linux/lib/idr.c
<<
>>
Prefs
   1#include <linux/bitmap.h>
   2#include <linux/export.h>
   3#include <linux/idr.h>
   4#include <linux/slab.h>
   5#include <linux/spinlock.h>
   6
   7DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
   8static DEFINE_SPINLOCK(simple_ida_lock);
   9
  10/**
  11 * idr_alloc - allocate an id
  12 * @idr: idr handle
  13 * @ptr: pointer to be associated with the new id
  14 * @start: the minimum id (inclusive)
  15 * @end: the maximum id (exclusive)
  16 * @gfp: memory allocation flags
  17 *
  18 * Allocates an unused ID in the range [start, end).  Returns -ENOSPC
  19 * if there are no unused IDs in that range.
  20 *
  21 * Note that @end is treated as max when <= 0.  This is to always allow
  22 * using @start + N as @end as long as N is inside integer range.
  23 *
  24 * Simultaneous modifications to the @idr are not allowed and should be
  25 * prevented by the user, usually with a lock.  idr_alloc() may be called
  26 * concurrently with read-only accesses to the @idr, such as idr_find() and
  27 * idr_for_each_entry().
  28 */
  29int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
  30{
  31        void __rcu **slot;
  32        struct radix_tree_iter iter;
  33
  34        if (WARN_ON_ONCE(start < 0))
  35                return -EINVAL;
  36        if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
  37                return -EINVAL;
  38
  39        radix_tree_iter_init(&iter, start);
  40        slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
  41        if (IS_ERR(slot))
  42                return PTR_ERR(slot);
  43
  44        radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
  45        radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
  46        return iter.index;
  47}
  48EXPORT_SYMBOL_GPL(idr_alloc);
  49
  50/**
  51 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
  52 * @idr: idr handle
  53 * @ptr: pointer to be associated with the new id
  54 * @start: the minimum id (inclusive)
  55 * @end: the maximum id (exclusive)
  56 * @gfp: memory allocation flags
  57 *
  58 * Allocates an ID larger than the last ID allocated if one is available.
  59 * If not, it will attempt to allocate the smallest ID that is larger or
  60 * equal to @start.
  61 */
  62int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
  63{
  64        int id, curr = idr->idr_next;
  65
  66        if (curr < start)
  67                curr = start;
  68
  69        id = idr_alloc(idr, ptr, curr, end, gfp);
  70        if ((id == -ENOSPC) && (curr > start))
  71                id = idr_alloc(idr, ptr, start, curr, gfp);
  72
  73        if (id >= 0)
  74                idr->idr_next = id + 1U;
  75
  76        return id;
  77}
  78EXPORT_SYMBOL(idr_alloc_cyclic);
  79
  80/**
  81 * idr_for_each - iterate through all stored pointers
  82 * @idr: idr handle
  83 * @fn: function to be called for each pointer
  84 * @data: data passed to callback function
  85 *
  86 * The callback function will be called for each entry in @idr, passing
  87 * the id, the pointer and the data pointer passed to this function.
  88 *
  89 * If @fn returns anything other than %0, the iteration stops and that
  90 * value is returned from this function.
  91 *
  92 * idr_for_each() can be called concurrently with idr_alloc() and
  93 * idr_remove() if protected by RCU.  Newly added entries may not be
  94 * seen and deleted entries may be seen, but adding and removing entries
  95 * will not cause other entries to be skipped, nor spurious ones to be seen.
  96 */
  97int idr_for_each(const struct idr *idr,
  98                int (*fn)(int id, void *p, void *data), void *data)
  99{
 100        struct radix_tree_iter iter;
 101        void __rcu **slot;
 102
 103        radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
 104                int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
 105                if (ret)
 106                        return ret;
 107        }
 108
 109        return 0;
 110}
 111EXPORT_SYMBOL(idr_for_each);
 112
 113/**
 114 * idr_get_next - Find next populated entry
 115 * @idr: idr handle
 116 * @nextid: Pointer to lowest possible ID to return
 117 *
 118 * Returns the next populated entry in the tree with an ID greater than
 119 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 120 * to the ID of the found value.  To use in a loop, the value pointed to by
 121 * nextid must be incremented by the user.
