linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/sched/user.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
  14#include <linux/pagemap.h>
  15#include <linux/pagevec.h>
  16#include <linux/mempolicy.h>
  17#include <linux/syscalls.h>
  18#include <linux/sched.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>
  21#include <linux/mmzone.h>
  22#include <linux/hugetlb.h>
  23#include <linux/memcontrol.h>
  24#include <linux/mm_inline.h>
  25
  26#include "internal.h"
  27
  28bool can_do_mlock(void)
  29{
  30        if (rlimit(RLIMIT_MEMLOCK) != 0)
  31                return true;
  32        if (capable(CAP_IPC_LOCK))
  33                return true;
  34        return false;
  35}
  36EXPORT_SYMBOL(can_do_mlock);
  37
  38/*
  39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  40 * in vmscan and, possibly, the fault path; and to support semi-accurate
  41 * statistics.
  42 *
  43 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  45 * The unevictable list is an LRU sibling list to the [in]active lists.
  46 * PageUnevictable is set to indicate the unevictable state.
  47 *
  48 * When lazy mlocking via vmscan, it is important to ensure that the
  49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  50 * may have mlocked a page that is being munlocked. So lazy mlock must take
  51 * the mmap_sem for read, and verify that the vma really is locked
  52 * (see mm/rmap.c).
  53 */
  54
  55/*
  56 *  LRU accounting for clear_page_mlock()
  57 */
  58void clear_page_mlock(struct page *page)
  59{
  60        if (!TestClearPageMlocked(page))
  61                return;
  62
  63        mod_zone_page_state(page_zone(page), NR_MLOCK,
  64                            -hpage_nr_pages(page));
  65        count_vm_event(UNEVICTABLE_PGCLEARED);
  66        if (!isolate_lru_page(page)) {
  67                putback_lru_page(page);
  68        } else {
  69                /*
  70                 * We lost the race. the page already moved to evictable list.
  71                 */
  72                if (PageUnevictable(page))
  73                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  74        }
  75}
  76
  77/*
  78 * Mark page as mlocked if not already.
  79 * If page on LRU, isolate and putback to move to unevictable list.
  80 */
  81void mlock_vma_page(struct page *page)
  82{
  83        /* Serialize with page migration */
  84        BUG_ON(!PageLocked(page));
  85
  86        VM_BUG_ON_PAGE(PageTail(page), page);
  87        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  88
  89        if (!TestSetPageMlocked(page)) {
  90                mod_zone_page_state(page_zone(page), NR_MLOCK,
  91                                    hpage_nr_pages(page));
  92                count_vm_event(UNEVICTABLE_PGMLOCKED);
  93                if (!isolate_lru_page(page))
  94                        putback_lru_page(page);
  95        }
  96}
  97
  98/*
  99 * Isolate a page from LRU with optional get_page() pin.
 100 * Assumes lru_lock already held and page already pinned.
 101 */
 102static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 103{
 104        if (PageLRU(page)) {
 105                struct lruvec *lruvec;
 106
 107                lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
 108                if (getpage)
 109                        get_page(page);
 110                ClearPageLRU(page);
 111                del_page_from_lru_list(page, lruvec, page_lru(page));
 112                return true;
 113        }
 114
 115        return false;
 116}
 117
 118/*
 119 * Finish munlock after successful page isolation
 120 *
 121 * Page must be locked. This is a wrapper for try_to_munlock()
 122 * and putback_lru_page() with munlock accounting.
 123 */
 124static void __munlock_isolated_page(struct page *page)
 125{
 126        int ret = SWAP_AGAIN;
 127
 128        /*
 129         * Optimization: if the page was mapped just once, that's our mapping
 130         * and we don't need to check all the other vmas.
