linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/sched/clock.h>
  10#include <linux/trace_seq.h>
  11#include <linux/spinlock.h>
  12#include <linux/irq_work.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>      /* for self test */
  16#include <linux/kmemcheck.h>
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26
  27#include <asm/local.h>
  28
  29static void update_pages_handler(struct work_struct *work);
  30
  31/*
  32 * The ring buffer header is special. We must manually up keep it.
  33 */
  34int ring_buffer_print_entry_header(struct trace_seq *s)
  35{
  36        trace_seq_puts(s, "# compressed entry header\n");
  37        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  38        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  39        trace_seq_puts(s, "\tarray       :   32 bits\n");
  40        trace_seq_putc(s, '\n');
  41        trace_seq_printf(s, "\tpadding     : type == %d\n",
  42                         RINGBUF_TYPE_PADDING);
  43        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  44                         RINGBUF_TYPE_TIME_EXTEND);
  45        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  46                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  47
  48        return !trace_seq_has_overflowed(s);
  49}
  50
  51/*
  52 * The ring buffer is made up of a list of pages. A separate list of pages is
  53 * allocated for each CPU. A writer may only write to a buffer that is
  54 * associated with the CPU it is currently executing on.  A reader may read
  55 * from any per cpu buffer.
  56 *
  57 * The reader is special. For each per cpu buffer, the reader has its own
  58 * reader page. When a reader has read the entire reader page, this reader
  59 * page is swapped with another page in the ring buffer.
  60 *
  61 * Now, as long as the writer is off the reader page, the reader can do what
  62 * ever it wants with that page. The writer will never write to that page
  63 * again (as long as it is out of the ring buffer).
  64 *
  65 * Here's some silly ASCII art.
  66 *
  67 *   +------+
  68 *   |reader|          RING BUFFER
  69 *   |page  |
  70 *   +------+        +---+   +---+   +---+
  71 *                   |   |-->|   |-->|   |
  72 *                   +---+   +---+   +---+
  73 *                     ^               |
  74 *                     |               |
  75 *                     +---------------+
  76 *
  77 *
  78 *   +------+
  79 *   |reader|          RING BUFFER
  80 *   |page  |------------------v
  81 *   +------+        +---+   +---+   +---+
  82 *                   |   |-->|   |-->|   |
  83 *                   +---+   +---+   +---+
  84 *                     ^               |
  85 *                     |               |
  86 *                     +---------------+
  87 *
  88 *
  89 *   +------+
  90 *   |reader|          RING BUFFER
  91 *   |page  |------------------v
  92 *   +------+        +---+   +---+   +---+
  93 *      ^            |   |-->|   |-->|   |
  94 *      |            +---+   +---+   +---+
  95 *      |                              |
  96 *      |                              |
  97 *      +------------------------------+
  98 *
  99 *
 100 *   +------+
 101 *   |buffer|          RING BUFFER
 102 *   |page  |------------------v
 103 *   +------+        +---+   +---+   +---+
 104 *      ^            |   |   |   |-->|   |
 105 *      |   New      +---+   +---+   +---+
 106 *      |  Reader------^               |
 107 *      |   page                       |
 108 *      +------------------------------+
 109 *
 110 *
 111 * After we make this swap, the reader can hand this page off to the splice
 112 * code and be done with it. It can even allocate a new page if it needs to
 113 * and swap that into the ring buffer.
 114 *
 115 * We will be using cmpxchg soon to make all this lockless.
 116 *
 117 */
 118
 119/* Used for individual buffers (after the counter) */
 120#define RB_BUFFER_OFF           (1 << 20)
 121
 122#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 123
 124#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 125#define RB_ALIGNMENT            4U
 126#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 127#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 128
 129#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 130# define RB_FORCE_8BYTE_ALIGNMENT       0
 131# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 132#else
 133# define RB_FORCE_8BYTE_ALIGNMENT       1
 134# define RB_ARCH_ALIGNMENT              8U
 135#endif
 136
 137#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 138
 139/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 140#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 141
 142enum {
 143        RB_LEN_TIME_EXTEND = 8,
 144        RB_LEN_TIME_STAMP = 16,
 145};
 146
 147#define skip_time_extend(event) \
 148        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 149
 150static inline int rb_null_event(struct ring_buffer_event *event)
 151{
 152        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 153}
 154
 155static void rb_event_set_padding(struct ring_buffer_event *event)
 156{
 157        /* padding has a NULL time_delta */
 158        event->type_len = RINGBUF_TYPE_PADDING;
 159        event->time_delta = 0;
 160}
 161
 162static unsigned
 163rb_event_data_length(struct ring_buffer_event *event)
 164{
 165        unsigned length;
 166
 167        if (event->type_len)
 168                length = event->type_len * RB_ALIGNMENT;
 169        else
 170                length = event->array[0];
 171        return length + RB_EVNT_HDR_SIZE;
 172}
 173
 174/*
 175 * Return the length of the given event. Will return
 176 * the length of the time extend if the event is a
 177 * time extend.
 178 */
 179static inline unsigned
 180rb_event_length(struct ring_buffer_event *event)
 181{
 182        switch (event->type_len) {
 183        case RINGBUF_TYPE_PADDING:
 184                if (rb_null_event(event))
 185                        /* undefined */
 186                        return -1;
 187                return  event->array[0] + RB_EVNT_HDR_SIZE;
 188
 189        case RINGBUF_TYPE_TIME_EXTEND:
 190                return RB_LEN_TIME_EXTEND;
 191
 192        case RINGBUF_TYPE_TIME_STAMP:
 193                return RB_LEN_TIME_STAMP;
 194
 195        case RINGBUF_TYPE_DATA:
 196                return rb_event_data_length(event);
 197        default:
 198                BUG();
 199        }
 200        /* not hit */
 201        return 0;
 202}
 203
 204/*
 205 * Return total length of time extend and data,
 206 *   or just the event length for all other events.
 207 */
 208static inline unsigned
 209rb_event_ts_length(struct ring_buffer_event *event)
 210{
 211        unsigned len = 0;
 212
 213        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 214                /* time extends include the data event after it */
 215                len = RB_LEN_TIME_EXTEND;
 216                event = skip_time_extend(event);
 217        }
 218        return len + rb_event_length(event);
 219}
 220
 221/**
 222 * ring_buffer_event_length - return the length of the event
 223 * @event: the event to get the length of
 224 *
 225 * Returns the size of the data load of a data event.
 226 * If the event is something other than a data event, it
 227 * returns the size of the event itself. With the exception
 228 * of a TIME EXTEND, where it still returns the size of the
 229 * data load of the data event after it.
 230 */
 231unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 232{
 233        unsigned length;
 234
 235        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 236                event = skip_time_extend(event);
 237
 238        length = rb_event_length(event);
 239        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 240                return length;
 241        length -= RB_EVNT_HDR_SIZE;
 242        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 243                length -= sizeof(event->array[0]);
 244        return length;
 245}
 246EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 247
 248/* inline for ring buffer fast paths */
 249static __always_inline void *
 250rb_event_data(struct ring_buffer_event *event)
 251{
 252        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 253                event = skip_time_extend(event);
 254        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 255        /* If length is in len field, then array[0] has the data */
 256        if (event->type_len)
 257                return (void *)&event->array[0];
 258        /* Otherwise length is in array[0] and array[1] has the data */
 259        return (void *)&event->array[1];
 260}
 261
 262/**
 263 * ring_buffer_event_data - return the data of the event
 264 * @event: the event to get the data from
 265 */
 266void *ring_buffer_event_data(struct ring_buffer_event *event)
 267{
 268        return rb_event_data(event);
 269}
 270EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 271
 272#define for_each_buffer_cpu(buffer, cpu)                \
 273        for_each_cpu(cpu, buffer->cpumask)
 274
 275#define TS_SHIFT        27
 276#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 277#define TS_DELTA_TEST   (~TS_MASK)
 278
 279/* Flag when events were overwritten */
 280#define RB_MISSED_EVENTS        (1 << 31)
 281/* Missed count stored at end */
 282#define RB_MISSED_STORED        (1 << 30)
 283
 284struct buffer_data_page {
 285        u64              time_stamp;    /* page time stamp */
 286        local_t          commit;        /* write committed index */
 287        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 288};
 289
 290/*
 291 * Note, the buffer_page list must be first. The buffer pages
 292 * are allocated in cache lines, which means that each buffer
 293 * page will be at the beginning of a cache line, and thus
 294 * the least significant bits will be zero. We use this to
 295 * add flags in the list struct pointers, to make the ring buffer
 296 * lockless.
 297 */
 298struct buffer_page {
 299        struct list_head list;          /* list of buffer pages */
 300        local_t          write;         /* index for next write */
 301        unsigned         read;          /* index for next read */
 302        local_t          entries;       /* entries on this page */
 303        unsigned long    real_end;      /* real end of data */
 304        struct buffer_data_page *page;  /* Actual data page */
 305};
 306
 307/*
 308 * The buffer page counters, write and entries, must be reset
 309 * atomically when crossing page boundaries. To synchronize this
 310 * update, two counters are inserted into the number. One is
 311 * the actual counter for the write position or count on the page.
 312 *
 313 * The other is a counter of updaters. Before an update happens
 314 * the update partition of the counter is incremented. This will
 315 * allow the updater to update the counter atomically.
 316 *
 317 * The counter is 20 bits, and the state data is 12.
 318 */
 319#define RB_WRITE_MASK           0xfffff
 320#define RB_WRITE_INTCNT         (1 << 20)
 321
 322static void rb_init_page(struct buffer_data_page *bpage)
 323{
 324        local_set(&bpage->commit, 0);
 325}
 326
 327/**
 328 * ring_buffer_page_len - the size of data on the page.
 329 * @page: The page to read
 330 *
 331 * Returns the amount of data on the page, including buffer page header.
 332 */
 333size_t ring_buffer_page_len(void *page)
 334{
 335        return local_read(&((struct buffer_data_page *)page)->commit)
 336                + BUF_PAGE_HDR_SIZE;
 337}
 338
 339/*
 340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 341 * this issue out.
 342 */
 343static void free_buffer_page(struct buffer_page *bpage)
 344{
 345        free_page((unsigned long)bpage->page);
 346        kfree(bpage);
 347}
 348
 349/*
 350 * We need to fit the time_stamp delta into 27 bits.
 351 */
 352static inline int test_time_stamp(u64 delta)
 353{
 354        if (delta & TS_DELTA_TEST)
 355                return 1;
 356        return 0;
 357}
 358
 359#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 360
 361/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 362#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 363
 364int ring_buffer_print_page_header(struct trace_seq *s)
 365{
 366        struct buffer_data_page field;
 367
 368        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 369                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 370                         (unsigned int)sizeof(field.time_stamp),
 371                         (unsigned int)is_signed_type(u64));
 372
 373        trace_seq_printf(s, "\tfield: local_t commit;\t"
 374                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 375                         (unsigned int)offsetof(typeof(field), commit),
 376                         (unsigned int)sizeof(field.commit),
 377                         (unsigned int)is_signed_type(long));
 378
 379        trace_seq_printf(s, "\tfield: int overwrite;\t"
 380                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 381                         (unsigned int)offsetof(typeof(field), commit),
 382                         1,
 383                         (unsigned int)is_signed_type(long));
 384
 385        trace_seq_printf(s, "\tfield: char data;\t"
 386                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 387                         (unsigned int)offsetof(typeof(field), data),
 388                         (unsigned int)BUF_PAGE_SIZE,
 389                         (unsigned int)is_signed_type(char));
 390
 391        return !trace_seq_has_overflowed(s);
 392}
 393
 394struct rb_irq_work {
 395        struct irq_work                 work;
 396        wait_queue_head_t               waiters;
 397        wait_queue_head_t               full_waiters;
 398        bool                            waiters_pending;
 399        bool                            full_waiters_pending;
 400        bool                            wakeup_full;
 401};
 402
 403/*
 404 * Structure to hold event state and handle nested events.
 405 */
 406struct rb_event_info {
 407        u64                     ts;
 408        u64                     delta;
 409        unsigned long           length;
 410        struct buffer_page      *tail_page;
 411        int                     add_timestamp;
 412};
 413
 414/*
 415 * Used for which event context the event is in.
 416 *  NMI     = 0
 417 *  IRQ     = 1
 418 *  SOFTIRQ = 2
 419 *  NORMAL  = 3
 420 *
 421 * See trace_recursive_lock() comment below for more details.
 422 */
 423enum {
 424        RB_CTX_NMI,
 425        RB_CTX_IRQ,
 426        RB_CTX_SOFTIRQ,
 427        RB_CTX_NORMAL,
 428        RB_CTX_MAX
 429};
 430
 431/*
 432 * head_page == tail_page && head == tail then buffer is empty.
 433 */
 434struct ring_buffer_per_cpu {
 435        int                             cpu;
 436        atomic_t                        record_disabled;
 437        struct ring_buffer              *buffer;
 438        raw_spinlock_t                  reader_lock;    /* serialize readers */
 439        arch_spinlock_t                 lock;
 440        struct lock_class_key           lock_key;
 441        unsigned long                   nr_pages;
 442        unsigned int                    current_context;
 443        struct list_head                *pages;
 444        struct buffer_page              *head_page;     /* read from head */
 445        struct buffer_page              *tail_page;     /* write to tail */
 446        struct buffer_page              *commit_page;   /* committed pages */
 447        struct buffer_page              *reader_page;
 448        unsigned long                   lost_events;
 449        unsigned long                   last_overrun;
 450        local_t                         entries_bytes;
 451        local_t                         entries;
 452        local_t                         overrun;
 453        local_t                         commit_overrun;
 454        local_t                         dropped_events;
 455        local_t                         committing;
 456        local_t                         commits;
 457        unsigned long                   read;
 458        unsigned long                   read_bytes;
 459        u64                             write_stamp;
 460        u64                             read_stamp;
 461        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 462        long                            nr_pages_to_update;
 463        struct list_head                new_pages; /* new pages to add */
 464        struct work_struct              update_pages_work;
 465        struct completion               update_done;
 466
 467        struct rb_irq_work              irq_work;
 468};
 469
 470struct ring_buffer {
 471        unsigned                        flags;
 472        int                             cpus;
 473        atomic_t                        record_disabled;
 474        atomic_t                        resize_disabled;
 475        cpumask_var_t                   cpumask;
 476
 477        struct lock_class_key           *reader_lock_key;
 478
 479        struct mutex                    mutex;
 480
 481        struct ring_buffer_per_cpu      **buffers;
 482
 483        struct hlist_node               node;
 484        u64                             (*clock)(void);
 485
 486        struct rb_irq_work              irq_work;
 487};
 488
 489struct ring_buffer_iter {
 490        struct ring_buffer_per_cpu      *cpu_buffer;
 491        unsigned long                   head;
 492        struct buffer_page              *head_page;
 493        struct buffer_page              *cache_reader_page;
 494        unsigned long                   cache_read;
 495        u64                             read_stamp;
 496};
 497
 498/*
 499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 500 *
 501 * Schedules a delayed work to wake up any task that is blocked on the
 502 * ring buffer waiters queue.
 503 */
 504static void rb_wake_up_waiters(struct irq_work *work)
 505{
 506        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 507
 508        wake_up_all(&rbwork->waiters);
 509        if (rbwork->wakeup_full) {
 510                rbwork->wakeup_full = false;
 511                wake_up_all(&rbwork->full_waiters);
 512        }
 513}
 514
 515/**
 516 * ring_buffer_wait - wait for input to the ring buffer
 517 * @buffer: buffer to wait on
 518 * @cpu: the cpu buffer to wait on
 519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 520 *
 521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 522 * as data is added to any of the @buffer's cpu buffers. Otherwise
 523 * it will wait for data to be added to a specific cpu buffer.
 524 */
 525int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 526{
 527        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 528        DEFINE_WAIT(wait);
 529        struct rb_irq_work *work;
 530        int ret = 0;
 531
 532        /*
 533         * Depending on what the caller is waiting for, either any
 534         * data in any cpu buffer, or a specific buffer, put the
 535         * caller on the appropriate wait queue.
 536         */
 537        if (cpu == RING_BUFFER_ALL_CPUS) {
 538                work = &buffer->irq_work;
 539                /* Full only makes sense on per cpu reads */
 540                full = false;
 541        } else {
 542                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 543                        return -ENODEV;
 544                cpu_buffer = buffer->buffers[cpu];
 545                work = &cpu_buffer->irq_work;
 546        }
 547
 548
 549        while (true) {
 550                if (full)
 551                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 552                else
 553                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 554
 555                /*
 556                 * The events can happen in critical sections where
 557                 * checking a work queue can cause deadlocks.
 558                 * After adding a task to the queue, this flag is set
 559                 * only to notify events to try to wake up the queue
 560                 * using irq_work.
 561                 *
 562                 * We don't clear it even if the buffer is no longer
 563                 * empty. The flag only causes the next event to run
 564                 * irq_work to do the work queue wake up. The worse
 565                 * that can happen if we race with !trace_empty() is that
 566                 * an event will cause an irq_work to try to wake up
 567                 * an empty queue.
 568                 *
 569                 * There's no reason to protect this flag either, as
 570                 * the work queue and irq_work logic will do the necessary
 571                 * synchronization for the wake ups. The only thing
 572                 * that is necessary is that the wake up happens after
 573                 * a task has been queued. It's OK for spurious wake ups.
 574                 */
 575                if (full)
 576                        work->full_waiters_pending = true;
 577                else
 578                        work->waiters_pending = true;
 579
 580                if (signal_pending(current)) {
 581                        ret = -EINTR;
 582                        break;
 583                }
 584
 585                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 586                        break;
 587
 588                if (cpu != RING_BUFFER_ALL_CPUS &&
 589                    !ring_buffer_empty_cpu(buffer, cpu)) {
 590                        unsigned long flags;
 591                        bool pagebusy;
 592
 593                        if (!full)
 594                                break;
 595
 596                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 597                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 598                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 599
 600                        if (!pagebusy)
 601                                break;
 602                }
 603
 604                schedule();
 605        }
 606
 607        if (full)
 608                finish_wait(&work->full_waiters, &wait);
 609        else
 610                finish_wait(&work->waiters, &wait);
 611
 612        return ret;
 613}
 614
 615/**
 616 * ring_buffer_poll_wait - poll on buffer input
 617 * @buffer: buffer to wait on
 618 * @cpu: the cpu buffer to wait on
 619 * @filp: the file descriptor
 620 * @poll_table: The poll descriptor
 621 *
 622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 623 * as data is added to any of the @buffer's cpu buffers. Otherwise
 624 * it will wait for data to be added to a specific cpu buffer.
