linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/hugetlb.h>
  36#include <linux/memcontrol.h>
  37#include <linux/cleancache.h>
  38#include <linux/rmap.h>
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem              (truncate_pagecache)
  67 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock             (exclusive_swap_page, others)
  69 *        ->mapping->tree_lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  77 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page               (access_process_vm)
  81 *
  82 *  ->i_mutex                   (generic_perform_write)
  83 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock                   (fs/fs-writeback.c)
  87 *    ->mapping->tree_lock      (__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock           (vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock               (try_to_unmap_one)
  97 *    ->private_lock            (try_to_unmap_one)
  98 *    ->tree_lock               (try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
 101 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 102 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 108 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115                                  struct page *page, void **shadowp)
 116{
 117        struct radix_tree_node *node;
 118        void **slot;
 119        int error;
 120
 121        error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 122                                    &node, &slot);
 123        if (error)
 124                return error;
 125        if (*slot) {
 126                void *p;
 127
 128                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 129                if (!radix_tree_exceptional_entry(p))
 130                        return -EEXIST;
 131
 132                mapping->nrexceptional--;
 133                if (!dax_mapping(mapping)) {
 134                        if (shadowp)
 135                                *shadowp = p;
 136                } else {
 137                        /* DAX can replace empty locked entry with a hole */
 138                        WARN_ON_ONCE(p !=
 139                                dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
 140                        /* Wakeup waiters for exceptional entry lock */
 141                        dax_wake_mapping_entry_waiter(mapping, page->index, p,
 142                                                      true);
 143                }
 144        }
 145        __radix_tree_replace(&mapping->page_tree, node, slot, page,
 146                             workingset_update_node, mapping);
 147        mapping->nrpages++;
 148        return 0;
 149}
 150
 151static void page_cache_tree_delete(struct address_space *mapping,
 152                                   struct page *page, void *shadow)
 153{
 154        int i, nr;
 155
 156        /* hugetlb pages are represented by one entry in the radix tree */
 157        nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 158
 159        VM_BUG_ON_PAGE(!PageLocked(page), page);
 160        VM_BUG_ON_PAGE(PageTail(page), page);
 161        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 162
 163        for (i = 0; i < nr; i++) {
 164                struct radix_tree_node *node;
 165                void **slot;
 166
 167                __radix_tree_lookup(&mapping->page_tree, page->index + i,
 168                                    &node, &slot);
 169
 170                VM_BUG_ON_PAGE(!node && nr != 1, page);
 171
 172                radix_tree_clear_tags(&mapping->page_tree, node, slot);
 173                __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 174                                     workingset_update_node, mapping);
 175        }
 176
 177        if (shadow) {
 178                mapping->nrexceptional += nr;
 179                /*
 180                 * Make sure the nrexceptional update is committed before
 181                 * the nrpages update so that final truncate racing
 182                 * with reclaim does not see both counters 0 at the
 183                 * same time and miss a shadow entry.
 184                 */
 185                smp_wmb();
 186        }
 187        mapping->nrpages -= nr;
 188}
 189
 190/*
 191 * Delete a page from the page cache and free it. Caller has to make
 192 * sure the page is locked and that nobody else uses it - or that usage
 193 * is safe.  The caller must hold the mapping's tree_lock.
 194 */
 195void __delete_from_page_cache(struct page *page, void *shadow)
 196{
 197        struct address_space *mapping = page->mapping;
 198        int nr = hpage_nr_pages(page);
 199
 200        trace_mm_filemap_delete_from_page_cache(page);
 201        /*
 202         * if we're uptodate, flush out into the cleancache, otherwise
 203         * invalidate any existing cleancache entries.  We can't leave
 204         * stale data around in the cleancache once our page is gone
 205         */
 206        if (PageUptodate(page) && PageMappedToDisk(page))
 207                cleancache_put_page(page);
 208        else
 209                cleancache_invalidate_page(mapping, page);
 210
 211        VM_BUG_ON_PAGE(PageTail(page), page);
 212        VM_BUG_ON_PAGE(page_mapped(page), page);
 213        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 214                int mapcount;
 215
 216                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 217                         current->comm, page_to_pfn(page));
 218                dump_page(page, "still mapped when deleted");
 219                dump_stack();
 220                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 221
 222                mapcount = page_mapcount(page);
 223                if (mapping_exiting(mapping) &&
 224                    page_count(page) >= mapcount + 2) {
 225                        /*
 226                         * All vmas have already been torn down, so it's
 227                         * a good bet that actually the page is unmapped,
 228                         * and we'd prefer not to leak it: if we're wrong,
 229                         * some other bad page check should catch it later.
 230                         */
 231                        page_mapcount_reset(page);
 232                        page_ref_sub(page, mapcount);
 233                }
 234        }
 235
 236        page_cache_tree_delete(mapping, page, shadow);
 237
 238        page->mapping = NULL;
 239        /* Leave page->index set: truncation lookup relies upon it */
 240
 241        /* hugetlb pages do not participate in page cache accounting. */
 242        if (!PageHuge(page))
 243                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 244        if (PageSwapBacked(page)) {
 245                __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 246                if (PageTransHuge(page))
 247                        __dec_node_page_state(page, NR_SHMEM_THPS);
 248        } else {
 249                VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 250        }
 251
 252        /*
 253         * At this point page must be either written or cleaned by truncate.
 254         * Dirty page here signals a bug and loss of unwritten data.
 255         *
 256         * This fixes dirty accounting after removing the page entirely but
 257         * leaves PageDirty set: it has no effect for truncated page and
 258         * anyway will be cleared before returning page into buddy allocator.
 259         */
 260        if (WARN_ON_ONCE(PageDirty(page)))
 261                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 262}
 263
 264/**
 265 * delete_from_page_cache - delete page from page cache
 266 * @page: the page which the kernel is trying to remove from page cache
 267 *
 268 * This must be called only on pages that have been verified to be in the page
 269 * cache and locked.  It will never put the page into the free list, the caller
 270 * has a reference on the page.
 271 */
 272void delete_from_page_cache(struct page *page)
 273{
 274        struct address_space *mapping = page_mapping(page);
 275        unsigned long flags;
 276        void (*freepage)(struct page *);
 277
 278        BUG_ON(!PageLocked(page));
 279
 280        freepage = mapping->a_ops->freepage;
 281
 282        spin_lock_irqsave(&mapping->tree_lock, flags);
 283        __delete_from_page_cache(page, NULL);
 284        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 285
 286        if (freepage)
 287                freepage(page);
 288
 289        if (PageTransHuge(page) && !PageHuge(page)) {
 290                page_ref_sub(page, HPAGE_PMD_NR);
 291                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 292        } else {
 293                put_page(page);
 294        }
 295}
 296EXPORT_SYMBOL(delete_from_page_cache);
 297
 298int filemap_check_errors(struct address_space *mapping)
 299{
 300        int ret = 0;
 301        /* Check for outstanding write errors */
 302        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 303            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 304                ret = -ENOSPC;
 305        if (test_bit(AS_EIO, &mapping->flags) &&
 306            test_and_clear_bit(AS_EIO, &mapping->flags))
 307                ret = -EIO;
 308        return ret;
 309}
 310EXPORT_SYMBOL(filemap_check_errors);
 311
 312/**
 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 314 * @mapping:    address space structure to write
 315 * @start:      offset in bytes where the range starts
 316 * @end:        offset in bytes where the range ends (inclusive)
 317 * @sync_mode:  enable synchronous operation
 318 *
 319 * Start writeback against all of a mapping's dirty pages that lie
 320 * within the byte offsets <start, end> inclusive.
 321 *
 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 323 * opposed to a regular memory cleansing writeback.  The difference between
 324 * these two operations is that if a dirty page/buffer is encountered, it must
 325 * be waited upon, and not just skipped over.
 326 */
 327int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 328                                loff_t end, int sync_mode)
 329{
 330        int ret;
 331        struct writeback_control wbc = {
 332                .sync_mode = sync_mode,
 333                .nr_to_write = LONG_MAX,
 334                .range_start = start,
 335                .range_end = end,
 336        };
 337
 338        if (!mapping_cap_writeback_dirty(mapping))
 339                return 0;
 340
 341        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 342        ret = do_writepages(mapping, &wbc);
 343        wbc_detach_inode(&wbc);
 344        return ret;
 345}
 346
 347static inline int __filemap_fdatawrite(struct address_space *mapping,
 348        int sync_mode)
 349{
 350        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 351}
 352
 353int filemap_fdatawrite(struct address_space *mapping)
 354{
 355        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 356}
 357EXPORT_SYMBOL(filemap_fdatawrite);
 358
 359int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 360                                loff_t end)
 361{
 362        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 363}
 364EXPORT_SYMBOL(filemap_fdatawrite_range);
 365
 366/**
 367 * filemap_flush - mostly a non-blocking flush
 368 * @mapping:    target address_space
 369 *
 370 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 371 * purposes - I/O may not be started against all dirty pages.
 372 */
 373int filemap_flush(struct address_space *mapping)
 374{
 375        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 376}
 377EXPORT_SYMBOL(filemap_flush);
 378
 379static int __filemap_fdatawait_range(struct address_space *mapping,
 380                                     loff_t start_byte, loff_t end_byte)
 381{
 382        pgoff_t index = start_byte >> PAGE_SHIFT;
 383        pgoff_t end = end_byte >> PAGE_SHIFT;
 384        struct pagevec pvec;
 385        int nr_pages;
 386        int ret = 0;
 387
 388        if (end_byte < start_byte)
 389                goto out;
 390
 391        pagevec_init(&pvec, 0);
 392        while ((index <= end) &&
 393                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 394                        PAGECACHE_TAG_WRITEBACK,
 395                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 396                unsigned i;
 397
 398                for (i = 0; i < nr_pages; i++) {
 399                        struct page *page = pvec.pages[i];
 400
 401                        /* until radix tree lookup accepts end_index */
 402                        if (page->index > end)
 403                                continue;
 404
 405                        wait_on_page_writeback(page);
 406                        if (TestClearPageError(page))
 407                                ret = -EIO;
 408                }
 409                pagevec_release(&pvec);
 410                cond_resched();
 411        }
 412out:
 413        return ret;
 414}
 415
 416/**
 417 * filemap_fdatawait_range - wait for writeback to complete
 418 * @mapping:            address space structure to wait for
 419 * @start_byte:         offset in bytes where the range starts
 420 * @end_byte:           offset in bytes where the range ends (inclusive)
 421 *
 422 * Walk the list of under-writeback pages of the given address space
 423 * in the given range and wait for all of them.  Check error status of
 424 * the address space and return it.
 425 *
 426 * Since the error status of the address space is cleared by this function,
 427 * callers are responsible for checking the return value and handling and/or
 428 * reporting the error.
 429 */
 430int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 431                            loff_t end_byte)
 432{
 433        int ret, ret2;
 434
 435        ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 436        ret2 = filemap_check_errors(mapping);
 437        if (!ret)
 438                ret = ret2;
 439
 440        return ret;
 441}
 442EXPORT_SYMBOL(filemap_fdatawait_range);
 443
 444/**
 445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 446 * @mapping: address space structure to wait for
 447 *
 448 * Walk the list of under-writeback pages of the given address space
 449 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 450 * does not clear error status of the address space.
 451 *
 452 * Use this function if callers don't handle errors themselves.  Expected
 453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 454 * fsfreeze(8)
 455 */
 456void filemap_fdatawait_keep_errors(struct address_space *mapping)
 457{
 458        loff_t i_size = i_size_read(mapping->host);
 459
 460        if (i_size == 0)
 461                return;
 462
 463        __filemap_fdatawait_range(mapping, 0, i_size - 1);
 464}
 465
 466/**
 467 * filemap_fdatawait - wait for all under-writeback pages to complete
 468 * @mapping: address space structure to wait for
 469 *
 470 * Walk the list of under-writeback pages of the given address space
 471 * and wait for all of them.  Check error status of the address space
 472 * and return it.
