linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/ksm.h>
  53#include <linux/rmap.h>
  54#include <linux/export.h>
  55#include <linux/delayacct.h>
  56#include <linux/init.h>
  57#include <linux/pfn_t.h>
  58#include <linux/writeback.h>
  59#include <linux/memcontrol.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/kallsyms.h>
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71
  72#include <asm/io.h>
  73#include <asm/mmu_context.h>
  74#include <asm/pgalloc.h>
  75#include <linux/uaccess.h>
  76#include <asm/tlb.h>
  77#include <asm/tlbflush.h>
  78#include <asm/pgtable.h>
  79
  80#include "internal.h"
  81
  82#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  83#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  84#endif
  85
  86#ifndef CONFIG_NEED_MULTIPLE_NODES
  87/* use the per-pgdat data instead for discontigmem - mbligh */
  88unsigned long max_mapnr;
  89EXPORT_SYMBOL(max_mapnr);
  90
  91struct page *mem_map;
  92EXPORT_SYMBOL(mem_map);
  93#endif
  94
  95/*
  96 * A number of key systems in x86 including ioremap() rely on the assumption
  97 * that high_memory defines the upper bound on direct map memory, then end
  98 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 100 * and ZONE_HIGHMEM.
 101 */
 102void *high_memory;
 103EXPORT_SYMBOL(high_memory);
 104
 105/*
 106 * Randomize the address space (stacks, mmaps, brk, etc.).
 107 *
 108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 109 *   as ancient (libc5 based) binaries can segfault. )
 110 */
 111int randomize_va_space __read_mostly =
 112#ifdef CONFIG_COMPAT_BRK
 113                                        1;
 114#else
 115                                        2;
 116#endif
 117
 118static int __init disable_randmaps(char *s)
 119{
 120        randomize_va_space = 0;
 121        return 1;
 122}
 123__setup("norandmaps", disable_randmaps);
 124
 125unsigned long zero_pfn __read_mostly;
 126EXPORT_SYMBOL(zero_pfn);
 127
 128unsigned long highest_memmap_pfn __read_mostly;
 129
 130/*
 131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 132 */
 133static int __init init_zero_pfn(void)
 134{
 135        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 136        return 0;
 137}
 138core_initcall(init_zero_pfn);
 139
 140
 141#if defined(SPLIT_RSS_COUNTING)
 142
 143void sync_mm_rss(struct mm_struct *mm)
 144{
 145        int i;
 146
 147        for (i = 0; i < NR_MM_COUNTERS; i++) {
 148                if (current->rss_stat.count[i]) {
 149                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 150                        current->rss_stat.count[i] = 0;
 151                }
 152        }
 153        current->rss_stat.events = 0;
 154}
 155
 156static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 157{
 158        struct task_struct *task = current;
 159
 160        if (likely(task->mm == mm))
 161                task->rss_stat.count[member] += val;
 162        else
 163                add_mm_counter(mm, member, val);
 164}
 165#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 166#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 167
 168/* sync counter once per 64 page faults */
 169#define TASK_RSS_EVENTS_THRESH  (64)
 170static void check_sync_rss_stat(struct task_struct *task)
 171{
 172        if (unlikely(task != current))
 173                return;
 174        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 175                sync_mm_rss(task->mm);
 176}
 177#else /* SPLIT_RSS_COUNTING */
 178
 179#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 180#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 181
 182static void check_sync_rss_stat(struct task_struct *task)
 183{
 184}
 185
 186#endif /* SPLIT_RSS_COUNTING */
 187
 188#ifdef HAVE_GENERIC_MMU_GATHER
 189
 190static bool tlb_next_batch(struct mmu_gather *tlb)
 191{
 192        struct mmu_gather_batch *batch;
 193
 194        batch = tlb->active;
 195        if (batch->next) {
 196                tlb->active = batch->next;
 197                return true;
 198        }
 199
 200        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 201                return false;
 202
 203        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 204        if (!batch)
 205                return false;
 206
 207        tlb->batch_count++;
 208        batch->next = NULL;
 209        batch->nr   = 0;
 210        batch->max  = MAX_GATHER_BATCH;
 211
 212        tlb->active->next = batch;
 213        tlb->active = batch;
 214
 215        return true;
 216}
 217
 218/* tlb_gather_mmu
 219 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 220 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 221 *      users and we're going to destroy the full address space (exit/execve).
 222 */
 223void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 224{
 225        tlb->mm = mm;
 226
 227        /* Is it from 0 to ~0? */
 228        tlb->fullmm     = !(start | (end+1));
 229        tlb->need_flush_all = 0;
 230        tlb->local.next = NULL;
 231        tlb->local.nr   = 0;
 232        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 233        tlb->active     = &tlb->local;
 234        tlb->batch_count = 0;
 235
 236#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 237        tlb->batch = NULL;
 238#endif
 239        tlb->page_size = 0;
 240
 241        __tlb_reset_range(tlb);
 242}
 243
 244static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 245{
 246        if (!tlb->end)
 247                return;
 248
 249        tlb_flush(tlb);
 250        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 251#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 252        tlb_table_flush(tlb);
 253#endif
 254        __tlb_reset_range(tlb);
 255}
 256
 257static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 258{
 259        struct mmu_gather_batch *batch;
 260
 261        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 262                free_pages_and_swap_cache(batch->pages, batch->nr);
 263                batch->nr = 0;
 264        }
 265        tlb->active = &tlb->local;
 266}
 267
 268void tlb_flush_mmu(struct mmu_gather *tlb)
 269{
 270        tlb_flush_mmu_tlbonly(tlb);
 271        tlb_flush_mmu_free(tlb);
 272}
 273
 274/* tlb_finish_mmu
 275 *      Called at the end of the shootdown operation to free up any resources
 276 *      that were required.
 277 */
 278void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 279{
 280        struct mmu_gather_batch *batch, *next;
 281
 282        tlb_flush_mmu(tlb);
 283
 284        /* keep the page table cache within bounds */
 285        check_pgt_cache();
 286
 287        for (batch = tlb->local.next; batch; batch = next) {
 288                next = batch->next;
 289                free_pages((unsigned long)batch, 0);
 290        }
 291        tlb->local.next = NULL;
 292}
 293
 294/* __tlb_remove_page
 295 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 296 *      handling the additional races in SMP caused by other CPUs caching valid
 297 *      mappings in their TLBs. Returns the number of free page slots left.
 298 *      When out of page slots we must call tlb_flush_mmu().
 299 *returns true if the caller should flush.
 300 */
 301bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 302{
 303        struct mmu_gather_batch *batch;
 304
 305        VM_BUG_ON(!tlb->end);
 306        VM_WARN_ON(tlb->page_size != page_size);
 307
 308        batch = tlb->active;
 309        /*
 310         * Add the page and check if we are full. If so
 311         * force a flush.
 312         */
 313        batch->pages[batch->nr++] = page;
 314        if (batch->nr == batch->max) {
 315                if (!tlb_next_batch(tlb))
 316                        return true;
 317                batch = tlb->active;
 318        }
 319        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 320
 321        return false;
 322}
 323
 324#endif /* HAVE_GENERIC_MMU_GATHER */
 325
 326#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 327
 328/*
 329 * See the comment near struct mmu_table_batch.
 330 */
 331
 332static void tlb_remove_table_smp_sync(void *arg)
 333{
 334        /* Simply deliver the interrupt */
 335}
 336
 337static void tlb_remove_table_one(void *table)
 338{
 339        /*
 340         * This isn't an RCU grace period and hence the page-tables cannot be
 341         * assumed to be actually RCU-freed.
 342         *
 343         * It is however sufficient for software page-table walkers that rely on
 344         * IRQ disabling. See the comment near struct mmu_table_batch.
 345         */
 346        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 347        __tlb_remove_table(table);
 348}
 349
 350static void tlb_remove_table_rcu(struct rcu_head *head)
 351{
 352        struct mmu_table_batch *batch;
 353        int i;
 354
 355        batch = container_of(head, struct mmu_table_batch, rcu);
 356
 357        for (i = 0; i < batch->nr; i++)
 358                __tlb_remove_table(batch->tables[i]);
 359
 360        free_page((unsigned long)batch);
 361}
 362
 363void tlb_table_flush(struct mmu_gather *tlb)
 364{
 365        struct mmu_table_batch **batch = &tlb->batch;
 366
 367        if (*batch) {
 368                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 369                *batch = NULL;
 370        }
 371}
 372
 373void tlb_remove_table(struct mmu_gather *tlb, void *table)
 374{
 375        struct mmu_table_batch **batch = &tlb->batch;
 376
 377        /*
 378         * When there's less then two users of this mm there cannot be a
 379         * concurrent page-table walk.
 380         */
 381        if (atomic_read(&tlb->mm->mm_users) < 2) {
 382                __tlb_remove_table(table);
 383                return;
 384        }
 385
 386        if (*batch == NULL) {
 387                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 388                if (*batch == NULL) {
 389                        tlb_remove_table_one(table);
 390                        return;
 391                }
 392                (*batch)->nr = 0;
 393        }
 394        (*batch)->tables[(*batch)->nr++] = table;
 395        if ((*batch)->nr == MAX_TABLE_BATCH)
 396                tlb_table_flush(tlb);
 397}
 398
 399#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 400
 401/*
 402 * Note: this doesn't free the actual pages themselves. That
 403 * has been handled earlier when unmapping all the memory regions.
 404 */
 405static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 406                           unsigned long addr)
 407{
 408        pgtable_t token = pmd_pgtable(*pmd);
 409        pmd_clear(pmd);
 410        pte_free_tlb(tlb, token, addr);
 411        atomic_long_dec(&tlb->mm->nr_ptes);
 412}
 413
 414static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 415                                unsigned long addr, unsigned long end,
 416                                unsigned long floor, unsigned long ceiling)
 417{
 418        pmd_t *pmd;
 419        unsigned long next;
 420        unsigned long start;
 421
 422        start = addr;
 423        pmd = pmd_offset(pud, addr);
 424        do {
 425                next = pmd_addr_end(addr, end);
 426                if (pmd_none_or_clear_bad(pmd))
 427                        continue;
 428                free_pte_range(tlb, pmd, addr);
 429        } while (pmd++, addr = next, addr != end);
 430
 431        start &= PUD_MASK;
 432        if (start < floor)
 433                return;
 434        if (ceiling) {
 435                ceiling &= PUD_MASK;
 436                if (!ceiling)
 437                        return;
 438        }
 439        if (end - 1 > ceiling - 1)
 440                return;
 441
 442        pmd = pmd_offset(pud, start);
 443        pud_clear(pud);
 444        pmd_free_tlb(tlb, pmd, start);
 445        mm_dec_nr_pmds(tlb->mm);
 446}
 447
 448static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 449                                unsigned long addr, unsigned long end,
 450                                unsigned long floor, unsigned long ceiling)
 451{
 452        pud_t *pud;
 453        unsigned long next;
 454        unsigned long start;
 455
 456        start = addr;
 457        pud = pud_offset(p4d, addr);
 458        do {
 459                next = pud_addr_end(addr, end);
 460                if (pud_none_or_clear_bad(pud))
 461                        continue;
 462                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 463        } while (pud++, addr = next, addr != end);
 464
 465        start &= P4D_MASK;
 466        if (start < floor)
 467                return;
 468        if (ceiling) {
 469                ceiling &= P4D_MASK;
 470                if (!ceiling)
 471                        return;
 472        }
 473        if (end - 1 > ceiling - 1)
 474                return;
 475
 476        pud = pud_offset(p4d, start);
 477        p4d_clear(p4d);
 478        pud_free_tlb(tlb, pud, start);
 479}
 480
 481static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 482                                unsigned long addr, unsigned long end,
 483                                unsigned long floor, unsigned long ceiling)
 484{
 485        p4d_t *p4d;
 486        unsigned long next;
 487        unsigned long start;
 488
 489        start = addr;
 490        p4d = p4d_offset(pgd, addr);
 491        do {
 492                next = p4d_addr_end(addr, end);
 493                if (p4d_none_or_clear_bad(p4d))
 494                        continue;
 495                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 496        } while (p4d++, addr = next, addr != end);
 497
 498        start &= PGDIR_MASK;
 499        if (start < floor)
 500                return;
 501        if (ceiling) {
 502                ceiling &= PGDIR_MASK;
 503                if (!ceiling)
 504                        return;
 505        }
 506        if (end - 1 > ceiling - 1)
 507                return;
 508
 509        p4d = p4d_offset(pgd, start);
 510        pgd_clear(pgd);
 511        p4d_free_tlb(tlb, p4d, start);
 512}
 513
 514/*
 515 * This function frees user-level page tables of a process.
 516 */
 517void free_pgd_range(struct mmu_gather *tlb,
 518                        unsigned long addr, unsigned long end,
 519                        unsigned long floor, unsigned long ceiling)
 520{
 521        pgd_t *pgd;
 522        unsigned long next;
 523
 524        /*
 525         * The next few lines have given us lots of grief...
 526         *
 527         * Why are we testing PMD* at this top level?  Because often
 528         * there will be no work to do at all, and we'd prefer not to
 529         * go all the way down to the bottom just to discover that.
 530         *
 531         * Why all these "- 1"s?  Because 0 represents both the bottom
 532         * of the address space and the top of it (using -1 for the
 533         * top wouldn't help much: the masks would do the wrong thing).
 534         * The rule is that addr 0 and floor 0 refer to the bottom of
 535         * the address space, but end 0 and ceiling 0 refer to the top
 536         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 537         * that end 0 case should be mythical).
 538         *
 539         * Wherever addr is brought up or ceiling brought down, we must
 540         * be careful to reject "the opposite 0" before it confuses the
 541         * subsequent tests.  But what about where end is brought down
 542         * by PMD_SIZE below? no, end can't go down to 0 there.
 543         *
 544         * Whereas we round start (addr) and ceiling down, by different
 545         * masks at different levels, in order to test whether a table
 546         * now has no other vmas using it, so can be freed, we don't
 547         * bother to round floor or end up - the tests don't need that.
 548         */
 549
 550        addr &= PMD_MASK;
 551        if (addr < floor) {
 552                addr += PMD_SIZE;
 553                if (!addr)
 554                        return;
 555        }
 556        if (ceiling) {
 557                ceiling &= PMD_MASK;
 558                if (!ceiling)
 559                        return;
 560        }
 561        if (end - 1 > ceiling - 1)
 562                end -= PMD_SIZE;
 563        if (addr > end - 1)
 564                return;
 565        /*
 566         * We add page table cache pages with PAGE_SIZE,
 567         * (see pte_free_tlb()), flush the tlb if we need
 568         */
 569        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 570        pgd = pgd_offset(tlb->mm, addr);
 571        do {
 572                next = pgd_addr_end(addr, end);
 573                if (pgd_none_or_clear_bad(pgd))
 574                        continue;
 575                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 576        } while (pgd++, addr = next, addr != end);
 577}
 578
 579void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 580                unsigned long floor, unsigned long ceiling)
 581{
 582        while (vma) {
 583                struct vm_area_struct *next = vma->vm_next;
 584                unsigned long addr = vma->vm_start;
 585
 586                /*
 587                 * Hide vma from rmap and truncate_pagecache before freeing
 588                 * pgtables
 589                 */
 590                unlink_anon_vmas(vma);
 591                unlink_file_vma(vma);
 592
 593                if (is_vm_hugetlb_page(vma)) {
 594                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 595                                floor, next ? next->vm_start : ceiling);
 596                } else {
 597                        /*
 598                         * Optimization: gather nearby vmas into one call down
 599                         */
 600                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 601                               && !is_vm_hugetlb_page(next)) {
 602                                vma = next;
 603                                next = vma->vm_next;
 604                                unlink_anon_vmas(vma);
 605                                unlink_file_vma(vma);
 606                        }
 607                        free_pgd_range(tlb, addr, vma->vm_end,
 608                                floor, next ? next->vm_start : ceiling);
 609                }
 610                vma = next;
 611        }
 612}
 613
 614int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 615{
 616        spinlock_t *ptl;
 617        pgtable_t new = pte_alloc_one(mm, address);
 618        if (!new)
 619                return -ENOMEM;
 620
 621        /*
 622         * Ensure all pte setup (eg. pte page lock and page clearing) are
 623         * visible before the pte is made visible to other CPUs by being
 624         * put into page tables.
 625         *
 626         * The other side of the story is the pointer chasing in the page
 627         * table walking code (when walking the page table without locking;
 628         * ie. most of the time). Fortunately, these data accesses consist
 629         * of a chain of data-dependent loads, meaning most CPUs (alpha
 630         * being the notable exception) will already guarantee loads are
 631         * seen in-order. See the alpha page table accessors for the
 632         * smp_read_barrier_depends() barriers in page table walking code.
