcu_prepare_for_idle() below.
1298 *
1299 * The following three proprocessor symbols control this state machine:
1300 *
1301 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1302 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1303 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1304 *      benchmarkers who might otherwise be tempted to set this to a large
1305 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1306 *      system.  And if you are -that- concerned about energy efficiency,
1307 *      just power the system down and be done with it!
1308 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1309 *      permitted to sleep in dyntick-idle mode with only lazy RCU
1310 *      callbacks pending.  Setting this too high can OOM your system.
1311 *
1312 * The values below work well in practice.  If future workloads require
1313 * adjustment, they can be converted into kernel config parameters, though
1314 * making the state machine smarter might be a better option.
1315 */
1316#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1317#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1318
1319static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1320module_param(rcu_idle_gp_delay, int, 0644);
1321static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1322module_param(rcu_idle_lazy_gp_delay, int, 0644);
1323
1324/*
1325 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1326 * only if it has been awhile since the last time we did so.  Afterwards,
1327 * if there are any callbacks ready for immediate invocation, return true.
1328 */
1329static bool __maybe_unused rcu_try_advance_all_cbs(void)
1330{
1331        bool cbs_ready = false;
1332        struct rcu_data *rdp;
1333        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1334        struct rcu_node *rnp;
1335        struct rcu_state *rsp;
1336
1337        /* Exit early if we advanced recently. */
1338        if (jiffies == rdtp->last_advance_all)
1339                return false;
1340        rdtp->last_advance_all = jiffies;
1341
1342        for_each_rcu_flavor(rsp) {
1343                rdp = this_cpu_ptr(rsp->rda);
1344                rnp = rdp->mynode;
1345
1346                /*
1347                 * Don't bother checking unless a grace period has
1348                 * completed since we last checked and there are
1349                 * callbacks not yet ready to invoke.
1350                 */
1351                if ((rdp->completed != rnp->completed ||
1352                     unlikely(READ_ONCE(rdp->gpwrap))) &&
1353                    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1354                        note_gp_changes(rsp, rdp);
1355
1356                if (cpu_has_callbacks_ready_to_invoke(rdp))
1357                        cbs_ready = true;
1358        }
1359        return cbs_ready;
1360}
1361
1362/*
1363 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1364 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1365 * caller to set the timeout based on whether or not there are non-lazy
1366 * callbacks.
1367 *
1368 * The caller must have disabled interrupts.
1369 */
1370int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1371{
1372        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1373        unsigned long dj;
1374
1375        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1376                *nextevt = KTIME_MAX;
1377                return 0;
1378        }
1379
1380        /* Snapshot to detect later posting of non-lazy callback. */
1381        rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1382
1383        /* If no callbacks, RCU doesn't need the CPU. */
1384        if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1385                *nextevt = KTIME_MAX;
1386                return 0;
1387        }
1388
1389        /* Attempt to advance callbacks. */
1390        if (rcu_try_advance_all_cbs()) {
1391                /* Some ready to invoke, so initiate later invocation. */
1392                invoke_rcu_core();
1393                return 1;
1394        }
1395        rdtp->last_accelerate = jiffies;
1396
1397        /* Request timer delay depending on laziness, and round. */
1398        if (!rdtp->all_lazy) {
1399                dj = round_up(rcu_idle_gp_delay + jiffies,
1400                               rcu_idle_gp_delay) - jiffies;
1401        } else {
1402                dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1403        }
1404        *nextevt = basemono + dj * TICK_NSEC;
1405        return 0;
1406}
1407
1408/*
1409 * Prepare a CPU for idle from an RCU perspective.  The first major task
1410 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1411 * The second major task is to check to see if a non-lazy callback has
1412 * arrived at a CPU that previously had only lazy callbacks.  The third
1413 * major task is to accelerate (that is, assign grace-period numbers to)
1414 * any recently arrived callbacks.
1415 *
1416 * The caller must have disabled interrupts.
1417 */
1418static void rcu_prepare_for_idle(void)
1419{
1420        bool needwake;
1421        struct rcu_data *rdp;
1422        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423        struct rcu_node *rnp;
1424        struct rcu_state *rsp;
1425        int tne;
1426
1427        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1428            rcu_is_nocb_cpu(smp_processor_id()))
1429                return;
1430
1431        /* Handle nohz enablement switches conservatively. */
1432        tne = READ_ONCE(tick_nohz_active);
1433        if (tne != rdtp->tick_nohz_enabled_snap) {
1434                if (rcu_cpu_has_callbacks(NULL))
1435                        invoke_rcu_core(); /* force nohz to see update. */
1436                rdtp->tick_nohz_enabled_snap = tne;
1437                return;
1438        }
1439        if (!tne)
1440                return;
1441
1442        /*
1443         * If a non-lazy callback arrived at a CPU having only lazy
1444         * callbacks, invoke RCU core for the side-effect of recalculating
1445         * idle duration on re-entry to idle.
1446         */
1447        if (rdtp->all_lazy &&
1448            rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1449                rdtp->all_lazy = false;
1450                rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1451                invoke_rcu_core();
1452                return;
1453        }
1454
1455        /*
1456         * If we have not yet accelerated this jiffy, accelerate all
1457         * callbacks on this CPU.
1458         */
1459        if (rdtp->last_accelerate == jiffies)
1460                return;
1461        rdtp->last_accelerate = jiffies;
1462        for_each_rcu_flavor(rsp) {
1463                rdp = this_cpu_ptr(rsp->rda);
1464                if (!*rdp->nxttail[RCU_DONE_TAIL])
1465                        continue;
1466                rnp = rdp->mynode;
1467                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1468                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1469                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1470                if (needwake)
1471                        rcu_gp_kthread_wake(rsp);
1472        }
1473}
1474
1475/*
1476 * Clean up for exit from idle.  Attempt to advance callbacks based on
1477 * any grace periods that elapsed while the CPU was idle, and if any
1478 * callbacks are now ready to invoke, initiate invocation.
1479 */
1480static void rcu_cleanup_after_idle(void)
1481{
1482        if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1483            rcu_is_nocb_cpu(smp_processor_id()))
1484                return;
1485        if (rcu_try_advance_all_cbs())
1486                invoke_rcu_core();
1487}
1488
1489/*
1490 * Keep a running count of the number of non-lazy callbacks posted
1491 * on this CPU.  This running counter (which is never decremented) allows
1492 * rcu_prepare_for_idle() to detect when something out of the idle loop
1493 * posts a callback, even if an equal number of callbacks are invoked.