 473 *
 474 * Since the error status of the address space is cleared by this function,
 475 * callers are responsible for checking the return value and handling and/or
 476 * reporting the error.
 477 */
 478int filemap_fdatawait(struct address_space *mapping)
 479{
 480        loff_t i_size = i_size_read(mapping->host);
 481
 482        if (i_size == 0)
 483                return 0;
 484
 485        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 486}
 487EXPORT_SYMBOL(filemap_fdatawait);
 488
 489int filemap_write_and_wait(struct address_space *mapping)
 490{
 491        int err = 0;
 492
 493        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 494            (dax_mapping(mapping) && mapping->nrexceptional)) {
 495                err = filemap_fdatawrite(mapping);
 496                /*
 497                 * Even if the above returned error, the pages may be
 498                 * written partially (e.g. -ENOSPC), so we wait for it.
 499                 * But the -EIO is special case, it may indicate the worst
 500                 * thing (e.g. bug) happened, so we avoid waiting for it.
 501                 */
 502                if (err != -EIO) {
 503                        int err2 = filemap_fdatawait(mapping);
 504                        if (!err)
 505                                err = err2;
 506                }
 507        } else {
 508                err = filemap_check_errors(mapping);
 509        }
 510        return err;
 511}
 512EXPORT_SYMBOL(filemap_write_and_wait);
 513
 514/**
 515 * filemap_write_and_wait_range - write out & wait on a file range
 516 * @mapping:    the address_space for the pages
 517 * @lstart:     offset in bytes where the range starts
 518 * @lend:       offset in bytes where the range ends (inclusive)
 519 *
 520 * Write out and wait upon file offsets lstart->lend, inclusive.
 521 *
 522 * Note that `lend' is inclusive (describes the last byte to be written) so
 523 * that this function can be used to write to the very end-of-file (end = -1).
 524 */
 525int filemap_write_and_wait_range(struct address_space *mapping,
 526                                 loff_t lstart, loff_t lend)
 527{
 528        int err = 0;
 529
 530        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 531            (dax_mapping(mapping) && mapping->nrexceptional)) {
 532                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 533                                                 WB_SYNC_ALL);
 534                /* See comment of filemap_write_and_wait() */
 535                if (err != -EIO) {
 536                        int err2 = filemap_fdatawait_range(mapping,
 537                                                lstart, lend);
 538                        if (!err)
 539                                err = err2;
 540                }
 541        } else {
 542                err = filemap_check_errors(mapping);
 543        }
 544        return err;
 545}
 546EXPORT_SYMBOL(filemap_write_and_wait_range);
 547
 548/**
 549 * replace_page_cache_page - replace a pagecache page with a new one
 550 * @old:        page to be replaced
 551 * @new:        page to replace with
 552 * @gfp_mask:   allocation mode
 553 *
 554 * This function replaces a page in the pagecache with a new one.  On
 555 * success it acquires the pagecache reference for the new page and
 556 * drops it for the old page.  Both the old and new pages must be
 557 * locked.  This function does not add the new page to the LRU, the
 558 * caller must do that.
 559 *
 560 * The remove + add is atomic.  The only way this function can fail is
 561 * memory allocation failure.
 562 */
 563int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 564{
 565        int error;
 566
 567        VM_BUG_ON_PAGE(!PageLocked(old), old);
 568        VM_BUG_ON_PAGE(!PageLocked(new), new);
 569        VM_BUG_ON_PAGE(new->mapping, new);
 570
 571        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 572        if (!error) {
 573                struct address_space *mapping = old->mapping;
 574                void (*freepage)(struct page *);
 575                unsigned long flags;
 576
 577                pgoff_t offset = old->index;
 578                freepage = mapping->a_ops->freepage;
 579
 580                get_page(new);
 581                new->mapping = mapping;
 582                new->index = offset;
 583
 584                spin_lock_irqsave(&mapping->tree_lock, flags);
 585                __delete_from_page_cache(old, NULL);
 586                error = page_cache_tree_insert(mapping, new, NULL);
 587                BUG_ON(error);
 588
 589                /*
 590                 * hugetlb pages do not participate in page cache accounting.
 591                 */
 592                if (!PageHuge(new))
 593                        __inc_node_page_state(new, NR_FILE_PAGES);
 594                if (PageSwapBacked(new))
 595                        __inc_node_page_state(new, NR_SHMEM);
 596                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 597                mem_cgroup_migrate(old, new);
 598                radix_tree_preload_end();
 599                if (freepage)
 600                        freepage(old);
 601                put_page(old);
 602        }
 603
 604        return error;
 605}
 606EXPORT_SYMBOL_GPL(replace_page_cache_page);
 607
 608static int __add_to_page_cache_locked(struct page *page,
 609                                      struct address_space *mapping,
 610                                      pgoff_t offset, gfp_t gfp_mask,
 611                                      void **shadowp)
 612{
 613        int huge = PageHuge(page);
 614        struct mem_cgroup *memcg;
 615        int error;
 616
 617        VM_BUG_ON_PAGE(!PageLocked(page), page);
 618        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 619
 620        if (!huge) {
 621                error = mem_cgroup_try_charge(page, current->mm,
 622                                              gfp_mask, &memcg, false);
 623                if (error)
 624                        return error;
 625        }
 626
 627        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 628        if (error) {
 629                if (!huge)
 630                        mem_cgroup_cancel_charge(page, memcg, false);
 631                return error;
 632        }
 633
 634        get_page(page);
 635        page->mapping = mapping;
 636        page->index = offset;
 637
 638        spin_lock_irq(&mapping->tree_lock);
 639        error = page_cache_tree_insert(mapping, page, shadowp);
 640        radix_tree_preload_end();
 641        if (unlikely(error))
 642                goto err_insert;
 643
 644        /* hugetlb pages do not participate in page cache accounting. */
 645        if (!huge)
 646                __inc_node_page_state(page, NR_FILE_PAGES);
 647        spin_unlock_irq(&mapping->tree_lock);
 648        if (!huge)
 649                mem_cgroup_commit_charge(page, memcg, false, false);
 650        trace_mm_filemap_add_to_page_cache(page);
 651        return 0;
 652err_insert:
 653        page->mapping = NULL;
 654        /* Leave page->index set: truncation relies upon it */
 655        spin_unlock_irq(&mapping->tree_lock);
 656        if (!huge)
 657                mem_cgroup_cancel_charge(page, memcg, false);
 658        put_page(page);
 659        return error;
 660}
 661
 662/**
 663 * add_to_page_cache_locked - add a locked page to the pagecache
 664 * @page:       page to add
 665 * @mapping:    the page's address_space
 666 * @offset:     page index
 667 * @gfp_mask:   page allocation mode
 668 *
 669 * This function is used to add a page to the pagecache. It must be locked.
 670 * This function does not add the page to the LRU.  The caller must do that.
 671 */
 672int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 673                pgoff_t offset, gfp_t gfp_mask)
 674{
 675        return __add_to_page_cache_locked(page, mapping, offset,
 676                                          gfp_mask, NULL);
 677}
 678EXPORT_SYMBOL(add_to_page_cache_locked);
 679
 680int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 681                                pgoff_t offset, gfp_t gfp_mask)
 682{
 683        void *shadow = NULL;
 684        int ret;
 685
 686        __SetPageLocked(page);
 687        ret = __add_to_page_cache_locked(page, mapping, offset,
 688                                         gfp_mask, &shadow);
 689        if (unlikely(ret))
 690                __ClearPageLocked(page);
 691        else {
 692                /*
 693                 * The page might have been evicted from cache only
 694                 * recently, in which case it should be activated like
 695                 * any other repeatedly accessed page.
 696                 * The exception is pages getting rewritten; evicting other
 697                 * data from the working set, only to cache data that will
 698                 * get overwritten with something else, is a waste of memory.
 699                 */
 700                if (!(gfp_mask & __GFP_WRITE) &&
 701                    shadow && workingset_refault(shadow)) {
 702                        SetPageActive(page);
 703                        workingset_activation(page);
 704                } else
 705                        ClearPageActive(page);
 706                lru_cache_add(page);
 707        }
 708        return ret;
 709}
 710EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 711
 712#ifdef CONFIG_NUMA
 713struct page *__page_cache_alloc(gfp_t gfp)
 714{
 715        int n;
 716        struct page *page;
 717
 718        if (cpuset_do_page_mem_spread()) {
 719                unsigned int cpuset_mems_cookie;
 720                do {
 721                        cpuset_mems_cookie = read_mems_allowed_begin();
 722                        n = cpuset_mem_spread_node();
 723                        page = __alloc_pages_node(n, gfp, 0);
 724                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 725
 726                return page;
 727        }
 728        return alloc_pages(gfp, 0);
 729}
 730EXPORT_SYMBOL(__page_cache_alloc);
 731#endif
 732
 733/*
 734 * In order to wait for pages to become available there must be
 735 * waitqueues associated with pages. By using a hash table of
 736 * waitqueues where the bucket discipline is to maintain all
 737 * waiters on the same queue and wake all when any of the pages
 738 * become available, and for the woken contexts to check to be
 739 * sure the appropriate page became available, this saves space
 740 * at a cost of "thundering herd" phenomena during rare hash
 741 * collisions.
 742 */
 743#define PAGE_WAIT_TABLE_BITS 8
 744#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 745static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 746
 747static wait_queue_head_t *page_waitqueue(struct page *page)
 748{
 749        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 750}
 751
 752void __init pagecache_init(void)
 753{
 754        int i;
 755
 756        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 757                init_waitqueue_head(&page_wait_table[i]);
 758
 759        page_writeback_init();
 760}
 761
 762struct wait_page_key {
 763        struct page *page;
 764        int bit_nr;
 765        int page_match;
 766};
 767
 768struct wait_page_queue {
 769        struct page *page;
 770        int bit_nr;
 771        wait_queue_t wait;
 772};
 773
 774static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 775{
 776        struct wait_page_key *key = arg;
 777        struct wait_page_queue *wait_page
 778                = container_of(wait, struct wait_page_queue, wait);
 779
 780        if (wait_page->page != key->page)
 781               return 0;
 782        key->page_match = 1;
 783
 784        if (wait_page->bit_nr != key->bit_nr)
 785                return 0;
 786        if (test_bit(key->bit_nr, &key->page->flags))
 787                return 0;
 788
 789        return autoremove_wake_function(wait, mode, sync, key);
 790}
 791
 792static void wake_up_page_bit(struct page *page, int bit_nr)
 793{
 794        wait_queue_head_t *q = page_waitqueue(page);
 795        struct wait_page_key key;
 796        unsigned long flags;
 797
 798        key.page = page;
 799        key.bit_nr = bit_nr;
 800        key.page_match = 0;
 801
 802        spin_lock_irqsave(&q->lock, flags);
 803        __wake_up_locked_key(q, TASK_NORMAL, &key);
 804        /*
 805         * It is possible for other pages to have collided on the waitqueue
 806         * hash, so in that case check for a page match. That prevents a long-
 807         * term waiter
 808         *
 809         * It is still possible to miss a case here, when we woke page waiters
 810         * and removed them from the waitqueue, but there are still other
 811         * page waiters.
 812         */
 813        if (!waitqueue_active(q) || !key.page_match) {
 814                ClearPageWaiters(page);
 815                /*
 816                 * It's possible to miss clearing Waiters here, when we woke
 817                 * our page waiters, but the hashed waitqueue has waiters for
 818                 * other pages on it.