 122 */
 123void *idr_get_next(struct idr *idr, int *nextid)
 124{
 125        struct radix_tree_iter iter;
 126        void __rcu **slot;
 127
 128        slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
 129        if (!slot)
 130                return NULL;
 131
 132        *nextid = iter.index;
 133        return rcu_dereference_raw(*slot);
 134}
 135EXPORT_SYMBOL(idr_get_next);
 136
 137/**
 138 * idr_replace - replace pointer for given id
 139 * @idr: idr handle
 140 * @ptr: New pointer to associate with the ID
 141 * @id: Lookup key
 142 *
 143 * Replace the pointer registered with an ID and return the old value.
 144 * This function can be called under the RCU read lock concurrently with
 145 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 146 * the one being replaced!).
 147 *
 148 * Returns: 0 on success.  %-ENOENT indicates that @id was not found.
 149 * %-EINVAL indicates that @id or @ptr were not valid.
 150 */
 151void *idr_replace(struct idr *idr, void *ptr, int id)
 152{
 153        struct radix_tree_node *node;
 154        void __rcu **slot = NULL;
 155        void *entry;
 156
 157        if (WARN_ON_ONCE(id < 0))
 158                return ERR_PTR(-EINVAL);
 159        if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
 160                return ERR_PTR(-EINVAL);
 161
 162        entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
 163        if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
 164                return ERR_PTR(-ENOENT);
 165
 166        __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
 167
 168        return entry;
 169}
 170EXPORT_SYMBOL(idr_replace);
 171
 172/**
 173 * DOC: IDA description
 174 *
 175 * The IDA is an ID allocator which does not provide the ability to
 176 * associate an ID with a pointer.  As such, it only needs to store one
 177 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 178 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 179 * then initialise it using ida_init()).  To allocate a new ID, call
 180 * ida_simple_get().  To free an ID, call ida_simple_remove().
 181 *
 182 * If you have more complex locking requirements, use a loop around
 183 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 184 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 185 * ida_remove() cannot be called at the same time as each other for the
 186 * same IDA.
 187 *
 188 * You can also use ida_get_new_above() if you need an ID to be allocated
 189 * above a particular number.  ida_destroy() can be used to dispose of an
 190 * IDA without needing to free the individual IDs in it.  You can use
 191 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 192 *
 193 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 194 * limitation, it should be quite straightforward to raise the maximum.
 195 */
 196
 197/*
 198 * Developer's notes:
 199 *
 200 * The IDA uses the functionality provided by the IDR & radix tree to store
 201 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 202 * free, unlike the IDR where it means at least one entry is free.
 203 *
 204 * I considered telling the radix tree that each slot is an order-10 node
 205 * and storing the bit numbers in the radix tree, but the radix tree can't
 206 * allow a single multiorder entry at index 0, which would significantly
 207 * increase memory consumption for the IDA.  So instead we divide the index
 208 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 209 *
 210 * As an optimisation, if there are only a few low bits set in any given
 211 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 212 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 213 * directly in the entry.  By being really tricksy, we could store
 214 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 215 * for 0-3 allocated IDs.
 216 *
 217 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 218 * in the IDA nor the radix tree code checks it.  If it becomes important
 219 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 220 * calls to radix_tree_iter_replace() which will correct the exceptional
 221 * count.
 222 *
 223 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 224 * equivalent, it will still need locking.  Going to RCU lookup would require
 225 * using RCU to free bitmaps, and that's not trivial without embedding an
 226 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 227 * bitmap, which is excessive.
 228 */
 229
 230#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)
 231
 232/**
 233 * ida_get_new_above - allocate new ID above or equal to a start id
 234 * @ida: ida handle
 235 * @start: id to start search at
 236 * @id: pointer to the allocated handle
 237 *
 238 * Allocate new ID above or equal to @start.  It should be called
 239 * with any required locks to ensure that concurrent calls to
 240 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 241 * Consider using ida_simple_get() if you do not have complex locking
 242 * requirements.