 625 *
 626 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 627 * zero otherwise.
 628 */
 629int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 630                          struct file *filp, poll_table *poll_table)
 631{
 632        struct ring_buffer_per_cpu *cpu_buffer;
 633        struct rb_irq_work *work;
 634
 635        if (cpu == RING_BUFFER_ALL_CPUS)
 636                work = &buffer->irq_work;
 637        else {
 638                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 639                        return -EINVAL;
 640
 641                cpu_buffer = buffer->buffers[cpu];
 642                work = &cpu_buffer->irq_work;
 643        }
 644
 645        poll_wait(filp, &work->waiters, poll_table);
 646        work->waiters_pending = true;
 647        /*
 648         * There's a tight race between setting the waiters_pending and
 649         * checking if the ring buffer is empty.  Once the waiters_pending bit
 650         * is set, the next event will wake the task up, but we can get stuck
 651         * if there's only a single event in.
 652         *
 653         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 654         * but adding a memory barrier to all events will cause too much of a
 655         * performance hit in the fast path.  We only need a memory barrier when
 656         * the buffer goes from empty to having content.  But as this race is
 657         * extremely small, and it's not a problem if another event comes in, we
 658         * will fix it later.
 659         */
 660        smp_mb();
 661
 662        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 663            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 664                return POLLIN | POLLRDNORM;
 665        return 0;
 666}
 667
 668/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 669#define RB_WARN_ON(b, cond)                                             \
 670        ({                                                              \
 671                int _____ret = unlikely(cond);                          \
 672                if (_____ret) {                                         \
 673                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 674                                struct ring_buffer_per_cpu *__b =       \
 675                                        (void *)b;                      \
 676                                atomic_inc(&__b->buffer->record_disabled); \
 677                        } else                                          \
 678                                atomic_inc(&b->record_disabled);        \
 679                        WARN_ON(1);                                     \
 680                }                                                       \
 681                _____ret;                                               \
 682        })
 683
 684/* Up this if you want to test the TIME_EXTENTS and normalization */
 685#define DEBUG_SHIFT 0
 686
 687static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 688{
 689        /* shift to debug/test normalization and TIME_EXTENTS */
 690        return buffer->clock() << DEBUG_SHIFT;
 691}
 692
 693u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 694{
 695        u64 time;
 696
 697        preempt_disable_notrace();
 698        time = rb_time_stamp(buffer);
 699        preempt_enable_no_resched_notrace();
 700
 701        return time;
 702}
 703EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 704
 705void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 706                                      int cpu, u64 *ts)
 707{
 708        /* Just stupid testing the normalize function and deltas */
 709        *ts >>= DEBUG_SHIFT;
 710}
 711EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 712
 713/*
 714 * Making the ring buffer lockless makes things tricky.
 715 * Although writes only happen on the CPU that they are on,
 716 * and they only need to worry about interrupts. Reads can
 717 * happen on any CPU.
 718 *
 719 * The reader page is always off the ring buffer, but when the
 720 * reader finishes with a page, it needs to swap its page with
 721 * a new one from the buffer. The reader needs to take from
 722 * the head (writes go to the tail). But if a writer is in overwrite
 723 * mode and wraps, it must push the head page forward.
 724 *
 725 * Here lies the problem.
 726 *
 727 * The reader must be careful to replace only the head page, and
 728 * not another one. As described at the top of the file in the
 729 * ASCII art, the reader sets its old page to point to the next
 730 * page after head. It then sets the page after head to point to
 731 * the old reader page. But if the writer moves the head page
 732 * during this operation, the reader could end up with the tail.
 733 *
 734 * We use cmpxchg to help prevent this race. We also do something
 735 * special with the page before head. We set the LSB to 1.
 736 *
 737 * When the writer must push the page forward, it will clear the
 738 * bit that points to the head page, move the head, and then set
 739 * the bit that points to the new head page.
 740 *
 741 * We also don't want an interrupt coming in and moving the head
 742 * page on another writer. Thus we use the second LSB to catch
 743 * that too. Thus:
 744 *
 745 * head->list->prev->next        bit 1          bit 0
 746 *                              -------        -------
 747 * Normal page                     0              0
 748 * Points to head page             0              1
 749 * New head page                   1              0
 750 *
 751 * Note we can not trust the prev pointer of the head page, because:
 752 *
 753 * +----+       +-----+        +-----+
 754 * |    |------>|  T  |---X--->|  N  |
 755 * |    |<------|     |        |     |
 756 * +----+       +-----+        +-----+
 757 *   ^                           ^ |
 758 *   |          +-----+          | |
 759 *   +----------|  R  |----------+ |
 760 *              |     |<-----------+
 761 *              +-----+
 762 *
 763 * Key:  ---X-->  HEAD flag set in pointer
 764 *         T      Tail page
 765 *         R      Reader page
 766 *         N      Next page
 767 *
 768 * (see __rb_reserve_next() to see where this happens)
 769 *
 770 *  What the above shows is that the reader just swapped out
 771 *  the reader page with a page in the buffer, but before it
 772 *  could make the new header point back to the new page added
 773 *  it was preempted by a writer. The writer moved forward onto
 774 *  the new page added by the reader and is about to move forward
 775 *  again.
 776 *
 777 *  You can see, it is legitimate for the previous pointer of
 778 *  the head (or any page) not to point back to itself. But only
 779 *  temporarially.
 780 */
 781
 782#define RB_PAGE_NORMAL          0UL
 783#define RB_PAGE_HEAD            1UL
 784#define RB_PAGE_UPDATE          2UL
 785
 786
 787#define RB_FLAG_MASK            3UL
 788
 789/* PAGE_MOVED is not part of the mask */
 790#define RB_PAGE_MOVED           4UL
 791
 792/*
 793 * rb_list_head - remove any bit
 794 */
 795static struct list_head *rb_list_head(struct list_head *list)
 796{
 797        unsigned long val = (unsigned long)list;
 798
 799        return (struct list_head *)(val & ~RB_FLAG_MASK);
 800}
 801
 802/*
 803 * rb_is_head_page - test if the given page is the head page
 804 *
 805 * Because the reader may move the head_page pointer, we can
 806 * not trust what the head page is (it may be pointing to
 807 * the reader page). But if the next page is a header page,
 808 * its flags will be non zero.
 809 */
 810static inline int
 811rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 812                struct buffer_page *page, struct list_head *list)
 813{
 814        unsigned long val;
 815
 816        val = (unsigned long)list->next;
 817
 818        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 819                return RB_PAGE_MOVED;
 820
 821        return val & RB_FLAG_MASK;
 822}
 823
 824/*
 825 * rb_is_reader_page
 826 *
 827 * The unique thing about the reader page, is that, if the
 828 * writer is ever on it, the previous pointer never points
 829 * back to the reader page.
 830 */
 831static bool rb_is_reader_page(struct buffer_page *page)
 832{
 833        struct list_head *list = page->list.prev;
 834
 835        return rb_list_head(list->next) != &page->list;
 836}
 837
 838/*
 839 * rb_set_list_to_head - set a list_head to be pointing to head.
 840 */
 841static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 842                                struct list_head *list)
 843{
 844        unsigned long *ptr;
 845
 846        ptr = (unsigned long *)&list->next;
 847        *ptr |= RB_PAGE_HEAD;
 848        *ptr &= ~RB_PAGE_UPDATE;
 849}
 850
 851/*
 852 * rb_head_page_activate - sets up head page
 853 */
 854static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 855{
 856        struct buffer_page *head;
 857
 858        head = cpu_buffer->head_page;
 859        if (!head)
 860                return;
 861
 862        /*
 863         * Set the previous list pointer to have the HEAD flag.
 864         */
 865        rb_set_list_to_head(cpu_buffer, head->list.prev);
 866}
 867
 868static void rb_list_head_clear(struct list_head *list)
 869{
 870        unsigned long *ptr = (unsigned long *)&list->next;
 871
 872        *ptr &= ~RB_FLAG_MASK;
 873}
 874
 875/*
 876 * rb_head_page_dactivate - clears head page ptr (for free list)
 877 */
 878static void
 879rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 880{
 881        struct list_head *hd;
 882
 883        /* Go through the whole list and clear any pointers found. */
 884        rb_list_head_clear(cpu_buffer->pages);
 885
 886        list_for_each(hd, cpu_buffer->pages)
 887                rb_list_head_clear(hd);
 888}
 889
 890static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 891                            struct buffer_page *head,
 892                            struct buffer_page *prev,
 893                            int old_flag, int new_flag)
 894{
 895        struct list_head *list;
 896        unsigned long val = (unsigned long)&head->list;
 897        unsigned long ret;
 898
 899        list = &prev->list;
 900
 901        val &= ~RB_FLAG_MASK;
 902
 903        ret = cmpxchg((unsigned long *)&list->next,
 904                      val | old_flag, val | new_flag);
 905
 906        /* check if the reader took the page */
 907        if ((ret & ~RB_FLAG_MASK) != val)
 908                return RB_PAGE_MOVED;
 909
 910        return ret & RB_FLAG_MASK;
 911}
 912
 913static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 914                                   struct buffer_page *head,
 915                                   struct buffer_page *prev,
 916                                   int old_flag)
 917{
 918        return rb_head_page_set(cpu_buffer, head, prev,
 919                                old_flag, RB_PAGE_UPDATE);
 920}
 921
 922static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 923                                 struct buffer_page *head,
 924                                 struct buffer_page *prev,
 925                                 int old_flag)
 926{
 927        return rb_head_page_set(cpu_buffer, head, prev,
 928                                old_flag, RB_PAGE_HEAD);
 929}
 930
 931static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 932                                   struct buffer_page *head,
 933                                   struct buffer_page *prev,
 934                                   int old_flag)
 935{
 936        return rb_head_page_set(cpu_buffer, head, prev,
 937                                old_flag, RB_PAGE_NORMAL);
 938}
 939
 940static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 941                               struct buffer_page **bpage)
 942{
 943        struct list_head *p = rb_list_head((*bpage)->list.next);
 944
 945        *bpage = list_entry(p, struct buffer_page, list);
 946}
 947
 948static struct buffer_page *
 949rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 950{
 951        struct buffer_page *head;
 952        struct buffer_page *page;
 953        struct list_head *list;
 954        int i;
 955
 956        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 957                return NULL;
 958
 959        /* sanity check */
 960        list = cpu_buffer->pages;
 961        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 962                return NULL;
 963
 964        page = head = cpu_buffer->head_page;
 965        /*
 966         * It is possible that the writer moves the header behind
 967         * where we started, and we miss in one loop.
 968         * A second loop should grab the header, but we'll do
 969         * three loops just because I'm paranoid.
 970         */
 971        for (i = 0; i < 3; i++) {
 972                do {
 973                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 974                                cpu_buffer->head_page = page;
 975                                return page;
 976                        }
 977                        rb_inc_page(cpu_buffer, &page);
 978                } while (page != head);
 979        }
 980
 981        RB_WARN_ON(cpu_buffer, 1);
 982
 983        return NULL;
 984}
 985
 986static int rb_head_page_replace(struct buffer_page *old,
 987                                struct buffer_page *new)
 988{
 989        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 990        unsigned long val;
 991        unsigned long ret;
 992
 993        val = *ptr & ~RB_FLAG_MASK;
 994        val |= RB_PAGE_HEAD;
 995
 996        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 997
 998        return ret == val;
 999}
1000
1001/*
1002 * rb_tail_page_update - move the tail page forward
1003 */
1004static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1005                               struct buffer_page *tail_page,
1006                               struct buffer_page *next_page)
1007{
1008        unsigned long old_entries;
1009        unsigned long old_write;
1010
1011        /*
1012         * The tail page now needs to be moved forward.
1013         *
1014         * We need to reset the tail page, but without messing
1015         * with possible erasing of data brought in by interrupts
1016         * that have moved the tail page and are currently on it.
1017         *
1018         * We add a counter to the write field to denote this.
1019         */
1020        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022
1023        /*
1024         * Just make sure we have seen our old_write and synchronize
1025         * with any interrupts that come in.
1026         */
1027        barrier();
1028
1029        /*
1030         * If the tail page is still the same as what we think
1031         * it is, then it is up to us to update the tail
1032         * pointer.
1033         */
1034        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1035                /* Zero the write counter */
1036                unsigned long val = old_write & ~RB_WRITE_MASK;
1037                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038
1039                /*
1040                 * This will only succeed if an interrupt did
1041                 * not come in and change it. In which case, we
1042                 * do not want to modify it.
1043                 *
1044                 * We add (void) to let the compiler know that we do not care
1045                 * about the return value of these functions. We use the
1046                 * cmpxchg to only update if an interrupt did not already
1047                 * do it for us. If the cmpxchg fails, we don't care.
1048                 */
1049                (void)local_cmpxchg(&next_page->write, old_write, val);
1050                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1051
1052                /*
1053                 * No need to worry about races with clearing out the commit.
1054                 * it only can increment when a commit takes place. But that
1055                 * only happens in the outer most nested commit.
1056                 */
1057                local_set(&next_page->page->commit, 0);
1058
1059                /* Again, either we update tail_page or an interrupt does */
1060                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1061        }
1062}
1063
1064static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065                          struct buffer_page *bpage)
1066{
1067        unsigned long val = (unsigned long)bpage;
1068
1069        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070                return 1;
1071
1072        return 0;
1073}
1074
1075/**
1076 * rb_check_list - make sure a pointer to a list has the last bits zero
1077 */
1078static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079                         struct list_head *list)
1080{
1081        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082                return 1;
1083        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084                return 1;
1085        return 0;
1086}
1087
1088/**
1089 * rb_check_pages - integrity check of buffer pages
1090 * @cpu_buffer: CPU buffer with pages to test
1091 *
1092 * As a safety measure we check to make sure the data pages have not
1093 * been corrupted.
1094 */
1095static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096{
1097        struct list_head *head = cpu_buffer->pages;
1098        struct buffer_page *bpage, *tmp;
1099
1100        /* Reset the head page if it exists */
1101        if (cpu_buffer->head_page)
1102                rb_set_head_page(cpu_buffer);
1103
1104        rb_head_page_deactivate(cpu_buffer);
1105
1106        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107                return -1;
1108        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109                return -1;
1110
1111        if (rb_check_list(cpu_buffer, head))
1112                return -1;
1113
1114        list_for_each_entry_safe(bpage, tmp, head, list) {
1115                if (RB_WARN_ON(cpu_buffer,
1116                               bpage->list.next->prev != &bpage->list))
1117                        return -1;
1118                if (RB_WARN_ON(cpu_buffer,
1119                               bpage->list.prev->next != &bpage->list))
1120                        return -1;
1121                if (rb_check_list(cpu_buffer, &bpage->list))
1122                        return -1;
1123        }
1124
1125        rb_head_page_activate(cpu_buffer);
1126
1127        return 0;
1128}
1129
1130static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1131{
1132        struct buffer_page *bpage, *tmp;
1133        long i;
1134
1135        for (i = 0; i < nr_pages; i++) {
1136                struct page *page;
1137                /*
1138                 * __GFP_NORETRY flag makes sure that the allocation fails
1139                 * gracefully without invoking oom-killer and the system is
1140                 * not destabilized.
1141                 */
1142                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1143                                    GFP_KERNEL | __GFP_NORETRY,
1144                                    cpu_to_node(cpu));
1145                if (!bpage)
1146                        goto free_pages;
1147
1148                list_add(&bpage->list, pages);
1149
1150                page = alloc_pages_node(cpu_to_node(cpu),
1151                                        GFP_KERNEL | __GFP_NORETRY, 0);
1152                if (!page)
1153                        goto free_pages;
1154                bpage->page = page_address(page);
1155                rb_init_page(bpage->page);
1156        }
1157
1158        return 0;
1159
1160free_pages:
1161        list_for_each_entry_safe(bpage, tmp, pages, list) {
1162                list_del_init(&bpage->list);
1163                free_buffer_page(bpage);
1164        }
1165
1166        return -ENOMEM;
1167}
1168
1169static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1170                             unsigned long nr_pages)
1171{
1172        LIST_HEAD(pages);
1173
1174        WARN_ON(!nr_pages);
1175
1176        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177                return -ENOMEM;
1178
1179        /*
1180         * The ring buffer page list is a circular list that does not
1181         * start and end with a list head. All page list items point to
1182         * other pages.
1183         */
1184        cpu_buffer->pages = pages.next;
1185        list_del(&pages);
1186
1187        cpu_buffer->nr_pages = nr_pages;
1188
1189        rb_check_pages(cpu_buffer);
1190
1191        return 0;
1192}
1193
1194static struct ring_buffer_per_cpu *
1195rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1196{
1197        struct ring_buffer_per_cpu *cpu_buffer;
1198        struct buffer_page *bpage;
1199        struct page *page;
1200        int ret;
1201
1202        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203                                  GFP_KERNEL, cpu_to_node(cpu));
1204        if (!cpu_buffer)
1205                return NULL;
1206
1207        cpu_buffer->cpu = cpu;
1208        cpu_buffer->buffer = buffer;
1209        raw_spin_lock_init(&cpu_buffer->reader_lock);
1210        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1211        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1212        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1213        init_completion(&cpu_buffer->update_done);
1214        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1215        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1216        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1217
1218        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1219                            GFP_KERNEL, cpu_to_node(cpu));
1220        if (!bpage)
1221                goto fail_free_buffer;
1222
1223        rb_check_bpage(cpu_buffer, bpage);
1224
1225        cpu_buffer->reader_page = bpage;
1226        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227        if (!page)
1228                goto fail_free_reader;
1229        bpage->page = page_address(page);
1230        rb_init_page(bpage->page);
1231
1232        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1233        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1234
1235        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1236        if (ret < 0)
1237                goto fail_free_reader;
1238
1239        cpu_buffer->head_page
1240                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1241        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1242
1243        rb_head_page_activate(cpu_buffer);
1244
1245        return cpu_buffer;
1246
1247 fail_free_reader:
1248        free_buffer_page(cpu_buffer->reader_page);
1249
1250 fail_free_buffer:
1251        kfree(cpu_buffer);
1252        return NULL;
1253}
1254
1255static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256{
1257        struct list_head *head = cpu_buffer->pages;
1258        struct buffer_page *bpage, *tmp;
1259
1260        free_buffer_page(cpu_buffer->reader_page);
1261
1262        rb_head_page_deactivate(cpu_buffer);
1263
1264        if (head) {
1265                list_for_each_entry_safe(bpage, tmp, head, list) {
1266                        list_del_init(&bpage->list);
1267                        free_buffer_page(bpage);
1268                }
1269                bpage = list_entry(head, struct buffer_page, list);
1270                free_buffer_page(bpage);
1271        }
1272
1273        kfree(cpu_buffer);
1274}
1275
1276/**
1277 * __ring_buffer_alloc - allocate a new ring_buffer
1278 * @size: the size in bytes per cpu that is needed.