 819                 *
 820                 * That's okay, it's a rare case. The next waker will clear it.
 821                 */
 822        }
 823        spin_unlock_irqrestore(&q->lock, flags);
 824}
 825
 826static void wake_up_page(struct page *page, int bit)
 827{
 828        if (!PageWaiters(page))
 829                return;
 830        wake_up_page_bit(page, bit);
 831}
 832
 833static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 834                struct page *page, int bit_nr, int state, bool lock)
 835{
 836        struct wait_page_queue wait_page;
 837        wait_queue_t *wait = &wait_page.wait;
 838        int ret = 0;
 839
 840        init_wait(wait);
 841        wait->func = wake_page_function;
 842        wait_page.page = page;
 843        wait_page.bit_nr = bit_nr;
 844
 845        for (;;) {
 846                spin_lock_irq(&q->lock);
 847
 848                if (likely(list_empty(&wait->task_list))) {
 849                        if (lock)
 850                                __add_wait_queue_tail_exclusive(q, wait);
 851                        else
 852                                __add_wait_queue(q, wait);
 853                        SetPageWaiters(page);
 854                }
 855
 856                set_current_state(state);
 857
 858                spin_unlock_irq(&q->lock);
 859
 860                if (likely(test_bit(bit_nr, &page->flags))) {
 861                        io_schedule();
 862                        if (unlikely(signal_pending_state(state, current))) {
 863                                ret = -EINTR;
 864                                break;
 865                        }
 866                }
 867
 868                if (lock) {
 869                        if (!test_and_set_bit_lock(bit_nr, &page->flags))
 870                                break;
 871                } else {
 872                        if (!test_bit(bit_nr, &page->flags))
 873                                break;
 874                }
 875        }
 876
 877        finish_wait(q, wait);
 878
 879        /*
 880         * A signal could leave PageWaiters set. Clearing it here if
 881         * !waitqueue_active would be possible (by open-coding finish_wait),
 882         * but still fail to catch it in the case of wait hash collision. We
 883         * already can fail to clear wait hash collision cases, so don't
 884         * bother with signals either.
 885         */
 886
 887        return ret;
 888}
 889
 890void wait_on_page_bit(struct page *page, int bit_nr)
 891{
 892        wait_queue_head_t *q = page_waitqueue(page);
 893        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 894}
 895EXPORT_SYMBOL(wait_on_page_bit);
 896
 897int wait_on_page_bit_killable(struct page *page, int bit_nr)
 898{
 899        wait_queue_head_t *q = page_waitqueue(page);
 900        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 901}
 902
 903/**
 904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 905 * @page: Page defining the wait queue of interest
 906 * @waiter: Waiter to add to the queue
 907 *
 908 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 909 */
 910void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 911{
 912        wait_queue_head_t *q = page_waitqueue(page);
 913        unsigned long flags;
 914
 915        spin_lock_irqsave(&q->lock, flags);
 916        __add_wait_queue(q, waiter);
 917        SetPageWaiters(page);
 918        spin_unlock_irqrestore(&q->lock, flags);
 919}
 920EXPORT_SYMBOL_GPL(add_page_wait_queue);
 921
 922#ifndef clear_bit_unlock_is_negative_byte
 923
 924/*
 925 * PG_waiters is the high bit in the same byte as PG_lock.
 926 *
 927 * On x86 (and on many other architectures), we can clear PG_lock and
 928 * test the sign bit at the same time. But if the architecture does
 929 * not support that special operation, we just do this all by hand
 930 * instead.
 931 *
 932 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 933 * being cleared, but a memory barrier should be unneccssary since it is
 934 * in the same byte as PG_locked.
 935 */
 936static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 937{
 938        clear_bit_unlock(nr, mem);
 939        /* smp_mb__after_atomic(); */
 940        return test_bit(PG_waiters, mem);
 941}
 942
 943#endif
 944
 945/**
 946 * unlock_page - unlock a locked page
 947 * @page: the page
 948 *
 949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 951 * mechanism between PageLocked pages and PageWriteback pages is shared.
 952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 953 *
 954 * Note that this depends on PG_waiters being the sign bit in the byte
 955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 956 * clear the PG_locked bit and test PG_waiters at the same time fairly
 957 * portably (architectures that do LL/SC can test any bit, while x86 can
 958 * test the sign bit).
 959 */
 960void unlock_page(struct page *page)
 961{
 962        BUILD_BUG_ON(PG_waiters != 7);
 963        page = compound_head(page);
 964        VM_BUG_ON_PAGE(!PageLocked(page), page);
 965        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 966                wake_up_page_bit(page, PG_locked);
 967}
 968EXPORT_SYMBOL(unlock_page);
 969
 970/**
 971 * end_page_writeback - end writeback against a page
 972 * @page: the page
 973 */
 974void end_page_writeback(struct page *page)
 975{
 976        /*
 977         * TestClearPageReclaim could be used here but it is an atomic
 978         * operation and overkill in this particular case. Failing to
 979         * shuffle a page marked for immediate reclaim is too mild to
 980         * justify taking an atomic operation penalty at the end of
 981         * ever page writeback.
 982         */
 983        if (PageReclaim(page)) {
 984                ClearPageReclaim(page);
 985                rotate_reclaimable_page(page);
 986        }
 987
 988        if (!test_clear_page_writeback(page))
 989                BUG();
 990
 991        smp_mb__after_atomic();
 992        wake_up_page(page, PG_writeback);
 993}
 994EXPORT_SYMBOL(end_page_writeback);
 995
 996/*
 997 * After completing I/O on a page, call this routine to update the page
 998 * flags appropriately
 999 */
1000void page_endio(struct page *page, bool is_write, int err)
1001{
1002        if (!is_write) {
1003                if (!err) {
1004                        SetPageUptodate(page);
1005                } else {
1006                        ClearPageUptodate(page);
1007                        SetPageError(page);
1008                }
1009                unlock_page(page);
1010        } else {
1011                if (err) {
1012                        struct address_space *mapping;
1013
1014                        SetPageError(page);
1015                        mapping = page_mapping(page);
1016                        if (mapping)
1017                                mapping_set_error(mapping, err);
1018                }
1019                end_page_writeback(page);
1020        }
1021}
1022EXPORT_SYMBOL_GPL(page_endio);
1023
1024/**
1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1026 * @__page: the page to lock
1027 */
1028void __lock_page(struct page *__page)
1029{
1030        struct page *page = compound_head(__page);
1031        wait_queue_head_t *q = page_waitqueue(page);
1032        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1033}
1034EXPORT_SYMBOL(__lock_page);
1035
1036int __lock_page_killable(struct page *__page)
1037{
1038        struct page *page = compound_head(__page);
1039        wait_queue_head_t *q = page_waitqueue(page);
1040        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1041}
1042EXPORT_SYMBOL_GPL(__lock_page_killable);
1043
1044/*
1045 * Return values:
1046 * 1 - page is locked; mmap_sem is still held.
1047 * 0 - page is not locked.
1048 *     mmap_sem has been released (up_read()), unless flags had both
1049 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050 *     which case mmap_sem is still held.
1051 *
1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053 * with the page locked and the mmap_sem unperturbed.
1054 */
1055int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1056                         unsigned int flags)
1057{
1058        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1059                /*
1060                 * CAUTION! In this case, mmap_sem is not released
1061                 * even though return 0.
1062                 */
1063                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1064                        return 0;
1065
1066                up_read(&mm->mmap_sem);
1067                if (flags & FAULT_FLAG_KILLABLE)
1068                        wait_on_page_locked_killable(page);
1069                else
1070                        wait_on_page_locked(page);
1071                return 0;
1072        } else {
1073                if (flags & FAULT_FLAG_KILLABLE) {
1074                        int ret;
1075
1076                        ret = __lock_page_killable(page);
1077                        if (ret) {
1078                                up_read(&mm->mmap_sem);
1079                                return 0;
1080                        }
1081                } else
1082                        __lock_page(page);
1083                return 1;
1084        }
1085}
1086
1087/**
1088 * page_cache_next_hole - find the next hole (not-present entry)
1089 * @mapping: mapping
1090 * @index: index
1091 * @max_scan: maximum range to search
1092 *
1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094 * lowest indexed hole.
1095 *
1096 * Returns: the index of the hole if found, otherwise returns an index
1097 * outside of the set specified (in which case 'return - index >=
1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1099 * be returned.
1100 *
1101 * page_cache_next_hole may be called under rcu_read_lock. However,
1102 * like radix_tree_gang_lookup, this will not atomically search a
1103 * snapshot of the tree at a single point in time. For example, if a
1104 * hole is created at index 5, then subsequently a hole is created at
1105 * index 10, page_cache_next_hole covering both indexes may return 10
1106 * if called under rcu_read_lock.
1107 */
1108pgoff_t page_cache_next_hole(struct address_space *mapping,
1109                             pgoff_t index, unsigned long max_scan)
1110{
1111        unsigned long i;
1112
1113        for (i = 0; i < max_scan; i++) {
1114                struct page *page;
1115
1116                page = radix_tree_lookup(&mapping->page_tree, index);
1117                if (!page || radix_tree_exceptional_entry(page))
1118                        break;
1119                index++;
1120                if (index == 0)
1121                        break;
1122        }
1123
1124        return index;
1125}
1126EXPORT_SYMBOL(page_cache_next_hole);
1127
1128/**
1129 * page_cache_prev_hole - find the prev hole (not-present entry)
1130 * @mapping: mapping
1131 * @index: index
1132 * @max_scan: maximum range to search
1133 *
1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1135 * the first hole.
1136 *
1137 * Returns: the index of the hole if found, otherwise returns an index
1138 * outside of the set specified (in which case 'index - return >=
1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1140 * will be returned.
1141 *
1142 * page_cache_prev_hole may be called under rcu_read_lock. However,
1143 * like radix_tree_gang_lookup, this will not atomically search a
1144 * snapshot of the tree at a single point in time. For example, if a
1145 * hole is created at index 10, then subsequently a hole is created at
1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147 * called under rcu_read_lock.
1148 */
1149pgoff_t page_cache_prev_hole(struct address_space *mapping,
1150                             pgoff_t index, unsigned long max_scan)
1151{
1152        unsigned long i;
1153
1154        for (i = 0; i < max_scan; i++) {
1155                struct page *page;
1156
1157                page = radix_tree_lookup(&mapping->page_tree, index);
1158                if (!page || radix_tree_exceptional_entry(page))
1159                        break;
1160                index--;
1161                if (index == ULONG_MAX)
1162                        break;
1163        }
1164
1165        return index;
1166}
1167EXPORT_SYMBOL(page_cache_prev_hole);
1168
1169/**
1170 * find_get_entry - find and get a page cache entry
1171 * @mapping: the address_space to search
1172 * @offset: the page cache index
1173 *
1174 * Looks up the page cache slot at @mapping & @offset.  If there is a
1175 * page cache page, it is returned with an increased refcount.
1176 *
1177 * If the slot holds a shadow entry of a previously evicted page, or a
1178 * swap entry from shmem/tmpfs, it is returned.
1179 *
1180 * Otherwise, %NULL is returned.
1181 */
1182struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1183{
1184        void **pagep;
1185        struct page *head, *page;
1186
1187        rcu_read_lock();
1188repeat:
1189        page = NULL;
1190        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1191        if (pagep) {
1192                page = radix_tree_deref_slot(pagep);
1193                if (unlikely(!page))
1194                        goto out;
1195                if (radix_tree_exception(page)) {
1196                        if (radix_tree_deref_retry(page))
1197                                goto repeat;
1198                        /*
1199                         * A shadow entry of a recently evicted page,
1200                         * or a swap entry from shmem/tmpfs.  Return
1201                         * it without attempting to raise page count.