 243 *
 244 * If memory is required, it will return %-EAGAIN, you should unlock
 245 * and go back to the ida_pre_get() call.  If the ida is full, it will
 246 * return %-ENOSPC.  On success, it will return 0.
 247 *
 248 * @id returns a value in the range @start ... %0x7fffffff.
 249 */
 250int ida_get_new_above(struct ida *ida, int start, int *id)
 251{
 252        struct radix_tree_root *root = &ida->ida_rt;
 253        void __rcu **slot;
 254        struct radix_tree_iter iter;
 255        struct ida_bitmap *bitmap;
 256        unsigned long index;
 257        unsigned bit, ebit;
 258        int new;
 259
 260        index = start / IDA_BITMAP_BITS;
 261        bit = start % IDA_BITMAP_BITS;
 262        ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
 263
 264        slot = radix_tree_iter_init(&iter, index);
 265        for (;;) {
 266                if (slot)
 267                        slot = radix_tree_next_slot(slot, &iter,
 268                                                RADIX_TREE_ITER_TAGGED);
 269                if (!slot) {
 270                        slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
 271                        if (IS_ERR(slot)) {
 272                                if (slot == ERR_PTR(-ENOMEM))
 273                                        return -EAGAIN;
 274                                return PTR_ERR(slot);
 275                        }
 276                }
 277                if (iter.index > index) {
 278                        bit = 0;
 279                        ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
 280                }
 281                new = iter.index * IDA_BITMAP_BITS;
 282                bitmap = rcu_dereference_raw(*slot);
 283                if (radix_tree_exception(bitmap)) {
 284                        unsigned long tmp = (unsigned long)bitmap;
 285                        ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
 286                        if (ebit < BITS_PER_LONG) {
 287                                tmp |= 1UL << ebit;
 288                                rcu_assign_pointer(*slot, (void *)tmp);
 289                                *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
 290                                return 0;
 291                        }
 292                        bitmap = this_cpu_xchg(ida_bitmap, NULL);
 293                        if (!bitmap)
 294                                return -EAGAIN;
 295                        memset(bitmap, 0, sizeof(*bitmap));
 296                        bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
 297                        rcu_assign_pointer(*slot, bitmap);
 298                }
 299
 300                if (bitmap) {
 301                        bit = find_next_zero_bit(bitmap->bitmap,
 302                                                        IDA_BITMAP_BITS, bit);
 303                        new += bit;
 304                        if (new < 0)
 305                                return -ENOSPC;
 306                        if (bit == IDA_BITMAP_BITS)
 307                                continue;
 308
 309                        __set_bit(bit, bitmap->bitmap);
 310                        if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
 311                                radix_tree_iter_tag_clear(root, &iter,
 312                                                                IDR_FREE);
 313                } else {
 314                        new += bit;
 315                        if (new < 0)
 316                                return -ENOSPC;
 317                        if (ebit < BITS_PER_LONG) {
 318                                bitmap = (void *)((1UL << ebit) |
 319                                                RADIX_TREE_EXCEPTIONAL_ENTRY);
 320                                radix_tree_iter_replace(root, &iter, slot,
 321                                                bitmap);
 322                                *id = new;
 323                                return 0;
 324                        }
 325                        bitmap = this_cpu_xchg(ida_bitmap, NULL);
 326                        if (!bitmap)
 327                                return -EAGAIN;
 328                        memset(bitmap, 0, sizeof(*bitmap));
 329                        __set_bit(bit, bitmap->bitmap);
 330                        radix_tree_iter_replace(root, &iter, slot, bitmap);
 331                }
 332
 333                *id = new;
 334                return 0;
 335        }
 336}
 337EXPORT_SYMBOL(ida_get_new_above);
 338
 339/**
 340 * ida_remove - Free the given ID
 341 * @ida: ida handle
 342 * @id: ID to free
 343 *
 344 * This function should not be called at the same time as ida_get_new_above().