1494 * Of course, callbacks should only be posted from within a trace event
1495 * designed to be called from idle or from within RCU_NONIDLE().
1496 */
1497static void rcu_idle_count_callbacks_posted(void)
1498{
1499        __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1500}
1501
1502/*
1503 * Data for flushing lazy RCU callbacks at OOM time.
1504 */
1505static atomic_t oom_callback_count;
1506static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1507
1508/*
1509 * RCU OOM callback -- decrement the outstanding count and deliver the
1510 * wake-up if we are the last one.
1511 */
1512static void rcu_oom_callback(struct rcu_head *rhp)
1513{
1514        if (atomic_dec_and_test(&oom_callback_count))
1515                wake_up(&oom_callback_wq);
1516}
1517
1518/*
1519 * Post an rcu_oom_notify callback on the current CPU if it has at
1520 * least one lazy callback.  This will unnecessarily post callbacks
1521 * to CPUs that already have a non-lazy callback at the end of their
1522 * callback list, but this is an infrequent operation, so accept some
1523 * extra overhead to keep things simple.
1524 */
1525static void rcu_oom_notify_cpu(void *unused)
1526{
1527        struct rcu_state *rsp;
1528        struct rcu_data *rdp;
1529
1530        for_each_rcu_flavor(rsp) {
1531                rdp = raw_cpu_ptr(rsp->rda);
1532                if (rdp->qlen_lazy != 0) {
1533                        atomic_inc(&oom_callback_count);
1534                        rsp->call(&rdp->oom_head, rcu_oom_callback);
1535                }
1536        }
1537}
1538
1539/*
1540 * If low on memory, ensure that each CPU has a non-lazy callback.
1541 * This will wake up CPUs that have only lazy callbacks, in turn
1542 * ensuring that they free up the corresponding memory in a timely manner.
1543 * Because an uncertain amount of memory will be freed in some uncertain
1544 * timeframe, we do not claim to have freed anything.
1545 */
1546static int rcu_oom_notify(struct notifier_block *self,
1547                          unsigned long notused, void *nfreed)
1548{
1549        int cpu;
1550
1551        /* Wait for callbacks from earlier instance to complete. */
1552        wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1553        smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1554
1555        /*
1556         * Prevent premature wakeup: ensure that all increments happen
1557         * before there is a chance of the counter reaching zero.
1558         */
1559        atomic_set(&oom_callback_count, 1);
1560
1561        for_each_online_cpu(cpu) {
1562                smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1563                cond_resched_rcu_qs();
1564        }
1565
1566        /* Unconditionally decrement: no need to wake ourselves up. */
1567        atomic_dec(&oom_callback_count);
1568
1569        return NOTIFY_OK;
1570}
1571
1572static struct notifier_block rcu_oom_nb = {
1573        .notifier_call = rcu_oom_notify
1574};
1575
1576static int __init rcu_register_oom_notifier(void)
1577{
1578        register_oom_notifier(&rcu_oom_nb);
1579        return 0;
1580}
1581early_initcall(rcu_register_oom_notifier);
1582
1583#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1584
1585#ifdef CONFIG_RCU_FAST_NO_HZ
1586
1587static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1588{
1589        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1590        unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1591
1592        sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1593                rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1594                ulong2long(nlpd),
1595                rdtp->all_lazy ? 'L' : '.',
1596                rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1597}
1598
1599#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1600
1601static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1602{
1603        *cp = '\0';
1604}
1605
1606#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1607
1608/* Initiate the stall-info list. */
1609static void print_cpu_stall_info_begin(void)
1610{
1611        pr_cont("\n");
1612}
1613
1614/*
1615 * Print out diagnostic information for the specified stalled CPU.
1616 *
1617 * If the specified CPU is aware of the current RCU grace period
1618 * (flavor specified by rsp), then print the number of scheduling
1619 * clock interrupts the CPU has taken during the time that it has
1620 * been aware.  Otherwise, print the number of RCU grace periods
1621 * that this CPU is ignorant of, for example, "1" if the CPU was
1622 * aware of the previous grace period.
1623 *
1624 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1625 */
1626static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1627{
1628        char fast_no_hz[72];
1629        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1630        struct rcu_dynticks *rdtp = rdp->dynticks;
1631        char *ticks_title;
1632        unsigned long ticks_value;
1633
1634        if (rsp->gpnum == rdp->gpnum) {
1635                ticks_title = "ticks this GP";
1636                ticks_value = rdp->ticks_this_gp;
1637        } else {
1638                ticks_title = "GPs behind";
1639                ticks_value = rsp->gpnum - rdp->gpnum;
1640        }
1641        print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1642        pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1643               cpu,
1644               "O."[!!cpu_online(cpu)],
1645               "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1646               "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1647               ticks_value, ticks_title,
1648               rcu_dynticks_snap(rdtp) & 0xfff,
1649               rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1650               rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1651               READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1652               fast_no_hz);
1653}
1654
1655/* Terminate the stall-info list. */
1656static void print_cpu_stall_info_end(void)
1657{
1658        pr_err("\t");
1659}
1660
1661/* Zero ->ticks_this_gp for all flavors of RCU. */
1662static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1663{
1664        rdp->ticks_this_gp = 0;
1665        rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1666}
1667
1668/* Increment ->ticks_this_gp for all flavors of RCU. */
1669static void increment_cpu_stall_ticks(void)
1670{
1671        struct rcu_state *rsp;
1672
1673        for_each_rcu_flavor(rsp)
1674                raw_cpu_inc(rsp->rda->ticks_this_gp);
1675}
1676
1677#ifdef CONFIG_RCU_NOCB_CPU
1678
1679/*
1680 * Offload callback processing from the boot-time-specified set of CPUs
1681 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1682 * kthread created that pulls the callbacks from the corresponding CPU,
1683 * waits for a grace period to elapse, and invokes the callbacks.
1684 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1685 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1686 * has been specified, in which case each kthread actively polls its
1687 * CPU.  (Which isn't so great for energy efficiency, but which does
1688 * reduce RCU's overhead on that CPU.)
1689 *
1690 * This is intended to be used in conjunction with Frederic Weisbecker's
1691 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1692 * running CPU-bound user-mode computations.
1693 *
1694 * Offloading of callback processing could also in theory be used as
1695 * an energy-efficiency measure because CPUs with no RCU callbacks
1696 * queued are more aggressive about entering dyntick-idle mode.