1202                         */
1203                        goto out;
1204                }
1205
1206                head = compound_head(page);
1207                if (!page_cache_get_speculative(head))
1208                        goto repeat;
1209
1210                /* The page was split under us? */
1211                if (compound_head(page) != head) {
1212                        put_page(head);
1213                        goto repeat;
1214                }
1215
1216                /*
1217                 * Has the page moved?
1218                 * This is part of the lockless pagecache protocol. See
1219                 * include/linux/pagemap.h for details.
1220                 */
1221                if (unlikely(page != *pagep)) {
1222                        put_page(head);
1223                        goto repeat;
1224                }
1225        }
1226out:
1227        rcu_read_unlock();
1228
1229        return page;
1230}
1231EXPORT_SYMBOL(find_get_entry);
1232
1233/**
1234 * find_lock_entry - locate, pin and lock a page cache entry
1235 * @mapping: the address_space to search
1236 * @offset: the page cache index
1237 *
1238 * Looks up the page cache slot at @mapping & @offset.  If there is a
1239 * page cache page, it is returned locked and with an increased
1240 * refcount.
1241 *
1242 * If the slot holds a shadow entry of a previously evicted page, or a
1243 * swap entry from shmem/tmpfs, it is returned.
1244 *
1245 * Otherwise, %NULL is returned.
1246 *
1247 * find_lock_entry() may sleep.
1248 */
1249struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1250{
1251        struct page *page;
1252
1253repeat:
1254        page = find_get_entry(mapping, offset);
1255        if (page && !radix_tree_exception(page)) {
1256                lock_page(page);
1257                /* Has the page been truncated? */
1258                if (unlikely(page_mapping(page) != mapping)) {
1259                        unlock_page(page);
1260                        put_page(page);
1261                        goto repeat;
1262                }
1263                VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1264        }
1265        return page;
1266}
1267EXPORT_SYMBOL(find_lock_entry);
1268
1269/**
1270 * pagecache_get_page - find and get a page reference
1271 * @mapping: the address_space to search
1272 * @offset: the page index
1273 * @fgp_flags: PCG flags
1274 * @gfp_mask: gfp mask to use for the page cache data page allocation
1275 *
1276 * Looks up the page cache slot at @mapping & @offset.
1277 *
1278 * PCG flags modify how the page is returned.
1279 *
1280 * FGP_ACCESSED: the page will be marked accessed
1281 * FGP_LOCK: Page is return locked
1282 * FGP_CREAT: If page is not present then a new page is allocated using
1283 *              @gfp_mask and added to the page cache and the VM's LRU
1284 *              list. The page is returned locked and with an increased
1285 *              refcount. Otherwise, %NULL is returned.
1286 *
1287 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1288 * if the GFP flags specified for FGP_CREAT are atomic.
1289 *
1290 * If there is a page cache page, it is returned with an increased refcount.
1291 */
1292struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1293        int fgp_flags, gfp_t gfp_mask)
1294{
1295        struct page *page;
1296
1297repeat:
1298        page = find_get_entry(mapping, offset);
1299        if (radix_tree_exceptional_entry(page))
1300                page = NULL;
1301        if (!page)
1302                goto no_page;
1303
1304        if (fgp_flags & FGP_LOCK) {
1305                if (fgp_flags & FGP_NOWAIT) {
1306                        if (!trylock_page(page)) {
1307                                put_page(page);
1308                                return NULL;
1309                        }
1310                } else {
1311                        lock_page(page);
1312                }
1313
1314                /* Has the page been truncated? */
1315                if (unlikely(page->mapping != mapping)) {
1316                        unlock_page(page);
1317                        put_page(page);
1318                        goto repeat;
1319                }
1320                VM_BUG_ON_PAGE(page->index != offset, page);
1321        }
1322
1323        if (page && (fgp_flags & FGP_ACCESSED))
1324                mark_page_accessed(page);
1325
1326no_page:
1327        if (!page && (fgp_flags & FGP_CREAT)) {
1328                int err;
1329                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1330                        gfp_mask |= __GFP_WRITE;
1331                if (fgp_flags & FGP_NOFS)
1332                        gfp_mask &= ~__GFP_FS;
1333
1334                page = __page_cache_alloc(gfp_mask);
1335                if (!page)
1336                        return NULL;
1337
1338                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1339                        fgp_flags |= FGP_LOCK;
1340
1341                /* Init accessed so avoid atomic mark_page_accessed later */
1342                if (fgp_flags & FGP_ACCESSED)
1343                        __SetPageReferenced(page);
1344
1345                err = add_to_page_cache_lru(page, mapping, offset,
1346                                gfp_mask & GFP_RECLAIM_MASK);
1347                if (unlikely(err)) {
1348                        put_page(page);
1349                        page = NULL;
1350                        if (err == -EEXIST)
1351                                goto repeat;
1352                }
1353        }
1354
1355        return page;
1356}
1357EXPORT_SYMBOL(pagecache_get_page);
1358
1359/**
1360 * find_get_entries - gang pagecache lookup
1361 * @mapping:    The address_space to search
1362 * @start:      The starting page cache index
1363 * @nr_entries: The maximum number of entries
1364 * @entries:    Where the resulting entries are placed
1365 * @indices:    The cache indices corresponding to the entries in @entries
1366 *
1367 * find_get_entries() will search for and return a group of up to
1368 * @nr_entries entries in the mapping.  The entries are placed at
1369 * @entries.  find_get_entries() takes a reference against any actual
1370 * pages it returns.
1371 *
1372 * The search returns a group of mapping-contiguous page cache entries
1373 * with ascending indexes.  There may be holes in the indices due to
1374 * not-present pages.
1375 *
1376 * Any shadow entries of evicted pages, or swap entries from
1377 * shmem/tmpfs, are included in the returned array.
1378 *
1379 * find_get_entries() returns the number of pages and shadow entries
1380 * which were found.
1381 */
1382unsigned find_get_entries(struct address_space *mapping,
1383                          pgoff_t start, unsigned int nr_entries,
1384                          struct page **entries, pgoff_t *indices)
1385{
1386        void **slot;
1387        unsigned int ret = 0;
1388        struct radix_tree_iter iter;
1389
1390        if (!nr_entries)
1391                return 0;
1392
1393        rcu_read_lock();
1394        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1395                struct page *head, *page;
1396repeat:
1397                page = radix_tree_deref_slot(slot);
1398                if (unlikely(!page))
1399                        continue;
1400                if (radix_tree_exception(page)) {
1401                        if (radix_tree_deref_retry(page)) {
1402                                slot = radix_tree_iter_retry(&iter);
1403                                continue;
1404                        }
1405                        /*
1406                         * A shadow entry of a recently evicted page, a swap
1407                         * entry from shmem/tmpfs or a DAX entry.  Return it
1408                         * without attempting to raise page count.
1409                         */
1410                        goto export;
1411                }
1412
1413                head = compound_head(page);
1414                if (!page_cache_get_speculative(head))
1415                        goto repeat;
1416
1417                /* The page was split under us? */
1418                if (compound_head(page) != head) {
1419                        put_page(head);
1420                        goto repeat;
1421                }
1422
1423                /* Has the page moved? */
1424                if (unlikely(page != *slot)) {
1425                        put_page(head);
1426                        goto repeat;
1427                }
1428export:
1429                indices[ret] = iter.index;
1430                entries[ret] = page;
1431                if (++ret == nr_entries)
1432                        break;
1433        }
1434        rcu_read_unlock();
1435        return ret;
1436}
1437
1438/**
1439 * find_get_pages - gang pagecache lookup
1440 * @mapping:    The address_space to search
1441 * @start:      The starting page index
1442 * @nr_pages:   The maximum number of pages
1443 * @pages:      Where the resulting pages are placed
1444 *
1445 * find_get_pages() will search for and return a group of up to
1446 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1447 * find_get_pages() takes a reference against the returned pages.
1448 *
1449 * The search returns a group of mapping-contiguous pages with ascending
1450 * indexes.  There may be holes in the indices due to not-present pages.
1451 *
1452 * find_get_pages() returns the number of pages which were found.
1453 */
1454unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1455                            unsigned int nr_pages, struct page **pages)
1456{
1457        struct radix_tree_iter iter;
1458        void **slot;
1459        unsigned ret = 0;
1460
1461        if (unlikely(!nr_pages))
1462                return 0;
1463
1464        rcu_read_lock();
1465        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1466                struct page *head, *page;
1467repeat:
1468                page = radix_tree_deref_slot(slot);
1469                if (unlikely(!page))
1470                        continue;
1471
1472                if (radix_tree_exception(page)) {
1473                        if (radix_tree_deref_retry(page)) {
1474                                slot = radix_tree_iter_retry(&iter);
1475                                continue;
1476                        }
1477                        /*
1478                         * A shadow entry of a recently evicted page,
1479                         * or a swap entry from shmem/tmpfs.  Skip
1480                         * over it.
1481                         */
1482                        continue;
1483                }
1484
1485                head = compound_head(page);
1486                if (!page_cache_get_speculative(head))
1487                        goto repeat;
1488
1489                /* The page was split under us? */
1490                if (compound_head(page) != head) {
1491                        put_page(head);
1492                        goto repeat;
1493                }
1494
1495                /* Has the page moved? */
1496                if (unlikely(page != *slot)) {
1497                        put_page(head);
1498                        goto repeat;
1499                }
1500
1501                pages[ret] = page;
1502                if (++ret == nr_pages)
1503                        break;
1504        }
1505
1506        rcu_read_unlock();
1507        return ret;
1508}
1509
1510/**
1511 * find_get_pages_contig - gang contiguous pagecache lookup
1512 * @mapping:    The address_space to search
1513 * @index:      The starting page index
1514 * @nr_pages:   The maximum number of pages
1515 * @pages:      Where the resulting pages are placed
1516 *
1517 * find_get_pages_contig() works exactly like find_get_pages(), except
1518 * that the returned number of pages are guaranteed to be contiguous.
1519 *
1520 * find_get_pages_contig() returns the number of pages which were found.
1521 */
1522unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1523                               unsigned int nr_pages, struct page **pages)
1524{
1525        struct radix_tree_iter iter;
1526        void **slot;
1527        unsigned int ret = 0;
1528
1529        if (unlikely(!nr_pages))
1530                return 0;
1531
1532        rcu_read_lock();
1533        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1534                struct page *head, *page;
1535repeat:
1536                page = radix_tree_deref_slot(slot);
1537                /* The hole, there no reason to continue */
1538                if (unlikely(!page))
1539                        break;
1540
1541                if (radix_tree_exception(page)) {
1542                        if (radix_tree_deref_retry(page)) {
1543                                slot = radix_tree_iter_retry(&iter);
1544                                continue;
1545                        }
1546                        /*
1547                         * A shadow entry of a recently evicted page,
1548                         * or a swap entry from shmem/tmpfs.  Stop
1549                         * looking for contiguous pages.
1550                         */
1551                        break;
1552                }
1553
1554                head = compound_head(page);
1555                if (!page_cache_get_speculative(head))
1556                        goto repeat;
1557
1558                /* The page was split under us? */
1559                if (compound_head(page) != head) {
1560                        put_page(head);
1561                        goto repeat;
1562                }
1563
1564                /* Has the page moved? */
1565                if (unlikely(page != *slot)) {
1566                        put_page(head);
1567                        goto repeat;
1568                }
1569
1570                /*
1571                 * must check mapping and index after taking the ref.
1572                 * otherwise we can get both false positives and false
1573                 * negatives, which is just confusing to the caller.