 633         */
 634        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 635
 636        ptl = pmd_lock(mm, pmd);
 637        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 638                atomic_long_inc(&mm->nr_ptes);
 639                pmd_populate(mm, pmd, new);
 640                new = NULL;
 641        }
 642        spin_unlock(ptl);
 643        if (new)
 644                pte_free(mm, new);
 645        return 0;
 646}
 647
 648int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 649{
 650        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 651        if (!new)
 652                return -ENOMEM;
 653
 654        smp_wmb(); /* See comment in __pte_alloc */
 655
 656        spin_lock(&init_mm.page_table_lock);
 657        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 658                pmd_populate_kernel(&init_mm, pmd, new);
 659                new = NULL;
 660        }
 661        spin_unlock(&init_mm.page_table_lock);
 662        if (new)
 663                pte_free_kernel(&init_mm, new);
 664        return 0;
 665}
 666
 667static inline void init_rss_vec(int *rss)
 668{
 669        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 670}
 671
 672static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 673{
 674        int i;
 675
 676        if (current->mm == mm)
 677                sync_mm_rss(mm);
 678        for (i = 0; i < NR_MM_COUNTERS; i++)
 679                if (rss[i])
 680                        add_mm_counter(mm, i, rss[i]);
 681}
 682
 683/*
 684 * This function is called to print an error when a bad pte
 685 * is found. For example, we might have a PFN-mapped pte in
 686 * a region that doesn't allow it.
 687 *
 688 * The calling function must still handle the error.
 689 */
 690static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 691                          pte_t pte, struct page *page)
 692{
 693        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 694        p4d_t *p4d = p4d_offset(pgd, addr);
 695        pud_t *pud = pud_offset(p4d, addr);
 696        pmd_t *pmd = pmd_offset(pud, addr);
 697        struct address_space *mapping;
 698        pgoff_t index;
 699        static unsigned long resume;
 700        static unsigned long nr_shown;
 701        static unsigned long nr_unshown;
 702
 703        /*
 704         * Allow a burst of 60 reports, then keep quiet for that minute;
 705         * or allow a steady drip of one report per second.
 706         */
 707        if (nr_shown == 60) {
 708                if (time_before(jiffies, resume)) {
 709                        nr_unshown++;
 710                        return;
 711                }
 712                if (nr_unshown) {
 713                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 714                                 nr_unshown);
 715                        nr_unshown = 0;
 716                }
 717                nr_shown = 0;
 718        }
 719        if (nr_shown++ == 0)
 720                resume = jiffies + 60 * HZ;
 721
 722        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 723        index = linear_page_index(vma, addr);
 724
 725        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 726                 current->comm,
 727                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 728        if (page)
 729                dump_page(page, "bad pte");
 730        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 731                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 732        /*
 733         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 734         */
 735        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 736                 vma->vm_file,
 737                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 738                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 739                 mapping ? mapping->a_ops->readpage : NULL);
 740        dump_stack();
 741        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 742}
 743
 744/*
 745 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 746 *
 747 * "Special" mappings do not wish to be associated with a "struct page" (either
 748 * it doesn't exist, or it exists but they don't want to touch it). In this
 749 * case, NULL is returned here. "Normal" mappings do have a struct page.
 750 *
 751 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 752 * pte bit, in which case this function is trivial. Secondly, an architecture
 753 * may not have a spare pte bit, which requires a more complicated scheme,
 754 * described below.
 755 *
 756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 757 * special mapping (even if there are underlying and valid "struct pages").
 758 * COWed pages of a VM_PFNMAP are always normal.
 759 *
 760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 763 * mapping will always honor the rule
 764 *
 765 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 766 *
 767 * And for normal mappings this is false.
 768 *
 769 * This restricts such mappings to be a linear translation from virtual address
 770 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 771 * as the vma is not a COW mapping; in that case, we know that all ptes are
 772 * special (because none can have been COWed).
 773 *
 774 *
 775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 776 *
 777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 778 * page" backing, however the difference is that _all_ pages with a struct
 779 * page (that is, those where pfn_valid is true) are refcounted and considered
 780 * normal pages by the VM. The disadvantage is that pages are refcounted
 781 * (which can be slower and simply not an option for some PFNMAP users). The
 782 * advantage is that we don't have to follow the strict linearity rule of
 783 * PFNMAP mappings in order to support COWable mappings.
 784 *
 785 */
 786#ifdef __HAVE_ARCH_PTE_SPECIAL
 787# define HAVE_PTE_SPECIAL 1
 788#else
 789# define HAVE_PTE_SPECIAL 0
 790#endif
 791struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 792                                pte_t pte)
 793{
 794        unsigned long pfn = pte_pfn(pte);
 795
 796        if (HAVE_PTE_SPECIAL) {
 797                if (likely(!pte_special(pte)))
 798                        goto check_pfn;
 799                if (vma->vm_ops && vma->vm_ops->find_special_page)
 800                        return vma->vm_ops->find_special_page(vma, addr);
 801                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 802                        return NULL;
 803                if (!is_zero_pfn(pfn))
 804                        print_bad_pte(vma, addr, pte, NULL);
 805                return NULL;
 806        }
 807
 808        /* !HAVE_PTE_SPECIAL case follows: */
 809
 810        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 811                if (vma->vm_flags & VM_MIXEDMAP) {
 812                        if (!pfn_valid(pfn))
 813                                return NULL;
 814                        goto out;
 815                } else {
 816                        unsigned long off;
 817                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 818                        if (pfn == vma->vm_pgoff + off)
 819                                return NULL;
 820                        if (!is_cow_mapping(vma->vm_flags))
 821                                return NULL;
 822                }
 823        }
 824
 825        if (is_zero_pfn(pfn))
 826                return NULL;
 827check_pfn:
 828        if (unlikely(pfn > highest_memmap_pfn)) {
 829                print_bad_pte(vma, addr, pte, NULL);
 830                return NULL;
 831        }
 832
 833        /*
 834         * NOTE! We still have PageReserved() pages in the page tables.
 835         * eg. VDSO mappings can cause them to exist.
 836         */
 837out:
 838        return pfn_to_page(pfn);
 839}
 840
 841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 842struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 843                                pmd_t pmd)
 844{
 845        unsigned long pfn = pmd_pfn(pmd);
 846
 847        /*
 848         * There is no pmd_special() but there may be special pmds, e.g.
 849         * in a direct-access (dax) mapping, so let's just replicate the
 850         * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 851         */
 852        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 853                if (vma->vm_flags & VM_MIXEDMAP) {
 854                        if (!pfn_valid(pfn))
 855                                return NULL;
 856                        goto out;
 857                } else {
 858                        unsigned long off;
 859                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 860                        if (pfn == vma->vm_pgoff + off)
 861                                return NULL;
 862                        if (!is_cow_mapping(vma->vm_flags))
 863                                return NULL;
 864                }
 865        }
 866
 867        if (is_zero_pfn(pfn))
 868                return NULL;
 869        if (unlikely(pfn > highest_memmap_pfn))
 870                return NULL;
 871
 872        /*
 873         * NOTE! We still have PageReserved() pages in the page tables.
 874         * eg. VDSO mappings can cause them to exist.
 875         */
 876out:
 877        return pfn_to_page(pfn);
 878}
 879#endif
 880
 881/*
 882 * copy one vm_area from one task to the other. Assumes the page tables
 883 * already present in the new task to be cleared in the whole range
 884 * covered by this vma.
 885 */
 886
 887static inline unsigned long
 888copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 889                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 890                unsigned long addr, int *rss)
 891{
 892        unsigned long vm_flags = vma->vm_flags;
 893        pte_t pte = *src_pte;
 894        struct page *page;
 895
 896        /* pte contains position in swap or file, so copy. */
 897        if (unlikely(!pte_present(pte))) {
 898                swp_entry_t entry = pte_to_swp_entry(pte);
 899
 900                if (likely(!non_swap_entry(entry))) {
 901                        if (swap_duplicate(entry) < 0)
 902                                return entry.val;
 903
 904                        /* make sure dst_mm is on swapoff's mmlist. */
 905                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 906                                spin_lock(&mmlist_lock);
 907                                if (list_empty(&dst_mm->mmlist))
 908                                        list_add(&dst_mm->mmlist,
 909                                                        &src_mm->mmlist);
 910                                spin_unlock(&mmlist_lock);
 911                        }
 912                        rss[MM_SWAPENTS]++;
 913                } else if (is_migration_entry(entry)) {
 914                        page = migration_entry_to_page(entry);
 915
 916                        rss[mm_counter(page)]++;
 917
 918                        if (is_write_migration_entry(entry) &&
 919                                        is_cow_mapping(vm_flags)) {
 920                                /*
 921                                 * COW mappings require pages in both
 922                                 * parent and child to be set to read.
 923                                 */
 924                                make_migration_entry_read(&entry);
 925                                pte = swp_entry_to_pte(entry);
 926                                if (pte_swp_soft_dirty(*src_pte))
 927                                        pte = pte_swp_mksoft_dirty(pte);
 928                                set_pte_at(src_mm, addr, src_pte, pte);
 929                        }
 930                }
 931                goto out_set_pte;
 932        }
 933
 934        /*
 935         * If it's a COW mapping, write protect it both
 936         * in the parent and the child
 937         */
 938        if (is_cow_mapping(vm_flags)) {
 939                ptep_set_wrprotect(src_mm, addr, src_pte);
 940                pte = pte_wrprotect(pte);
 941        }
 942
 943        /*
 944         * If it's a shared mapping, mark it clean in
 945         * the child
 946         */
 947        if (vm_flags & VM_SHARED)
 948                pte = pte_mkclean(pte);
 949        pte = pte_mkold(pte);
 950
 951        page = vm_normal_page(vma, addr, pte);
 952        if (page) {
 953                get_page(page);
 954                page_dup_rmap(page, false);
 955                rss[mm_counter(page)]++;
 956        }
 957
 958out_set_pte:
 959        set_pte_at(dst_mm, addr, dst_pte, pte);
 960        return 0;
 961}
 962
 963static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 964                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 965                   unsigned long addr, unsigned long end)
 966{
 967        pte_t *orig_src_pte, *orig_dst_pte;
 968        pte_t *src_pte, *dst_pte;
 969        spinlock_t *src_ptl, *dst_ptl;
 970        int progress = 0;
 971        int rss[NR_MM_COUNTERS];
 972        swp_entry_t entry = (swp_entry_t){0};
 973
 974again:
 975        init_rss_vec(rss);
 976
 977        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 978        if (!dst_pte)
 979                return -ENOMEM;
 980        src_pte = pte_offset_map(src_pmd, addr);
 981        src_ptl = pte_lockptr(src_mm, src_pmd);
 982        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 983        orig_src_pte = src_pte;
 984        orig_dst_pte = dst_pte;
 985        arch_enter_lazy_mmu_mode();
 986
 987        do {
 988                /*
 989                 * We are holding two locks at this point - either of them
 990                 * could generate latencies in another task on another CPU.
 991                 */
 992                if (progress >= 32) {
 993                        progress = 0;
 994                        if (need_resched() ||
 995                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 996                                break;
 997                }
 998                if (pte_none(*src_pte)) {
 999                        progress++;
1000                        continue;
1001                }
1002                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1003                                                        vma, addr, rss);
1004                if (entry.val)
1005                        break;
1006                progress += 8;
1007        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1008
1009        arch_leave_lazy_mmu_mode();
1010        spin_unlock(src_ptl);
1011        pte_unmap(orig_src_pte);
1012        add_mm_rss_vec(dst_mm, rss);
1013        pte_unmap_unlock(orig_dst_pte, dst_ptl);
1014        cond_resched();
1015
1016        if (entry.val) {
1017                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1018                        return -ENOMEM;
1019                progress = 0;
1020        }
1021        if (addr != end)
1022                goto again;
1023        return 0;
1024}
1025
1026static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1027                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1028                unsigned long addr, unsigned long end)
1029{
1030        pmd_t *src_pmd, *dst_pmd;
1031        unsigned long next;
1032
1033        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1034        if (!dst_pmd)
1035                return -ENOMEM;
1036        src_pmd = pmd_offset(src_pud, addr);
1037        do {
1038                next = pmd_addr_end(addr, end);
1039                if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1040                        int err;
1041                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1042                        err = copy_huge_pmd(dst_mm, src_mm,
1043                                            dst_pmd, src_pmd, addr, vma);
1044                        if (err == -ENOMEM)
1045                                return -ENOMEM;
1046                        if (!err)
1047                                continue;
1048                        /* fall through */
1049                }
1050                if (pmd_none_or_clear_bad(src_pmd))
1051                        continue;
1052                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1053                                                vma, addr, next))
1054                        return -ENOMEM;
1055        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1056        return 0;
1057}
1058
1059static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1061                unsigned long addr, unsigned long end)
1062{
1063        pud_t *src_pud, *dst_pud;
1064        unsigned long next;
1065
1066        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1067        if (!dst_pud)
1068                return -ENOMEM;
1069        src_pud = pud_offset(src_p4d, addr);
1070        do {
1071                next = pud_addr_end(addr, end);
1072                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1073                        int err;
1074
1075                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1076                        err = copy_huge_pud(dst_mm, src_mm,
1077                                            dst_pud, src_pud, addr, vma);
1078                        if (err == -ENOMEM)
1079                                return -ENOMEM;
1080                        if (!err)
1081                                continue;
1082                        /* fall through */
1083                }
1084                if (pud_none_or_clear_bad(src_pud))
1085                        continue;
1086                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1087                                                vma, addr, next))
1088                        return -ENOMEM;
1089        } while (dst_pud++, src_pud++, addr = next, addr != end);
1090        return 0;
1091}
1092
1093static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1095                unsigned long addr, unsigned long end)
1096{
1097        p4d_t *src_p4d, *dst_p4d;
1098        unsigned long next;
1099
1100        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1101        if (!dst_p4d)
1102                return -ENOMEM;
1103        src_p4d = p4d_offset(src_pgd, addr);
1104        do {
1105                next = p4d_addr_end(addr, end);
1106                if (p4d_none_or_clear_bad(src_p4d))
1107                        continue;
1108                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1109                                                vma, addr, next))
1110                        return -ENOMEM;
1111        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1112        return 0;
1113}
1114
1115int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1116                struct vm_area_struct *vma)
1117{
1118        pgd_t *src_pgd, *dst_pgd;
1119        unsigned long next;
1120        unsigned long addr = vma->vm_start;
1121        unsigned long end = vma->vm_end;
1122        unsigned long mmun_start;       /* For mmu_notifiers */
1123        unsigned long mmun_end;         /* For mmu_notifiers */
1124        bool is_cow;
1125        int ret;
1126
1127        /*
1128         * Don't copy ptes where a page fault will fill them correctly.
1129         * Fork becomes much lighter when there are big shared or private
1130         * readonly mappings. The tradeoff is that copy_page_range is more
1131         * efficient than faulting.
1132         */
1133        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1134                        !vma->anon_vma)
1135                return 0;
1136
1137        if (is_vm_hugetlb_page(vma))
1138                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1139
1140        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1141                /*
1142                 * We do not free on error cases below as remove_vma
1143                 * gets called on error from higher level routine
1144                 */
1145                ret = track_pfn_copy(vma);
1146                if (ret)
1147                        return ret;
1148        }
1149
1150        /*
1151         * We need to invalidate the secondary MMU mappings only when
1152         * there could be a permission downgrade on the ptes of the
1153         * parent mm. And a permission downgrade will only happen if
1154         * is_cow_mapping() returns true.
1155         */
1156        is_cow = is_cow_mapping(vma->vm_flags);
1157        mmun_start = addr;
1158        mmun_end   = end;
1159        if (is_cow)
1160                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1161                                                    mmun_end);
1162
1163        ret = 0;
1164        dst_pgd = pgd_offset(dst_mm, addr);
1165        src_pgd = pgd_offset(src_mm, addr);
1166        do {
1167                next = pgd_addr_end(addr, end);
1168                if (pgd_none_or_clear_bad(src_pgd))
1169                        continue;
1170                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1171                                            vma, addr, next))) {
1172                        ret = -ENOMEM;
1173                        break;
1174                }
1175        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1176
1177        if (is_cow)
1178                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1179        return ret;
1180}
1181
1182static unsigned long zap_pte_range(struct mmu_gather *tlb,
1183                                struct vm_area_struct *vma, pmd_t *pmd,
1184                                unsigned long addr, unsigned long end,
1185                                struct zap_details *details)
1186{
1187        struct mm_struct *mm = tlb->mm;
1188        int force_flush = 0;
1189        int rss[NR_MM_COUNTERS];
1190        spinlock_t *ptl;
1191        pte_t *start_pte;
1192        pte_t *pte;
1193        swp_entry_t entry;
1194
1195        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1196again:
1197        init_rss_vec(rss);
1198        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1199        pte = start_pte;
1200        arch_enter_lazy_mmu_mode();
1201        do {
1202                pte_t ptent = *pte;
1203                if (pte_none(ptent))
1204                        continue;
1205
1206                if (pte_present(ptent)) {
1207                        struct page *page;
1208
1209                        page = vm_normal_page(vma, addr, ptent);
1210                        if (unlikely(details) && page) {
1211                                /*
1212                                 * unmap_shared_mapping_pages() wants to
1213                                 * invalidate cache without truncating:
1214                                 * unmap shared but keep private pages.