1279 * @flags: attributes to set for the ring buffer.
1280 *
1281 * Currently the only flag that is available is the RB_FL_OVERWRITE
1282 * flag. This flag means that the buffer will overwrite old data
1283 * when the buffer wraps. If this flag is not set, the buffer will
1284 * drop data when the tail hits the head.
1285 */
1286struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287                                        struct lock_class_key *key)
1288{
1289        struct ring_buffer *buffer;
1290        long nr_pages;
1291        int bsize;
1292        int cpu;
1293        int ret;
1294
1295        /* keep it in its own cache line */
1296        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297                         GFP_KERNEL);
1298        if (!buffer)
1299                return NULL;
1300
1301        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1302                goto fail_free_buffer;
1303
1304        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1305        buffer->flags = flags;
1306        buffer->clock = trace_clock_local;
1307        buffer->reader_lock_key = key;
1308
1309        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1310        init_waitqueue_head(&buffer->irq_work.waiters);
1311
1312        /* need at least two pages */
1313        if (nr_pages < 2)
1314                nr_pages = 2;
1315
1316        buffer->cpus = nr_cpu_ids;
1317
1318        bsize = sizeof(void *) * nr_cpu_ids;
1319        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320                                  GFP_KERNEL);
1321        if (!buffer->buffers)
1322                goto fail_free_cpumask;
1323
1324        cpu = raw_smp_processor_id();
1325        cpumask_set_cpu(cpu, buffer->cpumask);
1326        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327        if (!buffer->buffers[cpu])
1328                goto fail_free_buffers;
1329
1330        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331        if (ret < 0)
1332                goto fail_free_buffers;
1333
1334        mutex_init(&buffer->mutex);
1335
1336        return buffer;
1337
1338 fail_free_buffers:
1339        for_each_buffer_cpu(buffer, cpu) {
1340                if (buffer->buffers[cpu])
1341                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1342        }
1343        kfree(buffer->buffers);
1344
1345 fail_free_cpumask:
1346        free_cpumask_var(buffer->cpumask);
1347
1348 fail_free_buffer:
1349        kfree(buffer);
1350        return NULL;
1351}
1352EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353
1354/**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358void
1359ring_buffer_free(struct ring_buffer *buffer)
1360{
1361        int cpu;
1362
1363        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1364
1365        for_each_buffer_cpu(buffer, cpu)
1366                rb_free_cpu_buffer(buffer->buffers[cpu]);
1367
1368        kfree(buffer->buffers);
1369        free_cpumask_var(buffer->cpumask);
1370
1371        kfree(buffer);
1372}
1373EXPORT_SYMBOL_GPL(ring_buffer_free);
1374
1375void ring_buffer_set_clock(struct ring_buffer *buffer,
1376                           u64 (*clock)(void))
1377{
1378        buffer->clock = clock;
1379}
1380
1381static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382
1383static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384{
1385        return local_read(&bpage->entries) & RB_WRITE_MASK;
1386}
1387
1388static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389{
1390        return local_read(&bpage->write) & RB_WRITE_MASK;
1391}
1392
1393static int
1394rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1395{
1396        struct list_head *tail_page, *to_remove, *next_page;
1397        struct buffer_page *to_remove_page, *tmp_iter_page;
1398        struct buffer_page *last_page, *first_page;
1399        unsigned long nr_removed;
1400        unsigned long head_bit;
1401        int page_entries;
1402
1403        head_bit = 0;
1404
1405        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1406        atomic_inc(&cpu_buffer->record_disabled);
1407        /*
1408         * We don't race with the readers since we have acquired the reader
1409         * lock. We also don't race with writers after disabling recording.
1410         * This makes it easy to figure out the first and the last page to be
1411         * removed from the list. We unlink all the pages in between including
1412         * the first and last pages. This is done in a busy loop so that we
1413         * lose the least number of traces.
1414         * The pages are freed after we restart recording and unlock readers.
1415         */
1416        tail_page = &cpu_buffer->tail_page->list;
1417
1418        /*
1419         * tail page might be on reader page, we remove the next page
1420         * from the ring buffer
1421         */
1422        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423                tail_page = rb_list_head(tail_page->next);
1424        to_remove = tail_page;
1425
1426        /* start of pages to remove */
1427        first_page = list_entry(rb_list_head(to_remove->next),
1428                                struct buffer_page, list);
1429
1430        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431                to_remove = rb_list_head(to_remove)->next;
1432                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1433        }
1434
1435        next_page = rb_list_head(to_remove)->next;
1436
1437        /*
1438         * Now we remove all pages between tail_page and next_page.
1439         * Make sure that we have head_bit value preserved for the
1440         * next page
1441         */
1442        tail_page->next = (struct list_head *)((unsigned long)next_page |
1443                                                head_bit);
1444        next_page = rb_list_head(next_page);
1445        next_page->prev = tail_page;
1446
1447        /* make sure pages points to a valid page in the ring buffer */
1448        cpu_buffer->pages = next_page;
1449
1450        /* update head page */
1451        if (head_bit)
1452                cpu_buffer->head_page = list_entry(next_page,
1453                                                struct buffer_page, list);
1454
1455        /*
1456         * change read pointer to make sure any read iterators reset
1457         * themselves
1458         */
1459        cpu_buffer->read = 0;
1460
1461        /* pages are removed, resume tracing and then free the pages */
1462        atomic_dec(&cpu_buffer->record_disabled);
1463        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1464
1465        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466
1467        /* last buffer page to remove */
1468        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469                                list);
1470        tmp_iter_page = first_page;
1471
1472        do {
1473                to_remove_page = tmp_iter_page;
1474                rb_inc_page(cpu_buffer, &tmp_iter_page);
1475
1476                /* update the counters */
1477                page_entries = rb_page_entries(to_remove_page);
1478                if (page_entries) {
1479                        /*
1480                         * If something was added to this page, it was full
1481                         * since it is not the tail page. So we deduct the
1482                         * bytes consumed in ring buffer from here.
1483                         * Increment overrun to account for the lost events.
1484                         */
1485                        local_add(page_entries, &cpu_buffer->overrun);
1486                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487                }
1488
1489                /*
1490                 * We have already removed references to this list item, just
1491                 * free up the buffer_page and its page
1492                 */
1493                free_buffer_page(to_remove_page);
1494                nr_removed--;
1495
1496        } while (to_remove_page != last_page);
1497
1498        RB_WARN_ON(cpu_buffer, nr_removed);
1499
1500        return nr_removed == 0;
1501}
1502
1503static int
1504rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505{
1506        struct list_head *pages = &cpu_buffer->new_pages;
1507        int retries, success;
1508
1509        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510        /*
1511         * We are holding the reader lock, so the reader page won't be swapped
1512         * in the ring buffer. Now we are racing with the writer trying to
1513         * move head page and the tail page.
1514         * We are going to adapt the reader page update process where:
1515         * 1. We first splice the start and end of list of new pages between
1516         *    the head page and its previous page.
1517         * 2. We cmpxchg the prev_page->next to point from head page to the
1518         *    start of new pages list.
1519         * 3. Finally, we update the head->prev to the end of new list.
1520         *
1521         * We will try this process 10 times, to make sure that we don't keep
1522         * spinning.
1523         */
1524        retries = 10;
1525        success = 0;
1526        while (retries--) {
1527                struct list_head *head_page, *prev_page, *r;
1528                struct list_head *last_page, *first_page;
1529                struct list_head *head_page_with_bit;
1530
1531                head_page = &rb_set_head_page(cpu_buffer)->list;
1532                if (!head_page)
1533                        break;
1534                prev_page = head_page->prev;
1535
1536                first_page = pages->next;
1537                last_page  = pages->prev;
1538
1539                head_page_with_bit = (struct list_head *)
1540                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1541
1542                last_page->next = head_page_with_bit;
1543                first_page->prev = prev_page;
1544
1545                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546
1547                if (r == head_page_with_bit) {
1548                        /*
1549                         * yay, we replaced the page pointer to our new list,
1550                         * now, we just have to update to head page's prev
1551                         * pointer to point to end of list
1552                         */
1553                        head_page->prev = last_page;
1554                        success = 1;
1555                        break;
1556                }
1557        }
1558
1559        if (success)
1560                INIT_LIST_HEAD(pages);
1561        /*
1562         * If we weren't successful in adding in new pages, warn and stop
1563         * tracing
1564         */
1565        RB_WARN_ON(cpu_buffer, !success);
1566        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1567
1568        /* free pages if they weren't inserted */
1569        if (!success) {
1570                struct buffer_page *bpage, *tmp;
1571                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572                                         list) {
1573                        list_del_init(&bpage->list);
1574                        free_buffer_page(bpage);
1575                }
1576        }
1577        return success;
1578}
1579
1580static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582        int success;
1583
1584        if (cpu_buffer->nr_pages_to_update > 0)
1585                success = rb_insert_pages(cpu_buffer);
1586        else
1587                success = rb_remove_pages(cpu_buffer,
1588                                        -cpu_buffer->nr_pages_to_update);
1589
1590        if (success)
1591                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1592}
1593
1594static void update_pages_handler(struct work_struct *work)
1595{
1596        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597                        struct ring_buffer_per_cpu, update_pages_work);
1598        rb_update_pages(cpu_buffer);
1599        complete(&cpu_buffer->update_done);
1600}
1601
1602/**
1603 * ring_buffer_resize - resize the ring buffer
1604 * @buffer: the buffer to resize.
1605 * @size: the new size.
1606 * @cpu_id: the cpu buffer to resize
1607 *
1608 * Minimum size is 2 * BUF_PAGE_SIZE.
1609 *
1610 * Returns 0 on success and < 0 on failure.
1611 */
1612int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613                        int cpu_id)
1614{
1615        struct ring_buffer_per_cpu *cpu_buffer;
1616        unsigned long nr_pages;
1617        int cpu, err = 0;
1618
1619        /*
1620         * Always succeed at resizing a non-existent buffer:
1621         */
1622        if (!buffer)
1623                return size;
1624
1625        /* Make sure the requested buffer exists */
1626        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628                return size;
1629
1630        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631
1632        /* we need a minimum of two pages */
1633        if (nr_pages < 2)
1634                nr_pages = 2;
1635
1636        size = nr_pages * BUF_PAGE_SIZE;
1637
1638        /*
1639         * Don't succeed if resizing is disabled, as a reader might be
1640         * manipulating the ring buffer and is expecting a sane state while
1641         * this is true.
1642         */
1643        if (atomic_read(&buffer->resize_disabled))
1644                return -EBUSY;
1645
1646        /* prevent another thread from changing buffer sizes */
1647        mutex_lock(&buffer->mutex);
1648
1649        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650                /* calculate the pages to update */
1651                for_each_buffer_cpu(buffer, cpu) {
1652                        cpu_buffer = buffer->buffers[cpu];
1653
1654                        cpu_buffer->nr_pages_to_update = nr_pages -
1655                                                        cpu_buffer->nr_pages;
1656                        /*
1657                         * nothing more to do for removing pages or no update
1658                         */
1659                        if (cpu_buffer->nr_pages_to_update <= 0)
1660                                continue;
1661                        /*
1662                         * to add pages, make sure all new pages can be
1663                         * allocated without receiving ENOMEM
1664                         */
1665                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1667                                                &cpu_buffer->new_pages, cpu)) {
1668                                /* not enough memory for new pages */
1669                                err = -ENOMEM;
1670                                goto out_err;
1671                        }
1672                }
1673
1674                get_online_cpus();
1675                /*
1676                 * Fire off all the required work handlers
1677                 * We can't schedule on offline CPUs, but it's not necessary
1678                 * since we can change their buffer sizes without any race.
1679                 */
1680                for_each_buffer_cpu(buffer, cpu) {
1681                        cpu_buffer = buffer->buffers[cpu];
1682                        if (!cpu_buffer->nr_pages_to_update)
1683                                continue;
1684
1685                        /* Can't run something on an offline CPU. */
1686                        if (!cpu_online(cpu)) {
1687                                rb_update_pages(cpu_buffer);
1688                                cpu_buffer->nr_pages_to_update = 0;
1689                        } else {
1690                                schedule_work_on(cpu,
1691                                                &cpu_buffer->update_pages_work);
1692                        }
1693                }
1694
1695                /* wait for all the updates to complete */
1696                for_each_buffer_cpu(buffer, cpu) {
1697                        cpu_buffer = buffer->buffers[cpu];
1698                        if (!cpu_buffer->nr_pages_to_update)
1699                                continue;
1700
1701                        if (cpu_online(cpu))
1702                                wait_for_completion(&cpu_buffer->update_done);
1703                        cpu_buffer->nr_pages_to_update = 0;
1704                }
1705
1706                put_online_cpus();
1707        } else {
1708                /* Make sure this CPU has been intitialized */
1709                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710                        goto out;
1711
1712                cpu_buffer = buffer->buffers[cpu_id];
1713
1714                if (nr_pages == cpu_buffer->nr_pages)
1715                        goto out;
1716
1717                cpu_buffer->nr_pages_to_update = nr_pages -
1718                                                cpu_buffer->nr_pages;
1719
1720                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721                if (cpu_buffer->nr_pages_to_update > 0 &&
1722                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1723                                            &cpu_buffer->new_pages, cpu_id)) {
1724                        err = -ENOMEM;
1725                        goto out_err;
1726                }
1727
1728                get_online_cpus();
1729
1730                /* Can't run something on an offline CPU. */
1731                if (!cpu_online(cpu_id))
1732                        rb_update_pages(cpu_buffer);
1733                else {
1734                        schedule_work_on(cpu_id,
1735                                         &cpu_buffer->update_pages_work);
1736                        wait_for_completion(&cpu_buffer->update_done);
1737                }
1738
1739                cpu_buffer->nr_pages_to_update = 0;
1740                put_online_cpus();
1741        }
1742
1743 out:
1744        /*
1745         * The ring buffer resize can happen with the ring buffer
1746         * enabled, so that the update disturbs the tracing as little
1747         * as possible. But if the buffer is disabled, we do not need
1748         * to worry about that, and we can take the time to verify
1749         * that the buffer is not corrupt.
1750         */
1751        if (atomic_read(&buffer->record_disabled)) {
1752                atomic_inc(&buffer->record_disabled);
1753                /*
1754                 * Even though the buffer was disabled, we must make sure
1755                 * that it is truly disabled before calling rb_check_pages.
1756                 * There could have been a race between checking
1757                 * record_disable and incrementing it.
1758                 */
1759                synchronize_sched();
1760                for_each_buffer_cpu(buffer, cpu) {
1761                        cpu_buffer = buffer->buffers[cpu];
1762                        rb_check_pages(cpu_buffer);
1763                }
1764                atomic_dec(&buffer->record_disabled);
1765        }
1766
1767        mutex_unlock(&buffer->mutex);
1768        return size;
1769
1770 out_err:
1771        for_each_buffer_cpu(buffer, cpu) {
1772                struct buffer_page *bpage, *tmp;
1773
1774                cpu_buffer = buffer->buffers[cpu];
1775                cpu_buffer->nr_pages_to_update = 0;
1776
1777                if (list_empty(&cpu_buffer->new_pages))
1778                        continue;
1779
1780                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781                                        list) {
1782                        list_del_init(&bpage->list);
1783                        free_buffer_page(bpage);
1784                }
1785        }
1786        mutex_unlock(&buffer->mutex);
1787        return err;
1788}
1789EXPORT_SYMBOL_GPL(ring_buffer_resize);
1790
1791void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792{
1793        mutex_lock(&buffer->mutex);
1794        if (val)
1795                buffer->flags |= RB_FL_OVERWRITE;
1796        else
1797                buffer->flags &= ~RB_FL_OVERWRITE;
1798        mutex_unlock(&buffer->mutex);
1799}
1800EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801
1802static __always_inline void *
1803__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1804{
1805        return bpage->data + index;
1806}
1807
1808static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1809{
1810        return bpage->page->data + index;
1811}
1812
1813static __always_inline struct ring_buffer_event *
1814rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1815{
1816        return __rb_page_index(cpu_buffer->reader_page,
1817                               cpu_buffer->reader_page->read);
1818}
1819
1820static __always_inline struct ring_buffer_event *
1821rb_iter_head_event(struct ring_buffer_iter *iter)
1822{
1823        return __rb_page_index(iter->head_page, iter->head);
1824}
1825
1826static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1827{
1828        return local_read(&bpage->page->commit);
1829}
1830
1831/* Size is determined by what has been committed */
1832static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1833{
1834        return rb_page_commit(bpage);
1835}
1836
1837static __always_inline unsigned
1838rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1839{
1840        return rb_page_commit(cpu_buffer->commit_page);
1841}
1842
1843static __always_inline unsigned
1844rb_event_index(struct ring_buffer_event *event)
1845{
1846        unsigned long addr = (unsigned long)event;
1847
1848        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1849}
1850
1851static void rb_inc_iter(struct ring_buffer_iter *iter)
1852{
1853        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854
1855        /*
1856         * The iterator could be on the reader page (it starts there).
1857         * But the head could have moved, since the reader was
1858         * found. Check for this case and assign the iterator
1859         * to the head page instead of next.
