linux/lib/swiotlb.c
<<
>>
Prefs
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *      David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
  13 *                      unnecessary i-cache flushing.
  14 * 04/07/.. ak          Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville    Add support for syncing ranges, support syncing for
  16 *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb      Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33
  34#include <asm/io.h>
  35#include <asm/dma.h>
  36
  37#include <linux/init.h>
  38#include <linux/bootmem.h>
  39#include <linux/iommu-helper.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/swiotlb.h>
  43
  44#define OFFSET(val,align) ((unsigned long)      \
  45                           ( (val) & ( (align) - 1)))
  46
  47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  48
  49/*
  50 * Minimum IO TLB size to bother booting with.  Systems with mainly
  51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  52 * allocate a contiguous 1MB, we're probably in trouble anyway.
  53 */
  54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  55
  56enum swiotlb_force swiotlb_force;
  57
  58/*
  59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  61 * API.
  62 */
  63static phys_addr_t io_tlb_start, io_tlb_end;
  64
  65/*
  66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  68 */
  69static unsigned long io_tlb_nslabs;
  70
  71/*
  72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  73 */
  74static unsigned long io_tlb_overflow = 32*1024;
  75
  76static phys_addr_t io_tlb_overflow_buffer;
  77
  78/*
  79 * This is a free list describing the number of free entries available from
  80 * each index
  81 */
  82static unsigned int *io_tlb_list;
  83static unsigned int io_tlb_index;
  84
  85/*
  86 * Max segment that we can provide which (if pages are contingous) will
  87 * not be bounced (unless SWIOTLB_FORCE is set).
  88 */
  89unsigned int max_segment;
  90
  91/*
  92 * We need to save away the original address corresponding to a mapped entry
  93 * for the sync operations.
  94 */
  95#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  96static phys_addr_t *io_tlb_orig_addr;
  97
  98/*
  99 * Protect the above data structures in the map and unmap calls
 100 */
 101static DEFINE_SPINLOCK(io_tlb_lock);
 102
 103static int late_alloc;
 104
 105static int __init
 106setup_io_tlb_npages(char *str)
 107{
 108        if (isdigit(*str)) {
 109                io_tlb_nslabs = simple_strtoul(str, &str, 0);
 110                /* avoid tail segment of size < IO_TLB_SEGSIZE */
 111                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 112        }
 113        if (*str == ',')
 114                ++str;
 115        if (!strcmp(str, "force")) {
 116                swiotlb_force = SWIOTLB_FORCE;
 117        } else if (!strcmp(str, "noforce")) {
 118                swiotlb_force = SWIOTLB_NO_FORCE;
 119                io_tlb_nslabs = 1;
 120        }
 121
 122        return 0;
 123}
 124early_param("swiotlb", setup_io_tlb_npages);
 125/* make io_tlb_overflow tunable too? */
 126
 127unsigned long swiotlb_nr_tbl(void)
 128{
 129        return io_tlb_nslabs;
 130}
 131EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 132
 133unsigned int swiotlb_max_segment(void)
 134{
 135        return max_segment;
 136}
 137EXPORT_SYMBOL_GPL(swiotlb_max_segment);
 138
 139void swiotlb_set_max_segment(unsigned int val)
 140{
 141        if (swiotlb_force == SWIOTLB_FORCE)
 142                max_segment = 1;
 143        else
 144                max_segment = rounddown(val, PAGE_SIZE);
 145}
 146
 147/* default to 64MB */
 148#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 149unsigned long swiotlb_size_or_default(void)
 150{
 151        unsigned long size;
 152
 153        size = io_tlb_nslabs << IO_TLB_SHIFT;
 154
 155        return size ? size : (IO_TLB_DEFAULT_SIZE);
 156}
 157
 158/* Note that this doesn't work with highmem page */
 159static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 160                                      volatile void *address)
 161{
 162        return phys_to_dma(hwdev, virt_to_phys(address));
 163}
 164
 165static bool no_iotlb_memory;
 166
 167void swiotlb_print_info(void)
 168{
 169        unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 170        unsigned char *vstart, *vend;
 171
 172        if (no_iotlb_memory) {
 173                pr_warn("software IO TLB: No low mem\n");
 174                return;
 175        }
 176
 177        vstart = phys_to_virt(io_tlb_start);
 178        vend = phys_to_virt(io_tlb_end);
 179
 180        printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 181               (unsigned long long)io_tlb_start,
 182               (unsigned long long)io_tlb_end,
 183               bytes >> 20, vstart, vend - 1);
 184}
 185
 186int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 187{
 188        void *v_overflow_buffer;
 189        unsigned long i, bytes;
 190
 191        bytes = nslabs << IO_TLB_SHIFT;
 192
 193        io_tlb_nslabs = nslabs;
 194        io_tlb_start = __pa(tlb);
 195        io_tlb_end = io_tlb_start + bytes;
 196
 197        /*
 198         * Get the overflow emergency buffer
 199         */
 200        v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 201                                                PAGE_ALIGN(io_tlb_overflow),
 202                                                PAGE_SIZE);
 203        if (!v_overflow_buffer)
 204                return -ENOMEM;
 205
 206        io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 207
 208        /*
 209         * Allocate and initialize the free list array.  This array is used
 210         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 211         * between io_tlb_start and io_tlb_end.