1697 */
1698
1699
1700/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1701static int __init rcu_nocb_setup(char *str)
1702{
1703        alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1704        have_rcu_nocb_mask = true;
1705        cpulist_parse(str, rcu_nocb_mask);
1706        return 1;
1707}
1708__setup("rcu_nocbs=", rcu_nocb_setup);
1709
1710static int __init parse_rcu_nocb_poll(char *arg)
1711{
1712        rcu_nocb_poll = 1;
1713        return 0;
1714}
1715early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1716
1717/*
1718 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1719 * grace period.
1720 */
1721static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1722{
1723        swake_up_all(sq);
1724}
1725
1726/*
1727 * Set the root rcu_node structure's ->need_future_gp field
1728 * based on the sum of those of all rcu_node structures.  This does
1729 * double-count the root rcu_node structure's requests, but this
1730 * is necessary to handle the possibility of a rcu_nocb_kthread()
1731 * having awakened during the time that the rcu_node structures
1732 * were being updated for the end of the previous grace period.
1733 */
1734static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1735{
1736        rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1737}
1738
1739static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1740{
1741        return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1742}
1743
1744static void rcu_init_one_nocb(struct rcu_node *rnp)
1745{
1746        init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1747        init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1748}
1749
1750#ifndef CONFIG_RCU_NOCB_CPU_ALL
1751/* Is the specified CPU a no-CBs CPU? */
1752bool rcu_is_nocb_cpu(int cpu)
1753{
1754        if (have_rcu_nocb_mask)
1755                return cpumask_test_cpu(cpu, rcu_nocb_mask);
1756        return false;
1757}
1758#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759
1760/*
1761 * Kick the leader kthread for this NOCB group.
1762 */
1763static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1764{
1765        struct rcu_data *rdp_leader = rdp->nocb_leader;
1766
1767        if (!READ_ONCE(rdp_leader->nocb_kthread))
1768                return;
1769        if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1770                /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1771                WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1772                swake_up(&rdp_leader->nocb_wq);
1773        }
1774}
1775
1776/*
1777 * Does the specified CPU need an RCU callback for the specified flavor
1778 * of rcu_barrier()?
1779 */
1780static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1781{
1782        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1783        unsigned long ret;
1784#ifdef CONFIG_PROVE_RCU
1785        struct rcu_head *rhp;
1786#endif /* #ifdef CONFIG_PROVE_RCU */
1787
1788        /*
1789         * Check count of all no-CBs callbacks awaiting invocation.
1790         * There needs to be a barrier before this function is called,
1791         * but associated with a prior determination that no more
1792         * callbacks would be posted.  In the worst case, the first
1793         * barrier in _rcu_barrier() suffices (but the caller cannot
1794         * necessarily rely on this, not a substitute for the caller
1795         * getting the concurrency design right!).  There must also be
1796         * a barrier between the following load an posting of a callback
1797         * (if a callback is in fact needed).  This is associated with an
1798         * atomic_inc() in the caller.
1799         */
1800        ret = atomic_long_read(&rdp->nocb_q_count);
1801
1802#ifdef CONFIG_PROVE_RCU
1803        rhp = READ_ONCE(rdp->nocb_head);
1804        if (!rhp)
1805                rhp = READ_ONCE(rdp->nocb_gp_head);
1806        if (!rhp)
1807                rhp = READ_ONCE(rdp->nocb_follower_head);
1808
1809        /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1810        if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1811            rcu_scheduler_fully_active) {
1812                /* RCU callback enqueued before CPU first came online??? */
1813                pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1814                       cpu, rhp->func);
1815                WARN_ON_ONCE(1);
1816        }
1817#endif /* #ifdef CONFIG_PROVE_RCU */
1818
1819        return !!ret;
1820}
1821
1822/*
1823 * Enqueue the specified string of rcu_head structures onto the specified
1824 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1825 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1826 * counts are supplied by rhcount and rhcount_lazy.
1827 *
1828 * If warranted, also wake up the kthread servicing this CPUs queues.
1829 */
1830static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1831                                    struct rcu_head *rhp,
1832                                    struct rcu_head **rhtp,
1833                                    int rhcount, int rhcount_lazy,
1834                                    unsigned long flags)
1835{
1836        int len;
1837        struct rcu_head **old_rhpp;
1838        struct task_struct *t;
1839
1840        /* Enqueue the callback on the nocb list and update counts. */
1841        atomic_long_add(rhcount, &rdp->nocb_q_count);
1842        /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1843        old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1844        WRITE_ONCE(*old_rhpp, rhp);
1845        atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1846        smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1847
1848        /* If we are not being polled and there is a kthread, awaken it ... */
1849        t = READ_ONCE(rdp->nocb_kthread);
1850        if (rcu_nocb_poll || !t) {
1851                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1852                                    TPS("WakeNotPoll"));
1853                return;
1854        }
1855        len = atomic_long_read(&rdp->nocb_q_count);
1856        if (old_rhpp == &rdp->nocb_head) {
1857                if (!irqs_disabled_flags(flags)) {
1858                        /* ... if queue was empty ... */
1859                        wake_nocb_leader(rdp, false);
1860                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1861                                            TPS("WakeEmpty"));
1862                } else {
1863                        rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1864                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1865                                            TPS("WakeEmptyIsDeferred"));
1866                }
1867                rdp->qlen_last_fqs_check = 0;
1868        } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1869                /* ... or if many callbacks queued. */
1870                if (!irqs_disabled_flags(flags)) {
1871                        wake_nocb_leader(rdp, true);
1872                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1873                                            TPS("WakeOvf"));
1874                } else {
1875                        rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1876                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1877                                            TPS("WakeOvfIsDeferred"));
1878                }
1879                rdp->qlen_last_fqs_check = LONG_MAX / 2;
1880        } else {
1881                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1882        }
1883        return;
1884}
1885
1886/*
1887 * This is a helper for __call_rcu(), which invokes this when the normal
1888 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1889 * function returns failure back to __call_rcu(), which can complain
1890 * appropriately.
1891 *
1892 * Otherwise, this function queues the callback where the corresponding
1893 * "rcuo" kthread can find it.