1860         */
1861        if (iter->head_page == cpu_buffer->reader_page)
1862                iter->head_page = rb_set_head_page(cpu_buffer);
1863        else
1864                rb_inc_page(cpu_buffer, &iter->head_page);
1865
1866        iter->read_stamp = iter->head_page->page->time_stamp;
1867        iter->head = 0;
1868}
1869
1870/*
1871 * rb_handle_head_page - writer hit the head page
1872 *
1873 * Returns: +1 to retry page
1874 *           0 to continue
1875 *          -1 on error
1876 */
1877static int
1878rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1879                    struct buffer_page *tail_page,
1880                    struct buffer_page *next_page)
1881{
1882        struct buffer_page *new_head;
1883        int entries;
1884        int type;
1885        int ret;
1886
1887        entries = rb_page_entries(next_page);
1888
1889        /*
1890         * The hard part is here. We need to move the head
1891         * forward, and protect against both readers on
1892         * other CPUs and writers coming in via interrupts.
1893         */
1894        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1895                                       RB_PAGE_HEAD);
1896
1897        /*
1898         * type can be one of four:
1899         *  NORMAL - an interrupt already moved it for us
1900         *  HEAD   - we are the first to get here.
1901         *  UPDATE - we are the interrupt interrupting
1902         *           a current move.
1903         *  MOVED  - a reader on another CPU moved the next
1904         *           pointer to its reader page. Give up
1905         *           and try again.
1906         */
1907
1908        switch (type) {
1909        case RB_PAGE_HEAD:
1910                /*
1911                 * We changed the head to UPDATE, thus
1912                 * it is our responsibility to update
1913                 * the counters.
1914                 */
1915                local_add(entries, &cpu_buffer->overrun);
1916                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1917
1918                /*
1919                 * The entries will be zeroed out when we move the
1920                 * tail page.
1921                 */
1922
1923                /* still more to do */
1924                break;
1925
1926        case RB_PAGE_UPDATE:
1927                /*
1928                 * This is an interrupt that interrupt the
1929                 * previous update. Still more to do.
1930                 */
1931                break;
1932        case RB_PAGE_NORMAL:
1933                /*
1934                 * An interrupt came in before the update
1935                 * and processed this for us.
1936                 * Nothing left to do.
1937                 */
1938                return 1;
1939        case RB_PAGE_MOVED:
1940                /*
1941                 * The reader is on another CPU and just did
1942                 * a swap with our next_page.
1943                 * Try again.
1944                 */
1945                return 1;
1946        default:
1947                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1948                return -1;
1949        }
1950
1951        /*
1952         * Now that we are here, the old head pointer is
1953         * set to UPDATE. This will keep the reader from
1954         * swapping the head page with the reader page.
1955         * The reader (on another CPU) will spin till
1956         * we are finished.
1957         *
1958         * We just need to protect against interrupts
1959         * doing the job. We will set the next pointer
1960         * to HEAD. After that, we set the old pointer
1961         * to NORMAL, but only if it was HEAD before.
1962         * otherwise we are an interrupt, and only
1963         * want the outer most commit to reset it.
1964         */
1965        new_head = next_page;
1966        rb_inc_page(cpu_buffer, &new_head);
1967
1968        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1969                                    RB_PAGE_NORMAL);
1970
1971        /*
1972         * Valid returns are:
1973         *  HEAD   - an interrupt came in and already set it.
1974         *  NORMAL - One of two things:
1975         *            1) We really set it.
1976         *            2) A bunch of interrupts came in and moved
1977         *               the page forward again.
1978         */
1979        switch (ret) {
1980        case RB_PAGE_HEAD:
1981        case RB_PAGE_NORMAL:
1982                /* OK */
1983                break;
1984        default:
1985                RB_WARN_ON(cpu_buffer, 1);
1986                return -1;
1987        }
1988
1989        /*
1990         * It is possible that an interrupt came in,
1991         * set the head up, then more interrupts came in
1992         * and moved it again. When we get back here,
1993         * the page would have been set to NORMAL but we
1994         * just set it back to HEAD.
1995         *
1996         * How do you detect this? Well, if that happened
1997         * the tail page would have moved.
1998         */
1999        if (ret == RB_PAGE_NORMAL) {
2000                struct buffer_page *buffer_tail_page;
2001
2002                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2003                /*
2004                 * If the tail had moved passed next, then we need
2005                 * to reset the pointer.
2006                 */
2007                if (buffer_tail_page != tail_page &&
2008                    buffer_tail_page != next_page)
2009                        rb_head_page_set_normal(cpu_buffer, new_head,
2010                                                next_page,
2011                                                RB_PAGE_HEAD);
2012        }
2013
2014        /*
2015         * If this was the outer most commit (the one that
2016         * changed the original pointer from HEAD to UPDATE),
2017         * then it is up to us to reset it to NORMAL.
2018         */
2019        if (type == RB_PAGE_HEAD) {
2020                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2021                                              tail_page,
2022                                              RB_PAGE_UPDATE);
2023                if (RB_WARN_ON(cpu_buffer,
2024                               ret != RB_PAGE_UPDATE))
2025                        return -1;
2026        }
2027
2028        return 0;
2029}
2030
2031static inline void
2032rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2033              unsigned long tail, struct rb_event_info *info)
2034{
2035        struct buffer_page *tail_page = info->tail_page;
2036        struct ring_buffer_event *event;
2037        unsigned long length = info->length;
2038
2039        /*
2040         * Only the event that crossed the page boundary
2041         * must fill the old tail_page with padding.
2042         */
2043        if (tail >= BUF_PAGE_SIZE) {
2044                /*
2045                 * If the page was filled, then we still need
2046                 * to update the real_end. Reset it to zero
2047                 * and the reader will ignore it.
2048                 */
2049                if (tail == BUF_PAGE_SIZE)
2050                        tail_page->real_end = 0;
2051
2052                local_sub(length, &tail_page->write);
2053                return;
2054        }
2055
2056        event = __rb_page_index(tail_page, tail);
2057        kmemcheck_annotate_bitfield(event, bitfield);
2058
2059        /* account for padding bytes */
2060        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062        /*
2063         * Save the original length to the meta data.
2064         * This will be used by the reader to add lost event
2065         * counter.
2066         */
2067        tail_page->real_end = tail;
2068
2069        /*
2070         * If this event is bigger than the minimum size, then
2071         * we need to be careful that we don't subtract the
2072         * write counter enough to allow another writer to slip
2073         * in on this page.
2074         * We put in a discarded commit instead, to make sure
2075         * that this space is not used again.
2076         *
2077         * If we are less than the minimum size, we don't need to
2078         * worry about it.
2079         */
2080        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081                /* No room for any events */
2082
2083                /* Mark the rest of the page with padding */
2084                rb_event_set_padding(event);
2085
2086                /* Set the write back to the previous setting */
2087                local_sub(length, &tail_page->write);
2088                return;
2089        }
2090
2091        /* Put in a discarded event */
2092        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093        event->type_len = RINGBUF_TYPE_PADDING;
2094        /* time delta must be non zero */
2095        event->time_delta = 1;
2096
2097        /* Set write to end of buffer */
2098        length = (tail + length) - BUF_PAGE_SIZE;
2099        local_sub(length, &tail_page->write);
2100}
2101
2102static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2103
2104/*
2105 * This is the slow path, force gcc not to inline it.
2106 */
2107static noinline struct ring_buffer_event *
2108rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2109             unsigned long tail, struct rb_event_info *info)
2110{
2111        struct buffer_page *tail_page = info->tail_page;
2112        struct buffer_page *commit_page = cpu_buffer->commit_page;
2113        struct ring_buffer *buffer = cpu_buffer->buffer;
2114        struct buffer_page *next_page;
2115        int ret;
2116
2117        next_page = tail_page;
2118
2119        rb_inc_page(cpu_buffer, &next_page);
2120
2121        /*
2122         * If for some reason, we had an interrupt storm that made
2123         * it all the way around the buffer, bail, and warn
2124         * about it.
2125         */
2126        if (unlikely(next_page == commit_page)) {
2127                local_inc(&cpu_buffer->commit_overrun);
2128                goto out_reset;
2129        }
2130
2131        /*
2132         * This is where the fun begins!
2133         *
2134         * We are fighting against races between a reader that
2135         * could be on another CPU trying to swap its reader
2136         * page with the buffer head.
2137         *
2138         * We are also fighting against interrupts coming in and
2139         * moving the head or tail on us as well.
2140         *
2141         * If the next page is the head page then we have filled
2142         * the buffer, unless the commit page is still on the
2143         * reader page.
2144         */
2145        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2146
2147                /*
2148                 * If the commit is not on the reader page, then
2149                 * move the header page.
2150                 */
2151                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2152                        /*
2153                         * If we are not in overwrite mode,
2154                         * this is easy, just stop here.
2155                         */
2156                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2157                                local_inc(&cpu_buffer->dropped_events);
2158                                goto out_reset;
2159                        }
2160
2161                        ret = rb_handle_head_page(cpu_buffer,
2162                                                  tail_page,
2163                                                  next_page);
2164                        if (ret < 0)
2165                                goto out_reset;
2166                        if (ret)
2167                                goto out_again;
2168                } else {
2169                        /*
2170                         * We need to be careful here too. The
2171                         * commit page could still be on the reader
2172                         * page. We could have a small buffer, and
2173                         * have filled up the buffer with events
2174                         * from interrupts and such, and wrapped.
2175                         *
2176                         * Note, if the tail page is also the on the
2177                         * reader_page, we let it move out.
2178                         */
2179                        if (unlikely((cpu_buffer->commit_page !=
2180                                      cpu_buffer->tail_page) &&
2181                                     (cpu_buffer->commit_page ==
2182                                      cpu_buffer->reader_page))) {
2183                                local_inc(&cpu_buffer->commit_overrun);
2184                                goto out_reset;
2185                        }
2186                }
2187        }
2188
2189        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2190
2191 out_again:
2192
2193        rb_reset_tail(cpu_buffer, tail, info);
2194
2195        /* Commit what we have for now. */
2196        rb_end_commit(cpu_buffer);
2197        /* rb_end_commit() decs committing */
2198        local_inc(&cpu_buffer->committing);
2199
2200        /* fail and let the caller try again */
2201        return ERR_PTR(-EAGAIN);
2202
2203 out_reset:
2204        /* reset write */
2205        rb_reset_tail(cpu_buffer, tail, info);
2206
2207        return NULL;
2208}
2209
2210/* Slow path, do not inline */
2211static noinline struct ring_buffer_event *
2212rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2213{
2214        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2215
2216        /* Not the first event on the page? */
2217        if (rb_event_index(event)) {
2218                event->time_delta = delta & TS_MASK;
2219                event->array[0] = delta >> TS_SHIFT;
2220        } else {
2221                /* nope, just zero it */
2222                event->time_delta = 0;
2223                event->array[0] = 0;
2224        }
2225
2226        return skip_time_extend(event);
2227}
2228
2229static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2230                                     struct ring_buffer_event *event);
2231
2232/**
2233 * rb_update_event - update event type and data
2234 * @event: the event to update
2235 * @type: the type of event
2236 * @length: the size of the event field in the ring buffer
2237 *
2238 * Update the type and data fields of the event. The length
2239 * is the actual size that is written to the ring buffer,
2240 * and with this, we can determine what to place into the
2241 * data field.
2242 */
2243static void
2244rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2245                struct ring_buffer_event *event,
2246                struct rb_event_info *info)
2247{
2248        unsigned length = info->length;
2249        u64 delta = info->delta;
2250
2251        /* Only a commit updates the timestamp */
2252        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2253                delta = 0;
2254
2255        /*
2256         * If we need to add a timestamp, then we
2257         * add it to the start of the resevered space.
2258         */
2259        if (unlikely(info->add_timestamp)) {
2260                event = rb_add_time_stamp(event, delta);
2261                length -= RB_LEN_TIME_EXTEND;
2262                delta = 0;
2263        }
2264
2265        event->time_delta = delta;
2266        length -= RB_EVNT_HDR_SIZE;
2267        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2268                event->type_len = 0;
2269                event->array[0] = length;
2270        } else
2271                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2272}
2273
2274static unsigned rb_calculate_event_length(unsigned length)
2275{
2276        struct ring_buffer_event event; /* Used only for sizeof array */
2277
2278        /* zero length can cause confusions */
2279        if (!length)
2280                length++;
2281
2282        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2283                length += sizeof(event.array[0]);
2284
2285        length += RB_EVNT_HDR_SIZE;
2286        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2287
2288        /*
2289         * In case the time delta is larger than the 27 bits for it
2290         * in the header, we need to add a timestamp. If another
2291         * event comes in when trying to discard this one to increase
2292         * the length, then the timestamp will be added in the allocated
2293         * space of this event. If length is bigger than the size needed
2294         * for the TIME_EXTEND, then padding has to be used. The events
2295         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2296         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2297         * As length is a multiple of 4, we only need to worry if it
2298         * is 12 (RB_LEN_TIME_EXTEND + 4).
2299         */
2300        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2301                length += RB_ALIGNMENT;
2302
2303        return length;
2304}
2305
2306#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2307static inline bool sched_clock_stable(void)
2308{
2309        return true;
2310}
2311#endif
2312
2313static inline int
2314rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2315                  struct ring_buffer_event *event)
2316{
2317        unsigned long new_index, old_index;
2318        struct buffer_page *bpage;
2319        unsigned long index;
2320        unsigned long addr;
2321
2322        new_index = rb_event_index(event);
2323        old_index = new_index + rb_event_ts_length(event);
2324        addr = (unsigned long)event;
2325        addr &= PAGE_MASK;
2326
2327        bpage = READ_ONCE(cpu_buffer->tail_page);
2328
2329        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2330                unsigned long write_mask =
2331                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2332                unsigned long event_length = rb_event_length(event);
2333                /*
2334                 * This is on the tail page. It is possible that
2335                 * a write could come in and move the tail page
2336                 * and write to the next page. That is fine
2337                 * because we just shorten what is on this page.
2338                 */
2339                old_index += write_mask;
2340                new_index += write_mask;
2341                index = local_cmpxchg(&bpage->write, old_index, new_index);
2342                if (index == old_index) {
2343                        /* update counters */
2344                        local_sub(event_length, &cpu_buffer->entries_bytes);
2345                        return 1;
2346                }
2347        }
2348
2349        /* could not discard */
2350        return 0;
2351}
2352
2353static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2354{
2355        local_inc(&cpu_buffer->committing);
2356        local_inc(&cpu_buffer->commits);
2357}
2358
2359static __always_inline void
2360rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2361{
2362        unsigned long max_count;
2363
2364        /*
2365         * We only race with interrupts and NMIs on this CPU.
2366         * If we own the commit event, then we can commit
2367         * all others that interrupted us, since the interruptions
2368         * are in stack format (they finish before they come
2369         * back to us). This allows us to do a simple loop to
2370         * assign the commit to the tail.
2371         */
2372 again:
2373        max_count = cpu_buffer->nr_pages * 100;
2374
2375        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2376                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2377                        return;
2378                if (RB_WARN_ON(cpu_buffer,
2379                               rb_is_reader_page(cpu_buffer->tail_page)))
2380                        return;
2381                local_set(&cpu_buffer->commit_page->page->commit,
2382                          rb_page_write(cpu_buffer->commit_page));
2383                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2384                /* Only update the write stamp if the page has an event */
2385                if (rb_page_write(cpu_buffer->commit_page))
2386                        cpu_buffer->write_stamp =
2387                                cpu_buffer->commit_page->page->time_stamp;
2388                /* add barrier to keep gcc from optimizing too much */
2389                barrier();
2390        }
2391        while (rb_commit_index(cpu_buffer) !=
2392               rb_page_write(cpu_buffer->commit_page)) {
2393
2394                local_set(&cpu_buffer->commit_page->page->commit,
2395                          rb_page_write(cpu_buffer->commit_page));
2396                RB_WARN_ON(cpu_buffer,
2397                           local_read(&cpu_buffer->commit_page->page->commit) &
2398                           ~RB_WRITE_MASK);
2399                barrier();
2400        }
2401
2402        /* again, keep gcc from optimizing */
2403        barrier();
2404
2405        /*
2406         * If an interrupt came in just after the first while loop
2407         * and pushed the tail page forward, we will be left with
2408         * a dangling commit that will never go forward.
2409         */
2410        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2411                goto again;
2412}
2413
2414static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2415{
2416        unsigned long commits;
2417
2418        if (RB_WARN_ON(cpu_buffer,
2419                       !local_read(&cpu_buffer->committing)))
2420                return;
2421
2422 again:
2423        commits = local_read(&cpu_buffer->commits);
2424        /* synchronize with interrupts */
2425        barrier();
2426        if (local_read(&cpu_buffer->committing) == 1)
2427                rb_set_commit_to_write(cpu_buffer);
2428
2429        local_dec(&cpu_buffer->committing);
2430
2431        /* synchronize with interrupts */
2432        barrier();
2433
2434        /*
2435         * Need to account for interrupts coming in between the
2436         * updating of the commit page and the clearing of the
2437         * committing counter.
2438         */
2439        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2440            !local_read(&cpu_buffer->committing)) {
2441                local_inc(&cpu_buffer->committing);
2442                goto again;
2443        }
2444}
2445
2446static inline void rb_event_discard(struct ring_buffer_event *event)
2447{
2448        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2449                event = skip_time_extend(event);
2450
2451        /* array[0] holds the actual length for the discarded event */
2452        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2453        event->type_len = RINGBUF_TYPE_PADDING;
2454        /* time delta must be non zero */
2455        if (!event->time_delta)
2456                event->time_delta = 1;
2457}
2458
2459static __always_inline bool
2460rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2461                   struct ring_buffer_event *event)
2462{
2463        unsigned long addr = (unsigned long)event;
2464        unsigned long index;
2465
2466        index = rb_event_index(event);
2467        addr &= PAGE_MASK;
2468
2469        return cpu_buffer->commit_page->page == (void *)addr &&
2470                rb_commit_index(cpu_buffer) == index;
2471}
2472
2473static __always_inline void
2474rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2475                      struct ring_buffer_event *event)
2476{
2477        u64 delta;
2478
2479        /*
2480         * The event first in the commit queue updates the
2481         * time stamp.