 131         */
 132        if (page_mapcount(page) > 1)
 133                ret = try_to_munlock(page);
 134
 135        /* Did try_to_unlock() succeed or punt? */
 136        if (ret != SWAP_MLOCK)
 137                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 138
 139        putback_lru_page(page);
 140}
 141
 142/*
 143 * Accounting for page isolation fail during munlock
 144 *
 145 * Performs accounting when page isolation fails in munlock. There is nothing
 146 * else to do because it means some other task has already removed the page
 147 * from the LRU. putback_lru_page() will take care of removing the page from
 148 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 149 * the page back to the unevictable list if some other vma has it mlocked.
 150 */
 151static void __munlock_isolation_failed(struct page *page)
 152{
 153        if (PageUnevictable(page))
 154                __count_vm_event(UNEVICTABLE_PGSTRANDED);
 155        else
 156                __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 157}
 158
 159/**
 160 * munlock_vma_page - munlock a vma page
 161 * @page - page to be unlocked, either a normal page or THP page head
 162 *
 163 * returns the size of the page as a page mask (0 for normal page,
 164 *         HPAGE_PMD_NR - 1 for THP head page)
 165 *
 166 * called from munlock()/munmap() path with page supposedly on the LRU.
 167 * When we munlock a page, because the vma where we found the page is being
 168 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 169 * page locked so that we can leave it on the unevictable lru list and not
 170 * bother vmscan with it.  However, to walk the page's rmap list in
 171 * try_to_munlock() we must isolate the page from the LRU.  If some other
 172 * task has removed the page from the LRU, we won't be able to do that.
 173 * So we clear the PageMlocked as we might not get another chance.  If we
 174 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 175 * [page_referenced()/try_to_unmap()] to deal with.
 176 */
 177unsigned int munlock_vma_page(struct page *page)
 178{
 179        int nr_pages;
 180        struct zone *zone = page_zone(page);
 181
 182        /* For try_to_munlock() and to serialize with page migration */
 183        BUG_ON(!PageLocked(page));
 184
 185        VM_BUG_ON_PAGE(PageTail(page), page);
 186
 187        /*
 188         * Serialize with any parallel __split_huge_page_refcount() which
 189         * might otherwise copy PageMlocked to part of the tail pages before
 190         * we clear it in the head page. It also stabilizes hpage_nr_pages().
 191         */
 192        spin_lock_irq(zone_lru_lock(zone));
 193
 194        if (!TestClearPageMlocked(page)) {
 195                /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
 196                nr_pages = 1;
 197                goto unlock_out;
 198        }
 199
 200        nr_pages = hpage_nr_pages(page);
 201        __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 202
 203        if (__munlock_isolate_lru_page(page, true)) {
 204                spin_unlock_irq(zone_lru_lock(zone));
 205                __munlock_isolated_page(page);
 206                goto out;
 207        }
 208        __munlock_isolation_failed(page);
 209
 210unlock_out:
 211        spin_unlock_irq(zone_lru_lock(zone));
 212
 213out:
 214        return nr_pages - 1;
 215}
 216
 217/*
 218 * convert get_user_pages() return value to posix mlock() error
 219 */
 220static int __mlock_posix_error_return(long retval)
 221{
 222        if (retval == -EFAULT)
 223                retval = -ENOMEM;
 224        else if (retval == -ENOMEM)
 225                retval = -EAGAIN;
 226        return retval;
 227}
 228
 229/*
 230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 231 *
 232 * The fast path is available only for evictable pages with single mapping.
 233 * Then we can bypass the per-cpu pvec and get better performance.
 234 * when mapcount > 1 we need try_to_munlock() which can fail.
 235 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 236 * avoid leaving evictable page in unevictable list.
 237 *
 238 * In case of success, @page is added to @pvec and @pgrescued is incremented
 239 * in case that the page was previously unevictable. @page is also unlocked.
 240 */
 241static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 242                int *pgrescued)
 243{
 244        VM_BUG_ON_PAGE(PageLRU(page), page);
 245        VM_BUG_ON_PAGE(!PageLocked(page), page);
 246
 247        if (page_mapcount(page) <= 1 && page_evictable(page)) {
 248                pagevec_add(pvec, page);
 249                if (TestClearPageUnevictable(page))
 250                        (*pgrescued)++;
 251                unlock_page(page);
 252                return true;
 253        }
 254
 255        return false;
 256}
 257
 258/*
 259 * Putback multiple evictable pages to the LRU
 260 *
 261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 262 * the pages might have meanwhile become unevictable but that is OK.