1215                                 */
1216                                if (details->check_mapping &&
1217                                    details->check_mapping != page_rmapping(page))
1218                                        continue;
1219                        }
1220                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1221                                                        tlb->fullmm);
1222                        tlb_remove_tlb_entry(tlb, pte, addr);
1223                        if (unlikely(!page))
1224                                continue;
1225
1226                        if (!PageAnon(page)) {
1227                                if (pte_dirty(ptent)) {
1228                                        force_flush = 1;
1229                                        set_page_dirty(page);
1230                                }
1231                                if (pte_young(ptent) &&
1232                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1233                                        mark_page_accessed(page);
1234                        }
1235                        rss[mm_counter(page)]--;
1236                        page_remove_rmap(page, false);
1237                        if (unlikely(page_mapcount(page) < 0))
1238                                print_bad_pte(vma, addr, ptent, page);
1239                        if (unlikely(__tlb_remove_page(tlb, page))) {
1240                                force_flush = 1;
1241                                addr += PAGE_SIZE;
1242                                break;
1243                        }
1244                        continue;
1245                }
1246                /* If details->check_mapping, we leave swap entries. */
1247                if (unlikely(details))
1248                        continue;
1249
1250                entry = pte_to_swp_entry(ptent);
1251                if (!non_swap_entry(entry))
1252                        rss[MM_SWAPENTS]--;
1253                else if (is_migration_entry(entry)) {
1254                        struct page *page;
1255
1256                        page = migration_entry_to_page(entry);
1257                        rss[mm_counter(page)]--;
1258                }
1259                if (unlikely(!free_swap_and_cache(entry)))
1260                        print_bad_pte(vma, addr, ptent, NULL);
1261                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1262        } while (pte++, addr += PAGE_SIZE, addr != end);
1263
1264        add_mm_rss_vec(mm, rss);
1265        arch_leave_lazy_mmu_mode();
1266
1267        /* Do the actual TLB flush before dropping ptl */
1268        if (force_flush)
1269                tlb_flush_mmu_tlbonly(tlb);
1270        pte_unmap_unlock(start_pte, ptl);
1271
1272        /*
1273         * If we forced a TLB flush (either due to running out of
1274         * batch buffers or because we needed to flush dirty TLB
1275         * entries before releasing the ptl), free the batched
1276         * memory too. Restart if we didn't do everything.
1277         */
1278        if (force_flush) {
1279                force_flush = 0;
1280                tlb_flush_mmu_free(tlb);
1281                if (addr != end)
1282                        goto again;
1283        }
1284
1285        return addr;
1286}
1287
1288static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1289                                struct vm_area_struct *vma, pud_t *pud,
1290                                unsigned long addr, unsigned long end,
1291                                struct zap_details *details)
1292{
1293        pmd_t *pmd;
1294        unsigned long next;
1295
1296        pmd = pmd_offset(pud, addr);
1297        do {
1298                next = pmd_addr_end(addr, end);
1299                if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1300                        if (next - addr != HPAGE_PMD_SIZE) {
1301                                VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1302                                    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1303                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1304                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1305                                goto next;
1306                        /* fall through */
1307                }
1308                /*
1309                 * Here there can be other concurrent MADV_DONTNEED or
1310                 * trans huge page faults running, and if the pmd is
1311                 * none or trans huge it can change under us. This is
1312                 * because MADV_DONTNEED holds the mmap_sem in read
1313                 * mode.
1314                 */
1315                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1316                        goto next;
1317                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1318next:
1319                cond_resched();
1320        } while (pmd++, addr = next, addr != end);
1321
1322        return addr;
1323}
1324
1325static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1326                                struct vm_area_struct *vma, p4d_t *p4d,
1327                                unsigned long addr, unsigned long end,
1328                                struct zap_details *details)
1329{
1330        pud_t *pud;
1331        unsigned long next;
1332
1333        pud = pud_offset(p4d, addr);
1334        do {
1335                next = pud_addr_end(addr, end);
1336                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1337                        if (next - addr != HPAGE_PUD_SIZE) {
1338                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1339                                split_huge_pud(vma, pud, addr);
1340                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1341                                goto next;
1342                        /* fall through */
1343                }
1344                if (pud_none_or_clear_bad(pud))
1345                        continue;
1346                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1347next:
1348                cond_resched();
1349        } while (pud++, addr = next, addr != end);
1350
1351        return addr;
1352}
1353
1354static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1355                                struct vm_area_struct *vma, pgd_t *pgd,
1356                                unsigned long addr, unsigned long end,
1357                                struct zap_details *details)
1358{
1359        p4d_t *p4d;
1360        unsigned long next;
1361
1362        p4d = p4d_offset(pgd, addr);
1363        do {
1364                next = p4d_addr_end(addr, end);
1365                if (p4d_none_or_clear_bad(p4d))
1366                        continue;
1367                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1368        } while (p4d++, addr = next, addr != end);
1369
1370        return addr;
1371}
1372
1373void unmap_page_range(struct mmu_gather *tlb,
1374                             struct vm_area_struct *vma,
1375                             unsigned long addr, unsigned long end,
1376                             struct zap_details *details)
1377{
1378        pgd_t *pgd;
1379        unsigned long next;
1380
1381        BUG_ON(addr >= end);
1382        tlb_start_vma(tlb, vma);
1383        pgd = pgd_offset(vma->vm_mm, addr);
1384        do {
1385                next = pgd_addr_end(addr, end);
1386                if (pgd_none_or_clear_bad(pgd))
1387                        continue;
1388                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1389        } while (pgd++, addr = next, addr != end);
1390        tlb_end_vma(tlb, vma);
1391}
1392
1393
1394static void unmap_single_vma(struct mmu_gather *tlb,
1395                struct vm_area_struct *vma, unsigned long start_addr,
1396                unsigned long end_addr,
1397                struct zap_details *details)
1398{
1399        unsigned long start = max(vma->vm_start, start_addr);
1400        unsigned long end;
1401
1402        if (start >= vma->vm_end)
1403                return;
1404        end = min(vma->vm_end, end_addr);
1405        if (end <= vma->vm_start)
1406                return;
1407
1408        if (vma->vm_file)
1409                uprobe_munmap(vma, start, end);
1410
1411        if (unlikely(vma->vm_flags & VM_PFNMAP))
1412                untrack_pfn(vma, 0, 0);
1413
1414        if (start != end) {
1415                if (unlikely(is_vm_hugetlb_page(vma))) {
1416                        /*
1417                         * It is undesirable to test vma->vm_file as it
1418                         * should be non-null for valid hugetlb area.
1419                         * However, vm_file will be NULL in the error
1420                         * cleanup path of mmap_region. When
1421                         * hugetlbfs ->mmap method fails,
1422                         * mmap_region() nullifies vma->vm_file
1423                         * before calling this function to clean up.
1424                         * Since no pte has actually been setup, it is
1425                         * safe to do nothing in this case.
1426                         */
1427                        if (vma->vm_file) {
1428                                i_mmap_lock_write(vma->vm_file->f_mapping);
1429                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1430                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1431                        }
1432                } else
1433                        unmap_page_range(tlb, vma, start, end, details);
1434        }
1435}
1436
1437/**
1438 * unmap_vmas - unmap a range of memory covered by a list of vma's
1439 * @tlb: address of the caller's struct mmu_gather
1440 * @vma: the starting vma
1441 * @start_addr: virtual address at which to start unmapping
1442 * @end_addr: virtual address at which to end unmapping
1443 *
1444 * Unmap all pages in the vma list.
1445 *
1446 * Only addresses between `start' and `end' will be unmapped.
1447 *
1448 * The VMA list must be sorted in ascending virtual address order.
1449 *
1450 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1451 * range after unmap_vmas() returns.  So the only responsibility here is to
1452 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1453 * drops the lock and schedules.
1454 */
1455void unmap_vmas(struct mmu_gather *tlb,
1456                struct vm_area_struct *vma, unsigned long start_addr,
1457                unsigned long end_addr)
1458{
1459        struct mm_struct *mm = vma->vm_mm;
1460
1461        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1462        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1463                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1464        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1465}
1466
1467/**
1468 * zap_page_range - remove user pages in a given range
1469 * @vma: vm_area_struct holding the applicable pages
1470 * @start: starting address of pages to zap
1471 * @size: number of bytes to zap
1472 *
1473 * Caller must protect the VMA list
1474 */
1475void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1476                unsigned long size)
1477{
1478        struct mm_struct *mm = vma->vm_mm;
1479        struct mmu_gather tlb;
1480        unsigned long end = start + size;
1481
1482        lru_add_drain();
1483        tlb_gather_mmu(&tlb, mm, start, end);
1484        update_hiwater_rss(mm);
1485        mmu_notifier_invalidate_range_start(mm, start, end);
1486        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1487                unmap_single_vma(&tlb, vma, start, end, NULL);
1488        mmu_notifier_invalidate_range_end(mm, start, end);
1489        tlb_finish_mmu(&tlb, start, end);
1490}
1491
1492/**
1493 * zap_page_range_single - remove user pages in a given range
1494 * @vma: vm_area_struct holding the applicable pages
1495 * @address: starting address of pages to zap
1496 * @size: number of bytes to zap
1497 * @details: details of shared cache invalidation
1498 *
1499 * The range must fit into one VMA.
1500 */
1501static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1502                unsigned long size, struct zap_details *details)
1503{
1504        struct mm_struct *mm = vma->vm_mm;
1505        struct mmu_gather tlb;
1506        unsigned long end = address + size;
1507
1508        lru_add_drain();
1509        tlb_gather_mmu(&tlb, mm, address, end);
1510        update_hiwater_rss(mm);
1511        mmu_notifier_invalidate_range_start(mm, address, end);
1512        unmap_single_vma(&tlb, vma, address, end, details);
1513        mmu_notifier_invalidate_range_end(mm, address, end);
1514        tlb_finish_mmu(&tlb, address, end);
1515}
1516
1517/**
1518 * zap_vma_ptes - remove ptes mapping the vma
1519 * @vma: vm_area_struct holding ptes to be zapped
1520 * @address: starting address of pages to zap
1521 * @size: number of bytes to zap
1522 *
1523 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1524 *
1525 * The entire address range must be fully contained within the vma.
1526 *
1527 * Returns 0 if successful.
1528 */
1529int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1530                unsigned long size)
1531{
1532        if (address < vma->vm_start || address + size > vma->vm_end ||
1533                        !(vma->vm_flags & VM_PFNMAP))
1534                return -1;
1535        zap_page_range_single(vma, address, size, NULL);
1536        return 0;
1537}
1538EXPORT_SYMBOL_GPL(zap_vma_ptes);
1539
1540pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1541                        spinlock_t **ptl)
1542{
1543        pgd_t *pgd;
1544        p4d_t *p4d;
1545        pud_t *pud;
1546        pmd_t *pmd;
1547
1548        pgd = pgd_offset(mm, addr);
1549        p4d = p4d_alloc(mm, pgd, addr);
1550        if (!p4d)
1551                return NULL;
1552        pud = pud_alloc(mm, p4d, addr);
1553        if (!pud)
1554                return NULL;
1555        pmd = pmd_alloc(mm, pud, addr);
1556        if (!pmd)
1557                return NULL;
1558
1559        VM_BUG_ON(pmd_trans_huge(*pmd));
1560        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1561}
1562
1563/*
1564 * This is the old fallback for page remapping.
1565 *
1566 * For historical reasons, it only allows reserved pages. Only
1567 * old drivers should use this, and they needed to mark their
1568 * pages reserved for the old functions anyway.
1569 */
1570static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1571                        struct page *page, pgprot_t prot)
1572{
1573        struct mm_struct *mm = vma->vm_mm;
1574        int retval;
1575        pte_t *pte;
1576        spinlock_t *ptl;
1577
1578        retval = -EINVAL;
1579        if (PageAnon(page))
1580                goto out;
1581        retval = -ENOMEM;
1582        flush_dcache_page(page);
1583        pte = get_locked_pte(mm, addr, &ptl);
1584        if (!pte)
1585                goto out;
1586        retval = -EBUSY;
1587        if (!pte_none(*pte))
1588                goto out_unlock;
1589
1590        /* Ok, finally just insert the thing.. */
1591        get_page(page);
1592        inc_mm_counter_fast(mm, mm_counter_file(page));
1593        page_add_file_rmap(page, false);
1594        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1595
1596        retval = 0;
1597        pte_unmap_unlock(pte, ptl);
1598        return retval;
1599out_unlock:
1600        pte_unmap_unlock(pte, ptl);
1601out:
1602        return retval;
1603}
1604
1605/**
1606 * vm_insert_page - insert single page into user vma
1607 * @vma: user vma to map to
1608 * @addr: target user address of this page
1609 * @page: source kernel page
1610 *
1611 * This allows drivers to insert individual pages they've allocated
1612 * into a user vma.
1613 *
1614 * The page has to be a nice clean _individual_ kernel allocation.
1615 * If you allocate a compound page, you need to have marked it as
1616 * such (__GFP_COMP), or manually just split the page up yourself
1617 * (see split_page()).
1618 *
1619 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1620 * took an arbitrary page protection parameter. This doesn't allow
1621 * that. Your vma protection will have to be set up correctly, which
1622 * means that if you want a shared writable mapping, you'd better
1623 * ask for a shared writable mapping!
1624 *
1625 * The page does not need to be reserved.
1626 *
1627 * Usually this function is called from f_op->mmap() handler
1628 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1629 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1630 * function from other places, for example from page-fault handler.
1631 */
1632int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1633                        struct page *page)
1634{
1635        if (addr < vma->vm_start || addr >= vma->vm_end)
1636                return -EFAULT;
1637        if (!page_count(page))
1638                return -EINVAL;
1639        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1640                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1641                BUG_ON(vma->vm_flags & VM_PFNMAP);
1642                vma->vm_flags |= VM_MIXEDMAP;
1643        }
1644        return insert_page(vma, addr, page, vma->vm_page_prot);
1645}
1646EXPORT_SYMBOL(vm_insert_page);
1647
1648static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1649                        pfn_t pfn, pgprot_t prot)
1650{
1651        struct mm_struct *mm = vma->vm_mm;
1652        int retval;
1653        pte_t *pte, entry;
1654        spinlock_t *ptl;
1655
1656        retval = -ENOMEM;
1657        pte = get_locked_pte(mm, addr, &ptl);
1658        if (!pte)
1659                goto out;
1660        retval = -EBUSY;
1661        if (!pte_none(*pte))
1662                goto out_unlock;
1663
1664        /* Ok, finally just insert the thing.. */
1665        if (pfn_t_devmap(pfn))
1666                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1667        else
1668                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1669        set_pte_at(mm, addr, pte, entry);
1670        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1671
1672        retval = 0;
1673out_unlock:
1674        pte_unmap_unlock(pte, ptl);
1675out:
1676        return retval;
1677}
1678
1679/**
1680 * vm_insert_pfn - insert single pfn into user vma
1681 * @vma: user vma to map to
1682 * @addr: target user address of this page
1683 * @pfn: source kernel pfn
1684 *
1685 * Similar to vm_insert_page, this allows drivers to insert individual pages
1686 * they've allocated into a user vma. Same comments apply.
1687 *
1688 * This function should only be called from a vm_ops->fault handler, and
1689 * in that case the handler should return NULL.
1690 *
1691 * vma cannot be a COW mapping.
1692 *
1693 * As this is called only for pages that do not currently exist, we
1694 * do not need to flush old virtual caches or the TLB.
1695 */
1696int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1697                        unsigned long pfn)
1698{
1699        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1700}
1701EXPORT_SYMBOL(vm_insert_pfn);
1702
1703/**
1704 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1705 * @vma: user vma to map to
1706 * @addr: target user address of this page
1707 * @pfn: source kernel pfn
1708 * @pgprot: pgprot flags for the inserted page
1709 *
1710 * This is exactly like vm_insert_pfn, except that it allows drivers to
1711 * to override pgprot on a per-page basis.
1712 *
1713 * This only makes sense for IO mappings, and it makes no sense for
1714 * cow mappings.  In general, using multiple vmas is preferable;
1715 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1716 * impractical.