1894 */
1895static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1896                            bool lazy, unsigned long flags)
1897{
1898
1899        if (!rcu_is_nocb_cpu(rdp->cpu))
1900                return false;
1901        __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1902        if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1903                trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1904                                         (unsigned long)rhp->func,
1905                                         -atomic_long_read(&rdp->nocb_q_count_lazy),
1906                                         -atomic_long_read(&rdp->nocb_q_count));
1907        else
1908                trace_rcu_callback(rdp->rsp->name, rhp,
1909                                   -atomic_long_read(&rdp->nocb_q_count_lazy),
1910                                   -atomic_long_read(&rdp->nocb_q_count));
1911
1912        /*
1913         * If called from an extended quiescent state with interrupts
1914         * disabled, invoke the RCU core in order to allow the idle-entry
1915         * deferred-wakeup check to function.
1916         */
1917        if (irqs_disabled_flags(flags) &&
1918            !rcu_is_watching() &&
1919            cpu_online(smp_processor_id()))
1920                invoke_rcu_core();
1921
1922        return true;
1923}
1924
1925/*
1926 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1927 * not a no-CBs CPU.
1928 */
1929static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1930                                                     struct rcu_data *rdp,
1931                                                     unsigned long flags)
1932{
1933        long ql = rsp->qlen;
1934        long qll = rsp->qlen_lazy;
1935
1936        /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1937        if (!rcu_is_nocb_cpu(smp_processor_id()))
1938                return false;
1939        rsp->qlen = 0;
1940        rsp->qlen_lazy = 0;
1941
1942        /* First, enqueue the donelist, if any.  This preserves CB ordering. */
1943        if (rsp->orphan_donelist != NULL) {
1944                __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1945                                        rsp->orphan_donetail, ql, qll, flags);
1946                ql = qll = 0;
1947                rsp->orphan_donelist = NULL;
1948                rsp->orphan_donetail = &rsp->orphan_donelist;
1949        }
1950        if (rsp->orphan_nxtlist != NULL) {
1951                __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1952                                        rsp->orphan_nxttail, ql, qll, flags);
1953                ql = qll = 0;
1954                rsp->orphan_nxtlist = NULL;
1955                rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1956        }
1957        return true;
1958}
1959
1960/*
1961 * If necessary, kick off a new grace period, and either way wait
1962 * for a subsequent grace period to complete.
1963 */
1964static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1965{
1966        unsigned long c;
1967        bool d;
1968        unsigned long flags;
1969        bool needwake;
1970        struct rcu_node *rnp = rdp->mynode;
1971
1972        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1973        needwake = rcu_start_future_gp(rnp, rdp, &c);
1974        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975        if (needwake)
1976                rcu_gp_kthread_wake(rdp->rsp);
1977
1978        /*
1979         * Wait for the grace period.  Do so interruptibly to avoid messing
1980         * up the load average.
1981         */
1982        trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1983        for (;;) {
1984                swait_event_interruptible(
1985                        rnp->nocb_gp_wq[c & 0x1],
1986                        (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1987                if (likely(d))
1988                        break;
1989                WARN_ON(signal_pending(current));
1990                trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1991        }
1992        trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1993        smp_mb(); /* Ensure that CB invocation happens after GP end. */
1994}
1995
1996/*
1997 * Leaders come here to wait for additional callbacks to show up.
1998 * This function does not return until callbacks appear.
1999 */
2000static void nocb_leader_wait(struct rcu_data *my_rdp)
2001{
2002        bool firsttime = true;
2003        bool gotcbs;
2004        struct rcu_data *rdp;
2005        struct rcu_head **tail;
2006
2007wait_again:
2008
2009        /* Wait for callbacks to appear. */
2010        if (!rcu_nocb_poll) {
2011                trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2012                swait_event_interruptible(my_rdp->nocb_wq,
2013                                !READ_ONCE(my_rdp->nocb_leader_sleep));
2014                /* Memory barrier handled by smp_mb() calls below and repoll. */
2015        } else if (firsttime) {
2016                firsttime = false; /* Don't drown trace log with "Poll"! */
2017                trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2018        }
2019
2020        /*
2021         * Each pass through the following loop checks a follower for CBs.
2022         * We are our own first follower.  Any CBs found are moved to
2023         * nocb_gp_head, where they await a grace period.
2024         */
2025        gotcbs = false;
2026        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2027                rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2028                if (!rdp->nocb_gp_head)
2029                        continue;  /* No CBs here, try next follower. */
2030
2031                /* Move callbacks to wait-for-GP list, which is empty. */
2032                WRITE_ONCE(rdp->nocb_head, NULL);
2033                rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2034                gotcbs = true;
2035        }
2036
2037        /*
2038         * If there were no callbacks, sleep a bit, rescan after a
2039         * memory barrier, and go retry.
2040         */
2041        if (unlikely(!gotcbs)) {
2042                if (!rcu_nocb_poll)
2043                        trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2044                                            "WokeEmpty");
2045                WARN_ON(signal_pending(current));
2046                schedule_timeout_interruptible(1);
2047
2048                /* Rescan in case we were a victim of memory ordering. */
2049                my_rdp->nocb_leader_sleep = true;
2050                smp_mb();  /* Ensure _sleep true before scan. */
2051                for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2052                        if (READ_ONCE(rdp->nocb_head)) {
2053                                /* Found CB, so short-circuit next wait. */
2054                                my_rdp->nocb_leader_sleep = false;
2055                                break;
2056                        }
2057                goto wait_again;
2058        }
2059
2060        /* Wait for one grace period. */
2061        rcu_nocb_wait_gp(my_rdp);
2062
2063        /*
2064         * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2065         * We set it now, but recheck for new callbacks while
2066         * traversing our follower list.
2067         */
2068        my_rdp->nocb_leader_sleep = true;
2069        smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2070
2071        /* Each pass through the following loop wakes a follower, if needed. */
2072        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2073                if (READ_ONCE(rdp->nocb_head))
2074                        my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2075                if (!rdp->nocb_gp_head)
2076                        continue; /* No CBs, so no need to wake follower. */
2077
2078                /* Append callbacks to follower's "done" list. */
2079                tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2080                *tail = rdp->nocb_gp_head;
2081                smp_mb__after_atomic(); /* Store *tail before wakeup. */
2082                if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2083                        /*
2084                         * List was empty, wake up the follower.
2085                         * Memory barriers supplied by atomic_long_add().