 212         */
 213        io_tlb_list = memblock_virt_alloc(
 214                                PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 215                                PAGE_SIZE);
 216        io_tlb_orig_addr = memblock_virt_alloc(
 217                                PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 218                                PAGE_SIZE);
 219        for (i = 0; i < io_tlb_nslabs; i++) {
 220                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 221                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 222        }
 223        io_tlb_index = 0;
 224
 225        if (verbose)
 226                swiotlb_print_info();
 227
 228        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 229        return 0;
 230}
 231
 232/*
 233 * Statically reserve bounce buffer space and initialize bounce buffer data
 234 * structures for the software IO TLB used to implement the DMA API.
 235 */
 236void  __init
 237swiotlb_init(int verbose)
 238{
 239        size_t default_size = IO_TLB_DEFAULT_SIZE;
 240        unsigned char *vstart;
 241        unsigned long bytes;
 242
 243        if (!io_tlb_nslabs) {
 244                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 245                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 246        }
 247
 248        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 249
 250        /* Get IO TLB memory from the low pages */
 251        vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 252        if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 253                return;
 254
 255        if (io_tlb_start)
 256                memblock_free_early(io_tlb_start,
 257                                    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 258        pr_warn("Cannot allocate SWIOTLB buffer");
 259        no_iotlb_memory = true;
 260}
 261
 262/*
 263 * Systems with larger DMA zones (those that don't support ISA) can
 264 * initialize the swiotlb later using the slab allocator if needed.
 265 * This should be just like above, but with some error catching.
 266 */
 267int
 268swiotlb_late_init_with_default_size(size_t default_size)
 269{
 270        unsigned long bytes, req_nslabs = io_tlb_nslabs;
 271        unsigned char *vstart = NULL;
 272        unsigned int order;
 273        int rc = 0;
 274
 275        if (!io_tlb_nslabs) {
 276                io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 277                io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 278        }
 279
 280        /*
 281         * Get IO TLB memory from the low pages
 282         */
 283        order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 284        io_tlb_nslabs = SLABS_PER_PAGE << order;
 285        bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 286
 287        while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 288                vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 289                                                  order);
 290                if (vstart)
 291                        break;
 292                order--;
 293        }
 294
 295        if (!vstart) {
 296                io_tlb_nslabs = req_nslabs;
 297                return -ENOMEM;
 298        }
 299        if (order != get_order(bytes)) {
 300                printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 301                       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 302                io_tlb_nslabs = SLABS_PER_PAGE << order;
 303        }
 304        rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 305        if (rc)
 306                free_pages((unsigned long)vstart, order);
 307
 308        return rc;
 309}
 310
 311int
 312swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 313{
 314        unsigned long i, bytes;
 315        unsigned char *v_overflow_buffer;
 316
 317        bytes = nslabs << IO_TLB_SHIFT;
 318
 319        io_tlb_nslabs = nslabs;
 320        io_tlb_start = virt_to_phys(tlb);
 321        io_tlb_end = io_tlb_start + bytes;
 322
 323        memset(tlb, 0, bytes);
 324
 325        /*
 326         * Get the overflow emergency buffer
 327         */
 328        v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 329                                                     get_order(io_tlb_overflow));
 330        if (!v_overflow_buffer)
 331                goto cleanup2;
 332
 333        io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 334
 335        /*
 336         * Allocate and initialize the free list array.  This array is used
 337         * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 338         * between io_tlb_start and io_tlb_end.