1717 */
1718int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1719                        unsigned long pfn, pgprot_t pgprot)
1720{
1721        int ret;
1722        /*
1723         * Technically, architectures with pte_special can avoid all these
1724         * restrictions (same for remap_pfn_range).  However we would like
1725         * consistency in testing and feature parity among all, so we should
1726         * try to keep these invariants in place for everybody.
1727         */
1728        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1729        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1730                                                (VM_PFNMAP|VM_MIXEDMAP));
1731        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1732        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1733
1734        if (addr < vma->vm_start || addr >= vma->vm_end)
1735                return -EFAULT;
1736
1737        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1738
1739        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1740
1741        return ret;
1742}
1743EXPORT_SYMBOL(vm_insert_pfn_prot);
1744
1745int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1746                        pfn_t pfn)
1747{
1748        pgprot_t pgprot = vma->vm_page_prot;
1749
1750        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1751
1752        if (addr < vma->vm_start || addr >= vma->vm_end)
1753                return -EFAULT;
1754
1755        track_pfn_insert(vma, &pgprot, pfn);
1756
1757        /*
1758         * If we don't have pte special, then we have to use the pfn_valid()
1759         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1760         * refcount the page if pfn_valid is true (hence insert_page rather
1761         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1762         * without pte special, it would there be refcounted as a normal page.
1763         */
1764        if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1765                struct page *page;
1766
1767                /*
1768                 * At this point we are committed to insert_page()
1769                 * regardless of whether the caller specified flags that
1770                 * result in pfn_t_has_page() == false.
1771                 */
1772                page = pfn_to_page(pfn_t_to_pfn(pfn));
1773                return insert_page(vma, addr, page, pgprot);
1774        }
1775        return insert_pfn(vma, addr, pfn, pgprot);
1776}
1777EXPORT_SYMBOL(vm_insert_mixed);
1778
1779/*
1780 * maps a range of physical memory into the requested pages. the old
1781 * mappings are removed. any references to nonexistent pages results
1782 * in null mappings (currently treated as "copy-on-access")
1783 */
1784static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1785                        unsigned long addr, unsigned long end,
1786                        unsigned long pfn, pgprot_t prot)
1787{
1788        pte_t *pte;
1789        spinlock_t *ptl;
1790
1791        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1792        if (!pte)
1793                return -ENOMEM;
1794        arch_enter_lazy_mmu_mode();
1795        do {
1796                BUG_ON(!pte_none(*pte));
1797                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1798                pfn++;
1799        } while (pte++, addr += PAGE_SIZE, addr != end);
1800        arch_leave_lazy_mmu_mode();
1801        pte_unmap_unlock(pte - 1, ptl);
1802        return 0;
1803}
1804
1805static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1806                        unsigned long addr, unsigned long end,
1807                        unsigned long pfn, pgprot_t prot)
1808{
1809        pmd_t *pmd;
1810        unsigned long next;
1811
1812        pfn -= addr >> PAGE_SHIFT;
1813        pmd = pmd_alloc(mm, pud, addr);
1814        if (!pmd)
1815                return -ENOMEM;
1816        VM_BUG_ON(pmd_trans_huge(*pmd));
1817        do {
1818                next = pmd_addr_end(addr, end);
1819                if (remap_pte_range(mm, pmd, addr, next,
1820                                pfn + (addr >> PAGE_SHIFT), prot))
1821                        return -ENOMEM;
1822        } while (pmd++, addr = next, addr != end);
1823        return 0;
1824}
1825
1826static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1827                        unsigned long addr, unsigned long end,
1828                        unsigned long pfn, pgprot_t prot)
1829{
1830        pud_t *pud;
1831        unsigned long next;
1832
1833        pfn -= addr >> PAGE_SHIFT;
1834        pud = pud_alloc(mm, p4d, addr);
1835        if (!pud)
1836                return -ENOMEM;
1837        do {
1838                next = pud_addr_end(addr, end);
1839                if (remap_pmd_range(mm, pud, addr, next,
1840                                pfn + (addr >> PAGE_SHIFT), prot))
1841                        return -ENOMEM;
1842        } while (pud++, addr = next, addr != end);
1843        return 0;
1844}
1845
1846static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1847                        unsigned long addr, unsigned long end,
1848                        unsigned long pfn, pgprot_t prot)
1849{
1850        p4d_t *p4d;
1851        unsigned long next;
1852
1853        pfn -= addr >> PAGE_SHIFT;
1854        p4d = p4d_alloc(mm, pgd, addr);
1855        if (!p4d)
1856                return -ENOMEM;
1857        do {
1858                next = p4d_addr_end(addr, end);
1859                if (remap_pud_range(mm, p4d, addr, next,
1860                                pfn + (addr >> PAGE_SHIFT), prot))
1861                        return -ENOMEM;
1862        } while (p4d++, addr = next, addr != end);
1863        return 0;
1864}
1865
1866/**
1867 * remap_pfn_range - remap kernel memory to userspace
1868 * @vma: user vma to map to
1869 * @addr: target user address to start at
1870 * @pfn: physical address of kernel memory
1871 * @size: size of map area
1872 * @prot: page protection flags for this mapping
1873 *
1874 *  Note: this is only safe if the mm semaphore is held when called.
1875 */
1876int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1877                    unsigned long pfn, unsigned long size, pgprot_t prot)
1878{
1879        pgd_t *pgd;
1880        unsigned long next;
1881        unsigned long end = addr + PAGE_ALIGN(size);
1882        struct mm_struct *mm = vma->vm_mm;
1883        unsigned long remap_pfn = pfn;
1884        int err;
1885
1886        /*
1887         * Physically remapped pages are special. Tell the
1888         * rest of the world about it:
1889         *   VM_IO tells people not to look at these pages
1890         *      (accesses can have side effects).
1891         *   VM_PFNMAP tells the core MM that the base pages are just
1892         *      raw PFN mappings, and do not have a "struct page" associated
1893         *      with them.
1894         *   VM_DONTEXPAND
1895         *      Disable vma merging and expanding with mremap().
1896         *   VM_DONTDUMP
1897         *      Omit vma from core dump, even when VM_IO turned off.
1898         *
1899         * There's a horrible special case to handle copy-on-write
1900         * behaviour that some programs depend on. We mark the "original"
1901         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1902         * See vm_normal_page() for details.
1903         */
1904        if (is_cow_mapping(vma->vm_flags)) {
1905                if (addr != vma->vm_start || end != vma->vm_end)
1906                        return -EINVAL;
1907                vma->vm_pgoff = pfn;
1908        }
1909
1910        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1911        if (err)
1912                return -EINVAL;
1913
1914        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1915
1916        BUG_ON(addr >= end);
1917        pfn -= addr >> PAGE_SHIFT;
1918        pgd = pgd_offset(mm, addr);
1919        flush_cache_range(vma, addr, end);
1920        do {
1921                next = pgd_addr_end(addr, end);
1922                err = remap_p4d_range(mm, pgd, addr, next,
1923                                pfn + (addr >> PAGE_SHIFT), prot);
1924                if (err)
1925                        break;
1926        } while (pgd++, addr = next, addr != end);
1927
1928        if (err)
1929                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1930
1931        return err;
1932}
1933EXPORT_SYMBOL(remap_pfn_range);
1934
1935/**
1936 * vm_iomap_memory - remap memory to userspace
1937 * @vma: user vma to map to
1938 * @start: start of area
1939 * @len: size of area
1940 *
1941 * This is a simplified io_remap_pfn_range() for common driver use. The
1942 * driver just needs to give us the physical memory range to be mapped,
1943 * we'll figure out the rest from the vma information.
1944 *
1945 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1946 * whatever write-combining details or similar.
1947 */
1948int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1949{
1950        unsigned long vm_len, pfn, pages;
1951
1952        /* Check that the physical memory area passed in looks valid */
1953        if (start + len < start)
1954                return -EINVAL;
1955        /*
1956         * You *really* shouldn't map things that aren't page-aligned,
1957         * but we've historically allowed it because IO memory might
1958         * just have smaller alignment.
1959         */
1960        len += start & ~PAGE_MASK;
1961        pfn = start >> PAGE_SHIFT;
1962        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1963        if (pfn + pages < pfn)
1964                return -EINVAL;
1965
1966        /* We start the mapping 'vm_pgoff' pages into the area */
1967        if (vma->vm_pgoff > pages)
1968                return -EINVAL;
1969        pfn += vma->vm_pgoff;
1970        pages -= vma->vm_pgoff;
1971
1972        /* Can we fit all of the mapping? */
1973        vm_len = vma->vm_end - vma->vm_start;
1974        if (vm_len >> PAGE_SHIFT > pages)
1975                return -EINVAL;
1976
1977        /* Ok, let it rip */
1978        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1979}
1980EXPORT_SYMBOL(vm_iomap_memory);
1981
1982static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983                                     unsigned long addr, unsigned long end,
1984                                     pte_fn_t fn, void *data)
1985{
1986        pte_t *pte;
1987        int err;
1988        pgtable_t token;
1989        spinlock_t *uninitialized_var(ptl);
1990
1991        pte = (mm == &init_mm) ?
1992                pte_alloc_kernel(pmd, addr) :
1993                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1994        if (!pte)
1995                return -ENOMEM;
1996
1997        BUG_ON(pmd_huge(*pmd));
1998
1999        arch_enter_lazy_mmu_mode();
2000
2001        token = pmd_pgtable(*pmd);
2002
2003        do {
2004                err = fn(pte++, token, addr, data);
2005                if (err)
2006                        break;
2007        } while (addr += PAGE_SIZE, addr != end);
2008
2009        arch_leave_lazy_mmu_mode();
2010
2011        if (mm != &init_mm)
2012                pte_unmap_unlock(pte-1, ptl);
2013        return err;
2014}
2015
2016static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2017                                     unsigned long addr, unsigned long end,
2018                                     pte_fn_t fn, void *data)
2019{
2020        pmd_t *pmd;
2021        unsigned long next;
2022        int err;
2023
2024        BUG_ON(pud_huge(*pud));
2025
2026        pmd = pmd_alloc(mm, pud, addr);
2027        if (!pmd)
2028                return -ENOMEM;
2029        do {
2030                next = pmd_addr_end(addr, end);
2031                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2032                if (err)
2033                        break;
2034        } while (pmd++, addr = next, addr != end);
2035        return err;
2036}
2037
2038static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039                                     unsigned long addr, unsigned long end,
2040                                     pte_fn_t fn, void *data)
2041{
2042        pud_t *pud;
2043        unsigned long next;
2044        int err;
2045
2046        pud = pud_alloc(mm, p4d, addr);
2047        if (!pud)
2048                return -ENOMEM;
2049        do {
2050                next = pud_addr_end(addr, end);
2051                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2052                if (err)
2053                        break;
2054        } while (pud++, addr = next, addr != end);
2055        return err;
2056}
2057
2058static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2059                                     unsigned long addr, unsigned long end,
2060                                     pte_fn_t fn, void *data)
2061{
2062        p4d_t *p4d;
2063        unsigned long next;
2064        int err;
2065
2066        p4d = p4d_alloc(mm, pgd, addr);
2067        if (!p4d)
2068                return -ENOMEM;
2069        do {
2070                next = p4d_addr_end(addr, end);
2071                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2072                if (err)
2073                        break;
2074        } while (p4d++, addr = next, addr != end);
2075        return err;
2076}
2077
2078/*
2079 * Scan a region of virtual memory, filling in page tables as necessary
2080 * and calling a provided function on each leaf page table.
2081 */
2082int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2083                        unsigned long size, pte_fn_t fn, void *data)
2084{
2085        pgd_t *pgd;
2086        unsigned long next;
2087        unsigned long end = addr + size;
2088        int err;
2089
2090        if (WARN_ON(addr >= end))
2091                return -EINVAL;
2092
2093        pgd = pgd_offset(mm, addr);
2094        do {
2095                next = pgd_addr_end(addr, end);
2096                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2097                if (err)
2098                        break;
2099        } while (pgd++, addr = next, addr != end);
2100
2101        return err;
2102}
2103EXPORT_SYMBOL_GPL(apply_to_page_range);
2104
2105/*
2106 * handle_pte_fault chooses page fault handler according to an entry which was
2107 * read non-atomically.  Before making any commitment, on those architectures
2108 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2109 * parts, do_swap_page must check under lock before unmapping the pte and
2110 * proceeding (but do_wp_page is only called after already making such a check;
2111 * and do_anonymous_page can safely check later on).
2112 */
2113static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2114                                pte_t *page_table, pte_t orig_pte)
2115{
2116        int same = 1;
2117#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2118        if (sizeof(pte_t) > sizeof(unsigned long)) {
2119                spinlock_t *ptl = pte_lockptr(mm, pmd);
2120                spin_lock(ptl);
2121                same = pte_same(*page_table, orig_pte);
2122                spin_unlock(ptl);
2123        }
2124#endif
2125        pte_unmap(page_table);
2126        return same;
2127}
2128
2129static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2130{
2131        debug_dma_assert_idle(src);
2132
2133        /*
2134         * If the source page was a PFN mapping, we don't have
2135         * a "struct page" for it. We do a best-effort copy by
2136         * just copying from the original user address. If that
2137         * fails, we just zero-fill it. Live with it.
2138         */
2139        if (unlikely(!src)) {
2140                void *kaddr = kmap_atomic(dst);
2141                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2142
2143                /*
2144                 * This really shouldn't fail, because the page is there
2145                 * in the page tables. But it might just be unreadable,
2146                 * in which case we just give up and fill the result with
2147                 * zeroes.
2148                 */
2149                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2150                        clear_page(kaddr);
2151                kunmap_atomic(kaddr);
2152                flush_dcache_page(dst);
2153        } else
2154                copy_user_highpage(dst, src, va, vma);
2155}
2156
2157static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2158{
2159        struct file *vm_file = vma->vm_file;
2160
2161        if (vm_file)
2162                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2163
2164        /*
2165         * Special mappings (e.g. VDSO) do not have any file so fake
2166         * a default GFP_KERNEL for them.
2167         */
2168        return GFP_KERNEL;
2169}
2170
2171/*
2172 * Notify the address space that the page is about to become writable so that
2173 * it can prohibit this or wait for the page to get into an appropriate state.
2174 *
2175 * We do this without the lock held, so that it can sleep if it needs to.
2176 */
2177static int do_page_mkwrite(struct vm_fault *vmf)
2178{
2179        int ret;
2180        struct page *page = vmf->page;
2181        unsigned int old_flags = vmf->flags;
2182
2183        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2184
2185        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2186        /* Restore original flags so that caller is not surprised */
2187        vmf->flags = old_flags;
2188        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2189                return ret;
2190        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2191                lock_page(page);
2192                if (!page->mapping) {
2193                        unlock_page(page);
2194                        return 0; /* retry */
2195                }
2196                ret |= VM_FAULT_LOCKED;
2197        } else
2198                VM_BUG_ON_PAGE(!PageLocked(page), page);
2199        return ret;
2200}
2201
2202/*
2203 * Handle dirtying of a page in shared file mapping on a write fault.
2204 *
2205 * The function expects the page to be locked and unlocks it.
2206 */
2207static void fault_dirty_shared_page(struct vm_area_struct *vma,
2208                                    struct page *page)
2209{
2210        struct address_space *mapping;
2211        bool dirtied;
2212        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2213
2214        dirtied = set_page_dirty(page);
2215        VM_BUG_ON_PAGE(PageAnon(page), page);
2216        /*
2217         * Take a local copy of the address_space - page.mapping may be zeroed
2218         * by truncate after unlock_page().   The address_space itself remains
2219         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2220         * release semantics to prevent the compiler from undoing this copying.
2221         */
2222        mapping = page_rmapping(page);
2223        unlock_page(page);
2224
2225        if ((dirtied || page_mkwrite) && mapping) {
2226                /*
2227                 * Some device drivers do not set page.mapping
2228                 * but still dirty their pages
2229                 */
2230                balance_dirty_pages_ratelimited(mapping);
2231        }
2232
2233        if (!page_mkwrite)
2234                file_update_time(vma->vm_file);
2235}
2236
2237/*
2238 * Handle write page faults for pages that can be reused in the current vma
2239 *
2240 * This can happen either due to the mapping being with the VM_SHARED flag,
2241 * or due to us being the last reference standing to the page. In either
2242 * case, all we need to do here is to mark the page as writable and update
2243 * any related book-keeping.
2244 */
2245static inline void wp_page_reuse(struct vm_fault *vmf)
2246        __releases(vmf->ptl)
2247{
2248        struct vm_area_struct *vma = vmf->vma;
2249        struct page *page = vmf->page;
2250        pte_t entry;
2251        /*
2252         * Clear the pages cpupid information as the existing
2253         * information potentially belongs to a now completely
2254         * unrelated process.