2086                         */
2087                        swake_up(&rdp->nocb_wq);
2088                }
2089        }
2090
2091        /* If we (the leader) don't have CBs, go wait some more. */
2092        if (!my_rdp->nocb_follower_head)
2093                goto wait_again;
2094}
2095
2096/*
2097 * Followers come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2099 */
2100static void nocb_follower_wait(struct rcu_data *rdp)
2101{
2102        bool firsttime = true;
2103
2104        for (;;) {
2105                if (!rcu_nocb_poll) {
2106                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107                                            "FollowerSleep");
2108                        swait_event_interruptible(rdp->nocb_wq,
2109                                                 READ_ONCE(rdp->nocb_follower_head));
2110                } else if (firsttime) {
2111                        /* Don't drown trace log with "Poll"! */
2112                        firsttime = false;
2113                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2114                }
2115                if (smp_load_acquire(&rdp->nocb_follower_head)) {
2116                        /* ^^^ Ensure CB invocation follows _head test. */
2117                        return;
2118                }
2119                if (!rcu_nocb_poll)
2120                        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121                                            "WokeEmpty");
2122                WARN_ON(signal_pending(current));
2123                schedule_timeout_interruptible(1);
2124        }
2125}
2126
2127/*
2128 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2129 * callbacks queued by the corresponding no-CBs CPU, however, there is
2130 * an optional leader-follower relationship so that the grace-period
2131 * kthreads don't have to do quite so many wakeups.
2132 */
2133static int rcu_nocb_kthread(void *arg)
2134{
2135        int c, cl;
2136        struct rcu_head *list;
2137        struct rcu_head *next;
2138        struct rcu_head **tail;
2139        struct rcu_data *rdp = arg;
2140
2141        /* Each pass through this loop invokes one batch of callbacks */
2142        for (;;) {
2143                /* Wait for callbacks. */
2144                if (rdp->nocb_leader == rdp)
2145                        nocb_leader_wait(rdp);
2146                else
2147                        nocb_follower_wait(rdp);
2148
2149                /* Pull the ready-to-invoke callbacks onto local list. */
2150                list = READ_ONCE(rdp->nocb_follower_head);
2151                BUG_ON(!list);
2152                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2153                WRITE_ONCE(rdp->nocb_follower_head, NULL);
2154                tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2155
2156                /* Each pass through the following loop invokes a callback. */
2157                trace_rcu_batch_start(rdp->rsp->name,
2158                                      atomic_long_read(&rdp->nocb_q_count_lazy),
2159                                      atomic_long_read(&rdp->nocb_q_count), -1);
2160                c = cl = 0;
2161                while (list) {
2162                        next = list->next;
2163                        /* Wait for enqueuing to complete, if needed. */
2164                        while (next == NULL && &list->next != tail) {
2165                                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2166                                                    TPS("WaitQueue"));
2167                                schedule_timeout_interruptible(1);
2168                                trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2169                                                    TPS("WokeQueue"));
2170                                next = list->next;
2171                        }
2172                        debug_rcu_head_unqueue(list);
2173                        local_bh_disable();
2174                        if (__rcu_reclaim(rdp->rsp->name, list))
2175                                cl++;
2176                        c++;
2177                        local_bh_enable();
2178                        cond_resched_rcu_qs();
2179                        list = next;
2180                }
2181                trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2182                smp_mb__before_atomic();  /* _add after CB invocation. */
2183                atomic_long_add(-c, &rdp->nocb_q_count);
2184                atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2185                rdp->n_nocbs_invoked += c;
2186        }
2187        return 0;
2188}
2189
2190/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2191static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2192{
2193        return READ_ONCE(rdp->nocb_defer_wakeup);
2194}
2195
2196/* Do a deferred wakeup of rcu_nocb_kthread(). */
2197static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2198{
2199        int ndw;
2200
2201        if (!rcu_nocb_need_deferred_wakeup(rdp))
2202                return;
2203        ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2204        WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2205        wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2206        trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2207}
2208
2209void __init rcu_init_nohz(void)
2210{
2211        int cpu;
2212        bool need_rcu_nocb_mask = true;
2213        struct rcu_state *rsp;
2214
2215#ifdef CONFIG_RCU_NOCB_CPU_NONE
2216        need_rcu_nocb_mask = false;
2217#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2218
2219#if defined(CONFIG_NO_HZ_FULL)
2220        if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2221                need_rcu_nocb_mask = true;
2222#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223
2224        if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2225                if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2226                        pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2227                        return;
2228                }
2229                have_rcu_nocb_mask = true;
2230        }
2231        if (!have_rcu_nocb_mask)
2232                return;
2233
2234#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2235        pr_info("\tOffload RCU callbacks from CPU 0\n");
2236        cpumask_set_cpu(0, rcu_nocb_mask);
2237#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2238#ifdef CONFIG_RCU_NOCB_CPU_ALL
2239        pr_info("\tOffload RCU callbacks from all CPUs\n");
2240        cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2241#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2242#if defined(CONFIG_NO_HZ_FULL)
2243        if (tick_nohz_full_running)
2244                cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2245#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2246
2247        if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2248                pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2249                cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2250                            rcu_nocb_mask);
2251        }
2252        pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2253                cpumask_pr_args(rcu_nocb_mask));
2254        if (rcu_nocb_poll)
2255                pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2256
2257        for_each_rcu_flavor(rsp) {
2258                for_each_cpu(cpu, rcu_nocb_mask)
2259                        init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2260                rcu_organize_nocb_kthreads(rsp);
2261        }
2262}
2263
2264/* Initialize per-rcu_data variables for no-CBs CPUs. */
2265static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2266{
2267        rdp->nocb_tail = &rdp->nocb_head;
2268        init_swait_queue_head(&rdp->nocb_wq);
2269        rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2270}
2271
2272/*
2273 * If the specified CPU is a no-CBs CPU that does not already have its
2274 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2275 * brought online out of order, this can require re-organizing the
2276 * leader-follower relationships.
2277 */
2278static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2279{
2280        struct rcu_data *rdp;
2281        struct rcu_data *rdp_last;
2282        struct rcu_data *rdp_old_leader;
2283        struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2284        struct task_struct *t;
2285
2286        /*
2287         * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2288         * then nothing to do.