 263 */
 264static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 265{
 266        count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 267        /*
 268         *__pagevec_lru_add() calls release_pages() so we don't call
 269         * put_page() explicitly
 270         */
 271        __pagevec_lru_add(pvec);
 272        count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 273}
 274
 275/*
 276 * Munlock a batch of pages from the same zone
 277 *
 278 * The work is split to two main phases. First phase clears the Mlocked flag
 279 * and attempts to isolate the pages, all under a single zone lru lock.
 280 * The second phase finishes the munlock only for pages where isolation
 281 * succeeded.
 282 *
 283 * Note that the pagevec may be modified during the process.
 284 */
 285static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 286{
 287        int i;
 288        int nr = pagevec_count(pvec);
 289        int delta_munlocked;
 290        struct pagevec pvec_putback;
 291        int pgrescued = 0;
 292
 293        pagevec_init(&pvec_putback, 0);
 294
 295        /* Phase 1: page isolation */
 296        spin_lock_irq(zone_lru_lock(zone));
 297        for (i = 0; i < nr; i++) {
 298                struct page *page = pvec->pages[i];
 299
 300                if (TestClearPageMlocked(page)) {
 301                        /*
 302                         * We already have pin from follow_page_mask()
 303                         * so we can spare the get_page() here.
 304                         */
 305                        if (__munlock_isolate_lru_page(page, false))
 306                                continue;
 307                        else
 308                                __munlock_isolation_failed(page);
 309                }
 310
 311                /*
 312                 * We won't be munlocking this page in the next phase
 313                 * but we still need to release the follow_page_mask()
 314                 * pin. We cannot do it under lru_lock however. If it's
 315                 * the last pin, __page_cache_release() would deadlock.
 316                 */
 317                pagevec_add(&pvec_putback, pvec->pages[i]);
 318                pvec->pages[i] = NULL;
 319        }
 320        delta_munlocked = -nr + pagevec_count(&pvec_putback);
 321        __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 322        spin_unlock_irq(zone_lru_lock(zone));
 323
 324        /* Now we can release pins of pages that we are not munlocking */
 325        pagevec_release(&pvec_putback);
 326
 327        /* Phase 2: page munlock */
 328        for (i = 0; i < nr; i++) {
 329                struct page *page = pvec->pages[i];
 330
 331                if (page) {
 332                        lock_page(page);
 333                        if (!__putback_lru_fast_prepare(page, &pvec_putback,
 334                                        &pgrescued)) {
 335                                /*
 336                                 * Slow path. We don't want to lose the last
 337                                 * pin before unlock_page()
 338                                 */
 339                                get_page(page); /* for putback_lru_page() */
 340                                __munlock_isolated_page(page);
 341                                unlock_page(page);
 342                                put_page(page); /* from follow_page_mask() */
 343                        }
 344                }
 345        }
 346
 347        /*
 348         * Phase 3: page putback for pages that qualified for the fast path
 349         * This will also call put_page() to return pin from follow_page_mask()
 350         */
 351        if (pagevec_count(&pvec_putback))
 352                __putback_lru_fast(&pvec_putback, pgrescued);
 353}
 354
 355/*
 356 * Fill up pagevec for __munlock_pagevec using pte walk
 357 *
 358 * The function expects that the struct page corresponding to @start address is
 359 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 360 *
 361 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 362 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 363 * pages also get pinned.
 364 *
 365 * Returns the address of the next page that should be scanned. This equals
 366 * @start + PAGE_SIZE when no page could be added by the pte walk.
 367 */
 368static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 369                struct vm_area_struct *vma, int zoneid, unsigned long start,
 370                unsigned long end)
 371{
 372        pte_t *pte;
 373        spinlock_t *ptl;
 374
 375        /*
 376         * Initialize pte walk starting at the already pinned page where we
 377         * are sure that there is a pte, as it was pinned under the same
 378         * mmap_sem write op.