1574                 */
1575                if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1576                        put_page(page);
1577                        break;
1578                }
1579
1580                pages[ret] = page;
1581                if (++ret == nr_pages)
1582                        break;
1583        }
1584        rcu_read_unlock();
1585        return ret;
1586}
1587EXPORT_SYMBOL(find_get_pages_contig);
1588
1589/**
1590 * find_get_pages_tag - find and return pages that match @tag
1591 * @mapping:    the address_space to search
1592 * @index:      the starting page index
1593 * @tag:        the tag index
1594 * @nr_pages:   the maximum number of pages
1595 * @pages:      where the resulting pages are placed
1596 *
1597 * Like find_get_pages, except we only return pages which are tagged with
1598 * @tag.   We update @index to index the next page for the traversal.
1599 */
1600unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1601                        int tag, unsigned int nr_pages, struct page **pages)
1602{
1603        struct radix_tree_iter iter;
1604        void **slot;
1605        unsigned ret = 0;
1606
1607        if (unlikely(!nr_pages))
1608                return 0;
1609
1610        rcu_read_lock();
1611        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1612                                   &iter, *index, tag) {
1613                struct page *head, *page;
1614repeat:
1615                page = radix_tree_deref_slot(slot);
1616                if (unlikely(!page))
1617                        continue;
1618
1619                if (radix_tree_exception(page)) {
1620                        if (radix_tree_deref_retry(page)) {
1621                                slot = radix_tree_iter_retry(&iter);
1622                                continue;
1623                        }
1624                        /*
1625                         * A shadow entry of a recently evicted page.
1626                         *
1627                         * Those entries should never be tagged, but
1628                         * this tree walk is lockless and the tags are
1629                         * looked up in bulk, one radix tree node at a
1630                         * time, so there is a sizable window for page
1631                         * reclaim to evict a page we saw tagged.
1632                         *
1633                         * Skip over it.
1634                         */
1635                        continue;
1636                }
1637
1638                head = compound_head(page);
1639                if (!page_cache_get_speculative(head))
1640                        goto repeat;
1641
1642                /* The page was split under us? */
1643                if (compound_head(page) != head) {
1644                        put_page(head);
1645                        goto repeat;
1646                }
1647
1648                /* Has the page moved? */
1649                if (unlikely(page != *slot)) {
1650                        put_page(head);
1651                        goto repeat;
1652                }
1653
1654                pages[ret] = page;
1655                if (++ret == nr_pages)
1656                        break;
1657        }
1658
1659        rcu_read_unlock();
1660
1661        if (ret)
1662                *index = pages[ret - 1]->index + 1;
1663
1664        return ret;
1665}
1666EXPORT_SYMBOL(find_get_pages_tag);
1667
1668/**
1669 * find_get_entries_tag - find and return entries that match @tag
1670 * @mapping:    the address_space to search
1671 * @start:      the starting page cache index
1672 * @tag:        the tag index
1673 * @nr_entries: the maximum number of entries
1674 * @entries:    where the resulting entries are placed
1675 * @indices:    the cache indices corresponding to the entries in @entries
1676 *
1677 * Like find_get_entries, except we only return entries which are tagged with
1678 * @tag.
1679 */
1680unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1681                        int tag, unsigned int nr_entries,
1682                        struct page **entries, pgoff_t *indices)
1683{
1684        void **slot;
1685        unsigned int ret = 0;
1686        struct radix_tree_iter iter;
1687
1688        if (!nr_entries)
1689                return 0;
1690
1691        rcu_read_lock();
1692        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1693                                   &iter, start, tag) {
1694                struct page *head, *page;
1695repeat:
1696                page = radix_tree_deref_slot(slot);
1697                if (unlikely(!page))
1698                        continue;
1699                if (radix_tree_exception(page)) {
1700                        if (radix_tree_deref_retry(page)) {
1701                                slot = radix_tree_iter_retry(&iter);
1702                                continue;
1703                        }
1704
1705                        /*
1706                         * A shadow entry of a recently evicted page, a swap
1707                         * entry from shmem/tmpfs or a DAX entry.  Return it
1708                         * without attempting to raise page count.
1709                         */
1710                        goto export;
1711                }
1712
1713                head = compound_head(page);
1714                if (!page_cache_get_speculative(head))
1715                        goto repeat;
1716
1717                /* The page was split under us? */
1718                if (compound_head(page) != head) {
1719                        put_page(head);
1720                        goto repeat;
1721                }
1722
1723                /* Has the page moved? */
1724                if (unlikely(page != *slot)) {
1725                        put_page(head);
1726                        goto repeat;
1727                }
1728export:
1729                indices[ret] = iter.index;
1730                entries[ret] = page;
1731                if (++ret == nr_entries)
1732                        break;
1733        }
1734        rcu_read_unlock();
1735        return ret;
1736}
1737EXPORT_SYMBOL(find_get_entries_tag);
1738
1739/*
1740 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1741 * a _large_ part of the i/o request. Imagine the worst scenario:
1742 *
1743 *      ---R__________________________________________B__________
1744 *         ^ reading here                             ^ bad block(assume 4k)
1745 *
1746 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1747 * => failing the whole request => read(R) => read(R+1) =>
1748 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1749 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1750 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1751 *
1752 * It is going insane. Fix it by quickly scaling down the readahead size.
1753 */
1754static void shrink_readahead_size_eio(struct file *filp,
1755                                        struct file_ra_state *ra)
1756{
1757        ra->ra_pages /= 4;
1758}
1759
1760/**
1761 * do_generic_file_read - generic file read routine
1762 * @filp:       the file to read
1763 * @ppos:       current file position
1764 * @iter:       data destination
1765 * @written:    already copied
1766 *
1767 * This is a generic file read routine, and uses the
1768 * mapping->a_ops->readpage() function for the actual low-level stuff.
1769 *
1770 * This is really ugly. But the goto's actually try to clarify some
1771 * of the logic when it comes to error handling etc.
1772 */
1773static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1774                struct iov_iter *iter, ssize_t written)
1775{
1776        struct address_space *mapping = filp->f_mapping;
1777        struct inode *inode = mapping->host;
1778        struct file_ra_state *ra = &filp->f_ra;
1779        pgoff_t index;
1780        pgoff_t last_index;
1781        pgoff_t prev_index;
1782        unsigned long offset;      /* offset into pagecache page */
1783        unsigned int prev_offset;
1784        int error = 0;
1785
1786        if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1787                return 0;
1788        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1789
1790        index = *ppos >> PAGE_SHIFT;
1791        prev_index = ra->prev_pos >> PAGE_SHIFT;
1792        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1793        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1794        offset = *ppos & ~PAGE_MASK;
1795
1796        for (;;) {
1797                struct page *page;
1798                pgoff_t end_index;
1799                loff_t isize;
1800                unsigned long nr, ret;
1801
1802                cond_resched();
1803find_page:
1804                if (fatal_signal_pending(current)) {
1805                        error = -EINTR;
1806                        goto out;
1807                }
1808
1809                page = find_get_page(mapping, index);
1810                if (!page) {
1811                        page_cache_sync_readahead(mapping,
1812                                        ra, filp,
1813                                        index, last_index - index);
1814                        page = find_get_page(mapping, index);
1815                        if (unlikely(page == NULL))
1816                                goto no_cached_page;
1817                }
1818                if (PageReadahead(page)) {
1819                        page_cache_async_readahead(mapping,
1820                                        ra, filp, page,
1821                                        index, last_index - index);
1822                }
1823                if (!PageUptodate(page)) {
1824                        /*
1825                         * See comment in do_read_cache_page on why
1826                         * wait_on_page_locked is used to avoid unnecessarily
1827                         * serialisations and why it's safe.
1828                         */
1829                        error = wait_on_page_locked_killable(page);
1830                        if (unlikely(error))
1831                                goto readpage_error;
1832                        if (PageUptodate(page))
1833                                goto page_ok;
1834
1835                        if (inode->i_blkbits == PAGE_SHIFT ||
1836                                        !mapping->a_ops->is_partially_uptodate)
1837                                goto page_not_up_to_date;
1838                        /* pipes can't handle partially uptodate pages */
1839                        if (unlikely(iter->type & ITER_PIPE))
1840                                goto page_not_up_to_date;
1841                        if (!trylock_page(page))
1842                                goto page_not_up_to_date;
1843                        /* Did it get truncated before we got the lock? */
1844                        if (!page->mapping)
1845                                goto page_not_up_to_date_locked;
1846                        if (!mapping->a_ops->is_partially_uptodate(page,
1847                                                        offset, iter->count))
1848                                goto page_not_up_to_date_locked;
1849                        unlock_page(page);
1850                }
1851page_ok:
1852                /*
1853                 * i_size must be checked after we know the page is Uptodate.
1854                 *
1855                 * Checking i_size after the check allows us to calculate
1856                 * the correct value for "nr", which means the zero-filled
1857                 * part of the page is not copied back to userspace (unless
1858                 * another truncate extends the file - this is desired though).
1859                 */
1860
1861                isize = i_size_read(inode);
1862                end_index = (isize - 1) >> PAGE_SHIFT;
1863                if (unlikely(!isize || index > end_index)) {
1864                        put_page(page);
1865                        goto out;
1866                }
1867
1868                /* nr is the maximum number of bytes to copy from this page */
1869                nr = PAGE_SIZE;
1870                if (index == end_index) {
1871                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
1872                        if (nr <= offset) {
1873                                put_page(page);
1874                                goto out;
1875                        }
1876                }
1877                nr = nr - offset;
1878
1879                /* If users can be writing to this page using arbitrary
1880                 * virtual addresses, take care about potential aliasing
1881                 * before reading the page on the kernel side.
1882                 */
1883                if (mapping_writably_mapped(mapping))
1884                        flush_dcache_page(page);
1885
1886                /*
1887                 * When a sequential read accesses a page several times,
1888                 * only mark it as accessed the first time.
1889                 */
1890                if (prev_index != index || offset != prev_offset)
1891                        mark_page_accessed(page);
1892                prev_index = index;
1893
1894                /*
1895                 * Ok, we have the page, and it's up-to-date, so
1896                 * now we can copy it to user space...
1897                 */
1898
1899                ret = copy_page_to_iter(page, offset, nr, iter);
1900                offset += ret;
1901                index += offset >> PAGE_SHIFT;
1902                offset &= ~PAGE_MASK;
1903                prev_offset = offset;
1904
1905                put_page(page);
1906                written += ret;
1907                if (!iov_iter_count(iter))
1908                        goto out;
1909                if (ret < nr) {
1910                        error = -EFAULT;
1911                        goto out;
1912                }
1913                continue;
1914
1915page_not_up_to_date:
1916                /* Get exclusive access to the page ... */
1917                error = lock_page_killable(page);
1918                if (unlikely(error))
1919                        goto readpage_error;
1920
1921page_not_up_to_date_locked:
1922                /* Did it get truncated before we got the lock? */
1923                if (!page->mapping) {
1924                        unlock_page(page);
1925                        put_page(page);
1926                        continue;
1927                }
1928
1929                /* Did somebody else fill it already? */
1930                if (PageUptodate(page)) {
1931                        unlock_page(page);
1932                        goto page_ok;
1933                }
1934
1935readpage:
1936                /*
1937                 * A previous I/O error may have been due to temporary
1938                 * failures, eg. multipath errors.
1939                 * PG_error will be set again if readpage fails.