2289         */
2290        if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2291                return;
2292
2293        /* If we didn't spawn the leader first, reorganize! */
2294        rdp_old_leader = rdp_spawn->nocb_leader;
2295        if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2296                rdp_last = NULL;
2297                rdp = rdp_old_leader;
2298                do {
2299                        rdp->nocb_leader = rdp_spawn;
2300                        if (rdp_last && rdp != rdp_spawn)
2301                                rdp_last->nocb_next_follower = rdp;
2302                        if (rdp == rdp_spawn) {
2303                                rdp = rdp->nocb_next_follower;
2304                        } else {
2305                                rdp_last = rdp;
2306                                rdp = rdp->nocb_next_follower;
2307                                rdp_last->nocb_next_follower = NULL;
2308                        }
2309                } while (rdp);
2310                rdp_spawn->nocb_next_follower = rdp_old_leader;
2311        }
2312
2313        /* Spawn the kthread for this CPU and RCU flavor. */
2314        t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2315                        "rcuo%c/%d", rsp->abbr, cpu);
2316        BUG_ON(IS_ERR(t));
2317        WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2318}
2319
2320/*
2321 * If the specified CPU is a no-CBs CPU that does not already have its
2322 * rcuo kthreads, spawn them.
2323 */
2324static void rcu_spawn_all_nocb_kthreads(int cpu)
2325{
2326        struct rcu_state *rsp;
2327
2328        if (rcu_scheduler_fully_active)
2329                for_each_rcu_flavor(rsp)
2330                        rcu_spawn_one_nocb_kthread(rsp, cpu);
2331}
2332
2333/*
2334 * Once the scheduler is running, spawn rcuo kthreads for all online
2335 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2336 * non-boot CPUs come online -- if this changes, we will need to add
2337 * some mutual exclusion.
2338 */
2339static void __init rcu_spawn_nocb_kthreads(void)
2340{
2341        int cpu;
2342
2343        for_each_online_cpu(cpu)
2344                rcu_spawn_all_nocb_kthreads(cpu);
2345}
2346
2347/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2348static int rcu_nocb_leader_stride = -1;
2349module_param(rcu_nocb_leader_stride, int, 0444);
2350
2351/*
2352 * Initialize leader-follower relationships for all no-CBs CPU.
2353 */
2354static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2355{
2356        int cpu;
2357        int ls = rcu_nocb_leader_stride;
2358        int nl = 0;  /* Next leader. */
2359        struct rcu_data *rdp;
2360        struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2361        struct rcu_data *rdp_prev = NULL;
2362
2363        if (!have_rcu_nocb_mask)
2364                return;
2365        if (ls == -1) {
2366                ls = int_sqrt(nr_cpu_ids);
2367                rcu_nocb_leader_stride = ls;
2368        }
2369
2370        /*
2371         * Each pass through this loop sets up one rcu_data structure.
2372         * Should the corresponding CPU come online in the future, then
2373         * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2374         */
2375        for_each_cpu(cpu, rcu_nocb_mask) {
2376                rdp = per_cpu_ptr(rsp->rda, cpu);
2377                if (rdp->cpu >= nl) {
2378                        /* New leader, set up for followers & next leader. */
2379                        nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2380                        rdp->nocb_leader = rdp;
2381                        rdp_leader = rdp;
2382                } else {
2383                        /* Another follower, link to previous leader. */
2384                        rdp->nocb_leader = rdp_leader;
2385                        rdp_prev->nocb_next_follower = rdp;
2386                }
2387                rdp_prev = rdp;
2388        }
2389}
2390
2391/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2392static bool init_nocb_callback_list(struct rcu_data *rdp)
2393{
2394        if (!rcu_is_nocb_cpu(rdp->cpu))
2395                return false;
2396
2397        /* If there are early-boot callbacks, move them to nocb lists. */
2398        if (rdp->nxtlist) {
2399                rdp->nocb_head = rdp->nxtlist;
2400                rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2401                atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2402                atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2403                rdp->nxtlist = NULL;
2404                rdp->qlen = 0;
2405                rdp->qlen_lazy = 0;
2406        }
2407        rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2408        return true;
2409}
2410
2411#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2412
2413static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2414{
2415        WARN_ON_ONCE(1); /* Should be dead code. */
2416        return false;
2417}
2418
2419static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2420{
2421}
2422
2423static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2424{
2425}
2426
2427static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2428{
2429        return NULL;
2430}
2431
2432static void rcu_init_one_nocb(struct rcu_node *rnp)
2433{
2434}
2435
2436static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2437                            bool lazy, unsigned long flags)
2438{
2439        return false;
2440}
2441
2442static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2443                                                     struct rcu_data *rdp,
2444                                                     unsigned long flags)
2445{
2446        return false;
2447}
2448
2449static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2450{
2451}
2452
2453static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2454{
2455        return false;
2456}
2457
2458static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2459{
2460}
2461
2462static void rcu_spawn_all_nocb_kthreads(int cpu)
2463{
2464}
2465
2466static void __init rcu_spawn_nocb_kthreads(void)
2467{
2468}
2469
2470static bool init_nocb_callback_list(struct rcu_data *rdp)
2471{
2472        return false;
2473}
2474
2475#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2476
2477/*
2478 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2479 * arbitrarily long period of time with the scheduling-clock tick turned
2480 * off.  RCU will be paying attention to this CPU because it is in the
2481 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2482 * machine because the scheduling-clock tick has been disabled.  Therefore,
2483 * if an adaptive-ticks CPU is failing to respond to the current grace
2484 * period and has not be idle from an RCU perspective, kick it.
2485 */
2486static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2487{
2488#ifdef CONFIG_NO_HZ_FULL
2489        if (tick_nohz_full_cpu(cpu))
2490                smp_send_reschedule(cpu);
2491#endif /* #ifdef CONFIG_NO_HZ_FULL */
2492}
2493
2494
2495#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2496
2497static int full_sysidle_state;          /* Current system-idle state. */
2498#define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2499#define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2500#define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2501#define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2502#define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2503
2504/*
2505 * Invoked to note exit from irq or task transition to idle.  Note that
2506 * usermode execution does -not- count as idle here!  After all, we want
2507 * to detect full-system idle states, not RCU quiescent states and grace
2508 * periods.  The caller must have disabled interrupts.
2509 */
2510static void rcu_sysidle_enter(int irq)
2511{
2512        unsigned long j;
2513        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2514
2515        /* If there are no nohz_full= CPUs, no need to track this. */
2516        if (!tick_nohz_full_enabled())
2517                return;
2518
2519        /* Adjust nesting, check for fully idle. */
2520        if (irq) {
2521                rdtp->dynticks_idle_nesting--;
2522                WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2523                if (rdtp->dynticks_idle_nesting != 0)
2524                        return;  /* Still not fully idle. */
2525        } else {
2526                if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2527                    DYNTICK_TASK_NEST_VALUE) {
2528                        rdtp->dynticks_idle_nesting = 0;
2529                } else {
2530                        rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2531                        WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2532                        return;  /* Still not fully idle. */
2533                }
2534        }
2535
2536        /* Record start of fully idle period. */
2537        j = jiffies;
2538        WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2539        smp_mb__before_atomic();
2540        atomic_inc(&rdtp->dynticks_idle);
2541        smp_mb__after_atomic();
2542        WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2543}
2544
2545/*
2546 * Unconditionally force exit from full system-idle state.  This is
2547 * invoked when a normal CPU exits idle, but must be called separately
2548 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2549 * is that the timekeeping CPU is permitted to take scheduling-clock
2550 * interrupts while the system is in system-idle state, and of course
2551 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2552 * interrupt from any other type of interrupt.