 339         */
 340        io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 341                                      get_order(io_tlb_nslabs * sizeof(int)));
 342        if (!io_tlb_list)
 343                goto cleanup3;
 344
 345        io_tlb_orig_addr = (phys_addr_t *)
 346                __get_free_pages(GFP_KERNEL,
 347                                 get_order(io_tlb_nslabs *
 348                                           sizeof(phys_addr_t)));
 349        if (!io_tlb_orig_addr)
 350                goto cleanup4;
 351
 352        for (i = 0; i < io_tlb_nslabs; i++) {
 353                io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 354                io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 355        }
 356        io_tlb_index = 0;
 357
 358        swiotlb_print_info();
 359
 360        late_alloc = 1;
 361
 362        swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 363
 364        return 0;
 365
 366cleanup4:
 367        free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 368                                                         sizeof(int)));
 369        io_tlb_list = NULL;
 370cleanup3:
 371        free_pages((unsigned long)v_overflow_buffer,
 372                   get_order(io_tlb_overflow));
 373        io_tlb_overflow_buffer = 0;
 374cleanup2:
 375        io_tlb_end = 0;
 376        io_tlb_start = 0;
 377        io_tlb_nslabs = 0;
 378        max_segment = 0;
 379        return -ENOMEM;
 380}
 381
 382void __init swiotlb_free(void)
 383{
 384        if (!io_tlb_orig_addr)
 385                return;
 386
 387        if (late_alloc) {
 388                free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 389                           get_order(io_tlb_overflow));
 390                free_pages((unsigned long)io_tlb_orig_addr,
 391                           get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 392                free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 393                                                                 sizeof(int)));
 394                free_pages((unsigned long)phys_to_virt(io_tlb_start),
 395                           get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 396        } else {
 397                memblock_free_late(io_tlb_overflow_buffer,
 398                                   PAGE_ALIGN(io_tlb_overflow));
 399                memblock_free_late(__pa(io_tlb_orig_addr),
 400                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 401                memblock_free_late(__pa(io_tlb_list),
 402                                   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 403                memblock_free_late(io_tlb_start,
 404                                   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 405        }
 406        io_tlb_nslabs = 0;
 407        max_segment = 0;
 408}
 409
 410int is_swiotlb_buffer(phys_addr_t paddr)
 411{
 412        return paddr >= io_tlb_start && paddr < io_tlb_end;
 413}
 414
 415/*
 416 * Bounce: copy the swiotlb buffer back to the original dma location
 417 */
 418static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 419                           size_t size, enum dma_data_direction dir)
 420{
 421        unsigned long pfn = PFN_DOWN(orig_addr);
 422        unsigned char *vaddr = phys_to_virt(tlb_addr);
 423
 424        if (PageHighMem(pfn_to_page(pfn))) {
 425                /* The buffer does not have a mapping.  Map it in and copy */
 426                unsigned int offset = orig_addr & ~PAGE_MASK;
 427                char *buffer;
 428                unsigned int sz = 0;
 429                unsigned long flags;
 430
 431                while (size) {
 432                        sz = min_t(size_t, PAGE_SIZE - offset, size);
 433
 434                        local_irq_save(flags);
 435                        buffer = kmap_atomic(pfn_to_page(pfn));
 436                        if (dir == DMA_TO_DEVICE)
 437                                memcpy(vaddr, buffer + offset, sz);
 438                        else
 439                                memcpy(buffer + offset, vaddr, sz);
 440                        kunmap_atomic(buffer);
 441                        local_irq_restore(flags);
 442
 443                        size -= sz;
 444                        pfn++;
 445                        vaddr += sz;
 446                        offset = 0;
 447                }
 448        } else if (dir == DMA_TO_DEVICE) {
 449                memcpy(vaddr, phys_to_virt(orig_addr), size);
 450        } else {
 451                memcpy(phys_to_virt(orig_addr), vaddr, size);
 452        }
 453}
 454
 455phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 456                                   dma_addr_t tbl_dma_addr,
 457                                   phys_addr_t orig_addr, size_t size,
 458                                   enum dma_data_direction dir,
 459                                   unsigned long attrs)
 460{
 461        unsigned long flags;
 462        phys_addr_t tlb_addr;
 463        unsigned int nslots, stride, index, wrap;
 464        int i;
 465        unsigned long mask;
 466        unsigned long offset_slots;
 467        unsigned long max_slots;
 468
 469        if (no_iotlb_memory)
 470                panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 471
 472        mask = dma_get_seg_boundary(hwdev);
 473
 474        tbl_dma_addr &= mask;
 475
 476        offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 477
 478        /*
 479         * Carefully handle integer overflow which can occur when mask == ~0UL.