2482         */
2483        if (rb_event_is_commit(cpu_buffer, event)) {
2484                /*
2485                 * A commit event that is first on a page
2486                 * updates the write timestamp with the page stamp
2487                 */
2488                if (!rb_event_index(event))
2489                        cpu_buffer->write_stamp =
2490                                cpu_buffer->commit_page->page->time_stamp;
2491                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2492                        delta = event->array[0];
2493                        delta <<= TS_SHIFT;
2494                        delta += event->time_delta;
2495                        cpu_buffer->write_stamp += delta;
2496                } else
2497                        cpu_buffer->write_stamp += event->time_delta;
2498        }
2499}
2500
2501static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2502                      struct ring_buffer_event *event)
2503{
2504        local_inc(&cpu_buffer->entries);
2505        rb_update_write_stamp(cpu_buffer, event);
2506        rb_end_commit(cpu_buffer);
2507}
2508
2509static __always_inline void
2510rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2511{
2512        bool pagebusy;
2513
2514        if (buffer->irq_work.waiters_pending) {
2515                buffer->irq_work.waiters_pending = false;
2516                /* irq_work_queue() supplies it's own memory barriers */
2517                irq_work_queue(&buffer->irq_work.work);
2518        }
2519
2520        if (cpu_buffer->irq_work.waiters_pending) {
2521                cpu_buffer->irq_work.waiters_pending = false;
2522                /* irq_work_queue() supplies it's own memory barriers */
2523                irq_work_queue(&cpu_buffer->irq_work.work);
2524        }
2525
2526        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2527
2528        if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2529                cpu_buffer->irq_work.wakeup_full = true;
2530                cpu_buffer->irq_work.full_waiters_pending = false;
2531                /* irq_work_queue() supplies it's own memory barriers */
2532                irq_work_queue(&cpu_buffer->irq_work.work);
2533        }
2534}
2535
2536/*
2537 * The lock and unlock are done within a preempt disable section.
2538 * The current_context per_cpu variable can only be modified
2539 * by the current task between lock and unlock. But it can
2540 * be modified more than once via an interrupt. To pass this
2541 * information from the lock to the unlock without having to
2542 * access the 'in_interrupt()' functions again (which do show
2543 * a bit of overhead in something as critical as function tracing,
2544 * we use a bitmask trick.
2545 *
2546 *  bit 0 =  NMI context
2547 *  bit 1 =  IRQ context
2548 *  bit 2 =  SoftIRQ context
2549 *  bit 3 =  normal context.
2550 *
2551 * This works because this is the order of contexts that can
2552 * preempt other contexts. A SoftIRQ never preempts an IRQ
2553 * context.
2554 *
2555 * When the context is determined, the corresponding bit is
2556 * checked and set (if it was set, then a recursion of that context
2557 * happened).
2558 *
2559 * On unlock, we need to clear this bit. To do so, just subtract
2560 * 1 from the current_context and AND it to itself.
2561 *
2562 * (binary)
2563 *  101 - 1 = 100
2564 *  101 & 100 = 100 (clearing bit zero)
2565 *
2566 *  1010 - 1 = 1001
2567 *  1010 & 1001 = 1000 (clearing bit 1)
2568 *
2569 * The least significant bit can be cleared this way, and it
2570 * just so happens that it is the same bit corresponding to
2571 * the current context.
2572 */
2573
2574static __always_inline int
2575trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2576{
2577        unsigned int val = cpu_buffer->current_context;
2578        int bit;
2579
2580        if (in_interrupt()) {
2581                if (in_nmi())
2582                        bit = RB_CTX_NMI;
2583                else if (in_irq())
2584                        bit = RB_CTX_IRQ;
2585                else
2586                        bit = RB_CTX_SOFTIRQ;
2587        } else
2588                bit = RB_CTX_NORMAL;
2589
2590        if (unlikely(val & (1 << bit)))
2591                return 1;
2592
2593        val |= (1 << bit);
2594        cpu_buffer->current_context = val;
2595
2596        return 0;
2597}
2598
2599static __always_inline void
2600trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2601{
2602        cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2603}
2604
2605/**
2606 * ring_buffer_unlock_commit - commit a reserved
2607 * @buffer: The buffer to commit to
2608 * @event: The event pointer to commit.
2609 *
2610 * This commits the data to the ring buffer, and releases any locks held.
2611 *
2612 * Must be paired with ring_buffer_lock_reserve.
2613 */
2614int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2615                              struct ring_buffer_event *event)
2616{
2617        struct ring_buffer_per_cpu *cpu_buffer;
2618        int cpu = raw_smp_processor_id();
2619
2620        cpu_buffer = buffer->buffers[cpu];
2621
2622        rb_commit(cpu_buffer, event);
2623
2624        rb_wakeups(buffer, cpu_buffer);
2625
2626        trace_recursive_unlock(cpu_buffer);
2627
2628        preempt_enable_notrace();
2629
2630        return 0;
2631}
2632EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2633
2634static noinline void
2635rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2636                    struct rb_event_info *info)
2637{
2638        WARN_ONCE(info->delta > (1ULL << 59),
2639                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2640                  (unsigned long long)info->delta,
2641                  (unsigned long long)info->ts,
2642                  (unsigned long long)cpu_buffer->write_stamp,
2643                  sched_clock_stable() ? "" :
2644                  "If you just came from a suspend/resume,\n"
2645                  "please switch to the trace global clock:\n"
2646                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2647        info->add_timestamp = 1;
2648}
2649
2650static struct ring_buffer_event *
2651__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2652                  struct rb_event_info *info)
2653{
2654        struct ring_buffer_event *event;
2655        struct buffer_page *tail_page;
2656        unsigned long tail, write;
2657
2658        /*
2659         * If the time delta since the last event is too big to
2660         * hold in the time field of the event, then we append a
2661         * TIME EXTEND event ahead of the data event.
2662         */
2663        if (unlikely(info->add_timestamp))
2664                info->length += RB_LEN_TIME_EXTEND;
2665
2666        /* Don't let the compiler play games with cpu_buffer->tail_page */
2667        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2668        write = local_add_return(info->length, &tail_page->write);
2669
2670        /* set write to only the index of the write */
2671        write &= RB_WRITE_MASK;
2672        tail = write - info->length;
2673
2674        /*
2675         * If this is the first commit on the page, then it has the same
2676         * timestamp as the page itself.
2677         */
2678        if (!tail)
2679                info->delta = 0;
2680
2681        /* See if we shot pass the end of this buffer page */
2682        if (unlikely(write > BUF_PAGE_SIZE))
2683                return rb_move_tail(cpu_buffer, tail, info);
2684
2685        /* We reserved something on the buffer */
2686
2687        event = __rb_page_index(tail_page, tail);
2688        kmemcheck_annotate_bitfield(event, bitfield);
2689        rb_update_event(cpu_buffer, event, info);
2690
2691        local_inc(&tail_page->entries);
2692
2693        /*
2694         * If this is the first commit on the page, then update
2695         * its timestamp.
2696         */
2697        if (!tail)
2698                tail_page->page->time_stamp = info->ts;
2699
2700        /* account for these added bytes */
2701        local_add(info->length, &cpu_buffer->entries_bytes);
2702
2703        return event;
2704}
2705
2706static __always_inline struct ring_buffer_event *
2707rb_reserve_next_event(struct ring_buffer *buffer,
2708                      struct ring_buffer_per_cpu *cpu_buffer,
2709                      unsigned long length)
2710{
2711        struct ring_buffer_event *event;
2712        struct rb_event_info info;
2713        int nr_loops = 0;
2714        u64 diff;
2715
2716        rb_start_commit(cpu_buffer);
2717
2718#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2719        /*
2720         * Due to the ability to swap a cpu buffer from a buffer
2721         * it is possible it was swapped before we committed.
2722         * (committing stops a swap). We check for it here and
2723         * if it happened, we have to fail the write.
2724         */
2725        barrier();
2726        if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2727                local_dec(&cpu_buffer->committing);
2728                local_dec(&cpu_buffer->commits);
2729                return NULL;
2730        }
2731#endif
2732
2733        info.length = rb_calculate_event_length(length);
2734 again:
2735        info.add_timestamp = 0;
2736        info.delta = 0;
2737
2738        /*
2739         * We allow for interrupts to reenter here and do a trace.
2740         * If one does, it will cause this original code to loop
2741         * back here. Even with heavy interrupts happening, this
2742         * should only happen a few times in a row. If this happens
2743         * 1000 times in a row, there must be either an interrupt
2744         * storm or we have something buggy.
2745         * Bail!
2746         */
2747        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2748                goto out_fail;
2749
2750        info.ts = rb_time_stamp(cpu_buffer->buffer);
2751        diff = info.ts - cpu_buffer->write_stamp;
2752
2753        /* make sure this diff is calculated here */
2754        barrier();
2755
2756        /* Did the write stamp get updated already? */
2757        if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758                info.delta = diff;
2759                if (unlikely(test_time_stamp(info.delta)))
2760                        rb_handle_timestamp(cpu_buffer, &info);
2761        }
2762
2763        event = __rb_reserve_next(cpu_buffer, &info);
2764
2765        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766                if (info.add_timestamp)
2767                        info.length -= RB_LEN_TIME_EXTEND;
2768                goto again;
2769        }
2770
2771        if (!event)
2772                goto out_fail;
2773
2774        return event;
2775
2776 out_fail:
2777        rb_end_commit(cpu_buffer);
2778        return NULL;
2779}
2780
2781/**
2782 * ring_buffer_lock_reserve - reserve a part of the buffer
2783 * @buffer: the ring buffer to reserve from
2784 * @length: the length of the data to reserve (excluding event header)
2785 *
2786 * Returns a reseverd event on the ring buffer to copy directly to.
2787 * The user of this interface will need to get the body to write into
2788 * and can use the ring_buffer_event_data() interface.
2789 *
2790 * The length is the length of the data needed, not the event length
2791 * which also includes the event header.
2792 *
2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794 * If NULL is returned, then nothing has been allocated or locked.
2795 */
2796struct ring_buffer_event *
2797ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2798{
2799        struct ring_buffer_per_cpu *cpu_buffer;
2800        struct ring_buffer_event *event;
2801        int cpu;
2802
2803        /* If we are tracing schedule, we don't want to recurse */
2804        preempt_disable_notrace();
2805
2806        if (unlikely(atomic_read(&buffer->record_disabled)))
2807                goto out;
2808
2809        cpu = raw_smp_processor_id();
2810
2811        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2812                goto out;
2813
2814        cpu_buffer = buffer->buffers[cpu];
2815
2816        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2817                goto out;
2818
2819        if (unlikely(length > BUF_MAX_DATA_SIZE))
2820                goto out;
2821
2822        if (unlikely(trace_recursive_lock(cpu_buffer)))
2823                goto out;
2824
2825        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2826        if (!event)
2827                goto out_unlock;
2828
2829        return event;
2830
2831 out_unlock:
2832        trace_recursive_unlock(cpu_buffer);
2833 out:
2834        preempt_enable_notrace();
2835        return NULL;
2836}
2837EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2838
2839/*
2840 * Decrement the entries to the page that an event is on.
2841 * The event does not even need to exist, only the pointer
2842 * to the page it is on. This may only be called before the commit
2843 * takes place.
2844 */
2845static inline void
2846rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847                   struct ring_buffer_event *event)
2848{
2849        unsigned long addr = (unsigned long)event;
2850        struct buffer_page *bpage = cpu_buffer->commit_page;
2851        struct buffer_page *start;
2852
2853        addr &= PAGE_MASK;
2854
2855        /* Do the likely case first */
2856        if (likely(bpage->page == (void *)addr)) {
2857                local_dec(&bpage->entries);
2858                return;
2859        }
2860
2861        /*
2862         * Because the commit page may be on the reader page we
2863         * start with the next page and check the end loop there.
2864         */
2865        rb_inc_page(cpu_buffer, &bpage);
2866        start = bpage;
2867        do {
2868                if (bpage->page == (void *)addr) {
2869                        local_dec(&bpage->entries);
2870                        return;
2871                }
2872                rb_inc_page(cpu_buffer, &bpage);
2873        } while (bpage != start);
2874
2875        /* commit not part of this buffer?? */
2876        RB_WARN_ON(cpu_buffer, 1);
2877}
2878
2879/**
2880 * ring_buffer_commit_discard - discard an event that has not been committed
2881 * @buffer: the ring buffer
2882 * @event: non committed event to discard
2883 *
2884 * Sometimes an event that is in the ring buffer needs to be ignored.
2885 * This function lets the user discard an event in the ring buffer
2886 * and then that event will not be read later.
2887 *
2888 * This function only works if it is called before the the item has been
2889 * committed. It will try to free the event from the ring buffer
2890 * if another event has not been added behind it.
2891 *
2892 * If another event has been added behind it, it will set the event
2893 * up as discarded, and perform the commit.
2894 *
2895 * If this function is called, do not call ring_buffer_unlock_commit on
2896 * the event.
2897 */
2898void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899                                struct ring_buffer_event *event)
2900{
2901        struct ring_buffer_per_cpu *cpu_buffer;
2902        int cpu;
2903
2904        /* The event is discarded regardless */
2905        rb_event_discard(event);
2906
2907        cpu = smp_processor_id();
2908        cpu_buffer = buffer->buffers[cpu];
2909
2910        /*
2911         * This must only be called if the event has not been
2912         * committed yet. Thus we can assume that preemption
2913         * is still disabled.
2914         */
2915        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2916
2917        rb_decrement_entry(cpu_buffer, event);
2918        if (rb_try_to_discard(cpu_buffer, event))
2919                goto out;
2920
2921        /*
2922         * The commit is still visible by the reader, so we
2923         * must still update the timestamp.
2924         */
2925        rb_update_write_stamp(cpu_buffer, event);
2926 out:
2927        rb_end_commit(cpu_buffer);
2928
2929        trace_recursive_unlock(cpu_buffer);
2930
2931        preempt_enable_notrace();
2932
2933}
2934EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
2936/**
2937 * ring_buffer_write - write data to the buffer without reserving
2938 * @buffer: The ring buffer to write to.
2939 * @length: The length of the data being written (excluding the event header)
2940 * @data: The data to write to the buffer.
2941 *
2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943 * one function. If you already have the data to write to the buffer, it
2944 * may be easier to simply call this function.
2945 *
2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947 * and not the length of the event which would hold the header.
2948 */
2949int ring_buffer_write(struct ring_buffer *buffer,
2950                      unsigned long length,
2951                      void *data)
2952{
2953        struct ring_buffer_per_cpu *cpu_buffer;
2954        struct ring_buffer_event *event;
2955        void *body;
2956        int ret = -EBUSY;
2957        int cpu;
2958
2959        preempt_disable_notrace();
2960
2961        if (atomic_read(&buffer->record_disabled))
2962                goto out;
2963
2964        cpu = raw_smp_processor_id();
2965
2966        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967                goto out;
2968
2969        cpu_buffer = buffer->buffers[cpu];
2970
2971        if (atomic_read(&cpu_buffer->record_disabled))
2972                goto out;
2973
2974        if (length > BUF_MAX_DATA_SIZE)
2975                goto out;
2976
2977        if (unlikely(trace_recursive_lock(cpu_buffer)))
2978                goto out;
2979
2980        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2981        if (!event)
2982                goto out_unlock;
2983
2984        body = rb_event_data(event);
2985
2986        memcpy(body, data, length);
2987
2988        rb_commit(cpu_buffer, event);
2989
2990        rb_wakeups(buffer, cpu_buffer);
2991
2992        ret = 0;
2993
2994 out_unlock:
2995        trace_recursive_unlock(cpu_buffer);
2996
2997 out:
2998        preempt_enable_notrace();
2999
3000        return ret;
3001}
3002EXPORT_SYMBOL_GPL(ring_buffer_write);
3003
3004static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3005{
3006        struct buffer_page *reader = cpu_buffer->reader_page;
3007        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3008        struct buffer_page *commit = cpu_buffer->commit_page;
3009
3010        /* In case of error, head will be NULL */
3011        if (unlikely(!head))
3012                return true;
3013
3014        return reader->read == rb_page_commit(reader) &&
3015                (commit == reader ||
3016                 (commit == head &&
3017                  head->read == rb_page_commit(commit)));
3018}
3019
3020/**
3021 * ring_buffer_record_disable - stop all writes into the buffer
3022 * @buffer: The ring buffer to stop writes to.
3023 *
3024 * This prevents all writes to the buffer. Any attempt to write
3025 * to the buffer after this will fail and return NULL.
3026 *
3027 * The caller should call synchronize_sched() after this.
3028 */
3029void ring_buffer_record_disable(struct ring_buffer *buffer)
3030{
3031        atomic_inc(&buffer->record_disabled);
3032}
3033EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3034
3035/**
3036 * ring_buffer_record_enable - enable writes to the buffer
3037 * @buffer: The ring buffer to enable writes
3038 *
3039 * Note, multiple disables will need the same number of enables
3040 * to truly enable the writing (much like preempt_disable).
3041 */
3042void ring_buffer_record_enable(struct ring_buffer *buffer)
3043{
3044        atomic_dec(&buffer->record_disabled);
3045}
3046EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3047
3048/**
3049 * ring_buffer_record_off - stop all writes into the buffer
3050 * @buffer: The ring buffer to stop writes to.
3051 *
3052 * This prevents all writes to the buffer. Any attempt to write
3053 * to the buffer after this will fail and return NULL.
3054 *
3055 * This is different than ring_buffer_record_disable() as
3056 * it works like an on/off switch, where as the disable() version
3057 * must be paired with a enable().
3058 */
3059void ring_buffer_record_off(struct ring_buffer *buffer)
3060{
3061        unsigned int rd;
3062        unsigned int new_rd;
3063
3064        do {
3065                rd = atomic_read(&buffer->record_disabled);
3066                new_rd = rd | RB_BUFFER_OFF;
3067        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068}
3069EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071/**
3072 * ring_buffer_record_on - restart writes into the buffer
3073 * @buffer: The ring buffer to start writes to.
3074 *
3075 * This enables all writes to the buffer that was disabled by
3076 * ring_buffer_record_off().
3077 *
3078 * This is different than ring_buffer_record_enable() as
3079 * it works like an on/off switch, where as the enable() version
3080 * must be paired with a disable().
3081 */
3082void ring_buffer_record_on(struct ring_buffer *buffer)
3083{
3084        unsigned int rd;
3085        unsigned int new_rd;
3086
3087        do {
3088                rd = atomic_read(&buffer->record_disabled);
3089                new_rd = rd & ~RB_BUFFER_OFF;
3090        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091}
3092EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094/**
3095 * ring_buffer_record_is_on - return true if the ring buffer can write
3096 * @buffer: The ring buffer to see if write is enabled
3097 *
3098 * Returns true if the ring buffer is in a state that it accepts writes.