2553 */
2554void rcu_sysidle_force_exit(void)
2555{
2556        int oldstate = READ_ONCE(full_sysidle_state);
2557        int newoldstate;
2558
2559        /*
2560         * Each pass through the following loop attempts to exit full
2561         * system-idle state.  If contention proves to be a problem,
2562         * a trylock-based contention tree could be used here.
2563         */
2564        while (oldstate > RCU_SYSIDLE_SHORT) {
2565                newoldstate = cmpxchg(&full_sysidle_state,
2566                                      oldstate, RCU_SYSIDLE_NOT);
2567                if (oldstate == newoldstate &&
2568                    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2569                        rcu_kick_nohz_cpu(tick_do_timer_cpu);
2570                        return; /* We cleared it, done! */
2571                }
2572                oldstate = newoldstate;
2573        }
2574        smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2575}
2576
2577/*
2578 * Invoked to note entry to irq or task transition from idle.  Note that
2579 * usermode execution does -not- count as idle here!  The caller must
2580 * have disabled interrupts.
2581 */
2582static void rcu_sysidle_exit(int irq)
2583{
2584        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2585
2586        /* If there are no nohz_full= CPUs, no need to track this. */
2587        if (!tick_nohz_full_enabled())
2588                return;
2589
2590        /* Adjust nesting, check for already non-idle. */
2591        if (irq) {
2592                rdtp->dynticks_idle_nesting++;
2593                WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2594                if (rdtp->dynticks_idle_nesting != 1)
2595                        return; /* Already non-idle. */
2596        } else {
2597                /*
2598                 * Allow for irq misnesting.  Yes, it really is possible
2599                 * to enter an irq handler then never leave it, and maybe
2600                 * also vice versa.  Handle both possibilities.
2601                 */
2602                if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2603                        rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2604                        WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2605                        return; /* Already non-idle. */
2606                } else {
2607                        rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2608                }
2609        }
2610
2611        /* Record end of idle period. */
2612        smp_mb__before_atomic();
2613        atomic_inc(&rdtp->dynticks_idle);
2614        smp_mb__after_atomic();
2615        WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2616
2617        /*
2618         * If we are the timekeeping CPU, we are permitted to be non-idle
2619         * during a system-idle state.  This must be the case, because
2620         * the timekeeping CPU has to take scheduling-clock interrupts
2621         * during the time that the system is transitioning to full
2622         * system-idle state.  This means that the timekeeping CPU must
2623         * invoke rcu_sysidle_force_exit() directly if it does anything
2624         * more than take a scheduling-clock interrupt.
2625         */
2626        if (smp_processor_id() == tick_do_timer_cpu)
2627                return;
2628
2629        /* Update system-idle state: We are clearly no longer fully idle! */
2630        rcu_sysidle_force_exit();
2631}
2632
2633/*
2634 * Check to see if the current CPU is idle.  Note that usermode execution
2635 * does not count as idle.  The caller must have disabled interrupts,
2636 * and must be running on tick_do_timer_cpu.
2637 */
2638static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2639                                  unsigned long *maxj)
2640{
2641        int cur;
2642        unsigned long j;
2643        struct rcu_dynticks *rdtp = rdp->dynticks;
2644
2645        /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2646        if (!tick_nohz_full_enabled())
2647                return;
2648
2649        /*
2650         * If some other CPU has already reported non-idle, if this is
2651         * not the flavor of RCU that tracks sysidle state, or if this
2652         * is an offline or the timekeeping CPU, nothing to do.
2653         */
2654        if (!*isidle || rdp->rsp != rcu_state_p ||
2655            cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2656                return;
2657        /* Verify affinity of current kthread. */
2658        WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2659
2660        /* Pick up current idle and NMI-nesting counter and check. */
2661        cur = atomic_read(&rdtp->dynticks_idle);
2662        if (cur & 0x1) {
2663                *isidle = false; /* We are not idle! */
2664                return;
2665        }
2666        smp_mb(); /* Read counters before timestamps. */
2667
2668        /* Pick up timestamps. */
2669        j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2670        /* If this CPU entered idle more recently, update maxj timestamp. */
2671        if (ULONG_CMP_LT(*maxj, j))
2672                *maxj = j;
2673}
2674
2675/*
2676 * Is this the flavor of RCU that is handling full-system idle?
2677 */
2678static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2679{
2680        return rsp == rcu_state_p;
2681}
2682
2683/*
2684 * Return a delay in jiffies based on the number of CPUs, rcu_node
2685 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2686 * systems more time to transition to full-idle state in order to
2687 * avoid the cache thrashing that otherwise occur on the state variable.
2688 * Really small systems (less than a couple of tens of CPUs) should
2689 * instead use a single global atomically incremented counter, and later
2690 * versions of this will automatically reconfigure themselves accordingly.
2691 */
2692static unsigned long rcu_sysidle_delay(void)
2693{
2694        if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2695                return 0;
2696        return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2697}
2698
2699/*
2700 * Advance the full-system-idle state.  This is invoked when all of
2701 * the non-timekeeping CPUs are idle.
2702 */
2703static void rcu_sysidle(unsigned long j)
2704{
2705        /* Check the current state. */
2706        switch (READ_ONCE(full_sysidle_state)) {
2707        case RCU_SYSIDLE_NOT:
2708
2709                /* First time all are idle, so note a short idle period. */
2710                WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2711                break;
2712
2713        case RCU_SYSIDLE_SHORT:
2714
2715                /*
2716                 * Idle for a bit, time to advance to next state?
2717                 * cmpxchg failure means race with non-idle, let them win.
2718                 */
2719                if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2720                        (void)cmpxchg(&full_sysidle_state,
2721                                      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2722                break;
2723
2724        case RCU_SYSIDLE_LONG:
2725
2726                /*
2727                 * Do an additional check pass before advancing to full.