 480         */
 481        max_slots = mask + 1
 482                    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 483                    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 484
 485        /*
 486         * For mappings greater than or equal to a page, we limit the stride
 487         * (and hence alignment) to a page size.
 488         */
 489        nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 490        if (size >= PAGE_SIZE)
 491                stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 492        else
 493                stride = 1;
 494
 495        BUG_ON(!nslots);
 496
 497        /*
 498         * Find suitable number of IO TLB entries size that will fit this
 499         * request and allocate a buffer from that IO TLB pool.
 500         */
 501        spin_lock_irqsave(&io_tlb_lock, flags);
 502        index = ALIGN(io_tlb_index, stride);
 503        if (index >= io_tlb_nslabs)
 504                index = 0;
 505        wrap = index;
 506
 507        do {
 508                while (iommu_is_span_boundary(index, nslots, offset_slots,
 509                                              max_slots)) {
 510                        index += stride;
 511                        if (index >= io_tlb_nslabs)
 512                                index = 0;
 513                        if (index == wrap)
 514                                goto not_found;
 515                }
 516
 517                /*
 518                 * If we find a slot that indicates we have 'nslots' number of
 519                 * contiguous buffers, we allocate the buffers from that slot
 520                 * and mark the entries as '0' indicating unavailable.
 521                 */
 522                if (io_tlb_list[index] >= nslots) {
 523                        int count = 0;
 524
 525                        for (i = index; i < (int) (index + nslots); i++)
 526                                io_tlb_list[i] = 0;
 527                        for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 528                                io_tlb_list[i] = ++count;
 529                        tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 530
 531                        /*
 532                         * Update the indices to avoid searching in the next
 533                         * round.
 534                         */
 535                        io_tlb_index = ((index + nslots) < io_tlb_nslabs
 536                                        ? (index + nslots) : 0);
 537
 538                        goto found;
 539                }
 540                index += stride;
 541                if (index >= io_tlb_nslabs)
 542                        index = 0;
 543        } while (index != wrap);
 544
 545not_found:
 546        spin_unlock_irqrestore(&io_tlb_lock, flags);
 547        if (printk_ratelimit())
 548                dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 549        return SWIOTLB_MAP_ERROR;
 550found:
 551        spin_unlock_irqrestore(&io_tlb_lock, flags);
 552
 553        /*
 554         * Save away the mapping from the original address to the DMA address.
 555         * This is needed when we sync the memory.  Then we sync the buffer if
 556         * needed.
 557         */
 558        for (i = 0; i < nslots; i++)
 559                io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 560        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 561            (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 562                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 563
 564        return tlb_addr;
 565}
 566EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 567
 568/*
 569 * Allocates bounce buffer and returns its kernel virtual address.
 570 */
 571
 572static phys_addr_t
 573map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 574           enum dma_data_direction dir, unsigned long attrs)
 575{
 576        dma_addr_t start_dma_addr;
 577
 578        if (swiotlb_force == SWIOTLB_NO_FORCE) {
 579                dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
 580                                     &phys);
 581                return SWIOTLB_MAP_ERROR;
 582        }
 583
 584        start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
 585        return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
 586                                      dir, attrs);
 587}
 588
 589/*
 590 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 591 */
 592void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 593                              size_t size, enum dma_data_direction dir,
 594                              unsigned long attrs)
 595{
 596        unsigned long flags;
 597        int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 598        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 599        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 600
 601        /*
 602         * First, sync the memory before unmapping the entry
 603         */
 604        if (orig_addr != INVALID_PHYS_ADDR &&
 605            !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 606            ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 607                swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 608
 609        /*
 610         * Return the buffer to the free list by setting the corresponding
 611         * entries to indicate the number of contiguous entries available.
 612         * While returning the entries to the free list, we merge the entries
 613         * with slots below and above the pool being returned.