3099 */
3100int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101{
3102        return !atomic_read(&buffer->record_disabled);
3103}
3104
3105/**
3106 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3107 * @buffer: The ring buffer to stop writes to.
3108 * @cpu: The CPU buffer to stop
3109 *
3110 * This prevents all writes to the buffer. Any attempt to write
3111 * to the buffer after this will fail and return NULL.
3112 *
3113 * The caller should call synchronize_sched() after this.
3114 */
3115void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3116{
3117        struct ring_buffer_per_cpu *cpu_buffer;
3118
3119        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3120                return;
3121
3122        cpu_buffer = buffer->buffers[cpu];
3123        atomic_inc(&cpu_buffer->record_disabled);
3124}
3125EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3126
3127/**
3128 * ring_buffer_record_enable_cpu - enable writes to the buffer
3129 * @buffer: The ring buffer to enable writes
3130 * @cpu: The CPU to enable.
3131 *
3132 * Note, multiple disables will need the same number of enables
3133 * to truly enable the writing (much like preempt_disable).
3134 */
3135void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3136{
3137        struct ring_buffer_per_cpu *cpu_buffer;
3138
3139        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3140                return;
3141
3142        cpu_buffer = buffer->buffers[cpu];
3143        atomic_dec(&cpu_buffer->record_disabled);
3144}
3145EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3146
3147/*
3148 * The total entries in the ring buffer is the running counter
3149 * of entries entered into the ring buffer, minus the sum of
3150 * the entries read from the ring buffer and the number of
3151 * entries that were overwritten.
3152 */
3153static inline unsigned long
3154rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3155{
3156        return local_read(&cpu_buffer->entries) -
3157                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3158}
3159
3160/**
3161 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3162 * @buffer: The ring buffer
3163 * @cpu: The per CPU buffer to read from.
3164 */
3165u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3166{
3167        unsigned long flags;
3168        struct ring_buffer_per_cpu *cpu_buffer;
3169        struct buffer_page *bpage;
3170        u64 ret = 0;
3171
3172        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3173                return 0;
3174
3175        cpu_buffer = buffer->buffers[cpu];
3176        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3177        /*
3178         * if the tail is on reader_page, oldest time stamp is on the reader
3179         * page
3180         */
3181        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3182                bpage = cpu_buffer->reader_page;
3183        else
3184                bpage = rb_set_head_page(cpu_buffer);
3185        if (bpage)
3186                ret = bpage->page->time_stamp;
3187        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3188
3189        return ret;
3190}
3191EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3192
3193/**
3194 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3195 * @buffer: The ring buffer
3196 * @cpu: The per CPU buffer to read from.
3197 */
3198unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3199{
3200        struct ring_buffer_per_cpu *cpu_buffer;
3201        unsigned long ret;
3202
3203        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204                return 0;
3205
3206        cpu_buffer = buffer->buffers[cpu];
3207        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3208
3209        return ret;
3210}
3211EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3212
3213/**
3214 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3215 * @buffer: The ring buffer
3216 * @cpu: The per CPU buffer to get the entries from.
3217 */
3218unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3219{
3220        struct ring_buffer_per_cpu *cpu_buffer;
3221
3222        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223                return 0;
3224
3225        cpu_buffer = buffer->buffers[cpu];
3226
3227        return rb_num_of_entries(cpu_buffer);
3228}
3229EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3230
3231/**
3232 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3233 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238{
3239        struct ring_buffer_per_cpu *cpu_buffer;
3240        unsigned long ret;
3241
3242        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243                return 0;
3244
3245        cpu_buffer = buffer->buffers[cpu];
3246        ret = local_read(&cpu_buffer->overrun);
3247
3248        return ret;
3249}
3250EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3251
3252/**
3253 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3254 * commits failing due to the buffer wrapping around while there are uncommitted
3255 * events, such as during an interrupt storm.
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the number of overruns from
3258 */
3259unsigned long
3260ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3261{
3262        struct ring_buffer_per_cpu *cpu_buffer;
3263        unsigned long ret;
3264
3265        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266                return 0;
3267
3268        cpu_buffer = buffer->buffers[cpu];
3269        ret = local_read(&cpu_buffer->commit_overrun);
3270
3271        return ret;
3272}
3273EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3274
3275/**
3276 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3277 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3278 * @buffer: The ring buffer
3279 * @cpu: The per CPU buffer to get the number of overruns from
3280 */
3281unsigned long
3282ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3283{
3284        struct ring_buffer_per_cpu *cpu_buffer;
3285        unsigned long ret;
3286
3287        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3288                return 0;
3289
3290        cpu_buffer = buffer->buffers[cpu];
3291        ret = local_read(&cpu_buffer->dropped_events);
3292
3293        return ret;
3294}
3295EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3296
3297/**
3298 * ring_buffer_read_events_cpu - get the number of events successfully read
3299 * @buffer: The ring buffer
3300 * @cpu: The per CPU buffer to get the number of events read
3301 */
3302unsigned long
3303ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3304{
3305        struct ring_buffer_per_cpu *cpu_buffer;
3306
3307        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3308                return 0;
3309
3310        cpu_buffer = buffer->buffers[cpu];
3311        return cpu_buffer->read;
3312}
3313EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3314
3315/**
3316 * ring_buffer_entries - get the number of entries in a buffer
3317 * @buffer: The ring buffer
3318 *
3319 * Returns the total number of entries in the ring buffer
3320 * (all CPU entries)
3321 */
3322unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3323{
3324        struct ring_buffer_per_cpu *cpu_buffer;
3325        unsigned long entries = 0;
3326        int cpu;
3327
3328        /* if you care about this being correct, lock the buffer */
3329        for_each_buffer_cpu(buffer, cpu) {
3330                cpu_buffer = buffer->buffers[cpu];
3331                entries += rb_num_of_entries(cpu_buffer);
3332        }
3333
3334        return entries;
3335}
3336EXPORT_SYMBOL_GPL(ring_buffer_entries);
3337
3338/**
3339 * ring_buffer_overruns - get the number of overruns in buffer
3340 * @buffer: The ring buffer
3341 *
3342 * Returns the total number of overruns in the ring buffer
3343 * (all CPU entries)
3344 */
3345unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3346{
3347        struct ring_buffer_per_cpu *cpu_buffer;
3348        unsigned long overruns = 0;
3349        int cpu;
3350
3351        /* if you care about this being correct, lock the buffer */
3352        for_each_buffer_cpu(buffer, cpu) {
3353                cpu_buffer = buffer->buffers[cpu];
3354                overruns += local_read(&cpu_buffer->overrun);
3355        }
3356
3357        return overruns;
3358}
3359EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3360
3361static void rb_iter_reset(struct ring_buffer_iter *iter)
3362{
3363        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3364
3365        /* Iterator usage is expected to have record disabled */
3366        iter->head_page = cpu_buffer->reader_page;
3367        iter->head = cpu_buffer->reader_page->read;
3368
3369        iter->cache_reader_page = iter->head_page;
3370        iter->cache_read = cpu_buffer->read;
3371
3372        if (iter->head)
3373                iter->read_stamp = cpu_buffer->read_stamp;
3374        else
3375                iter->read_stamp = iter->head_page->page->time_stamp;
3376}
3377
3378/**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386{
3387        struct ring_buffer_per_cpu *cpu_buffer;
3388        unsigned long flags;
3389
3390        if (!iter)
3391                return;
3392
3393        cpu_buffer = iter->cpu_buffer;
3394
3395        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396        rb_iter_reset(iter);
3397        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398}
3399EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401/**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406{
3407        struct ring_buffer_per_cpu *cpu_buffer;
3408        struct buffer_page *reader;
3409        struct buffer_page *head_page;
3410        struct buffer_page *commit_page;
3411        unsigned commit;
3412
3413        cpu_buffer = iter->cpu_buffer;
3414
3415        /* Remember, trace recording is off when iterator is in use */
3416        reader = cpu_buffer->reader_page;
3417        head_page = cpu_buffer->head_page;
3418        commit_page = cpu_buffer->commit_page;
3419        commit = rb_page_commit(commit_page);
3420
3421        return ((iter->head_page == commit_page && iter->head == commit) ||
3422                (iter->head_page == reader && commit_page == head_page &&
3423                 head_page->read == commit &&
3424                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3425}
3426EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3427
3428static void
3429rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3430                     struct ring_buffer_event *event)
3431{
3432        u64 delta;
3433
3434        switch (event->type_len) {
3435        case RINGBUF_TYPE_PADDING:
3436                return;
3437
3438        case RINGBUF_TYPE_TIME_EXTEND:
3439                delta = event->array[0];
3440                delta <<= TS_SHIFT;
3441                delta += event->time_delta;
3442                cpu_buffer->read_stamp += delta;
3443                return;
3444
3445        case RINGBUF_TYPE_TIME_STAMP:
3446                /* FIXME: not implemented */
3447                return;
3448
3449        case RINGBUF_TYPE_DATA:
3450                cpu_buffer->read_stamp += event->time_delta;
3451                return;
3452
3453        default:
3454                BUG();
3455        }
3456        return;
3457}
3458
3459static void
3460rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3461                          struct ring_buffer_event *event)
3462{
3463        u64 delta;
3464
3465        switch (event->type_len) {
3466        case RINGBUF_TYPE_PADDING:
3467                return;
3468
3469        case RINGBUF_TYPE_TIME_EXTEND:
3470                delta = event->array[0];
3471                delta <<= TS_SHIFT;
3472                delta += event->time_delta;
3473                iter->read_stamp += delta;
3474                return;
3475
3476        case RINGBUF_TYPE_TIME_STAMP:
3477                /* FIXME: not implemented */
3478                return;
3479
3480        case RINGBUF_TYPE_DATA:
3481                iter->read_stamp += event->time_delta;
3482                return;
3483
3484        default:
3485                BUG();
3486        }
3487        return;
3488}
3489
3490static struct buffer_page *
3491rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3492{
3493        struct buffer_page *reader = NULL;
3494        unsigned long overwrite;
3495        unsigned long flags;
3496        int nr_loops = 0;
3497        int ret;
3498
3499        local_irq_save(flags);
3500        arch_spin_lock(&cpu_buffer->lock);
3501
3502 again:
3503        /*
3504         * This should normally only loop twice. But because the
3505         * start of the reader inserts an empty page, it causes
3506         * a case where we will loop three times. There should be no
3507         * reason to loop four times (that I know of).
3508         */
3509        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3510                reader = NULL;
3511                goto out;
3512        }
3513
3514        reader = cpu_buffer->reader_page;
3515
3516        /* If there's more to read, return this page */
3517        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3518                goto out;
3519
3520        /* Never should we have an index greater than the size */
3521        if (RB_WARN_ON(cpu_buffer,
3522                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3523                goto out;
3524
3525        /* check if we caught up to the tail */
3526        reader = NULL;
3527        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3528                goto out;
3529
3530        /* Don't bother swapping if the ring buffer is empty */
3531        if (rb_num_of_entries(cpu_buffer) == 0)
3532                goto out;
3533
3534        /*
3535         * Reset the reader page to size zero.
3536         */
3537        local_set(&cpu_buffer->reader_page->write, 0);
3538        local_set(&cpu_buffer->reader_page->entries, 0);
3539        local_set(&cpu_buffer->reader_page->page->commit, 0);
3540        cpu_buffer->reader_page->real_end = 0;
3541
3542 spin:
3543        /*
3544         * Splice the empty reader page into the list around the head.
3545         */
3546        reader = rb_set_head_page(cpu_buffer);
3547        if (!reader)
3548                goto out;
3549        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3550        cpu_buffer->reader_page->list.prev = reader->list.prev;
3551
3552        /*
3553         * cpu_buffer->pages just needs to point to the buffer, it
3554         *  has no specific buffer page to point to. Lets move it out
3555         *  of our way so we don't accidentally swap it.
3556         */
3557        cpu_buffer->pages = reader->list.prev;
3558
3559        /* The reader page will be pointing to the new head */
3560        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3561
3562        /*
3563         * We want to make sure we read the overruns after we set up our
3564         * pointers to the next object. The writer side does a
3565         * cmpxchg to cross pages which acts as the mb on the writer
3566         * side. Note, the reader will constantly fail the swap
3567         * while the writer is updating the pointers, so this
3568         * guarantees that the overwrite recorded here is the one we
3569         * want to compare with the last_overrun.
3570         */
3571        smp_mb();
3572        overwrite = local_read(&(cpu_buffer->overrun));
3573
3574        /*
3575         * Here's the tricky part.
3576         *
3577         * We need to move the pointer past the header page.
3578         * But we can only do that if a writer is not currently
3579         * moving it. The page before the header page has the
3580         * flag bit '1' set if it is pointing to the page we want.
3581         * but if the writer is in the process of moving it
3582         * than it will be '2' or already moved '0'.
3583         */
3584
3585        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3586
3587        /*
3588         * If we did not convert it, then we must try again.
3589         */
3590        if (!ret)
3591                goto spin;
3592
3593        /*
3594         * Yeah! We succeeded in replacing the page.
3595         *
3596         * Now make the new head point back to the reader page.
3597         */
3598        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3599        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3600
3601        /* Finally update the reader page to the new head */
3602        cpu_buffer->reader_page = reader;
3603        cpu_buffer->reader_page->read = 0;
3604
3605        if (overwrite != cpu_buffer->last_overrun) {
3606                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3607                cpu_buffer->last_overrun = overwrite;
3608        }
3609
3610        goto again;
3611
3612 out:
3613        /* Update the read_stamp on the first event */
3614        if (reader && reader->read == 0)
3615                cpu_buffer->read_stamp = reader->page->time_stamp;
3616
3617        arch_spin_unlock(&cpu_buffer->lock);
3618        local_irq_restore(flags);
3619
3620        return reader;
3621}
3622
3623static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3624{
3625        struct ring_buffer_event *event;
3626        struct buffer_page *reader;
3627        unsigned length;
3628
3629        reader = rb_get_reader_page(cpu_buffer);
3630
3631        /* This function should not be called when buffer is empty */
3632        if (RB_WARN_ON(cpu_buffer, !reader))
3633                return;
3634
3635        event = rb_reader_event(cpu_buffer);
3636
3637        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3638                cpu_buffer->read++;
3639
3640        rb_update_read_stamp(cpu_buffer, event);
3641
3642        length = rb_event_length(event);
3643        cpu_buffer->reader_page->read += length;
3644}
3645
3646static void rb_advance_iter(struct ring_buffer_iter *iter)
3647{
3648        struct ring_buffer_per_cpu *cpu_buffer;
3649        struct ring_buffer_event *event;
3650        unsigned length;
3651
3652        cpu_buffer = iter->cpu_buffer;
3653
3654        /*
3655         * Check if we are at the end of the buffer.
3656         */
3657        if (iter->head >= rb_page_size(iter->head_page)) {
3658                /* discarded commits can make the page empty */
3659                if (iter->head_page == cpu_buffer->commit_page)
3660                        return;
3661                rb_inc_iter(iter);
3662                return;
3663        }
3664
3665        event = rb_iter_head_event(iter);
3666
3667        length = rb_event_length(event);
3668
3669        /*
3670         * This should not be called to advance the header if we are
3671         * at the tail of the buffer.
3672         */
3673        if (RB_WARN_ON(cpu_buffer,
3674                       (iter->head_page == cpu_buffer->commit_page) &&
3675                       (iter->head + length > rb_commit_index(cpu_buffer))))
3676                return;
3677
3678        rb_update_iter_read_stamp(iter, event);
3679
3680        iter->head += length;
3681
3682        /* check for end of page padding */
3683        if ((iter->head >= rb_page_size(iter->head_page)) &&
3684            (iter->head_page != cpu_buffer->commit_page))
3685                rb_inc_iter(iter);
3686}
3687
3688static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3689{
3690        return cpu_buffer->lost_events;
3691}
3692
3693static struct ring_buffer_event *
3694rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695               unsigned long *lost_events)
3696{
3697        struct ring_buffer_event *event;
3698        struct buffer_page *reader;
3699        int nr_loops = 0;
3700
3701 again:
3702        /*
3703         * We repeat when a time extend is encountered.
3704         * Since the time extend is always attached to a data event,
3705         * we should never loop more than once.
3706         * (We never hit the following condition more than twice).
3707         */
3708        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3709                return NULL;
3710
3711        reader = rb_get_reader_page(cpu_buffer);
3712        if (!reader)
3713                return NULL;
3714
3715        event = rb_reader_event(cpu_buffer);
3716
3717        switch (event->type_len) {
3718        case RINGBUF_TYPE_PADDING:
3719                if (rb_null_event(event))
3720                        RB_WARN_ON(cpu_buffer, 1);
3721                /*
3722                 * Because the writer could be discarding every
3723                 * event it creates (which would probably be bad)
3724                 * if we were to go back to "again" then we may never
3725                 * catch up, and will trigger the warn on, or lock
3726                 * the box. Return the padding, and we will release
3727                 * the current locks, and try again.
3728                 */
3729                return event;
3730
3731        case RINGBUF_TYPE_TIME_EXTEND:
3732                /* Internal data, OK to advance */
3733                rb_advance_reader(cpu_buffer);
3734                goto again;
3735
3736        case RINGBUF_TYPE_TIME_STAMP:
3737                /* FIXME: not implemented */
3738                rb_advance_reader(cpu_buffer);
3739                goto again;
3740
3741        case RINGBUF_TYPE_DATA:
3742                if (ts) {
3743                        *ts = cpu_buffer->read_stamp + event->time_delta;
3744                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3745                                                         cpu_buffer->cpu, ts);
3746                }
3747                if (lost_events)
3748                        *lost_events = rb_lost_events(cpu_buffer);
3749                return event;
3750
3751        default:
3752                BUG();
3753        }
3754
3755        return NULL;
3756}
3757EXPORT_SYMBOL_GPL(ring_buffer_peek);
3758
3759static struct ring_buffer_event *
3760rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3761{
3762        struct ring_buffer *buffer;
3763        struct ring_buffer_per_cpu *cpu_buffer;
3764        struct ring_buffer_event *event;
3765        int nr_loops = 0;
3766
3767        cpu_buffer = iter->cpu_buffer;
3768        buffer = cpu_buffer->buffer;
3769
3770        /*
3771         * Check if someone performed a consuming read to
3772         * the buffer. A consuming read invalidates the iterator
3773         * and we need to reset the iterator in this case.