1940                 */
1941                ClearPageError(page);
1942                /* Start the actual read. The read will unlock the page. */
1943                error = mapping->a_ops->readpage(filp, page);
1944
1945                if (unlikely(error)) {
1946                        if (error == AOP_TRUNCATED_PAGE) {
1947                                put_page(page);
1948                                error = 0;
1949                                goto find_page;
1950                        }
1951                        goto readpage_error;
1952                }
1953
1954                if (!PageUptodate(page)) {
1955                        error = lock_page_killable(page);
1956                        if (unlikely(error))
1957                                goto readpage_error;
1958                        if (!PageUptodate(page)) {
1959                                if (page->mapping == NULL) {
1960                                        /*
1961                                         * invalidate_mapping_pages got it
1962                                         */
1963                                        unlock_page(page);
1964                                        put_page(page);
1965                                        goto find_page;
1966                                }
1967                                unlock_page(page);
1968                                shrink_readahead_size_eio(filp, ra);
1969                                error = -EIO;
1970                                goto readpage_error;
1971                        }
1972                        unlock_page(page);
1973                }
1974
1975                goto page_ok;
1976
1977readpage_error:
1978                /* UHHUH! A synchronous read error occurred. Report it */
1979                put_page(page);
1980                goto out;
1981
1982no_cached_page:
1983                /*
1984                 * Ok, it wasn't cached, so we need to create a new
1985                 * page..
1986                 */
1987                page = page_cache_alloc_cold(mapping);
1988                if (!page) {
1989                        error = -ENOMEM;
1990                        goto out;
1991                }
1992                error = add_to_page_cache_lru(page, mapping, index,
1993                                mapping_gfp_constraint(mapping, GFP_KERNEL));
1994                if (error) {
1995                        put_page(page);
1996                        if (error == -EEXIST) {
1997                                error = 0;
1998                                goto find_page;
1999                        }
2000                        goto out;
2001                }
2002                goto readpage;
2003        }
2004
2005out:
2006        ra->prev_pos = prev_index;
2007        ra->prev_pos <<= PAGE_SHIFT;
2008        ra->prev_pos |= prev_offset;
2009
2010        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2011        file_accessed(filp);
2012        return written ? written : error;
2013}
2014
2015/**
2016 * generic_file_read_iter - generic filesystem read routine
2017 * @iocb:       kernel I/O control block
2018 * @iter:       destination for the data read
2019 *
2020 * This is the "read_iter()" routine for all filesystems
2021 * that can use the page cache directly.
2022 */
2023ssize_t
2024generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2025{
2026        struct file *file = iocb->ki_filp;
2027        ssize_t retval = 0;
2028        size_t count = iov_iter_count(iter);
2029
2030        if (!count)
2031                goto out; /* skip atime */
2032
2033        if (iocb->ki_flags & IOCB_DIRECT) {
2034                struct address_space *mapping = file->f_mapping;
2035                struct inode *inode = mapping->host;
2036                struct iov_iter data = *iter;
2037                loff_t size;
2038
2039                size = i_size_read(inode);
2040                retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2041                                        iocb->ki_pos + count - 1);
2042                if (retval < 0)
2043                        goto out;
2044
2045                file_accessed(file);
2046
2047                retval = mapping->a_ops->direct_IO(iocb, &data);
2048                if (retval >= 0) {
2049                        iocb->ki_pos += retval;
2050                        iov_iter_advance(iter, retval);
2051                }
2052
2053                /*
2054                 * Btrfs can have a short DIO read if we encounter
2055                 * compressed extents, so if there was an error, or if
2056                 * we've already read everything we wanted to, or if
2057                 * there was a short read because we hit EOF, go ahead
2058                 * and return.  Otherwise fallthrough to buffered io for
2059                 * the rest of the read.  Buffered reads will not work for
2060                 * DAX files, so don't bother trying.
2061                 */
2062                if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2063                    IS_DAX(inode))
2064                        goto out;
2065        }
2066
2067        retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2068out:
2069        return retval;
2070}
2071EXPORT_SYMBOL(generic_file_read_iter);
2072
2073#ifdef CONFIG_MMU
2074/**
2075 * page_cache_read - adds requested page to the page cache if not already there
2076 * @file:       file to read
2077 * @offset:     page index
2078 * @gfp_mask:   memory allocation flags
2079 *
2080 * This adds the requested page to the page cache if it isn't already there,
2081 * and schedules an I/O to read in its contents from disk.
2082 */
2083static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2084{
2085        struct address_space *mapping = file->f_mapping;
2086        struct page *page;
2087        int ret;
2088
2089        do {
2090                page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2091                if (!page)
2092                        return -ENOMEM;
2093
2094                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2095                if (ret == 0)
2096                        ret = mapping->a_ops->readpage(file, page);
2097                else if (ret == -EEXIST)
2098                        ret = 0; /* losing race to add is OK */
2099
2100                put_page(page);
2101
2102        } while (ret == AOP_TRUNCATED_PAGE);
2103
2104        return ret;
2105}
2106
2107#define MMAP_LOTSAMISS  (100)
2108
2109/*
2110 * Synchronous readahead happens when we don't even find
2111 * a page in the page cache at all.
2112 */
2113static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2114                                   struct file_ra_state *ra,
2115                                   struct file *file,
2116                                   pgoff_t offset)
2117{
2118        struct address_space *mapping = file->f_mapping;
2119
2120        /* If we don't want any read-ahead, don't bother */
2121        if (vma->vm_flags & VM_RAND_READ)
2122                return;
2123        if (!ra->ra_pages)
2124                return;
2125
2126        if (vma->vm_flags & VM_SEQ_READ) {
2127                page_cache_sync_readahead(mapping, ra, file, offset,
2128                                          ra->ra_pages);
2129                return;
2130        }
2131
2132        /* Avoid banging the cache line if not needed */
2133        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2134                ra->mmap_miss++;
2135
2136        /*
2137         * Do we miss much more than hit in this file? If so,
2138         * stop bothering with read-ahead. It will only hurt.
2139         */
2140        if (ra->mmap_miss > MMAP_LOTSAMISS)
2141                return;
2142
2143        /*
2144         * mmap read-around
2145         */
2146        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2147        ra->size = ra->ra_pages;
2148        ra->async_size = ra->ra_pages / 4;
2149        ra_submit(ra, mapping, file);
2150}
2151
2152/*
2153 * Asynchronous readahead happens when we find the page and PG_readahead,
2154 * so we want to possibly extend the readahead further..
2155 */
2156static void do_async_mmap_readahead(struct vm_area_struct *vma,
2157                                    struct file_ra_state *ra,
2158                                    struct file *file,
2159                                    struct page *page,
2160                                    pgoff_t offset)
2161{
2162        struct address_space *mapping = file->f_mapping;
2163
2164        /* If we don't want any read-ahead, don't bother */
2165        if (vma->vm_flags & VM_RAND_READ)
2166                return;
2167        if (ra->mmap_miss > 0)
2168                ra->mmap_miss--;
2169        if (PageReadahead(page))
2170                page_cache_async_readahead(mapping, ra, file,
2171                                           page, offset, ra->ra_pages);
2172}
2173
2174/**
2175 * filemap_fault - read in file data for page fault handling
2176 * @vmf:        struct vm_fault containing details of the fault
2177 *
2178 * filemap_fault() is invoked via the vma operations vector for a
2179 * mapped memory region to read in file data during a page fault.
2180 *
2181 * The goto's are kind of ugly, but this streamlines the normal case of having
2182 * it in the page cache, and handles the special cases reasonably without
2183 * having a lot of duplicated code.
2184 *
2185 * vma->vm_mm->mmap_sem must be held on entry.
2186 *
2187 * If our return value has VM_FAULT_RETRY set, it's because
2188 * lock_page_or_retry() returned 0.
2189 * The mmap_sem has usually been released in this case.
2190 * See __lock_page_or_retry() for the exception.
2191 *
2192 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2193 * has not been released.
2194 *
2195 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2196 */
2197int filemap_fault(struct vm_fault *vmf)
2198{
2199        int error;
2200        struct file *file = vmf->vma->vm_file;
2201        struct address_space *mapping = file->f_mapping;
2202        struct file_ra_state *ra = &file->f_ra;
2203        struct inode *inode = mapping->host;
2204        pgoff_t offset = vmf->pgoff;
2205        struct page *page;
2206        loff_t size;
2207        int ret = 0;
2208
2209        size = round_up(i_size_read(inode), PAGE_SIZE);
2210        if (offset >= size >> PAGE_SHIFT)
2211                return VM_FAULT_SIGBUS;
2212
2213        /*
2214         * Do we have something in the page cache already?
2215         */
2216        page = find_get_page(mapping, offset);
2217        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2218                /*
2219                 * We found the page, so try async readahead before
2220                 * waiting for the lock.
2221                 */
2222                do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2223        } else if (!page) {
2224                /* No page in the page cache at all */
2225                do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2226                count_vm_event(PGMAJFAULT);
2227                mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2228                ret = VM_FAULT_MAJOR;
2229retry_find:
2230                page = find_get_page(mapping, offset);
2231                if (!page)
2232                        goto no_cached_page;
2233        }
2234
2235        if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2236                put_page(page);
2237                return ret | VM_FAULT_RETRY;
2238        }
2239
2240        /* Did it get truncated? */
2241        if (unlikely(page->mapping != mapping)) {
2242                unlock_page(page);
2243                put_page(page);
2244                goto retry_find;
2245        }
2246        VM_BUG_ON_PAGE(page->index != offset, page);
2247
2248        /*
2249         * We have a locked page in the page cache, now we need to check
2250         * that it's up-to-date. If not, it is going to be due to an error.
2251         */
2252        if (unlikely(!PageUptodate(page)))
2253                goto page_not_uptodate;
2254
2255        /*
2256         * Found the page and have a reference on it.
2257         * We must recheck i_size under page lock.
2258         */
2259        size = round_up(i_size_read(inode), PAGE_SIZE);
2260        if (unlikely(offset >= size >> PAGE_SHIFT)) {
2261                unlock_page(page);
2262                put_page(page);
2263                return VM_FAULT_SIGBUS;
2264        }
2265
2266        vmf->page = page;
2267        return ret | VM_FAULT_LOCKED;
2268
2269no_cached_page:
2270        /*
2271         * We're only likely to ever get here if MADV_RANDOM is in
2272         * effect.
2273         */
2274        error = page_cache_read(file, offset, vmf->gfp_mask);
2275
2276        /*
2277         * The page we want has now been added to the page cache.
2278         * In the unlikely event that someone removed it in the
2279         * meantime, we'll just come back here and read it again.
2280         */
2281        if (error >= 0)
2282                goto retry_find;
2283
2284        /*
2285         * An error return from page_cache_read can result if the
2286         * system is low on memory, or a problem occurs while trying
2287         * to schedule I/O.
2288         */
2289        if (error == -ENOMEM)
2290                return VM_FAULT_OOM;
2291        return VM_FAULT_SIGBUS;
2292
2293page_not_uptodate:
2294        /*
2295         * Umm, take care of errors if the page isn't up-to-date.
2296         * Try to re-read it _once_. We do this synchronously,
2297         * because there really aren't any performance issues here
2298         * and we need to check for errors.