 379         */
 380        pte = get_locked_pte(vma->vm_mm, start, &ptl);
 381        /* Make sure we do not cross the page table boundary */
 382        end = pgd_addr_end(start, end);
 383        end = p4d_addr_end(start, end);
 384        end = pud_addr_end(start, end);
 385        end = pmd_addr_end(start, end);
 386
 387        /* The page next to the pinned page is the first we will try to get */
 388        start += PAGE_SIZE;
 389        while (start < end) {
 390                struct page *page = NULL;
 391                pte++;
 392                if (pte_present(*pte))
 393                        page = vm_normal_page(vma, start, *pte);
 394                /*
 395                 * Break if page could not be obtained or the page's node+zone does not
 396                 * match
 397                 */
 398                if (!page || page_zone_id(page) != zoneid)
 399                        break;
 400
 401                /*
 402                 * Do not use pagevec for PTE-mapped THP,
 403                 * munlock_vma_pages_range() will handle them.
 404                 */
 405                if (PageTransCompound(page))
 406                        break;
 407
 408                get_page(page);
 409                /*
 410                 * Increase the address that will be returned *before* the
 411                 * eventual break due to pvec becoming full by adding the page
 412                 */
 413                start += PAGE_SIZE;
 414                if (pagevec_add(pvec, page) == 0)
 415                        break;
 416        }
 417        pte_unmap_unlock(pte, ptl);
 418        return start;
 419}
 420
 421/*
 422 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 423 * @vma - vma containing range to be munlock()ed.
 424 * @start - start address in @vma of the range
 425 * @end - end of range in @vma.
 426 *
 427 *  For mremap(), munmap() and exit().
 428 *
 429 * Called with @vma VM_LOCKED.
 430 *
 431 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 432 * deal with this.
 433 *
 434 * We don't save and restore VM_LOCKED here because pages are
 435 * still on lru.  In unmap path, pages might be scanned by reclaim
 436 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 437 * free them.  This will result in freeing mlocked pages.
 438 */
 439void munlock_vma_pages_range(struct vm_area_struct *vma,
 440                             unsigned long start, unsigned long end)
 441{
 442        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 443
 444        while (start < end) {
 445                struct page *page;
 446                unsigned int page_mask = 0;
 447                unsigned long page_increm;
 448                struct pagevec pvec;
 449                struct zone *zone;
 450                int zoneid;
 451
 452                pagevec_init(&pvec, 0);
 453                /*
 454                 * Although FOLL_DUMP is intended for get_dump_page(),
 455                 * it just so happens that its special treatment of the
 456                 * ZERO_PAGE (returning an error instead of doing get_page)
 457                 * suits munlock very well (and if somehow an abnormal page
 458                 * has sneaked into the range, we won't oops here: great).
 459                 */
 460                page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 461
 462                if (page && !IS_ERR(page)) {
 463                        if (PageTransTail(page)) {
 464                                VM_BUG_ON_PAGE(PageMlocked(page), page);
 465                                put_page(page); /* follow_page_mask() */
 466                        } else if (PageTransHuge(page)) {
 467                                lock_page(page);
 468                                /*
 469                                 * Any THP page found by follow_page_mask() may
 470                                 * have gotten split before reaching
 471                                 * munlock_vma_page(), so we need to compute
 472                                 * the page_mask here instead.
 473                                 */
 474                                page_mask = munlock_vma_page(page);
 475                                unlock_page(page);
 476                                put_page(page); /* follow_page_mask() */
 477                        } else {
 478                                /*
 479                                 * Non-huge pages are handled in batches via
 480                                 * pagevec. The pin from follow_page_mask()
 481                                 * prevents them from collapsing by THP.
 482                                 */
 483                                pagevec_add(&pvec, page);
 484                                zone = page_zone(page);
 485                                zoneid = page_zone_id(page);
 486
 487                                /*
 488                                 * Try to fill the rest of pagevec using fast
 489                                 * pte walk. This will also update start to
 490                                 * the next page to process. Then munlock the
 491                                 * pagevec.