2255         */
2256        if (page)
2257                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2258
2259        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2260        entry = pte_mkyoung(vmf->orig_pte);
2261        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2262        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2263                update_mmu_cache(vma, vmf->address, vmf->pte);
2264        pte_unmap_unlock(vmf->pte, vmf->ptl);
2265}
2266
2267/*
2268 * Handle the case of a page which we actually need to copy to a new page.
2269 *
2270 * Called with mmap_sem locked and the old page referenced, but
2271 * without the ptl held.
2272 *
2273 * High level logic flow:
2274 *
2275 * - Allocate a page, copy the content of the old page to the new one.
2276 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2277 * - Take the PTL. If the pte changed, bail out and release the allocated page
2278 * - If the pte is still the way we remember it, update the page table and all
2279 *   relevant references. This includes dropping the reference the page-table
2280 *   held to the old page, as well as updating the rmap.
2281 * - In any case, unlock the PTL and drop the reference we took to the old page.
2282 */
2283static int wp_page_copy(struct vm_fault *vmf)
2284{
2285        struct vm_area_struct *vma = vmf->vma;
2286        struct mm_struct *mm = vma->vm_mm;
2287        struct page *old_page = vmf->page;
2288        struct page *new_page = NULL;
2289        pte_t entry;
2290        int page_copied = 0;
2291        const unsigned long mmun_start = vmf->address & PAGE_MASK;
2292        const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2293        struct mem_cgroup *memcg;
2294
2295        if (unlikely(anon_vma_prepare(vma)))
2296                goto oom;
2297
2298        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2299                new_page = alloc_zeroed_user_highpage_movable(vma,
2300                                                              vmf->address);
2301                if (!new_page)
2302                        goto oom;
2303        } else {
2304                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2305                                vmf->address);
2306                if (!new_page)
2307                        goto oom;
2308                cow_user_page(new_page, old_page, vmf->address, vma);
2309        }
2310
2311        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2312                goto oom_free_new;
2313
2314        __SetPageUptodate(new_page);
2315
2316        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2317
2318        /*
2319         * Re-check the pte - we dropped the lock
2320         */
2321        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2322        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2323                if (old_page) {
2324                        if (!PageAnon(old_page)) {
2325                                dec_mm_counter_fast(mm,
2326                                                mm_counter_file(old_page));
2327                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2328                        }
2329                } else {
2330                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2331                }
2332                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2333                entry = mk_pte(new_page, vma->vm_page_prot);
2334                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2335                /*
2336                 * Clear the pte entry and flush it first, before updating the
2337                 * pte with the new entry. This will avoid a race condition
2338                 * seen in the presence of one thread doing SMC and another
2339                 * thread doing COW.
2340                 */
2341                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2342                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2343                mem_cgroup_commit_charge(new_page, memcg, false, false);
2344                lru_cache_add_active_or_unevictable(new_page, vma);
2345                /*
2346                 * We call the notify macro here because, when using secondary
2347                 * mmu page tables (such as kvm shadow page tables), we want the
2348                 * new page to be mapped directly into the secondary page table.
2349                 */
2350                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2351                update_mmu_cache(vma, vmf->address, vmf->pte);
2352                if (old_page) {
2353                        /*
2354                         * Only after switching the pte to the new page may
2355                         * we remove the mapcount here. Otherwise another
2356                         * process may come and find the rmap count decremented
2357                         * before the pte is switched to the new page, and
2358                         * "reuse" the old page writing into it while our pte
2359                         * here still points into it and can be read by other
2360                         * threads.
2361                         *
2362                         * The critical issue is to order this
2363                         * page_remove_rmap with the ptp_clear_flush above.
2364                         * Those stores are ordered by (if nothing else,)
2365                         * the barrier present in the atomic_add_negative
2366                         * in page_remove_rmap.
2367                         *
2368                         * Then the TLB flush in ptep_clear_flush ensures that
2369                         * no process can access the old page before the
2370                         * decremented mapcount is visible. And the old page
2371                         * cannot be reused until after the decremented
2372                         * mapcount is visible. So transitively, TLBs to
2373                         * old page will be flushed before it can be reused.
2374                         */
2375                        page_remove_rmap(old_page, false);
2376                }
2377
2378                /* Free the old page.. */
2379                new_page = old_page;
2380                page_copied = 1;
2381        } else {
2382                mem_cgroup_cancel_charge(new_page, memcg, false);
2383        }
2384
2385        if (new_page)
2386                put_page(new_page);
2387
2388        pte_unmap_unlock(vmf->pte, vmf->ptl);
2389        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2390        if (old_page) {
2391                /*
2392                 * Don't let another task, with possibly unlocked vma,
2393                 * keep the mlocked page.
2394                 */
2395                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2396                        lock_page(old_page);    /* LRU manipulation */
2397                        if (PageMlocked(old_page))
2398                                munlock_vma_page(old_page);
2399                        unlock_page(old_page);
2400                }
2401                put_page(old_page);
2402        }
2403        return page_copied ? VM_FAULT_WRITE : 0;
2404oom_free_new:
2405        put_page(new_page);
2406oom:
2407        if (old_page)
2408                put_page(old_page);
2409        return VM_FAULT_OOM;
2410}
2411
2412/**
2413 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2414 *                        writeable once the page is prepared
2415 *
2416 * @vmf: structure describing the fault
2417 *
2418 * This function handles all that is needed to finish a write page fault in a
2419 * shared mapping due to PTE being read-only once the mapped page is prepared.
2420 * It handles locking of PTE and modifying it. The function returns
2421 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2422 * lock.
2423 *
2424 * The function expects the page to be locked or other protection against
2425 * concurrent faults / writeback (such as DAX radix tree locks).
2426 */
2427int finish_mkwrite_fault(struct vm_fault *vmf)
2428{
2429        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2430        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2431                                       &vmf->ptl);
2432        /*
2433         * We might have raced with another page fault while we released the
2434         * pte_offset_map_lock.
2435         */
2436        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2437                pte_unmap_unlock(vmf->pte, vmf->ptl);
2438                return VM_FAULT_NOPAGE;
2439        }
2440        wp_page_reuse(vmf);
2441        return 0;
2442}
2443
2444/*
2445 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2446 * mapping
2447 */
2448static int wp_pfn_shared(struct vm_fault *vmf)
2449{
2450        struct vm_area_struct *vma = vmf->vma;
2451
2452        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2453                int ret;
2454
2455                pte_unmap_unlock(vmf->pte, vmf->ptl);
2456                vmf->flags |= FAULT_FLAG_MKWRITE;
2457                ret = vma->vm_ops->pfn_mkwrite(vmf);
2458                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2459                        return ret;
2460                return finish_mkwrite_fault(vmf);
2461        }
2462        wp_page_reuse(vmf);
2463        return VM_FAULT_WRITE;
2464}
2465
2466static int wp_page_shared(struct vm_fault *vmf)
2467        __releases(vmf->ptl)
2468{
2469        struct vm_area_struct *vma = vmf->vma;
2470
2471        get_page(vmf->page);
2472
2473        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2474                int tmp;
2475
2476                pte_unmap_unlock(vmf->pte, vmf->ptl);
2477                tmp = do_page_mkwrite(vmf);
2478                if (unlikely(!tmp || (tmp &
2479                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2480                        put_page(vmf->page);
2481                        return tmp;
2482                }
2483                tmp = finish_mkwrite_fault(vmf);
2484                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2485                        unlock_page(vmf->page);
2486                        put_page(vmf->page);
2487                        return tmp;
2488                }
2489        } else {
2490                wp_page_reuse(vmf);
2491                lock_page(vmf->page);
2492        }
2493        fault_dirty_shared_page(vma, vmf->page);
2494        put_page(vmf->page);
2495
2496        return VM_FAULT_WRITE;
2497}
2498
2499/*
2500 * This routine handles present pages, when users try to write
2501 * to a shared page. It is done by copying the page to a new address
2502 * and decrementing the shared-page counter for the old page.
2503 *
2504 * Note that this routine assumes that the protection checks have been
2505 * done by the caller (the low-level page fault routine in most cases).
2506 * Thus we can safely just mark it writable once we've done any necessary
2507 * COW.
2508 *
2509 * We also mark the page dirty at this point even though the page will
2510 * change only once the write actually happens. This avoids a few races,
2511 * and potentially makes it more efficient.
2512 *
2513 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514 * but allow concurrent faults), with pte both mapped and locked.
2515 * We return with mmap_sem still held, but pte unmapped and unlocked.
2516 */
2517static int do_wp_page(struct vm_fault *vmf)
2518        __releases(vmf->ptl)
2519{
2520        struct vm_area_struct *vma = vmf->vma;
2521
2522        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2523        if (!vmf->page) {
2524                /*
2525                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2526                 * VM_PFNMAP VMA.
2527                 *
2528                 * We should not cow pages in a shared writeable mapping.
2529                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2530                 */
2531                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2532                                     (VM_WRITE|VM_SHARED))
2533                        return wp_pfn_shared(vmf);
2534
2535                pte_unmap_unlock(vmf->pte, vmf->ptl);
2536                return wp_page_copy(vmf);
2537        }
2538
2539        /*
2540         * Take out anonymous pages first, anonymous shared vmas are
2541         * not dirty accountable.
2542         */
2543        if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2544                int total_mapcount;
2545                if (!trylock_page(vmf->page)) {
2546                        get_page(vmf->page);
2547                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2548                        lock_page(vmf->page);
2549                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2550                                        vmf->address, &vmf->ptl);
2551                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2552                                unlock_page(vmf->page);
2553                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2554                                put_page(vmf->page);
2555                                return 0;
2556                        }
2557                        put_page(vmf->page);
2558                }
2559                if (reuse_swap_page(vmf->page, &total_mapcount)) {
2560                        if (total_mapcount == 1) {
2561                                /*
2562                                 * The page is all ours. Move it to
2563                                 * our anon_vma so the rmap code will
2564                                 * not search our parent or siblings.
2565                                 * Protected against the rmap code by
2566                                 * the page lock.
2567                                 */
2568                                page_move_anon_rmap(vmf->page, vma);
2569                        }
2570                        unlock_page(vmf->page);
2571                        wp_page_reuse(vmf);
2572                        return VM_FAULT_WRITE;
2573                }
2574                unlock_page(vmf->page);
2575        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2576                                        (VM_WRITE|VM_SHARED))) {
2577                return wp_page_shared(vmf);
2578        }
2579
2580        /*
2581         * Ok, we need to copy. Oh, well..
2582         */
2583        get_page(vmf->page);
2584
2585        pte_unmap_unlock(vmf->pte, vmf->ptl);
2586        return wp_page_copy(vmf);
2587}
2588
2589static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2590                unsigned long start_addr, unsigned long end_addr,
2591                struct zap_details *details)
2592{
2593        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2594}
2595
2596static inline void unmap_mapping_range_tree(struct rb_root *root,
2597                                            struct zap_details *details)
2598{
2599        struct vm_area_struct *vma;
2600        pgoff_t vba, vea, zba, zea;
2601
2602        vma_interval_tree_foreach(vma, root,
2603                        details->first_index, details->last_index) {
2604
2605                vba = vma->vm_pgoff;
2606                vea = vba + vma_pages(vma) - 1;
2607                zba = details->first_index;
2608                if (zba < vba)
2609                        zba = vba;
2610                zea = details->last_index;
2611                if (zea > vea)
2612                        zea = vea;
2613
2614                unmap_mapping_range_vma(vma,
2615                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2616                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2617                                details);
2618        }
2619}
2620
2621/**
2622 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2623 * address_space corresponding to the specified page range in the underlying
2624 * file.
2625 *
2626 * @mapping: the address space containing mmaps to be unmapped.
2627 * @holebegin: byte in first page to unmap, relative to the start of
2628 * the underlying file.  This will be rounded down to a PAGE_SIZE
2629 * boundary.  Note that this is different from truncate_pagecache(), which
2630 * must keep the partial page.  In contrast, we must get rid of
2631 * partial pages.
2632 * @holelen: size of prospective hole in bytes.  This will be rounded
2633 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2634 * end of the file.
2635 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2636 * but 0 when invalidating pagecache, don't throw away private data.
2637 */
2638void unmap_mapping_range(struct address_space *mapping,
2639                loff_t const holebegin, loff_t const holelen, int even_cows)
2640{
2641        struct zap_details details = { };
2642        pgoff_t hba = holebegin >> PAGE_SHIFT;
2643        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2644
2645        /* Check for overflow. */
2646        if (sizeof(holelen) > sizeof(hlen)) {
2647                long long holeend =
2648                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2649                if (holeend & ~(long long)ULONG_MAX)
2650                        hlen = ULONG_MAX - hba + 1;
2651        }
2652
2653        details.check_mapping = even_cows ? NULL : mapping;
2654        details.first_index = hba;
2655        details.last_index = hba + hlen - 1;
2656        if (details.last_index < details.first_index)
2657                details.last_index = ULONG_MAX;
2658
2659        i_mmap_lock_write(mapping);
2660        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2661                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2662        i_mmap_unlock_write(mapping);
2663}
2664EXPORT_SYMBOL(unmap_mapping_range);
2665
2666/*
2667 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2668 * but allow concurrent faults), and pte mapped but not yet locked.
2669 * We return with pte unmapped and unlocked.
2670 *
2671 * We return with the mmap_sem locked or unlocked in the same cases
2672 * as does filemap_fault().
2673 */
2674int do_swap_page(struct vm_fault *vmf)
2675{
2676        struct vm_area_struct *vma = vmf->vma;
2677        struct page *page, *swapcache;
2678        struct mem_cgroup *memcg;
2679        swp_entry_t entry;
2680        pte_t pte;
2681        int locked;
2682        int exclusive = 0;
2683        int ret = 0;
2684
2685        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2686                goto out;
2687
2688        entry = pte_to_swp_entry(vmf->orig_pte);
2689        if (unlikely(non_swap_entry(entry))) {
2690                if (is_migration_entry(entry)) {
2691                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2692                                             vmf->address);
2693                } else if (is_hwpoison_entry(entry)) {
2694                        ret = VM_FAULT_HWPOISON;
2695                } else {
2696                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2697                        ret = VM_FAULT_SIGBUS;
2698                }
2699                goto out;
2700        }
2701        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2702        page = lookup_swap_cache(entry);
2703        if (!page) {
2704                page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2705                                        vmf->address);
2706                if (!page) {
2707                        /*
2708                         * Back out if somebody else faulted in this pte
2709                         * while we released the pte lock.
2710                         */
2711                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2712                                        vmf->address, &vmf->ptl);
2713                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2714                                ret = VM_FAULT_OOM;
2715                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2716                        goto unlock;
2717                }
2718
2719                /* Had to read the page from swap area: Major fault */
2720                ret = VM_FAULT_MAJOR;
2721                count_vm_event(PGMAJFAULT);
2722                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2723        } else if (PageHWPoison(page)) {
2724                /*
2725                 * hwpoisoned dirty swapcache pages are kept for killing
2726                 * owner processes (which may be unknown at hwpoison time)
2727                 */
2728                ret = VM_FAULT_HWPOISON;
2729                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2730                swapcache = page;
2731                goto out_release;
2732        }
2733
2734        swapcache = page;
2735        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2736
2737        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2738        if (!locked) {
2739                ret |= VM_FAULT_RETRY;
2740                goto out_release;
2741        }
2742
2743        /*
2744         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2745         * release the swapcache from under us.  The page pin, and pte_same
2746         * test below, are not enough to exclude that.  Even if it is still
2747         * swapcache, we need to check that the page's swap has not changed.
2748         */
2749        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2750                goto out_page;
2751
2752        page = ksm_might_need_to_copy(page, vma, vmf->address);
2753        if (unlikely(!page)) {
2754                ret = VM_FAULT_OOM;
2755                page = swapcache;
2756                goto out_page;
2757        }
2758
2759        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2760                                &memcg, false)) {
2761                ret = VM_FAULT_OOM;
2762                goto out_page;
2763        }
2764
2765        /*
2766         * Back out if somebody else already faulted in this pte.
2767         */
2768        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2769                        &vmf->ptl);
2770        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2771                goto out_nomap;
2772
2773        if (unlikely(!PageUptodate(page))) {
2774                ret = VM_FAULT_SIGBUS;
2775                goto out_nomap;
2776        }
2777
2778        /*
2779         * The page isn't present yet, go ahead with the fault.
2780         *
2781         * Be careful about the sequence of operations here.
2782         * To get its accounting right, reuse_swap_page() must be called
2783         * while the page is counted on swap but not yet in mapcount i.e.
2784         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2785         * must be called after the swap_free(), or it will never succeed.