2299         */
2300        ClearPageError(page);
2301        error = mapping->a_ops->readpage(file, page);
2302        if (!error) {
2303                wait_on_page_locked(page);
2304                if (!PageUptodate(page))
2305                        error = -EIO;
2306        }
2307        put_page(page);
2308
2309        if (!error || error == AOP_TRUNCATED_PAGE)
2310                goto retry_find;
2311
2312        /* Things didn't work out. Return zero to tell the mm layer so. */
2313        shrink_readahead_size_eio(file, ra);
2314        return VM_FAULT_SIGBUS;
2315}
2316EXPORT_SYMBOL(filemap_fault);
2317
2318void filemap_map_pages(struct vm_fault *vmf,
2319                pgoff_t start_pgoff, pgoff_t end_pgoff)
2320{
2321        struct radix_tree_iter iter;
2322        void **slot;
2323        struct file *file = vmf->vma->vm_file;
2324        struct address_space *mapping = file->f_mapping;
2325        pgoff_t last_pgoff = start_pgoff;
2326        loff_t size;
2327        struct page *head, *page;
2328
2329        rcu_read_lock();
2330        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2331                        start_pgoff) {
2332                if (iter.index > end_pgoff)
2333                        break;
2334repeat:
2335                page = radix_tree_deref_slot(slot);
2336                if (unlikely(!page))
2337                        goto next;
2338                if (radix_tree_exception(page)) {
2339                        if (radix_tree_deref_retry(page)) {
2340                                slot = radix_tree_iter_retry(&iter);
2341                                continue;
2342                        }
2343                        goto next;
2344                }
2345
2346                head = compound_head(page);
2347                if (!page_cache_get_speculative(head))
2348                        goto repeat;
2349
2350                /* The page was split under us? */
2351                if (compound_head(page) != head) {
2352                        put_page(head);
2353                        goto repeat;
2354                }
2355
2356                /* Has the page moved? */
2357                if (unlikely(page != *slot)) {
2358                        put_page(head);
2359                        goto repeat;
2360                }
2361
2362                if (!PageUptodate(page) ||
2363                                PageReadahead(page) ||
2364                                PageHWPoison(page))
2365                        goto skip;
2366                if (!trylock_page(page))
2367                        goto skip;
2368
2369                if (page->mapping != mapping || !PageUptodate(page))
2370                        goto unlock;
2371
2372                size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2373                if (page->index >= size >> PAGE_SHIFT)
2374                        goto unlock;
2375
2376                if (file->f_ra.mmap_miss > 0)
2377                        file->f_ra.mmap_miss--;
2378
2379                vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2380                if (vmf->pte)
2381                        vmf->pte += iter.index - last_pgoff;
2382                last_pgoff = iter.index;
2383                if (alloc_set_pte(vmf, NULL, page))
2384                        goto unlock;
2385                unlock_page(page);
2386                goto next;
2387unlock:
2388                unlock_page(page);
2389skip:
2390                put_page(page);
2391next:
2392                /* Huge page is mapped? No need to proceed. */
2393                if (pmd_trans_huge(*vmf->pmd))
2394                        break;
2395                if (iter.index == end_pgoff)
2396                        break;
2397        }
2398        rcu_read_unlock();
2399}
2400EXPORT_SYMBOL(filemap_map_pages);
2401
2402int filemap_page_mkwrite(struct vm_fault *vmf)
2403{
2404        struct page *page = vmf->page;
2405        struct inode *inode = file_inode(vmf->vma->vm_file);
2406        int ret = VM_FAULT_LOCKED;
2407
2408        sb_start_pagefault(inode->i_sb);
2409        file_update_time(vmf->vma->vm_file);
2410        lock_page(page);
2411        if (page->mapping != inode->i_mapping) {
2412                unlock_page(page);
2413                ret = VM_FAULT_NOPAGE;
2414                goto out;
2415        }
2416        /*
2417         * We mark the page dirty already here so that when freeze is in
2418         * progress, we are guaranteed that writeback during freezing will
2419         * see the dirty page and writeprotect it again.
2420         */
2421        set_page_dirty(page);
2422        wait_for_stable_page(page);
2423out:
2424        sb_end_pagefault(inode->i_sb);
2425        return ret;
2426}
2427EXPORT_SYMBOL(filemap_page_mkwrite);
2428
2429const struct vm_operations_struct generic_file_vm_ops = {
2430        .fault          = filemap_fault,
2431        .map_pages      = filemap_map_pages,
2432        .page_mkwrite   = filemap_page_mkwrite,
2433};
2434
2435/* This is used for a general mmap of a disk file */
2436
2437int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2438{
2439        struct address_space *mapping = file->f_mapping;
2440
2441        if (!mapping->a_ops->readpage)
2442                return -ENOEXEC;
2443        file_accessed(file);
2444        vma->vm_ops = &generic_file_vm_ops;
2445        return 0;
2446}
2447
2448/*
2449 * This is for filesystems which do not implement ->writepage.
2450 */
2451int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2452{
2453        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2454                return -EINVAL;
2455        return generic_file_mmap(file, vma);
2456}
2457#else
2458int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2459{
2460        return -ENOSYS;
2461}
2462int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2463{
2464        return -ENOSYS;
2465}
2466#endif /* CONFIG_MMU */
2467
2468EXPORT_SYMBOL(generic_file_mmap);
2469EXPORT_SYMBOL(generic_file_readonly_mmap);
2470
2471static struct page *wait_on_page_read(struct page *page)
2472{
2473        if (!IS_ERR(page)) {
2474                wait_on_page_locked(page);
2475                if (!PageUptodate(page)) {
2476                        put_page(page);
2477                        page = ERR_PTR(-EIO);
2478                }
2479        }
2480        return page;
2481}
2482
2483static struct page *do_read_cache_page(struct address_space *mapping,
2484                                pgoff_t index,
2485                                int (*filler)(void *, struct page *),
2486                                void *data,
2487                                gfp_t gfp)
2488{
2489        struct page *page;
2490        int err;
2491repeat:
2492        page = find_get_page(mapping, index);
2493        if (!page) {
2494                page = __page_cache_alloc(gfp | __GFP_COLD);
2495                if (!page)
2496                        return ERR_PTR(-ENOMEM);
2497                err = add_to_page_cache_lru(page, mapping, index, gfp);
2498                if (unlikely(err)) {
2499                        put_page(page);
2500                        if (err == -EEXIST)
2501                                goto repeat;
2502                        /* Presumably ENOMEM for radix tree node */
2503                        return ERR_PTR(err);
2504                }
2505
2506filler:
2507                err = filler(data, page);
2508                if (err < 0) {
2509                        put_page(page);
2510                        return ERR_PTR(err);
2511                }
2512
2513                page = wait_on_page_read(page);
2514                if (IS_ERR(page))
2515                        return page;
2516                goto out;
2517        }
2518        if (PageUptodate(page))
2519                goto out;
2520
2521        /*
2522         * Page is not up to date and may be locked due one of the following
2523         * case a: Page is being filled and the page lock is held
2524         * case b: Read/write error clearing the page uptodate status
2525         * case c: Truncation in progress (page locked)
2526         * case d: Reclaim in progress
2527         *
2528         * Case a, the page will be up to date when the page is unlocked.
2529         *    There is no need to serialise on the page lock here as the page
2530         *    is pinned so the lock gives no additional protection. Even if the
2531         *    the page is truncated, the data is still valid if PageUptodate as
2532         *    it's a race vs truncate race.
2533         * Case b, the page will not be up to date
2534         * Case c, the page may be truncated but in itself, the data may still
2535         *    be valid after IO completes as it's a read vs truncate race. The
2536         *    operation must restart if the page is not uptodate on unlock but
2537         *    otherwise serialising on page lock to stabilise the mapping gives
2538         *    no additional guarantees to the caller as the page lock is
2539         *    released before return.
2540         * Case d, similar to truncation. If reclaim holds the page lock, it
2541         *    will be a race with remove_mapping that determines if the mapping
2542         *    is valid on unlock but otherwise the data is valid and there is
2543         *    no need to serialise with page lock.
2544         *
2545         * As the page lock gives no additional guarantee, we optimistically
2546         * wait on the page to be unlocked and check if it's up to date and
2547         * use the page if it is. Otherwise, the page lock is required to
2548         * distinguish between the different cases. The motivation is that we
2549         * avoid spurious serialisations and wakeups when multiple processes
2550         * wait on the same page for IO to complete.
2551         */
2552        wait_on_page_locked(page);
2553        if (PageUptodate(page))
2554                goto out;
2555
2556        /* Distinguish between all the cases under the safety of the lock */
2557        lock_page(page);
2558
2559        /* Case c or d, restart the operation */
2560        if (!page->mapping) {
2561                unlock_page(page);
2562                put_page(page);
2563                goto repeat;
2564        }
2565
2566        /* Someone else locked and filled the page in a very small window */
2567        if (PageUptodate(page)) {
2568                unlock_page(page);
2569                goto out;
2570        }
2571        goto filler;
2572
2573out:
2574        mark_page_accessed(page);
2575        return page;
2576}
2577
2578/**
2579 * read_cache_page - read into page cache, fill it if needed
2580 * @mapping:    the page's address_space
2581 * @index:      the page index
2582 * @filler:     function to perform the read
2583 * @data:       first arg to filler(data, page) function, often left as NULL
2584 *
2585 * Read into the page cache. If a page already exists, and PageUptodate() is
2586 * not set, try to fill the page and wait for it to become unlocked.
2587 *
2588 * If the page does not get brought uptodate, return -EIO.
2589 */
2590struct page *read_cache_page(struct address_space *mapping,
2591                                pgoff_t index,
2592                                int (*filler)(void *, struct page *),
2593                                void *data)
2594{
2595        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2596}
2597EXPORT_SYMBOL(read_cache_page);
2598
2599/**
2600 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2601 * @mapping:    the page's address_space
2602 * @index:      the page index
2603 * @gfp:        the page allocator flags to use if allocating
2604 *
2605 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2606 * any new page allocations done using the specified allocation flags.
2607 *
2608 * If the page does not get brought uptodate, return -EIO.
2609 */
2610struct page *read_cache_page_gfp(struct address_space *mapping,
2611                                pgoff_t index,
2612                                gfp_t gfp)
2613{
2614        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2615
2616        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2617}
2618EXPORT_SYMBOL(read_cache_page_gfp);
2619
2620/*
2621 * Performs necessary checks before doing a write
2622 *
2623 * Can adjust writing position or amount of bytes to write.
2624 * Returns appropriate error code that caller should return or
2625 * zero in case that write should be allowed.
2626 */
2627inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2628{
2629        struct file *file = iocb->ki_filp;
2630        struct inode *inode = file->f_mapping->host;
2631        unsigned long limit = rlimit(RLIMIT_FSIZE);
2632        loff_t pos;
2633
2634        if (!iov_iter_count(from))
2635                return 0;
2636
2637        /* FIXME: this is for backwards compatibility with 2.4 */
2638        if (iocb->ki_flags & IOCB_APPEND)
2639                iocb->ki_pos = i_size_read(inode);
2640
2641        pos = iocb->ki_pos;
2642
2643        if (limit != RLIM_INFINITY) {
2644                if (iocb->ki_pos >= limit) {
2645                        send_sig(SIGXFSZ, current, 0);
2646                        return -EFBIG;
2647                }
2648                iov_iter_truncate(from, limit - (unsigned long)pos);
2649        }
2650
2651        /*
2652         * LFS rule
2653         */
2654        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2655                                !(file->f_flags & O_LARGEFILE))) {
2656                if (pos >= MAX_NON_LFS)
2657                        return -EFBIG;
2658                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2659        }
2660
2661        /*
2662         * Are we about to exceed the fs block limit ?
2663         *
2664         * If we have written data it becomes a short write.  If we have
2665         * exceeded without writing data we send a signal and return EFBIG.
2666         * Linus frestrict idea will clean these up nicely..