 614         */
 615        spin_lock_irqsave(&io_tlb_lock, flags);
 616        {
 617                count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 618                         io_tlb_list[index + nslots] : 0);
 619                /*
 620                 * Step 1: return the slots to the free list, merging the
 621                 * slots with superceeding slots
 622                 */
 623                for (i = index + nslots - 1; i >= index; i--) {
 624                        io_tlb_list[i] = ++count;
 625                        io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 626                }
 627                /*
 628                 * Step 2: merge the returned slots with the preceding slots,
 629                 * if available (non zero)
 630                 */
 631                for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 632                        io_tlb_list[i] = ++count;
 633        }
 634        spin_unlock_irqrestore(&io_tlb_lock, flags);
 635}
 636EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 637
 638void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 639                             size_t size, enum dma_data_direction dir,
 640                             enum dma_sync_target target)
 641{
 642        int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 643        phys_addr_t orig_addr = io_tlb_orig_addr[index];
 644
 645        if (orig_addr == INVALID_PHYS_ADDR)
 646                return;
 647        orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 648
 649        switch (target) {
 650        case SYNC_FOR_CPU:
 651                if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 652                        swiotlb_bounce(orig_addr, tlb_addr,
 653                                       size, DMA_FROM_DEVICE);
 654                else
 655                        BUG_ON(dir != DMA_TO_DEVICE);
 656                break;
 657        case SYNC_FOR_DEVICE:
 658                if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 659                        swiotlb_bounce(orig_addr, tlb_addr,
 660                                       size, DMA_TO_DEVICE);
 661                else
 662                        BUG_ON(dir != DMA_FROM_DEVICE);
 663                break;
 664        default:
 665                BUG();
 666        }
 667}
 668EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 669
 670void *
 671swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 672                       dma_addr_t *dma_handle, gfp_t flags)
 673{
 674        dma_addr_t dev_addr;
 675        void *ret;
 676        int order = get_order(size);
 677        u64 dma_mask = DMA_BIT_MASK(32);
 678
 679        if (hwdev && hwdev->coherent_dma_mask)
 680                dma_mask = hwdev->coherent_dma_mask;
 681
 682        ret = (void *)__get_free_pages(flags, order);
 683        if (ret) {
 684                dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 685                if (dev_addr + size - 1 > dma_mask) {
 686                        /*
 687                         * The allocated memory isn't reachable by the device.
 688                         */
 689                        free_pages((unsigned long) ret, order);
 690                        ret = NULL;
 691                }
 692        }
 693        if (!ret) {
 694                /*
 695                 * We are either out of memory or the device can't DMA to
 696                 * GFP_DMA memory; fall back on map_single(), which
 697                 * will grab memory from the lowest available address range.
 698                 */
 699                phys_addr_t paddr = map_single(hwdev, 0, size,
 700                                               DMA_FROM_DEVICE, 0);
 701                if (paddr == SWIOTLB_MAP_ERROR)
 702                        goto err_warn;
 703
 704                ret = phys_to_virt(paddr);
 705                dev_addr = phys_to_dma(hwdev, paddr);
 706
 707                /* Confirm address can be DMA'd by device */
 708                if (dev_addr + size - 1 > dma_mask) {
 709                        printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 710                               (unsigned long long)dma_mask,
 711                               (unsigned long long)dev_addr);
 712
 713                        /*
 714                         * DMA_TO_DEVICE to avoid memcpy in unmap_single.
 715                         * The DMA_ATTR_SKIP_CPU_SYNC is optional.
 716                         */
 717                        swiotlb_tbl_unmap_single(hwdev, paddr,
 718                                                 size, DMA_TO_DEVICE,
 719                                                 DMA_ATTR_SKIP_CPU_SYNC);
 720                        goto err_warn;
 721                }
 722        }
 723
 724        *dma_handle = dev_addr;
 725        memset(ret, 0, size);
 726
 727        return ret;
 728
 729err_warn:
 730        pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 731                dev_name(hwdev), size);
 732        dump_stack();
 733
 734        return NULL;
 735}
 736EXPORT_SYMBOL(swiotlb_alloc_coherent);
 737
 738void
 739swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 740                      dma_addr_t dev_addr)
 741{
 742        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 743
 744        WARN_ON(irqs_disabled());
 745        if (!is_swiotlb_buffer(paddr))
 746                free_pages((unsigned long)vaddr, get_order(size));
 747        else
 748                /*
 749                 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
 750                 * DMA_ATTR_SKIP_CPU_SYNC is optional.