2786         */
2787
2788        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2789        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2790        pte = mk_pte(page, vma->vm_page_prot);
2791        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2792                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2793                vmf->flags &= ~FAULT_FLAG_WRITE;
2794                ret |= VM_FAULT_WRITE;
2795                exclusive = RMAP_EXCLUSIVE;
2796        }
2797        flush_icache_page(vma, page);
2798        if (pte_swp_soft_dirty(vmf->orig_pte))
2799                pte = pte_mksoft_dirty(pte);
2800        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2801        vmf->orig_pte = pte;
2802        if (page == swapcache) {
2803                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2804                mem_cgroup_commit_charge(page, memcg, true, false);
2805                activate_page(page);
2806        } else { /* ksm created a completely new copy */
2807                page_add_new_anon_rmap(page, vma, vmf->address, false);
2808                mem_cgroup_commit_charge(page, memcg, false, false);
2809                lru_cache_add_active_or_unevictable(page, vma);
2810        }
2811
2812        swap_free(entry);
2813        if (mem_cgroup_swap_full(page) ||
2814            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2815                try_to_free_swap(page);
2816        unlock_page(page);
2817        if (page != swapcache) {
2818                /*
2819                 * Hold the lock to avoid the swap entry to be reused
2820                 * until we take the PT lock for the pte_same() check
2821                 * (to avoid false positives from pte_same). For
2822                 * further safety release the lock after the swap_free
2823                 * so that the swap count won't change under a
2824                 * parallel locked swapcache.
2825                 */
2826                unlock_page(swapcache);
2827                put_page(swapcache);
2828        }
2829
2830        if (vmf->flags & FAULT_FLAG_WRITE) {
2831                ret |= do_wp_page(vmf);
2832                if (ret & VM_FAULT_ERROR)
2833                        ret &= VM_FAULT_ERROR;
2834                goto out;
2835        }
2836
2837        /* No need to invalidate - it was non-present before */
2838        update_mmu_cache(vma, vmf->address, vmf->pte);
2839unlock:
2840        pte_unmap_unlock(vmf->pte, vmf->ptl);
2841out:
2842        return ret;
2843out_nomap:
2844        mem_cgroup_cancel_charge(page, memcg, false);
2845        pte_unmap_unlock(vmf->pte, vmf->ptl);
2846out_page:
2847        unlock_page(page);
2848out_release:
2849        put_page(page);
2850        if (page != swapcache) {
2851                unlock_page(swapcache);
2852                put_page(swapcache);
2853        }
2854        return ret;
2855}
2856
2857/*
2858 * This is like a special single-page "expand_{down|up}wards()",
2859 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2860 * doesn't hit another vma.
2861 */
2862static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2863{
2864        address &= PAGE_MASK;
2865        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2866                struct vm_area_struct *prev = vma->vm_prev;
2867
2868                /*
2869                 * Is there a mapping abutting this one below?
2870                 *
2871                 * That's only ok if it's the same stack mapping
2872                 * that has gotten split..
2873                 */
2874                if (prev && prev->vm_end == address)
2875                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2876
2877                return expand_downwards(vma, address - PAGE_SIZE);
2878        }
2879        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2880                struct vm_area_struct *next = vma->vm_next;
2881
2882                /* As VM_GROWSDOWN but s/below/above/ */
2883                if (next && next->vm_start == address + PAGE_SIZE)
2884                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2885
2886                return expand_upwards(vma, address + PAGE_SIZE);
2887        }
2888        return 0;
2889}
2890
2891/*
2892 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2893 * but allow concurrent faults), and pte mapped but not yet locked.
2894 * We return with mmap_sem still held, but pte unmapped and unlocked.
2895 */
2896static int do_anonymous_page(struct vm_fault *vmf)
2897{
2898        struct vm_area_struct *vma = vmf->vma;
2899        struct mem_cgroup *memcg;
2900        struct page *page;
2901        pte_t entry;
2902
2903        /* File mapping without ->vm_ops ? */
2904        if (vma->vm_flags & VM_SHARED)
2905                return VM_FAULT_SIGBUS;
2906
2907        /* Check if we need to add a guard page to the stack */
2908        if (check_stack_guard_page(vma, vmf->address) < 0)
2909                return VM_FAULT_SIGSEGV;
2910
2911        /*
2912         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2913         * pte_offset_map() on pmds where a huge pmd might be created
2914         * from a different thread.
2915         *
2916         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2917         * parallel threads are excluded by other means.
2918         *
2919         * Here we only have down_read(mmap_sem).
2920         */
2921        if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2922                return VM_FAULT_OOM;
2923
2924        /* See the comment in pte_alloc_one_map() */
2925        if (unlikely(pmd_trans_unstable(vmf->pmd)))
2926                return 0;
2927
2928        /* Use the zero-page for reads */
2929        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2930                        !mm_forbids_zeropage(vma->vm_mm)) {
2931                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2932                                                vma->vm_page_prot));
2933                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2934                                vmf->address, &vmf->ptl);
2935                if (!pte_none(*vmf->pte))
2936                        goto unlock;
2937                /* Deliver the page fault to userland, check inside PT lock */
2938                if (userfaultfd_missing(vma)) {
2939                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2940                        return handle_userfault(vmf, VM_UFFD_MISSING);
2941                }
2942                goto setpte;
2943        }
2944
2945        /* Allocate our own private page. */
2946        if (unlikely(anon_vma_prepare(vma)))
2947                goto oom;
2948        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2949        if (!page)
2950                goto oom;
2951
2952        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2953                goto oom_free_page;
2954
2955        /*
2956         * The memory barrier inside __SetPageUptodate makes sure that
2957         * preceeding stores to the page contents become visible before
2958         * the set_pte_at() write.
2959         */
2960        __SetPageUptodate(page);
2961
2962        entry = mk_pte(page, vma->vm_page_prot);
2963        if (vma->vm_flags & VM_WRITE)
2964                entry = pte_mkwrite(pte_mkdirty(entry));
2965
2966        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2967                        &vmf->ptl);
2968        if (!pte_none(*vmf->pte))
2969                goto release;
2970
2971        /* Deliver the page fault to userland, check inside PT lock */
2972        if (userfaultfd_missing(vma)) {
2973                pte_unmap_unlock(vmf->pte, vmf->ptl);
2974                mem_cgroup_cancel_charge(page, memcg, false);
2975                put_page(page);
2976                return handle_userfault(vmf, VM_UFFD_MISSING);
2977        }
2978
2979        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2980        page_add_new_anon_rmap(page, vma, vmf->address, false);
2981        mem_cgroup_commit_charge(page, memcg, false, false);
2982        lru_cache_add_active_or_unevictable(page, vma);
2983setpte:
2984        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2985
2986        /* No need to invalidate - it was non-present before */
2987        update_mmu_cache(vma, vmf->address, vmf->pte);
2988unlock:
2989        pte_unmap_unlock(vmf->pte, vmf->ptl);
2990        return 0;
2991release:
2992        mem_cgroup_cancel_charge(page, memcg, false);
2993        put_page(page);
2994        goto unlock;
2995oom_free_page:
2996        put_page(page);
2997oom:
2998        return VM_FAULT_OOM;
2999}
3000
3001/*
3002 * The mmap_sem must have been held on entry, and may have been
3003 * released depending on flags and vma->vm_ops->fault() return value.
3004 * See filemap_fault() and __lock_page_retry().
3005 */
3006static int __do_fault(struct vm_fault *vmf)
3007{
3008        struct vm_area_struct *vma = vmf->vma;
3009        int ret;
3010
3011        ret = vma->vm_ops->fault(vmf);
3012        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3013                            VM_FAULT_DONE_COW)))
3014                return ret;
3015
3016        if (unlikely(PageHWPoison(vmf->page))) {
3017                if (ret & VM_FAULT_LOCKED)
3018                        unlock_page(vmf->page);
3019                put_page(vmf->page);
3020                vmf->page = NULL;
3021                return VM_FAULT_HWPOISON;
3022        }
3023
3024        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3025                lock_page(vmf->page);
3026        else
3027                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3028
3029        return ret;
3030}
3031
3032static int pte_alloc_one_map(struct vm_fault *vmf)
3033{
3034        struct vm_area_struct *vma = vmf->vma;
3035
3036        if (!pmd_none(*vmf->pmd))
3037                goto map_pte;
3038        if (vmf->prealloc_pte) {
3039                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3040                if (unlikely(!pmd_none(*vmf->pmd))) {
3041                        spin_unlock(vmf->ptl);
3042                        goto map_pte;
3043                }
3044
3045                atomic_long_inc(&vma->vm_mm->nr_ptes);
3046                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3047                spin_unlock(vmf->ptl);
3048                vmf->prealloc_pte = NULL;
3049        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3050                return VM_FAULT_OOM;
3051        }
3052map_pte:
3053        /*
3054         * If a huge pmd materialized under us just retry later.  Use
3055         * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3056         * didn't become pmd_trans_huge under us and then back to pmd_none, as
3057         * a result of MADV_DONTNEED running immediately after a huge pmd fault
3058         * in a different thread of this mm, in turn leading to a misleading
3059         * pmd_trans_huge() retval.  All we have to ensure is that it is a
3060         * regular pmd that we can walk with pte_offset_map() and we can do that
3061         * through an atomic read in C, which is what pmd_trans_unstable()
3062         * provides.
3063         */
3064        if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3065                return VM_FAULT_NOPAGE;
3066
3067        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3068                        &vmf->ptl);
3069        return 0;
3070}
3071
3072#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3073
3074#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3075static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3076                unsigned long haddr)
3077{
3078        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3079                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3080                return false;
3081        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3082                return false;
3083        return true;
3084}
3085
3086static void deposit_prealloc_pte(struct vm_fault *vmf)
3087{
3088        struct vm_area_struct *vma = vmf->vma;
3089
3090        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3091        /*
3092         * We are going to consume the prealloc table,
3093         * count that as nr_ptes.
3094         */
3095        atomic_long_inc(&vma->vm_mm->nr_ptes);
3096        vmf->prealloc_pte = NULL;
3097}
3098
3099static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3100{
3101        struct vm_area_struct *vma = vmf->vma;
3102        bool write = vmf->flags & FAULT_FLAG_WRITE;
3103        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3104        pmd_t entry;
3105        int i, ret;
3106
3107        if (!transhuge_vma_suitable(vma, haddr))
3108                return VM_FAULT_FALLBACK;
3109
3110        ret = VM_FAULT_FALLBACK;
3111        page = compound_head(page);
3112
3113        /*
3114         * Archs like ppc64 need additonal space to store information
3115         * related to pte entry. Use the preallocated table for that.
3116         */
3117        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3118                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3119                if (!vmf->prealloc_pte)
3120                        return VM_FAULT_OOM;
3121                smp_wmb(); /* See comment in __pte_alloc() */
3122        }
3123
3124        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3125        if (unlikely(!pmd_none(*vmf->pmd)))
3126                goto out;
3127
3128        for (i = 0; i < HPAGE_PMD_NR; i++)
3129                flush_icache_page(vma, page + i);
3130
3131        entry = mk_huge_pmd(page, vma->vm_page_prot);
3132        if (write)
3133                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3134
3135        add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3136        page_add_file_rmap(page, true);
3137        /*
3138         * deposit and withdraw with pmd lock held
3139         */
3140        if (arch_needs_pgtable_deposit())
3141                deposit_prealloc_pte(vmf);
3142
3143        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3144
3145        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3146
3147        /* fault is handled */
3148        ret = 0;
3149        count_vm_event(THP_FILE_MAPPED);
3150out:
3151        spin_unlock(vmf->ptl);
3152        return ret;
3153}
3154#else
3155static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3156{
3157        BUILD_BUG();
3158        return 0;
3159}
3160#endif
3161
3162/**
3163 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3164 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3165 *
3166 * @vmf: fault environment
3167 * @memcg: memcg to charge page (only for private mappings)
3168 * @page: page to map
3169 *
3170 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3171 * return.
3172 *
3173 * Target users are page handler itself and implementations of
3174 * vm_ops->map_pages.
3175 */
3176int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3177                struct page *page)
3178{
3179        struct vm_area_struct *vma = vmf->vma;
3180        bool write = vmf->flags & FAULT_FLAG_WRITE;
3181        pte_t entry;
3182        int ret;
3183
3184        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3185                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3186                /* THP on COW? */
3187                VM_BUG_ON_PAGE(memcg, page);
3188
3189                ret = do_set_pmd(vmf, page);
3190                if (ret != VM_FAULT_FALLBACK)
3191                        return ret;
3192        }
3193
3194        if (!vmf->pte) {
3195                ret = pte_alloc_one_map(vmf);
3196                if (ret)
3197                        return ret;
3198        }
3199
3200        /* Re-check under ptl */
3201        if (unlikely(!pte_none(*vmf->pte)))
3202                return VM_FAULT_NOPAGE;
3203
3204        flush_icache_page(vma, page);
3205        entry = mk_pte(page, vma->vm_page_prot);
3206        if (write)
3207                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3208        /* copy-on-write page */
3209        if (write && !(vma->vm_flags & VM_SHARED)) {
3210                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3211                page_add_new_anon_rmap(page, vma, vmf->address, false);
3212                mem_cgroup_commit_charge(page, memcg, false, false);
3213                lru_cache_add_active_or_unevictable(page, vma);
3214        } else {
3215                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3216                page_add_file_rmap(page, false);
3217        }
3218        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3219
3220        /* no need to invalidate: a not-present page won't be cached */
3221        update_mmu_cache(vma, vmf->address, vmf->pte);
3222
3223        return 0;
3224}
3225
3226
3227/**
3228 * finish_fault - finish page fault once we have prepared the page to fault
3229 *
3230 * @vmf: structure describing the fault
3231 *
3232 * This function handles all that is needed to finish a page fault once the
3233 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3234 * given page, adds reverse page mapping, handles memcg charges and LRU
3235 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3236 * error.
3237 *
3238 * The function expects the page to be locked and on success it consumes a
3239 * reference of a page being mapped (for the PTE which maps it).
3240 */
3241int finish_fault(struct vm_fault *vmf)
3242{
3243        struct page *page;
3244        int ret;
3245
3246        /* Did we COW the page? */
3247        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3248            !(vmf->vma->vm_flags & VM_SHARED))
3249                page = vmf->cow_page;
3250        else
3251                page = vmf->page;
3252        ret = alloc_set_pte(vmf, vmf->memcg, page);
3253        if (vmf->pte)
3254                pte_unmap_unlock(vmf->pte, vmf->ptl);
3255        return ret;
3256}
3257
3258static unsigned long fault_around_bytes __read_mostly =
3259        rounddown_pow_of_two(65536);
3260
3261#ifdef CONFIG_DEBUG_FS
3262static int fault_around_bytes_get(void *data, u64 *val)
3263{
3264        *val = fault_around_bytes;
3265        return 0;
3266}
3267
3268/*
3269 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3270 * rounded down to nearest page order. It's what do_fault_around() expects to
3271 * see.
3272 */
3273static int fault_around_bytes_set(void *data, u64 val)
3274{
3275        if (val / PAGE_SIZE > PTRS_PER_PTE)
3276                return -EINVAL;
3277        if (val > PAGE_SIZE)
3278                fault_around_bytes = rounddown_pow_of_two(val);
3279        else
3280                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3281        return 0;
3282}
3283DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3284                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3285
3286static int __init fault_around_debugfs(void)
3287{
3288        void *ret;
3289
3290        ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3291                        &fault_around_bytes_fops);
3292        if (!ret)
3293                pr_warn("Failed to create fault_around_bytes in debugfs");
3294        return 0;
3295}
3296late_initcall(fault_around_debugfs);
3297#endif
3298
3299/*
3300 * do_fault_around() tries to map few pages around the fault address. The hope
3301 * is that the pages will be needed soon and this will lower the number of
3302 * faults to handle.
3303 *
3304 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3305 * not ready to be mapped: not up-to-date, locked, etc.
3306 *
3307 * This function is called with the page table lock taken. In the split ptlock
3308 * case the page table lock only protects only those entries which belong to
3309 * the page table corresponding to the fault address.
3310 *
3311 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3312 * only once.
3313 *
3314 * fault_around_pages() defines how many pages we'll try to map.
3315 * do_fault_around() expects it to return a power of two less than or equal to
3316 * PTRS_PER_PTE.
3317 *
3318 * The virtual address of the area that we map is naturally aligned to the
3319 * fault_around_pages() value (and therefore to page order).  This way it's
3320 * easier to guarantee that we don't cross page table boundaries.
3321 */
3322static int do_fault_around(struct vm_fault *vmf)
3323{
3324        unsigned long address = vmf->address, nr_pages, mask;
3325        pgoff_t start_pgoff = vmf->pgoff;
3326        pgoff_t end_pgoff;
3327        int off, ret = 0;
3328
3329        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3330        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3331
3332        vmf->address = max(address & mask, vmf->vma->vm_start);
3333        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3334        start_pgoff -= off;
3335
3336        /*
3337         *  end_pgoff is either end of page table or end of vma
3338         *  or fault_around_pages() from start_pgoff, depending what is nearest.