2667         */
2668        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2669                return -EFBIG;
2670
2671        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2672        return iov_iter_count(from);
2673}
2674EXPORT_SYMBOL(generic_write_checks);
2675
2676int pagecache_write_begin(struct file *file, struct address_space *mapping,
2677                                loff_t pos, unsigned len, unsigned flags,
2678                                struct page **pagep, void **fsdata)
2679{
2680        const struct address_space_operations *aops = mapping->a_ops;
2681
2682        return aops->write_begin(file, mapping, pos, len, flags,
2683                                                        pagep, fsdata);
2684}
2685EXPORT_SYMBOL(pagecache_write_begin);
2686
2687int pagecache_write_end(struct file *file, struct address_space *mapping,
2688                                loff_t pos, unsigned len, unsigned copied,
2689                                struct page *page, void *fsdata)
2690{
2691        const struct address_space_operations *aops = mapping->a_ops;
2692
2693        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2694}
2695EXPORT_SYMBOL(pagecache_write_end);
2696
2697ssize_t
2698generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2699{
2700        struct file     *file = iocb->ki_filp;
2701        struct address_space *mapping = file->f_mapping;
2702        struct inode    *inode = mapping->host;
2703        loff_t          pos = iocb->ki_pos;
2704        ssize_t         written;
2705        size_t          write_len;
2706        pgoff_t         end;
2707        struct iov_iter data;
2708
2709        write_len = iov_iter_count(from);
2710        end = (pos + write_len - 1) >> PAGE_SHIFT;
2711
2712        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2713        if (written)
2714                goto out;
2715
2716        /*
2717         * After a write we want buffered reads to be sure to go to disk to get
2718         * the new data.  We invalidate clean cached page from the region we're
2719         * about to write.  We do this *before* the write so that we can return
2720         * without clobbering -EIOCBQUEUED from ->direct_IO().
2721         */
2722        if (mapping->nrpages) {
2723                written = invalidate_inode_pages2_range(mapping,
2724                                        pos >> PAGE_SHIFT, end);
2725                /*
2726                 * If a page can not be invalidated, return 0 to fall back
2727                 * to buffered write.
2728                 */
2729                if (written) {
2730                        if (written == -EBUSY)
2731                                return 0;
2732                        goto out;
2733                }
2734        }
2735
2736        data = *from;
2737        written = mapping->a_ops->direct_IO(iocb, &data);
2738
2739        /*
2740         * Finally, try again to invalidate clean pages which might have been
2741         * cached by non-direct readahead, or faulted in by get_user_pages()
2742         * if the source of the write was an mmap'ed region of the file
2743         * we're writing.  Either one is a pretty crazy thing to do,
2744         * so we don't support it 100%.  If this invalidation
2745         * fails, tough, the write still worked...
2746         */
2747        if (mapping->nrpages) {
2748                invalidate_inode_pages2_range(mapping,
2749                                              pos >> PAGE_SHIFT, end);
2750        }
2751
2752        if (written > 0) {
2753                pos += written;
2754                iov_iter_advance(from, written);
2755                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2756                        i_size_write(inode, pos);
2757                        mark_inode_dirty(inode);
2758                }
2759                iocb->ki_pos = pos;
2760        }
2761out:
2762        return written;
2763}
2764EXPORT_SYMBOL(generic_file_direct_write);
2765
2766/*
2767 * Find or create a page at the given pagecache position. Return the locked
2768 * page. This function is specifically for buffered writes.
2769 */
2770struct page *grab_cache_page_write_begin(struct address_space *mapping,
2771                                        pgoff_t index, unsigned flags)
2772{
2773        struct page *page;
2774        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2775
2776        if (flags & AOP_FLAG_NOFS)
2777                fgp_flags |= FGP_NOFS;
2778
2779        page = pagecache_get_page(mapping, index, fgp_flags,
2780                        mapping_gfp_mask(mapping));
2781        if (page)
2782                wait_for_stable_page(page);
2783
2784        return page;
2785}
2786EXPORT_SYMBOL(grab_cache_page_write_begin);
2787
2788ssize_t generic_perform_write(struct file *file,
2789                                struct iov_iter *i, loff_t pos)
2790{
2791        struct address_space *mapping = file->f_mapping;
2792        const struct address_space_operations *a_ops = mapping->a_ops;
2793        long status = 0;
2794        ssize_t written = 0;
2795        unsigned int flags = 0;
2796
2797        /*
2798         * Copies from kernel address space cannot fail (NFSD is a big user).
2799         */
2800        if (!iter_is_iovec(i))
2801                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2802
2803        do {
2804                struct page *page;
2805                unsigned long offset;   /* Offset into pagecache page */
2806                unsigned long bytes;    /* Bytes to write to page */
2807                size_t copied;          /* Bytes copied from user */
2808                void *fsdata;
2809
2810                offset = (pos & (PAGE_SIZE - 1));
2811                bytes = min_t(unsigned long, PAGE_SIZE - offset,
2812                                                iov_iter_count(i));
2813
2814again:
2815                /*
2816                 * Bring in the user page that we will copy from _first_.
2817                 * Otherwise there's a nasty deadlock on copying from the
2818                 * same page as we're writing to, without it being marked
2819                 * up-to-date.
2820                 *
2821                 * Not only is this an optimisation, but it is also required
2822                 * to check that the address is actually valid, when atomic
2823                 * usercopies are used, below.
2824                 */
2825                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2826                        status = -EFAULT;
2827                        break;
2828                }
2829
2830                if (fatal_signal_pending(current)) {
2831                        status = -EINTR;
2832                        break;
2833                }
2834
2835                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2836                                                &page, &fsdata);
2837                if (unlikely(status < 0))
2838                        break;
2839
2840                if (mapping_writably_mapped(mapping))
2841                        flush_dcache_page(page);
2842
2843                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2844                flush_dcache_page(page);
2845
2846                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2847                                                page, fsdata);
2848                if (unlikely(status < 0))
2849                        break;
2850                copied = status;
2851
2852                cond_resched();
2853
2854                iov_iter_advance(i, copied);
2855                if (unlikely(copied == 0)) {
2856                        /*
2857                         * If we were unable to copy any data at all, we must
2858                         * fall back to a single segment length write.
2859                         *
2860                         * If we didn't fallback here, we could livelock
2861                         * because not all segments in the iov can be copied at
2862                         * once without a pagefault.
2863                         */
2864                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
2865                                                iov_iter_single_seg_count(i));
2866                        goto again;
2867                }
2868                pos += copied;
2869                written += copied;
2870
2871                balance_dirty_pages_ratelimited(mapping);
2872        } while (iov_iter_count(i));
2873
2874        return written ? written : status;
2875}
2876EXPORT_SYMBOL(generic_perform_write);
2877
2878/**
2879 * __generic_file_write_iter - write data to a file
2880 * @iocb:       IO state structure (file, offset, etc.)
2881 * @from:       iov_iter with data to write
2882 *
2883 * This function does all the work needed for actually writing data to a
2884 * file. It does all basic checks, removes SUID from the file, updates
2885 * modification times and calls proper subroutines depending on whether we
2886 * do direct IO or a standard buffered write.
2887 *
2888 * It expects i_mutex to be grabbed unless we work on a block device or similar
2889 * object which does not need locking at all.
2890 *
2891 * This function does *not* take care of syncing data in case of O_SYNC write.
2892 * A caller has to handle it. This is mainly due to the fact that we want to
2893 * avoid syncing under i_mutex.
2894 */
2895ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2896{
2897        struct file *file = iocb->ki_filp;
2898        struct address_space * mapping = file->f_mapping;
2899        struct inode    *inode = mapping->host;
2900        ssize_t         written = 0;
2901        ssize_t         err;
2902        ssize_t         status;
2903
2904        /* We can write back this queue in page reclaim */
2905        current->backing_dev_info = inode_to_bdi(inode);
2906        err = file_remove_privs(file);
2907        if (err)
2908                goto out;
2909
2910        err = file_update_time(file);
2911        if (err)
2912                goto out;
2913
2914        if (iocb->ki_flags & IOCB_DIRECT) {
2915                loff_t pos, endbyte;
2916
2917                written = generic_file_direct_write(iocb, from);
2918                /*
2919                 * If the write stopped short of completing, fall back to
2920                 * buffered writes.  Some filesystems do this for writes to
2921                 * holes, for example.  For DAX files, a buffered write will
2922                 * not succeed (even if it did, DAX does not handle dirty
2923                 * page-cache pages correctly).
2924                 */
2925                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2926                        goto out;
2927
2928                status = generic_perform_write(file, from, pos = iocb->ki_pos);
2929                /*
2930                 * If generic_perform_write() returned a synchronous error
2931                 * then we want to return the number of bytes which were
2932                 * direct-written, or the error code if that was zero.  Note
2933                 * that this differs from normal direct-io semantics, which
2934                 * will return -EFOO even if some bytes were written.
2935                 */
2936                if (unlikely(status < 0)) {
2937                        err = status;
2938                        goto out;
2939                }
2940                /*
2941                 * We need to ensure that the page cache pages are written to
2942                 * disk and invalidated to preserve the expected O_DIRECT
2943                 * semantics.
2944                 */
2945                endbyte = pos + status - 1;
2946                err = filemap_write_and_wait_range(mapping, pos, endbyte);
2947                if (err == 0) {
2948                        iocb->ki_pos = endbyte + 1;
2949                        written += status;
2950                        invalidate_mapping_pages(mapping,
2951                                                 pos >> PAGE_SHIFT,
2952                                                 endbyte >> PAGE_SHIFT);
2953                } else {
2954                        /*
2955                         * We don't know how much we wrote, so just return
2956                         * the number of bytes which were direct-written
2957                         */
2958                }
2959        } else {
2960                written = generic_perform_write(file, from, iocb->ki_pos);
2961                if (likely(written > 0))
2962                        iocb->ki_pos += written;
2963        }
2964out:
2965        current->backing_dev_info = NULL;
2966        return written ? written : err;
2967}
2968EXPORT_SYMBOL(__generic_file_write_iter);
2969
2970/**
2971 * generic_file_write_iter - write data to a file
2972 * @iocb:       IO state structure
2973 * @from:       iov_iter with data to write
2974 *
2975 * This is a wrapper around __generic_file_write_iter() to be used by most
2976 * filesystems. It takes care of syncing the file in case of O_SYNC file
2977 * and acquires i_mutex as needed.
2978 */
2979ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2980{
2981        struct file *file = iocb->ki_filp;
2982        struct inode *inode = file->f_mapping->host;
2983        ssize_t ret;
2984
2985        inode_lock(inode);
2986        ret = generic_write_checks(iocb, from);
2987        if (ret > 0)
2988                ret = __generic_file_write_iter(iocb, from);
2989        inode_unlock(inode);
2990
2991        if (ret > 0)
2992                ret = generic_write_sync(iocb, ret);
2993        return ret;
2994}
2995EXPORT_SYMBOL(generic_file_write_iter);
2996
2997/**
2998 * try_to_release_page() - release old fs-specific metadata on a page
2999 *
3000 * @page: the page which the kernel is trying to free
3001 * @gfp_mask: memory allocation flags (and I/O mode)
3002 *
3003 * The address_space is to try to release any data against the page
3004 * (presumably at page->private).  If the release was successful, return `1'.
3005 * Otherwise return zero.
3006 *
3007 * This may also be called if PG_fscache is set on a page, indicating that the
3008 * page is known to the local caching routines.
3009 *
3010 * The @gfp_mask argument specifies whether I/O may be performed to release
3011 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3012 *
3013 */
3014int try_to_release_page(struct page *page, gfp_t gfp_mask)
3015{
3016        struct address_space * const mapping = page->mapping;
3017
3018        BUG_ON(!PageLocked(page));
3019        if (PageWriteback(page))
3020                return 0;
3021
3022        if (mapping && mapping->a_ops->releasepage)
3023                return mapping->a_ops->releasepage(page, gfp_mask);
3024        return try_to_free_buffers(page);
3025}
3026
3027EXPORT_SYMBOL(try_to_release_page);
3028