 345 */
 346void ida_remove(struct ida *ida, int id)
 347{
 348        unsigned long index = id / IDA_BITMAP_BITS;
 349        unsigned offset = id % IDA_BITMAP_BITS;
 350        struct ida_bitmap *bitmap;
 351        unsigned long *btmp;
 352        struct radix_tree_iter iter;
 353        void __rcu **slot;
 354
 355        slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
 356        if (!slot)
 357                goto err;
 358
 359        bitmap = rcu_dereference_raw(*slot);
 360        if (radix_tree_exception(bitmap)) {
 361                btmp = (unsigned long *)slot;
 362                offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
 363                if (offset >= BITS_PER_LONG)
 364                        goto err;
 365        } else {
 366                btmp = bitmap->bitmap;
 367        }
 368        if (!test_bit(offset, btmp))
 369                goto err;
 370
 371        __clear_bit(offset, btmp);
 372        radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
 373        if (radix_tree_exception(bitmap)) {
 374                if (rcu_dereference_raw(*slot) ==
 375                                        (void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
 376                        radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
 377        } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
 378                kfree(bitmap);
 379                radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
 380        }
 381        return;
 382 err:
 383        WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
 384}
 385EXPORT_SYMBOL(ida_remove);
 386
 387/**
 388 * ida_destroy - Free the contents of an ida
 389 * @ida: ida handle
 390 *
 391 * Calling this function releases all resources associated with an IDA.  When
 392 * this call returns, the IDA is empty and can be reused or freed.  The caller
 393 * should not allow ida_remove() or ida_get_new_above() to be called at the
 394 * same time.
 395 */
 396void ida_destroy(struct ida *ida)
 397{
 398        struct radix_tree_iter iter;
 399        void __rcu **slot;
 400
 401        radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
 402                struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
 403                if (!radix_tree_exception(bitmap))
 404                        kfree(bitmap);
 405                radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
 406        }
 407}
 408EXPORT_SYMBOL(ida_destroy);
 409
 410/**
 411 * ida_simple_get - get a new id.
 412 * @ida: the (initialized) ida.
 413 * @start: the minimum id (inclusive, < 0x8000000)
 414 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 415 * @gfp_mask: memory allocation flags
 416 *
 417 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 418 * On memory allocation failure, returns -ENOMEM.
 419 *
 420 * Compared to ida_get_new_above() this function does its own locking, and
 421 * should be used unless there are special requirements.
 422 *
 423 * Use ida_simple_remove() to get rid of an id.
 424 */
 425int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
 426                   gfp_t gfp_mask)
 427{
 428        int ret, id;
 429        unsigned int max;
 430        unsigned long flags;
 431
 432        BUG_ON((int)start < 0);
 433        BUG_ON((int)end < 0);
 434
 435        if (end == 0)
 436                max = 0x80000000;
 437        else {
 438                BUG_ON(end < start);
 439                max = end - 1;
 440        }
 441
 442again:
 443        if (!ida_pre_get(ida, gfp_mask))
 444                return -ENOMEM;
 445
 446        spin_lock_irqsave(&simple_ida_lock, flags);
 447        ret = ida_get_new_above(ida, start, &id);
 448        if (!ret) {
 449                if (id > max) {
 450                        ida_remove(ida, id);
 451                        ret = -ENOSPC;
 452                } else {
 453                        ret = id;
 454                }
 455        }
 456        spin_unlock_irqrestore(&simple_ida_lock, flags);
 457
 458        if (unlikely(ret == -EAGAIN))
 459                goto again;
 460
 461        return ret;
 462}
 463EXPORT_SYMBOL(ida_simple_get);
 464
 465/**
 466 * ida_simple_remove - remove an allocated id.
 467 * @ida: the (initialized) ida.
 468 * @id: the id returned by ida_simple_get.
 469 *
 470 * Use to release an id allocated with ida_simple_get().
 471 *
 472 * Compared to ida_remove() this function does its own locking, and should be
 473 * used unless there are special requirements.
 474 */
 475void ida_simple_remove(struct ida *ida, unsigned int id)
 476{
 477        unsigned long flags;
 478
 479        BUG_ON((int)id < 0);
 480        spin_lock_irqsave(&simple_ida_lock, flags);
 481        ida_remove(ida, id);
 482        spin_unlock_irqrestore(&simple_ida_lock, flags);
 483}
 484EXPORT_SYMBOL(ida_simple_remove);
 485