3339         */
3340        end_pgoff = start_pgoff -
3341                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3342                PTRS_PER_PTE - 1;
3343        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3344                        start_pgoff + nr_pages - 1);
3345
3346        if (pmd_none(*vmf->pmd)) {
3347                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3348                                                  vmf->address);
3349                if (!vmf->prealloc_pte)
3350                        goto out;
3351                smp_wmb(); /* See comment in __pte_alloc() */
3352        }
3353
3354        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3355
3356        /* Huge page is mapped? Page fault is solved */
3357        if (pmd_trans_huge(*vmf->pmd)) {
3358                ret = VM_FAULT_NOPAGE;
3359                goto out;
3360        }
3361
3362        /* ->map_pages() haven't done anything useful. Cold page cache? */
3363        if (!vmf->pte)
3364                goto out;
3365
3366        /* check if the page fault is solved */
3367        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3368        if (!pte_none(*vmf->pte))
3369                ret = VM_FAULT_NOPAGE;
3370        pte_unmap_unlock(vmf->pte, vmf->ptl);
3371out:
3372        vmf->address = address;
3373        vmf->pte = NULL;
3374        return ret;
3375}
3376
3377static int do_read_fault(struct vm_fault *vmf)
3378{
3379        struct vm_area_struct *vma = vmf->vma;
3380        int ret = 0;
3381
3382        /*
3383         * Let's call ->map_pages() first and use ->fault() as fallback
3384         * if page by the offset is not ready to be mapped (cold cache or
3385         * something).
3386         */
3387        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3388                ret = do_fault_around(vmf);
3389                if (ret)
3390                        return ret;
3391        }
3392
3393        ret = __do_fault(vmf);
3394        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3395                return ret;
3396
3397        ret |= finish_fault(vmf);
3398        unlock_page(vmf->page);
3399        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3400                put_page(vmf->page);
3401        return ret;
3402}
3403
3404static int do_cow_fault(struct vm_fault *vmf)
3405{
3406        struct vm_area_struct *vma = vmf->vma;
3407        int ret;
3408
3409        if (unlikely(anon_vma_prepare(vma)))
3410                return VM_FAULT_OOM;
3411
3412        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3413        if (!vmf->cow_page)
3414                return VM_FAULT_OOM;
3415
3416        if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3417                                &vmf->memcg, false)) {
3418                put_page(vmf->cow_page);
3419                return VM_FAULT_OOM;
3420        }
3421
3422        ret = __do_fault(vmf);
3423        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3424                goto uncharge_out;
3425        if (ret & VM_FAULT_DONE_COW)
3426                return ret;
3427
3428        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3429        __SetPageUptodate(vmf->cow_page);
3430
3431        ret |= finish_fault(vmf);
3432        unlock_page(vmf->page);
3433        put_page(vmf->page);
3434        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3435                goto uncharge_out;
3436        return ret;
3437uncharge_out:
3438        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3439        put_page(vmf->cow_page);
3440        return ret;
3441}
3442
3443static int do_shared_fault(struct vm_fault *vmf)
3444{
3445        struct vm_area_struct *vma = vmf->vma;
3446        int ret, tmp;
3447
3448        ret = __do_fault(vmf);
3449        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3450                return ret;
3451
3452        /*
3453         * Check if the backing address space wants to know that the page is
3454         * about to become writable
3455         */
3456        if (vma->vm_ops->page_mkwrite) {
3457                unlock_page(vmf->page);
3458                tmp = do_page_mkwrite(vmf);
3459                if (unlikely(!tmp ||
3460                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3461                        put_page(vmf->page);
3462                        return tmp;
3463                }
3464        }
3465
3466        ret |= finish_fault(vmf);
3467        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3468                                        VM_FAULT_RETRY))) {
3469                unlock_page(vmf->page);
3470                put_page(vmf->page);
3471                return ret;
3472        }
3473
3474        fault_dirty_shared_page(vma, vmf->page);
3475        return ret;
3476}
3477
3478/*
3479 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3480 * but allow concurrent faults).
3481 * The mmap_sem may have been released depending on flags and our
3482 * return value.  See filemap_fault() and __lock_page_or_retry().
3483 */
3484static int do_fault(struct vm_fault *vmf)
3485{
3486        struct vm_area_struct *vma = vmf->vma;
3487        int ret;
3488
3489        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3490        if (!vma->vm_ops->fault)
3491                ret = VM_FAULT_SIGBUS;
3492        else if (!(vmf->flags & FAULT_FLAG_WRITE))
3493                ret = do_read_fault(vmf);
3494        else if (!(vma->vm_flags & VM_SHARED))
3495                ret = do_cow_fault(vmf);
3496        else
3497                ret = do_shared_fault(vmf);
3498
3499        /* preallocated pagetable is unused: free it */
3500        if (vmf->prealloc_pte) {
3501                pte_free(vma->vm_mm, vmf->prealloc_pte);
3502                vmf->prealloc_pte = NULL;
3503        }
3504        return ret;
3505}
3506
3507static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3508                                unsigned long addr, int page_nid,
3509                                int *flags)
3510{
3511        get_page(page);
3512
3513        count_vm_numa_event(NUMA_HINT_FAULTS);
3514        if (page_nid == numa_node_id()) {
3515                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3516                *flags |= TNF_FAULT_LOCAL;
3517        }
3518
3519        return mpol_misplaced(page, vma, addr);
3520}
3521
3522static int do_numa_page(struct vm_fault *vmf)
3523{
3524        struct vm_area_struct *vma = vmf->vma;
3525        struct page *page = NULL;
3526        int page_nid = -1;
3527        int last_cpupid;
3528        int target_nid;
3529        bool migrated = false;
3530        pte_t pte;
3531        bool was_writable = pte_savedwrite(vmf->orig_pte);
3532        int flags = 0;
3533
3534        /*
3535         * The "pte" at this point cannot be used safely without
3536         * validation through pte_unmap_same(). It's of NUMA type but
3537         * the pfn may be screwed if the read is non atomic.
3538         */
3539        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3540        spin_lock(vmf->ptl);
3541        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3542                pte_unmap_unlock(vmf->pte, vmf->ptl);
3543                goto out;
3544        }
3545
3546        /*
3547         * Make it present again, Depending on how arch implementes non
3548         * accessible ptes, some can allow access by kernel mode.
3549         */
3550        pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3551        pte = pte_modify(pte, vma->vm_page_prot);
3552        pte = pte_mkyoung(pte);
3553        if (was_writable)
3554                pte = pte_mkwrite(pte);
3555        ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3556        update_mmu_cache(vma, vmf->address, vmf->pte);
3557
3558        page = vm_normal_page(vma, vmf->address, pte);
3559        if (!page) {
3560                pte_unmap_unlock(vmf->pte, vmf->ptl);
3561                return 0;
3562        }
3563
3564        /* TODO: handle PTE-mapped THP */
3565        if (PageCompound(page)) {
3566                pte_unmap_unlock(vmf->pte, vmf->ptl);
3567                return 0;
3568        }
3569
3570        /*
3571         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3572         * much anyway since they can be in shared cache state. This misses
3573         * the case where a mapping is writable but the process never writes
3574         * to it but pte_write gets cleared during protection updates and
3575         * pte_dirty has unpredictable behaviour between PTE scan updates,
3576         * background writeback, dirty balancing and application behaviour.
3577         */
3578        if (!pte_write(pte))
3579                flags |= TNF_NO_GROUP;
3580
3581        /*
3582         * Flag if the page is shared between multiple address spaces. This
3583         * is later used when determining whether to group tasks together
3584         */
3585        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3586                flags |= TNF_SHARED;
3587
3588        last_cpupid = page_cpupid_last(page);
3589        page_nid = page_to_nid(page);
3590        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3591                        &flags);
3592        pte_unmap_unlock(vmf->pte, vmf->ptl);
3593        if (target_nid == -1) {
3594                put_page(page);
3595                goto out;
3596        }
3597
3598        /* Migrate to the requested node */
3599        migrated = migrate_misplaced_page(page, vma, target_nid);
3600        if (migrated) {
3601                page_nid = target_nid;
3602                flags |= TNF_MIGRATED;
3603        } else
3604                flags |= TNF_MIGRATE_FAIL;
3605
3606out:
3607        if (page_nid != -1)
3608                task_numa_fault(last_cpupid, page_nid, 1, flags);
3609        return 0;
3610}
3611
3612static int create_huge_pmd(struct vm_fault *vmf)
3613{
3614        if (vma_is_anonymous(vmf->vma))
3615                return do_huge_pmd_anonymous_page(vmf);
3616        if (vmf->vma->vm_ops->huge_fault)
3617                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3618        return VM_FAULT_FALLBACK;
3619}
3620
3621static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3622{
3623        if (vma_is_anonymous(vmf->vma))
3624                return do_huge_pmd_wp_page(vmf, orig_pmd);
3625        if (vmf->vma->vm_ops->huge_fault)
3626                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3627
3628        /* COW handled on pte level: split pmd */
3629        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3630        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3631
3632        return VM_FAULT_FALLBACK;
3633}
3634
3635static inline bool vma_is_accessible(struct vm_area_struct *vma)
3636{
3637        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3638}
3639
3640static int create_huge_pud(struct vm_fault *vmf)
3641{
3642#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3643        /* No support for anonymous transparent PUD pages yet */
3644        if (vma_is_anonymous(vmf->vma))
3645                return VM_FAULT_FALLBACK;
3646        if (vmf->vma->vm_ops->huge_fault)
3647                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3648#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3649        return VM_FAULT_FALLBACK;
3650}
3651
3652static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3653{
3654#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3655        /* No support for anonymous transparent PUD pages yet */
3656        if (vma_is_anonymous(vmf->vma))
3657                return VM_FAULT_FALLBACK;
3658        if (vmf->vma->vm_ops->huge_fault)
3659                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3660#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3661        return VM_FAULT_FALLBACK;
3662}
3663
3664/*
3665 * These routines also need to handle stuff like marking pages dirty
3666 * and/or accessed for architectures that don't do it in hardware (most
3667 * RISC architectures).  The early dirtying is also good on the i386.
3668 *
3669 * There is also a hook called "update_mmu_cache()" that architectures
3670 * with external mmu caches can use to update those (ie the Sparc or
3671 * PowerPC hashed page tables that act as extended TLBs).
3672 *
3673 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3674 * concurrent faults).
3675 *
3676 * The mmap_sem may have been released depending on flags and our return value.
3677 * See filemap_fault() and __lock_page_or_retry().
3678 */
3679static int handle_pte_fault(struct vm_fault *vmf)
3680{
3681        pte_t entry;
3682
3683        if (unlikely(pmd_none(*vmf->pmd))) {
3684                /*
3685                 * Leave __pte_alloc() until later: because vm_ops->fault may
3686                 * want to allocate huge page, and if we expose page table
3687                 * for an instant, it will be difficult to retract from
3688                 * concurrent faults and from rmap lookups.
3689                 */
3690                vmf->pte = NULL;
3691        } else {
3692                /* See comment in pte_alloc_one_map() */
3693                if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3694                        return 0;
3695                /*
3696                 * A regular pmd is established and it can't morph into a huge
3697                 * pmd from under us anymore at this point because we hold the
3698                 * mmap_sem read mode and khugepaged takes it in write mode.
3699                 * So now it's safe to run pte_offset_map().
3700                 */
3701                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3702                vmf->orig_pte = *vmf->pte;
3703
3704                /*
3705                 * some architectures can have larger ptes than wordsize,
3706                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3707                 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3708                 * atomic accesses.  The code below just needs a consistent
3709                 * view for the ifs and we later double check anyway with the
3710                 * ptl lock held. So here a barrier will do.
3711                 */
3712                barrier();
3713                if (pte_none(vmf->orig_pte)) {
3714                        pte_unmap(vmf->pte);
3715                        vmf->pte = NULL;
3716                }
3717        }
3718
3719        if (!vmf->pte) {
3720                if (vma_is_anonymous(vmf->vma))
3721                        return do_anonymous_page(vmf);
3722                else
3723                        return do_fault(vmf);
3724        }
3725
3726        if (!pte_present(vmf->orig_pte))
3727                return do_swap_page(vmf);
3728
3729        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3730                return do_numa_page(vmf);
3731
3732        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3733        spin_lock(vmf->ptl);
3734        entry = vmf->orig_pte;
3735        if (unlikely(!pte_same(*vmf->pte, entry)))
3736                goto unlock;
3737        if (vmf->flags & FAULT_FLAG_WRITE) {
3738                if (!pte_write(entry))
3739                        return do_wp_page(vmf);
3740                entry = pte_mkdirty(entry);
3741        }
3742        entry = pte_mkyoung(entry);
3743        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3744                                vmf->flags & FAULT_FLAG_WRITE)) {
3745                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3746        } else {
3747                /*
3748                 * This is needed only for protection faults but the arch code
3749                 * is not yet telling us if this is a protection fault or not.
3750                 * This still avoids useless tlb flushes for .text page faults
3751                 * with threads.
3752                 */
3753                if (vmf->flags & FAULT_FLAG_WRITE)
3754                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3755        }
3756unlock:
3757        pte_unmap_unlock(vmf->pte, vmf->ptl);
3758        return 0;
3759}
3760
3761/*
3762 * By the time we get here, we already hold the mm semaphore
3763 *
3764 * The mmap_sem may have been released depending on flags and our
3765 * return value.  See filemap_fault() and __lock_page_or_retry().
3766 */
3767static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3768                unsigned int flags)
3769{
3770        struct vm_fault vmf = {
3771                .vma = vma,
3772                .address = address & PAGE_MASK,
3773                .flags = flags,
3774                .pgoff = linear_page_index(vma, address),
3775                .gfp_mask = __get_fault_gfp_mask(vma),
3776        };
3777        struct mm_struct *mm = vma->vm_mm;
3778        pgd_t *pgd;
3779        p4d_t *p4d;
3780        int ret;
3781
3782        pgd = pgd_offset(mm, address);
3783        p4d = p4d_alloc(mm, pgd, address);
3784        if (!p4d)
3785                return VM_FAULT_OOM;
3786
3787        vmf.pud = pud_alloc(mm, p4d, address);
3788        if (!vmf.pud)
3789                return VM_FAULT_OOM;
3790        if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3791                ret = create_huge_pud(&vmf);
3792                if (!(ret & VM_FAULT_FALLBACK))
3793                        return ret;
3794        } else {
3795                pud_t orig_pud = *vmf.pud;
3796
3797                barrier();
3798                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3799                        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3800
3801                        /* NUMA case for anonymous PUDs would go here */
3802
3803                        if (dirty && !pud_write(orig_pud)) {
3804                                ret = wp_huge_pud(&vmf, orig_pud);
3805                                if (!(ret & VM_FAULT_FALLBACK))
3806                                        return ret;
3807                        } else {
3808                                huge_pud_set_accessed(&vmf, orig_pud);
3809                                return 0;
3810                        }
3811                }
3812        }
3813
3814        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3815        if (!vmf.pmd)
3816                return VM_FAULT_OOM;
3817        if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3818                ret = create_huge_pmd(&vmf);
3819                if (!(ret & VM_FAULT_FALLBACK))
3820                        return ret;
3821        } else {
3822                pmd_t orig_pmd = *vmf.pmd;
3823
3824                barrier();
3825                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3826                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3827                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
3828
3829                        if ((vmf.flags & FAULT_FLAG_WRITE) &&
3830                                        !pmd_write(orig_pmd)) {
3831                                ret = wp_huge_pmd(&vmf, orig_pmd);
3832                                if (!(ret & VM_FAULT_FALLBACK))
3833                                        return ret;
3834                        } else {
3835                                huge_pmd_set_accessed(&vmf, orig_pmd);
3836                                return 0;
3837                        }
3838                }
3839        }
3840
3841        return handle_pte_fault(&vmf);
3842}
3843
3844/*
3845 * By the time we get here, we already hold the mm semaphore
3846 *
3847 * The mmap_sem may have been released depending on flags and our
3848 * return value.  See filemap_fault() and __lock_page_or_retry().
3849 */
3850int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3851                unsigned int flags)
3852{
3853        int ret;
3854
3855        __set_current_state(TASK_RUNNING);
3856
3857        count_vm_event(PGFAULT);
3858        mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3859
3860        /* do counter updates before entering really critical section. */
3861        check_sync_rss_stat(current);
3862
3863        /*
3864         * Enable the memcg OOM handling for faults triggered in user
3865         * space.  Kernel faults are handled more gracefully.