3774         */
3775        if (unlikely(iter->cache_read != cpu_buffer->read ||
3776                     iter->cache_reader_page != cpu_buffer->reader_page))
3777                rb_iter_reset(iter);
3778
3779 again:
3780        if (ring_buffer_iter_empty(iter))
3781                return NULL;
3782
3783        /*
3784         * We repeat when a time extend is encountered or we hit
3785         * the end of the page. Since the time extend is always attached
3786         * to a data event, we should never loop more than three times.
3787         * Once for going to next page, once on time extend, and
3788         * finally once to get the event.
3789         * (We never hit the following condition more than thrice).
3790         */
3791        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3792                return NULL;
3793
3794        if (rb_per_cpu_empty(cpu_buffer))
3795                return NULL;
3796
3797        if (iter->head >= rb_page_size(iter->head_page)) {
3798                rb_inc_iter(iter);
3799                goto again;
3800        }
3801
3802        event = rb_iter_head_event(iter);
3803
3804        switch (event->type_len) {
3805        case RINGBUF_TYPE_PADDING:
3806                if (rb_null_event(event)) {
3807                        rb_inc_iter(iter);
3808                        goto again;
3809                }
3810                rb_advance_iter(iter);
3811                return event;
3812
3813        case RINGBUF_TYPE_TIME_EXTEND:
3814                /* Internal data, OK to advance */
3815                rb_advance_iter(iter);
3816                goto again;
3817
3818        case RINGBUF_TYPE_TIME_STAMP:
3819                /* FIXME: not implemented */
3820                rb_advance_iter(iter);
3821                goto again;
3822
3823        case RINGBUF_TYPE_DATA:
3824                if (ts) {
3825                        *ts = iter->read_stamp + event->time_delta;
3826                        ring_buffer_normalize_time_stamp(buffer,
3827                                                         cpu_buffer->cpu, ts);
3828                }
3829                return event;
3830
3831        default:
3832                BUG();
3833        }
3834
3835        return NULL;
3836}
3837EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3838
3839static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3840{
3841        if (likely(!in_nmi())) {
3842                raw_spin_lock(&cpu_buffer->reader_lock);
3843                return true;
3844        }
3845
3846        /*
3847         * If an NMI die dumps out the content of the ring buffer
3848         * trylock must be used to prevent a deadlock if the NMI
3849         * preempted a task that holds the ring buffer locks. If
3850         * we get the lock then all is fine, if not, then continue
3851         * to do the read, but this can corrupt the ring buffer,
3852         * so it must be permanently disabled from future writes.
3853         * Reading from NMI is a oneshot deal.
3854         */
3855        if (raw_spin_trylock(&cpu_buffer->reader_lock))
3856                return true;
3857
3858        /* Continue without locking, but disable the ring buffer */
3859        atomic_inc(&cpu_buffer->record_disabled);
3860        return false;
3861}
3862
3863static inline void
3864rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3865{
3866        if (likely(locked))
3867                raw_spin_unlock(&cpu_buffer->reader_lock);
3868        return;
3869}
3870
3871/**
3872 * ring_buffer_peek - peek at the next event to be read
3873 * @buffer: The ring buffer to read
3874 * @cpu: The cpu to peak at
3875 * @ts: The timestamp counter of this event.
3876 * @lost_events: a variable to store if events were lost (may be NULL)
3877 *
3878 * This will return the event that will be read next, but does
3879 * not consume the data.
3880 */
3881struct ring_buffer_event *
3882ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3883                 unsigned long *lost_events)
3884{
3885        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3886        struct ring_buffer_event *event;
3887        unsigned long flags;
3888        bool dolock;
3889
3890        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3891                return NULL;
3892
3893 again:
3894        local_irq_save(flags);
3895        dolock = rb_reader_lock(cpu_buffer);
3896        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3897        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3898                rb_advance_reader(cpu_buffer);
3899        rb_reader_unlock(cpu_buffer, dolock);
3900        local_irq_restore(flags);
3901
3902        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3903                goto again;
3904
3905        return event;
3906}
3907
3908/**
3909 * ring_buffer_iter_peek - peek at the next event to be read
3910 * @iter: The ring buffer iterator
3911 * @ts: The timestamp counter of this event.
3912 *
3913 * This will return the event that will be read next, but does
3914 * not increment the iterator.
3915 */
3916struct ring_buffer_event *
3917ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3918{
3919        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3920        struct ring_buffer_event *event;
3921        unsigned long flags;
3922
3923 again:
3924        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3925        event = rb_iter_peek(iter, ts);
3926        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3927
3928        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3929                goto again;
3930
3931        return event;
3932}
3933
3934/**
3935 * ring_buffer_consume - return an event and consume it
3936 * @buffer: The ring buffer to get the next event from
3937 * @cpu: the cpu to read the buffer from
3938 * @ts: a variable to store the timestamp (may be NULL)
3939 * @lost_events: a variable to store if events were lost (may be NULL)
3940 *
3941 * Returns the next event in the ring buffer, and that event is consumed.
3942 * Meaning, that sequential reads will keep returning a different event,
3943 * and eventually empty the ring buffer if the producer is slower.
3944 */
3945struct ring_buffer_event *
3946ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3947                    unsigned long *lost_events)
3948{
3949        struct ring_buffer_per_cpu *cpu_buffer;
3950        struct ring_buffer_event *event = NULL;
3951        unsigned long flags;
3952        bool dolock;
3953
3954 again:
3955        /* might be called in atomic */
3956        preempt_disable();
3957
3958        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959                goto out;
3960
3961        cpu_buffer = buffer->buffers[cpu];
3962        local_irq_save(flags);
3963        dolock = rb_reader_lock(cpu_buffer);
3964
3965        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3966        if (event) {
3967                cpu_buffer->lost_events = 0;
3968                rb_advance_reader(cpu_buffer);
3969        }
3970
3971        rb_reader_unlock(cpu_buffer, dolock);
3972        local_irq_restore(flags);
3973
3974 out:
3975        preempt_enable();
3976
3977        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3978                goto again;
3979
3980        return event;
3981}
3982EXPORT_SYMBOL_GPL(ring_buffer_consume);
3983
3984/**
3985 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3986 * @buffer: The ring buffer to read from
3987 * @cpu: The cpu buffer to iterate over
3988 *
3989 * This performs the initial preparations necessary to iterate
3990 * through the buffer.  Memory is allocated, buffer recording
3991 * is disabled, and the iterator pointer is returned to the caller.
3992 *
3993 * Disabling buffer recordng prevents the reading from being
3994 * corrupted. This is not a consuming read, so a producer is not
3995 * expected.
3996 *
3997 * After a sequence of ring_buffer_read_prepare calls, the user is
3998 * expected to make at least one call to ring_buffer_read_prepare_sync.
3999 * Afterwards, ring_buffer_read_start is invoked to get things going
4000 * for real.
4001 *
4002 * This overall must be paired with ring_buffer_read_finish.
4003 */
4004struct ring_buffer_iter *
4005ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4006{
4007        struct ring_buffer_per_cpu *cpu_buffer;
4008        struct ring_buffer_iter *iter;
4009
4010        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4011                return NULL;
4012
4013        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4014        if (!iter)
4015                return NULL;
4016
4017        cpu_buffer = buffer->buffers[cpu];
4018
4019        iter->cpu_buffer = cpu_buffer;
4020
4021        atomic_inc(&buffer->resize_disabled);
4022        atomic_inc(&cpu_buffer->record_disabled);
4023
4024        return iter;
4025}
4026EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4027
4028/**
4029 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4030 *
4031 * All previously invoked ring_buffer_read_prepare calls to prepare
4032 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4033 * calls on those iterators are allowed.
4034 */
4035void
4036ring_buffer_read_prepare_sync(void)
4037{
4038        synchronize_sched();
4039}
4040EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4041
4042/**
4043 * ring_buffer_read_start - start a non consuming read of the buffer
4044 * @iter: The iterator returned by ring_buffer_read_prepare
4045 *
4046 * This finalizes the startup of an iteration through the buffer.
4047 * The iterator comes from a call to ring_buffer_read_prepare and
4048 * an intervening ring_buffer_read_prepare_sync must have been
4049 * performed.
4050 *
4051 * Must be paired with ring_buffer_read_finish.
4052 */
4053void
4054ring_buffer_read_start(struct ring_buffer_iter *iter)
4055{
4056        struct ring_buffer_per_cpu *cpu_buffer;
4057        unsigned long flags;
4058
4059        if (!iter)
4060                return;
4061
4062        cpu_buffer = iter->cpu_buffer;
4063
4064        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4065        arch_spin_lock(&cpu_buffer->lock);
4066        rb_iter_reset(iter);
4067        arch_spin_unlock(&cpu_buffer->lock);
4068        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4069}
4070EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4071
4072/**
4073 * ring_buffer_read_finish - finish reading the iterator of the buffer
4074 * @iter: The iterator retrieved by ring_buffer_start
4075 *
4076 * This re-enables the recording to the buffer, and frees the
4077 * iterator.
4078 */
4079void
4080ring_buffer_read_finish(struct ring_buffer_iter *iter)
4081{
4082        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4083        unsigned long flags;
4084
4085        /*
4086         * Ring buffer is disabled from recording, here's a good place
4087         * to check the integrity of the ring buffer.
4088         * Must prevent readers from trying to read, as the check
4089         * clears the HEAD page and readers require it.
4090         */
4091        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4092        rb_check_pages(cpu_buffer);
4093        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4094
4095        atomic_dec(&cpu_buffer->record_disabled);
4096        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4097        kfree(iter);
4098}
4099EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4100
4101/**
4102 * ring_buffer_read - read the next item in the ring buffer by the iterator
4103 * @iter: The ring buffer iterator
4104 * @ts: The time stamp of the event read.
4105 *
4106 * This reads the next event in the ring buffer and increments the iterator.
4107 */
4108struct ring_buffer_event *
4109ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4110{
4111        struct ring_buffer_event *event;
4112        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4113        unsigned long flags;
4114
4115        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4116 again:
4117        event = rb_iter_peek(iter, ts);
4118        if (!event)
4119                goto out;
4120
4121        if (event->type_len == RINGBUF_TYPE_PADDING)
4122                goto again;
4123
4124        rb_advance_iter(iter);
4125 out:
4126        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4127
4128        return event;
4129}
4130EXPORT_SYMBOL_GPL(ring_buffer_read);
4131
4132/**
4133 * ring_buffer_size - return the size of the ring buffer (in bytes)
4134 * @buffer: The ring buffer.
4135 */
4136unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4137{
4138        /*
4139         * Earlier, this method returned
4140         *      BUF_PAGE_SIZE * buffer->nr_pages
4141         * Since the nr_pages field is now removed, we have converted this to
4142         * return the per cpu buffer value.
4143         */
4144        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145                return 0;
4146
4147        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4148}
4149EXPORT_SYMBOL_GPL(ring_buffer_size);
4150
4151static void
4152rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4153{
4154        rb_head_page_deactivate(cpu_buffer);
4155
4156        cpu_buffer->head_page
4157                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4158        local_set(&cpu_buffer->head_page->write, 0);
4159        local_set(&cpu_buffer->head_page->entries, 0);
4160        local_set(&cpu_buffer->head_page->page->commit, 0);
4161
4162        cpu_buffer->head_page->read = 0;
4163
4164        cpu_buffer->tail_page = cpu_buffer->head_page;
4165        cpu_buffer->commit_page = cpu_buffer->head_page;
4166
4167        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4168        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4169        local_set(&cpu_buffer->reader_page->write, 0);
4170        local_set(&cpu_buffer->reader_page->entries, 0);
4171        local_set(&cpu_buffer->reader_page->page->commit, 0);
4172        cpu_buffer->reader_page->read = 0;
4173
4174        local_set(&cpu_buffer->entries_bytes, 0);
4175        local_set(&cpu_buffer->overrun, 0);
4176        local_set(&cpu_buffer->commit_overrun, 0);
4177        local_set(&cpu_buffer->dropped_events, 0);
4178        local_set(&cpu_buffer->entries, 0);
4179        local_set(&cpu_buffer->committing, 0);
4180        local_set(&cpu_buffer->commits, 0);
4181        cpu_buffer->read = 0;
4182        cpu_buffer->read_bytes = 0;
4183
4184        cpu_buffer->write_stamp = 0;
4185        cpu_buffer->read_stamp = 0;
4186
4187        cpu_buffer->lost_events = 0;
4188        cpu_buffer->last_overrun = 0;
4189
4190        rb_head_page_activate(cpu_buffer);
4191}
4192
4193/**
4194 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4195 * @buffer: The ring buffer to reset a per cpu buffer of
4196 * @cpu: The CPU buffer to be reset
4197 */
4198void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4199{
4200        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4201        unsigned long flags;
4202
4203        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4204                return;
4205
4206        atomic_inc(&buffer->resize_disabled);
4207        atomic_inc(&cpu_buffer->record_disabled);
4208
4209        /* Make sure all commits have finished */
4210        synchronize_sched();
4211
4212        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4213
4214        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4215                goto out;
4216
4217        arch_spin_lock(&cpu_buffer->lock);
4218
4219        rb_reset_cpu(cpu_buffer);
4220
4221        arch_spin_unlock(&cpu_buffer->lock);
4222
4223 out:
4224        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225
4226        atomic_dec(&cpu_buffer->record_disabled);
4227        atomic_dec(&buffer->resize_disabled);
4228}
4229EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4230
4231/**
4232 * ring_buffer_reset - reset a ring buffer
4233 * @buffer: The ring buffer to reset all cpu buffers
4234 */
4235void ring_buffer_reset(struct ring_buffer *buffer)
4236{
4237        int cpu;
4238
4239        for_each_buffer_cpu(buffer, cpu)
4240                ring_buffer_reset_cpu(buffer, cpu);
4241}
4242EXPORT_SYMBOL_GPL(ring_buffer_reset);
4243
4244/**
4245 * rind_buffer_empty - is the ring buffer empty?
4246 * @buffer: The ring buffer to test
4247 */
4248bool ring_buffer_empty(struct ring_buffer *buffer)
4249{
4250        struct ring_buffer_per_cpu *cpu_buffer;
4251        unsigned long flags;
4252        bool dolock;
4253        int cpu;
4254        int ret;
4255
4256        /* yes this is racy, but if you don't like the race, lock the buffer */
4257        for_each_buffer_cpu(buffer, cpu) {
4258                cpu_buffer = buffer->buffers[cpu];
4259                local_irq_save(flags);
4260                dolock = rb_reader_lock(cpu_buffer);
4261                ret = rb_per_cpu_empty(cpu_buffer);
4262                rb_reader_unlock(cpu_buffer, dolock);
4263                local_irq_restore(flags);
4264
4265                if (!ret)
4266                        return false;
4267        }
4268
4269        return true;
4270}
4271EXPORT_SYMBOL_GPL(ring_buffer_empty);
4272
4273/**
4274 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4275 * @buffer: The ring buffer
4276 * @cpu: The CPU buffer to test
4277 */
4278bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4279{
4280        struct ring_buffer_per_cpu *cpu_buffer;
4281        unsigned long flags;
4282        bool dolock;
4283        int ret;
4284
4285        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4286                return true;
4287
4288        cpu_buffer = buffer->buffers[cpu];
4289        local_irq_save(flags);
4290        dolock = rb_reader_lock(cpu_buffer);
4291        ret = rb_per_cpu_empty(cpu_buffer);
4292        rb_reader_unlock(cpu_buffer, dolock);
4293        local_irq_restore(flags);
4294
4295        return ret;
4296}
4297EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4298
4299#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4300/**
4301 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4302 * @buffer_a: One buffer to swap with
4303 * @buffer_b: The other buffer to swap with
4304 *
4305 * This function is useful for tracers that want to take a "snapshot"
4306 * of a CPU buffer and has another back up buffer lying around.
4307 * it is expected that the tracer handles the cpu buffer not being
4308 * used at the moment.
4309 */
4310int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4311                         struct ring_buffer *buffer_b, int cpu)
4312{
4313        struct ring_buffer_per_cpu *cpu_buffer_a;
4314        struct ring_buffer_per_cpu *cpu_buffer_b;
4315        int ret = -EINVAL;
4316
4317        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4318            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4319                goto out;
4320
4321        cpu_buffer_a = buffer_a->buffers[cpu];
4322        cpu_buffer_b = buffer_b->buffers[cpu];
4323
4324        /* At least make sure the two buffers are somewhat the same */
4325        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4326                goto out;
4327
4328        ret = -EAGAIN;
4329
4330        if (atomic_read(&buffer_a->record_disabled))
4331                goto out;
4332
4333        if (atomic_read(&buffer_b->record_disabled))
4334                goto out;
4335
4336        if (atomic_read(&cpu_buffer_a->record_disabled))
4337                goto out;
4338
4339        if (atomic_read(&cpu_buffer_b->record_disabled))
4340                goto out;
4341
4342        /*
4343         * We can't do a synchronize_sched here because this
4344         * function can be called in atomic context.
4345         * Normally this will be called from the same CPU as cpu.
4346         * If not it's up to the caller to protect this.
4347         */
4348        atomic_inc(&cpu_buffer_a->record_disabled);
4349        atomic_inc(&cpu_buffer_b->record_disabled);
4350
4351        ret = -EBUSY;
4352        if (local_read(&cpu_buffer_a->committing))
4353                goto out_dec;
4354        if (local_read(&cpu_buffer_b->committing))
4355                goto out_dec;
4356
4357        buffer_a->buffers[cpu] = cpu_buffer_b;
4358        buffer_b->buffers[cpu] = cpu_buffer_a;
4359
4360        cpu_buffer_b->buffer = buffer_a;
4361        cpu_buffer_a->buffer = buffer_b;
4362
4363        ret = 0;
4364
4365out_dec:
4366        atomic_dec(&cpu_buffer_a->record_disabled);
4367        atomic_dec(&cpu_buffer_b->record_disabled);
4368out:
4369        return ret;
4370}
4371EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4372#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4373
4374/**
4375 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4376 * @buffer: the buffer to allocate for.
4377 * @cpu: the cpu buffer to allocate.
4378 *
4379 * This function is used in conjunction with ring_buffer_read_page.