 751                 */
 752                swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
 753                                         DMA_ATTR_SKIP_CPU_SYNC);
 754}
 755EXPORT_SYMBOL(swiotlb_free_coherent);
 756
 757static void
 758swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 759             int do_panic)
 760{
 761        if (swiotlb_force == SWIOTLB_NO_FORCE)
 762                return;
 763
 764        /*
 765         * Ran out of IOMMU space for this operation. This is very bad.
 766         * Unfortunately the drivers cannot handle this operation properly.
 767         * unless they check for dma_mapping_error (most don't)
 768         * When the mapping is small enough return a static buffer to limit
 769         * the damage, or panic when the transfer is too big.
 770         */
 771        dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
 772                            size);
 773
 774        if (size <= io_tlb_overflow || !do_panic)
 775                return;
 776
 777        if (dir == DMA_BIDIRECTIONAL)
 778                panic("DMA: Random memory could be DMA accessed\n");
 779        if (dir == DMA_FROM_DEVICE)
 780                panic("DMA: Random memory could be DMA written\n");
 781        if (dir == DMA_TO_DEVICE)
 782                panic("DMA: Random memory could be DMA read\n");
 783}
 784
 785/*
 786 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 787 * physical address to use is returned.
 788 *
 789 * Once the device is given the dma address, the device owns this memory until
 790 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 791 */
 792dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 793                            unsigned long offset, size_t size,
 794                            enum dma_data_direction dir,
 795                            unsigned long attrs)
 796{
 797        phys_addr_t map, phys = page_to_phys(page) + offset;
 798        dma_addr_t dev_addr = phys_to_dma(dev, phys);
 799
 800        BUG_ON(dir == DMA_NONE);
 801        /*
 802         * If the address happens to be in the device's DMA window,
 803         * we can safely return the device addr and not worry about bounce
 804         * buffering it.
 805         */
 806        if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
 807                return dev_addr;
 808
 809        trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 810
 811        /* Oh well, have to allocate and map a bounce buffer. */
 812        map = map_single(dev, phys, size, dir, attrs);
 813        if (map == SWIOTLB_MAP_ERROR) {
 814                swiotlb_full(dev, size, dir, 1);
 815                return phys_to_dma(dev, io_tlb_overflow_buffer);
 816        }
 817
 818        dev_addr = phys_to_dma(dev, map);
 819
 820        /* Ensure that the address returned is DMA'ble */
 821        if (dma_capable(dev, dev_addr, size))
 822                return dev_addr;
 823
 824        attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 825        swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
 826
 827        return phys_to_dma(dev, io_tlb_overflow_buffer);
 828}
 829EXPORT_SYMBOL_GPL(swiotlb_map_page);
 830
 831/*
 832 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 833 * match what was provided for in a previous swiotlb_map_page call.  All
 834 * other usages are undefined.
 835 *
 836 * After this call, reads by the cpu to the buffer are guaranteed to see
 837 * whatever the device wrote there.
 838 */
 839static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 840                         size_t size, enum dma_data_direction dir,
 841                         unsigned long attrs)
 842{
 843        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 844
 845        BUG_ON(dir == DMA_NONE);
 846
 847        if (is_swiotlb_buffer(paddr)) {
 848                swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 849                return;
 850        }
 851
 852        if (dir != DMA_FROM_DEVICE)
 853                return;
 854
 855        /*
 856         * phys_to_virt doesn't work with hihgmem page but we could
 857         * call dma_mark_clean() with hihgmem page here. However, we
 858         * are fine since dma_mark_clean() is null on POWERPC. We can
 859         * make dma_mark_clean() take a physical address if necessary.
 860         */
 861        dma_mark_clean(phys_to_virt(paddr), size);
 862}
 863
 864void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 865                        size_t size, enum dma_data_direction dir,
 866                        unsigned long attrs)
 867{
 868        unmap_single(hwdev, dev_addr, size, dir, attrs);
 869}
 870EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 871
 872/*
 873 * Make physical memory consistent for a single streaming mode DMA translation
 874 * after a transfer.