3866         */
3867        if (flags & FAULT_FLAG_USER)
3868                mem_cgroup_oom_enable();
3869
3870        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3871                                            flags & FAULT_FLAG_INSTRUCTION,
3872                                            flags & FAULT_FLAG_REMOTE))
3873                return VM_FAULT_SIGSEGV;
3874
3875        if (unlikely(is_vm_hugetlb_page(vma)))
3876                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3877        else
3878                ret = __handle_mm_fault(vma, address, flags);
3879
3880        if (flags & FAULT_FLAG_USER) {
3881                mem_cgroup_oom_disable();
3882                /*
3883                 * The task may have entered a memcg OOM situation but
3884                 * if the allocation error was handled gracefully (no
3885                 * VM_FAULT_OOM), there is no need to kill anything.
3886                 * Just clean up the OOM state peacefully.
3887                 */
3888                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3889                        mem_cgroup_oom_synchronize(false);
3890        }
3891
3892        /*
3893         * This mm has been already reaped by the oom reaper and so the
3894         * refault cannot be trusted in general. Anonymous refaults would
3895         * lose data and give a zero page instead e.g. This is especially
3896         * problem for use_mm() because regular tasks will just die and
3897         * the corrupted data will not be visible anywhere while kthread
3898         * will outlive the oom victim and potentially propagate the date
3899         * further.
3900         */
3901        if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3902                                && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3903                ret = VM_FAULT_SIGBUS;
3904
3905        return ret;
3906}
3907EXPORT_SYMBOL_GPL(handle_mm_fault);
3908
3909#ifndef __PAGETABLE_P4D_FOLDED
3910/*
3911 * Allocate p4d page table.
3912 * We've already handled the fast-path in-line.
3913 */
3914int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3915{
3916        p4d_t *new = p4d_alloc_one(mm, address);
3917        if (!new)
3918                return -ENOMEM;
3919
3920        smp_wmb(); /* See comment in __pte_alloc */
3921
3922        spin_lock(&mm->page_table_lock);
3923        if (pgd_present(*pgd))          /* Another has populated it */
3924                p4d_free(mm, new);
3925        else
3926                pgd_populate(mm, pgd, new);
3927        spin_unlock(&mm->page_table_lock);
3928        return 0;
3929}
3930#endif /* __PAGETABLE_P4D_FOLDED */
3931
3932#ifndef __PAGETABLE_PUD_FOLDED
3933/*
3934 * Allocate page upper directory.
3935 * We've already handled the fast-path in-line.
3936 */
3937int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3938{
3939        pud_t *new = pud_alloc_one(mm, address);
3940        if (!new)
3941                return -ENOMEM;
3942
3943        smp_wmb(); /* See comment in __pte_alloc */
3944
3945        spin_lock(&mm->page_table_lock);
3946#ifndef __ARCH_HAS_5LEVEL_HACK
3947        if (p4d_present(*p4d))          /* Another has populated it */
3948                pud_free(mm, new);
3949        else
3950                p4d_populate(mm, p4d, new);
3951#else
3952        if (pgd_present(*p4d))          /* Another has populated it */
3953                pud_free(mm, new);
3954        else
3955                pgd_populate(mm, p4d, new);
3956#endif /* __ARCH_HAS_5LEVEL_HACK */
3957        spin_unlock(&mm->page_table_lock);
3958        return 0;
3959}
3960#endif /* __PAGETABLE_PUD_FOLDED */
3961
3962#ifndef __PAGETABLE_PMD_FOLDED
3963/*
3964 * Allocate page middle directory.
3965 * We've already handled the fast-path in-line.
3966 */
3967int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3968{
3969        spinlock_t *ptl;
3970        pmd_t *new = pmd_alloc_one(mm, address);
3971        if (!new)
3972                return -ENOMEM;
3973
3974        smp_wmb(); /* See comment in __pte_alloc */
3975
3976        ptl = pud_lock(mm, pud);
3977#ifndef __ARCH_HAS_4LEVEL_HACK
3978        if (!pud_present(*pud)) {
3979                mm_inc_nr_pmds(mm);
3980                pud_populate(mm, pud, new);
3981        } else  /* Another has populated it */
3982                pmd_free(mm, new);
3983#else
3984        if (!pgd_present(*pud)) {
3985                mm_inc_nr_pmds(mm);
3986                pgd_populate(mm, pud, new);
3987        } else /* Another has populated it */
3988                pmd_free(mm, new);
3989#endif /* __ARCH_HAS_4LEVEL_HACK */
3990        spin_unlock(ptl);
3991        return 0;
3992}
3993#endif /* __PAGETABLE_PMD_FOLDED */
3994
3995static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3996                pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3997{
3998        pgd_t *pgd;
3999        p4d_t *p4d;
4000        pud_t *pud;
4001        pmd_t *pmd;
4002        pte_t *ptep;
4003
4004        pgd = pgd_offset(mm, address);
4005        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4006                goto out;
4007
4008        p4d = p4d_offset(pgd, address);
4009        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4010                goto out;
4011
4012        pud = pud_offset(p4d, address);
4013        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4014                goto out;
4015
4016        pmd = pmd_offset(pud, address);
4017        VM_BUG_ON(pmd_trans_huge(*pmd));
4018
4019        if (pmd_huge(*pmd)) {
4020                if (!pmdpp)
4021                        goto out;
4022
4023                *ptlp = pmd_lock(mm, pmd);
4024                if (pmd_huge(*pmd)) {
4025                        *pmdpp = pmd;
4026                        return 0;
4027                }
4028                spin_unlock(*ptlp);
4029        }
4030
4031        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4032                goto out;
4033
4034        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4035        if (!ptep)
4036                goto out;
4037        if (!pte_present(*ptep))
4038                goto unlock;
4039        *ptepp = ptep;
4040        return 0;
4041unlock:
4042        pte_unmap_unlock(ptep, *ptlp);
4043out:
4044        return -EINVAL;
4045}
4046
4047static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4048                             pte_t **ptepp, spinlock_t **ptlp)
4049{
4050        int res;
4051
4052        /* (void) is needed to make gcc happy */
4053        (void) __cond_lock(*ptlp,
4054                           !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4055                                           ptlp)));
4056        return res;
4057}
4058
4059int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4060                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4061{
4062        int res;
4063
4064        /* (void) is needed to make gcc happy */
4065        (void) __cond_lock(*ptlp,
4066                           !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4067                                           ptlp)));
4068        return res;
4069}
4070EXPORT_SYMBOL(follow_pte_pmd);
4071
4072/**
4073 * follow_pfn - look up PFN at a user virtual address
4074 * @vma: memory mapping
4075 * @address: user virtual address
4076 * @pfn: location to store found PFN
4077 *
4078 * Only IO mappings and raw PFN mappings are allowed.
4079 *
4080 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4081 */
4082int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4083        unsigned long *pfn)
4084{
4085        int ret = -EINVAL;
4086        spinlock_t *ptl;
4087        pte_t *ptep;
4088
4089        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4090                return ret;
4091
4092        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4093        if (ret)
4094                return ret;
4095        *pfn = pte_pfn(*ptep);
4096        pte_unmap_unlock(ptep, ptl);
4097        return 0;
4098}
4099EXPORT_SYMBOL(follow_pfn);
4100
4101#ifdef CONFIG_HAVE_IOREMAP_PROT
4102int follow_phys(struct vm_area_struct *vma,
4103                unsigned long address, unsigned int flags,
4104                unsigned long *prot, resource_size_t *phys)
4105{
4106        int ret = -EINVAL;
4107        pte_t *ptep, pte;
4108        spinlock_t *ptl;
4109
4110        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4111                goto out;
4112
4113        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4114                goto out;
4115        pte = *ptep;
4116
4117        if ((flags & FOLL_WRITE) && !pte_write(pte))
4118                goto unlock;
4119
4120        *prot = pgprot_val(pte_pgprot(pte));
4121        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4122
4123        ret = 0;
4124unlock:
4125        pte_unmap_unlock(ptep, ptl);
4126out:
4127        return ret;
4128}
4129
4130int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4131                        void *buf, int len, int write)
4132{
4133        resource_size_t phys_addr;
4134        unsigned long prot = 0;
4135        void __iomem *maddr;
4136        int offset = addr & (PAGE_SIZE-1);
4137
4138        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4139                return -EINVAL;
4140
4141        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4142        if (write)
4143                memcpy_toio(maddr + offset, buf, len);
4144        else
4145                memcpy_fromio(buf, maddr + offset, len);
4146        iounmap(maddr);
4147
4148        return len;
4149}
4150EXPORT_SYMBOL_GPL(generic_access_phys);
4151#endif
4152
4153/*
4154 * Access another process' address space as given in mm.  If non-NULL, use the
4155 * given task for page fault accounting.
4156 */
4157int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4158                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4159{
4160        struct vm_area_struct *vma;
4161        void *old_buf = buf;
4162        int write = gup_flags & FOLL_WRITE;
4163
4164        down_read(&mm->mmap_sem);
4165        /* ignore errors, just check how much was successfully transferred */
4166        while (len) {
4167                int bytes, ret, offset;
4168                void *maddr;
4169                struct page *page = NULL;
4170
4171                ret = get_user_pages_remote(tsk, mm, addr, 1,
4172                                gup_flags, &page, &vma, NULL);
4173                if (ret <= 0) {
4174#ifndef CONFIG_HAVE_IOREMAP_PROT
4175                        break;
4176#else
4177                        /*
4178                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4179                         * we can access using slightly different code.
4180                         */
4181                        vma = find_vma(mm, addr);
4182                        if (!vma || vma->vm_start > addr)
4183                                break;
4184                        if (vma->vm_ops && vma->vm_ops->access)
4185                                ret = vma->vm_ops->access(vma, addr, buf,
4186                                                          len, write);
4187                        if (ret <= 0)
4188                                break;
4189                        bytes = ret;
4190#endif
4191                } else {
4192                        bytes = len;
4193                        offset = addr & (PAGE_SIZE-1);
4194                        if (bytes > PAGE_SIZE-offset)
4195                                bytes = PAGE_SIZE-offset;
4196
4197                        maddr = kmap(page);
4198                        if (write) {
4199                                copy_to_user_page(vma, page, addr,
4200                                                  maddr + offset, buf, bytes);
4201                                set_page_dirty_lock(page);
4202                        } else {
4203                                copy_from_user_page(vma, page, addr,
4204                                                    buf, maddr + offset, bytes);
4205                        }
4206                        kunmap(page);
4207                        put_page(page);
4208                }
4209                len -= bytes;
4210                buf += bytes;
4211                addr += bytes;
4212        }
4213        up_read(&mm->mmap_sem);
4214
4215        return buf - old_buf;
4216}
4217
4218/**
4219 * access_remote_vm - access another process' address space
4220 * @mm:         the mm_struct of the target address space
4221 * @addr:       start address to access
4222 * @buf:        source or destination buffer
4223 * @len:        number of bytes to transfer
4224 * @gup_flags:  flags modifying lookup behaviour
4225 *
4226 * The caller must hold a reference on @mm.
4227 */
4228int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4229                void *buf, int len, unsigned int gup_flags)
4230{
4231        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4232}
4233
4234/*
4235 * Access another process' address space.
4236 * Source/target buffer must be kernel space,
4237 * Do not walk the page table directly, use get_user_pages
4238 */
4239int access_process_vm(struct task_struct *tsk, unsigned long addr,
4240                void *buf, int len, unsigned int gup_flags)
4241{
4242        struct mm_struct *mm;
4243        int ret;
4244
4245        mm = get_task_mm(tsk);
4246        if (!mm)
4247                return 0;
4248
4249        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4250
4251        mmput(mm);
4252
4253        return ret;
4254}
4255EXPORT_SYMBOL_GPL(access_process_vm);
4256
4257/*
4258 * Print the name of a VMA.
4259 */
4260void print_vma_addr(char *prefix, unsigned long ip)
4261{
4262        struct mm_struct *mm = current->mm;
4263        struct vm_area_struct *vma;
4264
4265        /*
4266         * Do not print if we are in atomic
4267         * contexts (in exception stacks, etc.):
4268         */
4269        if (preempt_count())
4270                return;
4271
4272        down_read(&mm->mmap_sem);
4273        vma = find_vma(mm, ip);
4274        if (vma && vma->vm_file) {
4275                struct file *f = vma->vm_file;
4276                char *buf = (char *)__get_free_page(GFP_KERNEL);
4277                if (buf) {
4278                        char *p;
4279
4280                        p = file_path(f, buf, PAGE_SIZE);
4281                        if (IS_ERR(p))
4282                                p = "?";
4283                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4284                                        vma->vm_start,
4285                                        vma->vm_end - vma->vm_start);
4286                        free_page((unsigned long)buf);
4287                }
4288        }
4289        up_read(&mm->mmap_sem);
4290}
4291
4292#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4293void __might_fault(const char *file, int line)
4294{
4295        /*
4296         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4297         * holding the mmap_sem, this is safe because kernel memory doesn't
4298         * get paged out, therefore we'll never actually fault, and the
4299         * below annotations will generate false positives.
4300         */
4301        if (segment_eq(get_fs(), KERNEL_DS))
4302                return;
4303        if (pagefault_disabled())
4304                return;
4305        __might_sleep(file, line, 0);
4306#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4307        if (current->mm)
4308                might_lock_read(&current->mm->mmap_sem);
4309#endif
4310}
4311EXPORT_SYMBOL(__might_fault);
4312#endif
4313
4314#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4315static void clear_gigantic_page(struct page *page,
4316                                unsigned long addr,
4317                                unsigned int pages_per_huge_page)
4318{
4319        int i;
4320        struct page *p = page;
4321
4322        might_sleep();
4323        for (i = 0; i < pages_per_huge_page;
4324             i++, p = mem_map_next(p, page, i)) {
4325                cond_resched();
4326                clear_user_highpage(p, addr + i * PAGE_SIZE);
4327        }
4328}
4329void clear_huge_page(struct page *page,
4330                     unsigned long addr, unsigned int pages_per_huge_page)
4331{
4332        int i;
4333
4334        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4335                clear_gigantic_page(page, addr, pages_per_huge_page);
4336                return;
4337        }
4338
4339        might_sleep();
4340        for (i = 0; i < pages_per_huge_page; i++) {
4341                cond_resched();
4342                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4343        }
4344}
4345
4346static void copy_user_gigantic_page(struct page *dst, struct page *src,
4347                                    unsigned long addr,
4348                                    struct vm_area_struct *vma,
4349                                    unsigned int pages_per_huge_page)
4350{
4351        int i;
4352        struct page *dst_base = dst;
4353        struct page *src_base = src;
4354
4355        for (i = 0; i < pages_per_huge_page; ) {
4356                cond_resched();
4357                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4358
4359                i++;
4360                dst = mem_map_next(dst, dst_base, i);
4361                src = mem_map_next(src, src_base, i);
4362        }
4363}
4364
4365void copy_user_huge_page(struct page *dst, struct page *src,
4366                         unsigned long addr, struct vm_area_struct *vma,
4367                         unsigned int pages_per_huge_page)
4368{
4369        int i;
4370
4371        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4372                copy_user_gigantic_page(dst, src, addr, vma,
4373                                        pages_per_huge_page);
4374                return;
4375        }
4376
4377        might_sleep();
4378        for (i = 0; i < pages_per_huge_page; i++) {
4379                cond_resched();
4380                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4381        }
4382}
4383
4384long copy_huge_page_from_user(struct page *dst_page,
4385                                const void __user *usr_src,
4386                                unsigned int pages_per_huge_page,
4387                                bool allow_pagefault)
4388{
4389        void *src = (void *)usr_src;
4390        void *page_kaddr;
4391        unsigned long i, rc = 0;
4392        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4393
4394        for (i = 0; i < pages_per_huge_page; i++) {
4395                if (allow_pagefault)
4396                        page_kaddr = kmap(dst_page + i);
4397                else
4398                        page_kaddr = kmap_atomic(dst_page + i);
4399                rc = copy_from_user(page_kaddr,
4400                                (const void __user *)(src + i * PAGE_SIZE),
4401                                PAGE_SIZE);
4402                if (allow_pagefault)
4403                        kunmap(dst_page + i);
4404                else
4405                        kunmap_atomic(page_kaddr);
4406
4407                ret_val -= (PAGE_SIZE - rc);
4408                if (rc)
4409                        break;
4410
4411                cond_resched();
4412        }
4413        return ret_val;
4414}
4415#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4416
4417#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4418
4419static struct kmem_cache *page_ptl_cachep;
4420
4421void __init ptlock_cache_init(void)
4422{
4423        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4424                        SLAB_PANIC, NULL);
4425}
4426
4427bool ptlock_alloc(struct page *page)
4428{
4429        spinlock_t *ptl;
4430
4431        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4432        if (!ptl)
4433                return false;
4434        page->ptl = ptl;
4435        return true;
4436}
4437
4438void ptlock_free(struct page *page)
4439{
4440        kmem_cache_free(page_ptl_cachep, page->ptl);
4441}
4442#endif
4443