2728                 * cmpxchg failure means race with non-idle, let them win.
2729                 */
2730                if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2731                        (void)cmpxchg(&full_sysidle_state,
2732                                      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2733                break;
2734
2735        default:
2736                break;
2737        }
2738}
2739
2740/*
2741 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2742 * back to the beginning.
2743 */
2744static void rcu_sysidle_cancel(void)
2745{
2746        smp_mb();
2747        if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2748                WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2749}
2750
2751/*
2752 * Update the sysidle state based on the results of a force-quiescent-state
2753 * scan of the CPUs' dyntick-idle state.
2754 */
2755static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2756                               unsigned long maxj, bool gpkt)
2757{
2758        if (rsp != rcu_state_p)
2759                return;  /* Wrong flavor, ignore. */
2760        if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2761                return;  /* Running state machine from timekeeping CPU. */
2762        if (isidle)
2763                rcu_sysidle(maxj);    /* More idle! */
2764        else
2765                rcu_sysidle_cancel(); /* Idle is over. */
2766}
2767
2768/*
2769 * Wrapper for rcu_sysidle_report() when called from the grace-period
2770 * kthread's context.
2771 */
2772static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2773                                  unsigned long maxj)
2774{
2775        /* If there are no nohz_full= CPUs, no need to track this. */
2776        if (!tick_nohz_full_enabled())
2777                return;
2778
2779        rcu_sysidle_report(rsp, isidle, maxj, true);
2780}
2781
2782/* Callback and function for forcing an RCU grace period. */
2783struct rcu_sysidle_head {
2784        struct rcu_head rh;
2785        int inuse;
2786};
2787
2788static void rcu_sysidle_cb(struct rcu_head *rhp)
2789{
2790        struct rcu_sysidle_head *rshp;
2791
2792        /*
2793         * The following memory barrier is needed to replace the
2794         * memory barriers that would normally be in the memory
2795         * allocator.
2796         */
2797        smp_mb();  /* grace period precedes setting inuse. */
2798
2799        rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2800        WRITE_ONCE(rshp->inuse, 0);
2801}
2802
2803/*
2804 * Check to see if the system is fully idle, other than the timekeeping CPU.
2805 * The caller must have disabled interrupts.  This is not intended to be
2806 * called unless tick_nohz_full_enabled().
2807 */
2808bool rcu_sys_is_idle(void)
2809{
2810        static struct rcu_sysidle_head rsh;
2811        int rss = READ_ONCE(full_sysidle_state);
2812
2813        if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2814                return false;
2815
2816        /* Handle small-system case by doing a full scan of CPUs. */
2817        if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2818                int oldrss = rss - 1;
2819
2820                /*
2821                 * One pass to advance to each state up to _FULL.
2822                 * Give up if any pass fails to advance the state.
2823                 */
2824                while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2825                        int cpu;
2826                        bool isidle = true;
2827                        unsigned long maxj = jiffies - ULONG_MAX / 4;
2828                        struct rcu_data *rdp;
2829
2830                        /* Scan all the CPUs looking for nonidle CPUs. */
2831                        for_each_possible_cpu(cpu) {
2832                                rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2833                                rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2834                                if (!isidle)
2835                                        break;
2836                        }
2837                        rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2838                        oldrss = rss;
2839                        rss = READ_ONCE(full_sysidle_state);
2840                }
2841        }
2842
2843        /* If this is the first observation of an idle period, record it. */
2844        if (rss == RCU_SYSIDLE_FULL) {
2845                rss = cmpxchg(&full_sysidle_state,
2846                              RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2847                return rss == RCU_SYSIDLE_FULL;
2848        }
2849
2850        smp_mb(); /* ensure rss load happens before later caller actions. */
2851
2852        /* If already fully idle, tell the caller (in case of races). */
2853        if (rss == RCU_SYSIDLE_FULL_NOTED)
2854                return true;
2855
2856        /*
2857         * If we aren't there yet, and a grace period is not in flight,
2858         * initiate a grace period.  Either way, tell the caller that
2859         * we are not there yet.  We use an xchg() rather than an assignment
2860         * to make up for the memory barriers that would otherwise be
2861         * provided by the memory allocator.
2862         */
2863        if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2864            !rcu_gp_in_progress(rcu_state_p) &&
2865            !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2866                call_rcu(&rsh.rh, rcu_sysidle_cb);
2867        return false;
2868}
2869
2870/*
2871 * Initialize dynticks sysidle state for CPUs coming online.
2872 */
2873static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2874{
2875        rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2876}
2877
2878#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2879
2880static void rcu_sysidle_enter(int irq)
2881{
2882}
2883
2884static void rcu_sysidle_exit(int irq)
2885{
2886}
2887
2888static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2889                                  unsigned long *maxj)
2890{
2891}
2892
2893static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2894{
2895        return false;
2896}
2897
2898static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2899                                  unsigned long maxj)
2900{
2901}
2902
2903static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2904{
2905}
2906
2907#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2908
2909/*
2910 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2911 * grace-period kthread will do force_quiescent_state() processing?
2912 * The idea is to avoid waking up RCU core processing on such a
2913 * CPU unless the grace period has extended for too long.
2914 *
2915 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2916 * CONFIG_RCU_NOCB_CPU CPUs.
2917 */
2918static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2919{
2920#ifdef CONFIG_NO_HZ_FULL
2921        if (tick_nohz_full_cpu(smp_processor_id()) &&
2922            (!rcu_gp_in_progress(rsp) ||
2923             ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2924                return true;
2925#endif /* #ifdef CONFIG_NO_HZ_FULL */
2926        return false;
2927}
2928
2929/*
2930 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2931 * timekeeping CPU.
2932 */
2933static void rcu_bind_gp_kthread(void)
2934{
2935        int __maybe_unused cpu;
2936
2937        if (!tick_nohz_full_enabled())
2938                return;
2939#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2940        cpu = tick_do_timer_cpu;
2941        if (cpu >= 0 && cpu < nr_cpu_ids)
2942                set_cpus_allowed_ptr(current, cpumask_of(cpu));
2943#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2944        housekeeping_affine(current);
2945#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2946}
2947
2948/* Record the current task on dyntick-idle entry. */
2949static void rcu_dynticks_task_enter(void)
2950{
2951#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2952        WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2953#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2954}
2955
2956/* Record no current task on dyntick-idle exit. */
2957static void rcu_dynticks_task_exit(void)
2958{
2959#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2960        WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2961#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2962}
2963