 875 *
 876 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 877 * using the cpu, yet do not wish to teardown the dma mapping, you must
 878 * call this function before doing so.  At the next point you give the dma
 879 * address back to the card, you must first perform a
 880 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 881 */
 882static void
 883swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 884                    size_t size, enum dma_data_direction dir,
 885                    enum dma_sync_target target)
 886{
 887        phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 888
 889        BUG_ON(dir == DMA_NONE);
 890
 891        if (is_swiotlb_buffer(paddr)) {
 892                swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 893                return;
 894        }
 895
 896        if (dir != DMA_FROM_DEVICE)
 897                return;
 898
 899        dma_mark_clean(phys_to_virt(paddr), size);
 900}
 901
 902void
 903swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 904                            size_t size, enum dma_data_direction dir)
 905{
 906        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 907}
 908EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 909
 910void
 911swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 912                               size_t size, enum dma_data_direction dir)
 913{
 914        swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 915}
 916EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 917
 918/*
 919 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 920 * This is the scatter-gather version of the above swiotlb_map_page
 921 * interface.  Here the scatter gather list elements are each tagged with the
 922 * appropriate dma address and length.  They are obtained via
 923 * sg_dma_{address,length}(SG).
 924 *
 925 * NOTE: An implementation may be able to use a smaller number of
 926 *       DMA address/length pairs than there are SG table elements.
 927 *       (for example via virtual mapping capabilities)
 928 *       The routine returns the number of addr/length pairs actually
 929 *       used, at most nents.
 930 *
 931 * Device ownership issues as mentioned above for swiotlb_map_page are the
 932 * same here.
 933 */
 934int
 935swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 936                     enum dma_data_direction dir, unsigned long attrs)
 937{
 938        struct scatterlist *sg;
 939        int i;
 940
 941        BUG_ON(dir == DMA_NONE);
 942
 943        for_each_sg(sgl, sg, nelems, i) {
 944                phys_addr_t paddr = sg_phys(sg);
 945                dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 946
 947                if (swiotlb_force == SWIOTLB_FORCE ||
 948                    !dma_capable(hwdev, dev_addr, sg->length)) {
 949                        phys_addr_t map = map_single(hwdev, sg_phys(sg),
 950                                                     sg->length, dir, attrs);
 951                        if (map == SWIOTLB_MAP_ERROR) {
 952                                /* Don't panic here, we expect map_sg users
 953                                   to do proper error handling. */
 954                                swiotlb_full(hwdev, sg->length, dir, 0);
 955                                attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 956                                swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 957                                                       attrs);
 958                                sg_dma_len(sgl) = 0;
 959                                return 0;
 960                        }
 961                        sg->dma_address = phys_to_dma(hwdev, map);
 962                } else
 963                        sg->dma_address = dev_addr;
 964                sg_dma_len(sg) = sg->length;
 965        }
 966        return nelems;
 967}
 968EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 969
 970/*
 971 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 972 * concerning calls here are the same as for swiotlb_unmap_page() above.
 973 */
 974void
 975swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 976                       int nelems, enum dma_data_direction dir,
 977                       unsigned long attrs)
 978{
 979        struct scatterlist *sg;
 980        int i;
 981
 982        BUG_ON(dir == DMA_NONE);
 983
 984        for_each_sg(sgl, sg, nelems, i)
 985                unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
 986                             attrs);
 987}
 988EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 989
 990/*
 991 * Make physical memory consistent for a set of streaming mode DMA translations
 992 * after a transfer.
 993 *
 994 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 995 * and usage.
 996 */
 997static void
 998swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 999                int nelems, enum dma_data_direction dir,
1000                enum dma_sync_target target)
1001{
1002        struct scatterlist *sg;
1003        int i;
1004
1005        for_each_sg(sgl, sg, nelems, i)
1006                swiotlb_sync_single(hwdev, sg->dma_address,
1007                                    sg_dma_len(sg), dir, target);
1008}
1009
1010void
1011swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1012                        int nelems, enum dma_data_direction dir)
1013{
1014        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1015}
1016EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1017
1018void
1019swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1020                           int nelems, enum dma_data_direction dir)
1021{
1022        swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1023}
1024EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1025
1026int
1027swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1028{
1029        return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1030}
1031EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1032
1033/*
1034 * Return whether the given device DMA address mask can be supported
1035 * properly.  For example, if your device can only drive the low 24-bits
1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1037 * this function.
1038 */
1039int
1040swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041{
1042        return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043}
1044EXPORT_SYMBOL(swiotlb_dma_supported);
1045