4380 * When reading a full page from the ring buffer, these functions
4381 * can be used to speed up the process. The calling function should
4382 * allocate a few pages first with this function. Then when it
4383 * needs to get pages from the ring buffer, it passes the result
4384 * of this function into ring_buffer_read_page, which will swap
4385 * the page that was allocated, with the read page of the buffer.
4386 *
4387 * Returns:
4388 *  The page allocated, or NULL on error.
4389 */
4390void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4391{
4392        struct buffer_data_page *bpage;
4393        struct page *page;
4394
4395        page = alloc_pages_node(cpu_to_node(cpu),
4396                                GFP_KERNEL | __GFP_NORETRY, 0);
4397        if (!page)
4398                return NULL;
4399
4400        bpage = page_address(page);
4401
4402        rb_init_page(bpage);
4403
4404        return bpage;
4405}
4406EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4407
4408/**
4409 * ring_buffer_free_read_page - free an allocated read page
4410 * @buffer: the buffer the page was allocate for
4411 * @data: the page to free
4412 *
4413 * Free a page allocated from ring_buffer_alloc_read_page.
4414 */
4415void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4416{
4417        free_page((unsigned long)data);
4418}
4419EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4420
4421/**
4422 * ring_buffer_read_page - extract a page from the ring buffer
4423 * @buffer: buffer to extract from
4424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4425 * @len: amount to extract
4426 * @cpu: the cpu of the buffer to extract
4427 * @full: should the extraction only happen when the page is full.
4428 *
4429 * This function will pull out a page from the ring buffer and consume it.
4430 * @data_page must be the address of the variable that was returned
4431 * from ring_buffer_alloc_read_page. This is because the page might be used
4432 * to swap with a page in the ring buffer.
4433 *
4434 * for example:
4435 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4436 *      if (!rpage)
4437 *              return error;
4438 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4439 *      if (ret >= 0)
4440 *              process_page(rpage, ret);
4441 *
4442 * When @full is set, the function will not return true unless
4443 * the writer is off the reader page.
4444 *
4445 * Note: it is up to the calling functions to handle sleeps and wakeups.
4446 *  The ring buffer can be used anywhere in the kernel and can not
4447 *  blindly call wake_up. The layer that uses the ring buffer must be
4448 *  responsible for that.
4449 *
4450 * Returns:
4451 *  >=0 if data has been transferred, returns the offset of consumed data.
4452 *  <0 if no data has been transferred.
4453 */
4454int ring_buffer_read_page(struct ring_buffer *buffer,
4455                          void **data_page, size_t len, int cpu, int full)
4456{
4457        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4458        struct ring_buffer_event *event;
4459        struct buffer_data_page *bpage;
4460        struct buffer_page *reader;
4461        unsigned long missed_events;
4462        unsigned long flags;
4463        unsigned int commit;
4464        unsigned int read;
4465        u64 save_timestamp;
4466        int ret = -1;
4467
4468        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4469                goto out;
4470
4471        /*
4472         * If len is not big enough to hold the page header, then
4473         * we can not copy anything.
4474         */
4475        if (len <= BUF_PAGE_HDR_SIZE)
4476                goto out;
4477
4478        len -= BUF_PAGE_HDR_SIZE;
4479
4480        if (!data_page)
4481                goto out;
4482
4483        bpage = *data_page;
4484        if (!bpage)
4485                goto out;
4486
4487        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4488
4489        reader = rb_get_reader_page(cpu_buffer);
4490        if (!reader)
4491                goto out_unlock;
4492
4493        event = rb_reader_event(cpu_buffer);
4494
4495        read = reader->read;
4496        commit = rb_page_commit(reader);
4497
4498        /* Check if any events were dropped */
4499        missed_events = cpu_buffer->lost_events;
4500
4501        /*
4502         * If this page has been partially read or
4503         * if len is not big enough to read the rest of the page or
4504         * a writer is still on the page, then
4505         * we must copy the data from the page to the buffer.
4506         * Otherwise, we can simply swap the page with the one passed in.
4507         */
4508        if (read || (len < (commit - read)) ||
4509            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4510                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4511                unsigned int rpos = read;
4512                unsigned int pos = 0;
4513                unsigned int size;
4514
4515                if (full)
4516                        goto out_unlock;
4517
4518                if (len > (commit - read))
4519                        len = (commit - read);
4520
4521                /* Always keep the time extend and data together */
4522                size = rb_event_ts_length(event);
4523
4524                if (len < size)
4525                        goto out_unlock;
4526
4527                /* save the current timestamp, since the user will need it */
4528                save_timestamp = cpu_buffer->read_stamp;
4529
4530                /* Need to copy one event at a time */
4531                do {
4532                        /* We need the size of one event, because
4533                         * rb_advance_reader only advances by one event,
4534                         * whereas rb_event_ts_length may include the size of
4535                         * one or two events.
4536                         * We have already ensured there's enough space if this
4537                         * is a time extend. */
4538                        size = rb_event_length(event);
4539                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4540
4541                        len -= size;
4542
4543                        rb_advance_reader(cpu_buffer);
4544                        rpos = reader->read;
4545                        pos += size;
4546
4547                        if (rpos >= commit)
4548                                break;
4549
4550                        event = rb_reader_event(cpu_buffer);
4551                        /* Always keep the time extend and data together */
4552                        size = rb_event_ts_length(event);
4553                } while (len >= size);
4554
4555                /* update bpage */
4556                local_set(&bpage->commit, pos);
4557                bpage->time_stamp = save_timestamp;
4558
4559                /* we copied everything to the beginning */
4560                read = 0;
4561        } else {
4562                /* update the entry counter */
4563                cpu_buffer->read += rb_page_entries(reader);
4564                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4565
4566                /* swap the pages */
4567                rb_init_page(bpage);
4568                bpage = reader->page;
4569                reader->page = *data_page;
4570                local_set(&reader->write, 0);
4571                local_set(&reader->entries, 0);
4572                reader->read = 0;
4573                *data_page = bpage;
4574
4575                /*
4576                 * Use the real_end for the data size,
4577                 * This gives us a chance to store the lost events
4578                 * on the page.
4579                 */
4580                if (reader->real_end)
4581                        local_set(&bpage->commit, reader->real_end);
4582        }
4583        ret = read;
4584
4585        cpu_buffer->lost_events = 0;
4586
4587        commit = local_read(&bpage->commit);
4588        /*
4589         * Set a flag in the commit field if we lost events
4590         */
4591        if (missed_events) {
4592                /* If there is room at the end of the page to save the
4593                 * missed events, then record it there.
4594                 */
4595                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4596                        memcpy(&bpage->data[commit], &missed_events,
4597                               sizeof(missed_events));
4598                        local_add(RB_MISSED_STORED, &bpage->commit);
4599                        commit += sizeof(missed_events);
4600                }
4601                local_add(RB_MISSED_EVENTS, &bpage->commit);
4602        }
4603
4604        /*
4605         * This page may be off to user land. Zero it out here.
4606         */
4607        if (commit < BUF_PAGE_SIZE)
4608                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4609
4610 out_unlock:
4611        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4612
4613 out:
4614        return ret;
4615}
4616EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4617
4618/*
4619 * We only allocate new buffers, never free them if the CPU goes down.
4620 * If we were to free the buffer, then the user would lose any trace that was in
4621 * the buffer.
4622 */
4623int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4624{
4625        struct ring_buffer *buffer;
4626        long nr_pages_same;
4627        int cpu_i;
4628        unsigned long nr_pages;
4629
4630        buffer = container_of(node, struct ring_buffer, node);
4631        if (cpumask_test_cpu(cpu, buffer->cpumask))
4632                return 0;
4633
4634        nr_pages = 0;
4635        nr_pages_same = 1;
4636        /* check if all cpu sizes are same */
4637        for_each_buffer_cpu(buffer, cpu_i) {
4638                /* fill in the size from first enabled cpu */
4639                if (nr_pages == 0)
4640                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4641                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4642                        nr_pages_same = 0;
4643                        break;
4644                }
4645        }
4646        /* allocate minimum pages, user can later expand it */
4647        if (!nr_pages_same)
4648                nr_pages = 2;
4649        buffer->buffers[cpu] =
4650                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4651        if (!buffer->buffers[cpu]) {
4652                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4653                     cpu);
4654                return -ENOMEM;
4655        }
4656        smp_wmb();
4657        cpumask_set_cpu(cpu, buffer->cpumask);
4658        return 0;
4659}
4660
4661#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4662/*
4663 * This is a basic integrity check of the ring buffer.
4664 * Late in the boot cycle this test will run when configured in.
4665 * It will kick off a thread per CPU that will go into a loop
4666 * writing to the per cpu ring buffer various sizes of data.
4667 * Some of the data will be large items, some small.
4668 *
4669 * Another thread is created that goes into a spin, sending out
4670 * IPIs to the other CPUs to also write into the ring buffer.
4671 * this is to test the nesting ability of the buffer.
4672 *
4673 * Basic stats are recorded and reported. If something in the
4674 * ring buffer should happen that's not expected, a big warning
4675 * is displayed and all ring buffers are disabled.
4676 */
4677static struct task_struct *rb_threads[NR_CPUS] __initdata;
4678
4679struct rb_test_data {
4680        struct ring_buffer      *buffer;
4681        unsigned long           events;
4682        unsigned long           bytes_written;
4683        unsigned long           bytes_alloc;
4684        unsigned long           bytes_dropped;
4685        unsigned long           events_nested;
4686        unsigned long           bytes_written_nested;
4687        unsigned long           bytes_alloc_nested;
4688        unsigned long           bytes_dropped_nested;
4689        int                     min_size_nested;
4690        int                     max_size_nested;
4691        int                     max_size;
4692        int                     min_size;
4693        int                     cpu;
4694        int                     cnt;
4695};
4696
4697static struct rb_test_data rb_data[NR_CPUS] __initdata;
4698
4699/* 1 meg per cpu */
4700#define RB_TEST_BUFFER_SIZE     1048576
4701
4702static char rb_string[] __initdata =
4703        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4704        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4705        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4706
4707static bool rb_test_started __initdata;
4708
4709struct rb_item {
4710        int size;
4711        char str[];
4712};
4713
4714static __init int rb_write_something(struct rb_test_data *data, bool nested)
4715{
4716        struct ring_buffer_event *event;
4717        struct rb_item *item;
4718        bool started;
4719        int event_len;
4720        int size;
4721        int len;
4722        int cnt;
4723
4724        /* Have nested writes different that what is written */
4725        cnt = data->cnt + (nested ? 27 : 0);
4726
4727        /* Multiply cnt by ~e, to make some unique increment */
4728        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4729
4730        len = size + sizeof(struct rb_item);
4731
4732        started = rb_test_started;
4733        /* read rb_test_started before checking buffer enabled */
4734        smp_rmb();
4735
4736        event = ring_buffer_lock_reserve(data->buffer, len);
4737        if (!event) {
4738                /* Ignore dropped events before test starts. */
4739                if (started) {
4740                        if (nested)
4741                                data->bytes_dropped += len;
4742                        else
4743                                data->bytes_dropped_nested += len;
4744                }
4745                return len;
4746        }
4747
4748        event_len = ring_buffer_event_length(event);
4749
4750        if (RB_WARN_ON(data->buffer, event_len < len))
4751                goto out;
4752
4753        item = ring_buffer_event_data(event);
4754        item->size = size;
4755        memcpy(item->str, rb_string, size);
4756
4757        if (nested) {
4758                data->bytes_alloc_nested += event_len;
4759                data->bytes_written_nested += len;
4760                data->events_nested++;
4761                if (!data->min_size_nested || len < data->min_size_nested)
4762                        data->min_size_nested = len;
4763                if (len > data->max_size_nested)
4764                        data->max_size_nested = len;
4765        } else {
4766                data->bytes_alloc += event_len;
4767                data->bytes_written += len;
4768                data->events++;
4769                if (!data->min_size || len < data->min_size)
4770                        data->max_size = len;
4771                if (len > data->max_size)
4772                        data->max_size = len;
4773        }
4774
4775 out:
4776        ring_buffer_unlock_commit(data->buffer, event);
4777
4778        return 0;
4779}
4780
4781static __init int rb_test(void *arg)
4782{
4783        struct rb_test_data *data = arg;
4784
4785        while (!kthread_should_stop()) {
4786                rb_write_something(data, false);
4787                data->cnt++;
4788
4789                set_current_state(TASK_INTERRUPTIBLE);
4790                /* Now sleep between a min of 100-300us and a max of 1ms */
4791                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4792        }
4793
4794        return 0;
4795}
4796
4797static __init void rb_ipi(void *ignore)
4798{
4799        struct rb_test_data *data;
4800        int cpu = smp_processor_id();
4801
4802        data = &rb_data[cpu];
4803        rb_write_something(data, true);
4804}
4805
4806static __init int rb_hammer_test(void *arg)
4807{
4808        while (!kthread_should_stop()) {
4809
4810                /* Send an IPI to all cpus to write data! */
4811                smp_call_function(rb_ipi, NULL, 1);
4812                /* No sleep, but for non preempt, let others run */
4813                schedule();
4814        }
4815
4816        return 0;
4817}
4818
4819static __init int test_ringbuffer(void)
4820{
4821        struct task_struct *rb_hammer;
4822        struct ring_buffer *buffer;
4823        int cpu;
4824        int ret = 0;
4825
4826        pr_info("Running ring buffer tests...\n");
4827
4828        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4829        if (WARN_ON(!buffer))
4830                return 0;
4831
4832        /* Disable buffer so that threads can't write to it yet */
4833        ring_buffer_record_off(buffer);
4834
4835        for_each_online_cpu(cpu) {
4836                rb_data[cpu].buffer = buffer;
4837                rb_data[cpu].cpu = cpu;
4838                rb_data[cpu].cnt = cpu;
4839                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4840                                                 "rbtester/%d", cpu);
4841                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4842                        pr_cont("FAILED\n");
4843                        ret = PTR_ERR(rb_threads[cpu]);
4844                        goto out_free;
4845                }
4846
4847                kthread_bind(rb_threads[cpu], cpu);
4848                wake_up_process(rb_threads[cpu]);
4849        }
4850
4851        /* Now create the rb hammer! */
4852        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4853        if (WARN_ON(IS_ERR(rb_hammer))) {
4854                pr_cont("FAILED\n");
4855                ret = PTR_ERR(rb_hammer);
4856                goto out_free;
4857        }
4858
4859        ring_buffer_record_on(buffer);
4860        /*
4861         * Show buffer is enabled before setting rb_test_started.
4862         * Yes there's a small race window where events could be
4863         * dropped and the thread wont catch it. But when a ring
4864         * buffer gets enabled, there will always be some kind of
4865         * delay before other CPUs see it. Thus, we don't care about
4866         * those dropped events. We care about events dropped after
4867         * the threads see that the buffer is active.
4868         */
4869        smp_wmb();
4870        rb_test_started = true;
4871
4872        set_current_state(TASK_INTERRUPTIBLE);
4873        /* Just run for 10 seconds */;
4874        schedule_timeout(10 * HZ);
4875
4876        kthread_stop(rb_hammer);
4877
4878 out_free:
4879        for_each_online_cpu(cpu) {
4880                if (!rb_threads[cpu])
4881                        break;
4882                kthread_stop(rb_threads[cpu]);
4883        }
4884        if (ret) {
4885                ring_buffer_free(buffer);
4886                return ret;
4887        }
4888
4889        /* Report! */
4890        pr_info("finished\n");
4891        for_each_online_cpu(cpu) {
4892                struct ring_buffer_event *event;
4893                struct rb_test_data *data = &rb_data[cpu];
4894                struct rb_item *item;
4895                unsigned long total_events;
4896                unsigned long total_dropped;
4897                unsigned long total_written;
4898                unsigned long total_alloc;
4899                unsigned long total_read = 0;
4900                unsigned long total_size = 0;
4901                unsigned long total_len = 0;
4902                unsigned long total_lost = 0;
4903                unsigned long lost;
4904                int big_event_size;
4905                int small_event_size;
4906
4907                ret = -1;
4908
4909                total_events = data->events + data->events_nested;
4910                total_written = data->bytes_written + data->bytes_written_nested;
4911                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4912                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4913
4914                big_event_size = data->max_size + data->max_size_nested;
4915                small_event_size = data->min_size + data->min_size_nested;
4916
4917                pr_info("CPU %d:\n", cpu);
4918                pr_info("              events:    %ld\n", total_events);
4919                pr_info("       dropped bytes:    %ld\n", total_dropped);
4920                pr_info("       alloced bytes:    %ld\n", total_alloc);
4921                pr_info("       written bytes:    %ld\n", total_written);
4922                pr_info("       biggest event:    %d\n", big_event_size);
4923                pr_info("      smallest event:    %d\n", small_event_size);
4924
4925                if (RB_WARN_ON(buffer, total_dropped))
4926                        break;
4927
4928                ret = 0;
4929
4930                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4931                        total_lost += lost;
4932                        item = ring_buffer_event_data(event);
4933                        total_len += ring_buffer_event_length(event);
4934                        total_size += item->size + sizeof(struct rb_item);
4935                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4936                                pr_info("FAILED!\n");
4937                                pr_info("buffer had: %.*s\n", item->size, item->str);
4938                                pr_info("expected:   %.*s\n", item->size, rb_string);
4939                                RB_WARN_ON(buffer, 1);
4940                                ret = -1;
4941                                break;
4942                        }
4943                        total_read++;
4944                }
4945                if (ret)
4946                        break;
4947
4948                ret = -1;
4949
4950                pr_info("         read events:   %ld\n", total_read);
4951                pr_info("         lost events:   %ld\n", total_lost);
4952                pr_info("        total events:   %ld\n", total_lost + total_read);
4953                pr_info("  recorded len bytes:   %ld\n", total_len);
4954                pr_info(" recorded size bytes:   %ld\n", total_size);
4955                if (total_lost)
4956                        pr_info(" With dropped events, record len and size may not match\n"
4957                                " alloced and written from above\n");
4958                if (!total_lost) {
4959                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4960                                       total_size != total_written))
4961                                break;
4962                }
4963                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4964                        break;
4965
4966                ret = 0;
4967        }
4968        if (!ret)
4969                pr_info("Ring buffer PASSED!\n");
4970
4971        ring_buffer_free(buffer);
4972        return 0;
4973}
4974
4975late_initcall(test_ringbuffer);
4976#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4977