 492                                 */
 493                                start = __munlock_pagevec_fill(&pvec, vma,
 494                                                zoneid, start, end);
 495                                __munlock_pagevec(&pvec, zone);
 496                                goto next;
 497                        }
 498                }
 499                page_increm = 1 + page_mask;
 500                start += page_increm * PAGE_SIZE;
 501next:
 502                cond_resched();
 503        }
 504}
 505
 506/*
 507 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 508 *
 509 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 510 * munlock is a no-op.  However, for some special vmas, we go ahead and
 511 * populate the ptes.
 512 *
 513 * For vmas that pass the filters, merge/split as appropriate.
 514 */
 515static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 516        unsigned long start, unsigned long end, vm_flags_t newflags)
 517{
 518        struct mm_struct *mm = vma->vm_mm;
 519        pgoff_t pgoff;
 520        int nr_pages;
 521        int ret = 0;
 522        int lock = !!(newflags & VM_LOCKED);
 523        vm_flags_t old_flags = vma->vm_flags;
 524
 525        if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 526            is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
 527                /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 528                goto out;
 529
 530        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 531        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 532                          vma->vm_file, pgoff, vma_policy(vma),
 533                          vma->vm_userfaultfd_ctx);
 534        if (*prev) {
 535                vma = *prev;
 536                goto success;
 537        }
 538
 539        if (start != vma->vm_start) {
 540                ret = split_vma(mm, vma, start, 1);
 541                if (ret)
 542                        goto out;
 543        }
 544
 545        if (end != vma->vm_end) {
 546                ret = split_vma(mm, vma, end, 0);
 547                if (ret)
 548                        goto out;
 549        }
 550
 551success:
 552        /*
 553         * Keep track of amount of locked VM.
 554         */
 555        nr_pages = (end - start) >> PAGE_SHIFT;
 556        if (!lock)
 557                nr_pages = -nr_pages;
 558        else if (old_flags & VM_LOCKED)
 559                nr_pages = 0;
 560        mm->locked_vm += nr_pages;
 561
 562        /*
 563         * vm_flags is protected by the mmap_sem held in write mode.
 564         * It's okay if try_to_unmap_one unmaps a page just after we
 565         * set VM_LOCKED, populate_vma_page_range will bring it back.
 566         */
 567
 568        if (lock)
 569                vma->vm_flags = newflags;
 570        else
 571                munlock_vma_pages_range(vma, start, end);
 572
 573out:
 574        *prev = vma;
 575        return ret;
 576}
 577
 578static int apply_vma_lock_flags(unsigned long start, size_t len,
 579                                vm_flags_t flags)
 580{
 581        unsigned long nstart, end, tmp;
 582        struct vm_area_struct * vma, * prev;
 583        int error;
 584
 585        VM_BUG_ON(offset_in_page(start));
 586        VM_BUG_ON(len != PAGE_ALIGN(len));
 587        end = start + len;
 588        if (end < start)
 589                return -EINVAL;
 590        if (end == start)
 591                return 0;
 592        vma = find_vma(current->mm, start);
 593        if (!vma || vma->vm_start > start)
 594                return -ENOMEM;
 595
 596        prev = vma->vm_prev;
 597        if (start > vma->vm_start)
 598                prev = vma;
 599
 600        for (nstart = start ; ; ) {
 601                vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 602
 603                newflags |= flags;
 604
 605                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 606                tmp = vma->vm_end;
 607                if (tmp > end)
 608                        tmp = end;
 609                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 610                if (error)
 611                        break;
 612                nstart = tmp;
 613                if (nstart < prev->vm_end)
 614                        nstart = prev->vm_end;
 615                if (nstart >= end)
 616                        break;
 617
 618                vma = prev->vm_next;
 619                if (!vma || vma->vm_start != nstart) {
 620                        error = -ENOMEM;
 621                        break;
 622                }
 623        }
 624        return error;
 625}
 626
 627/*
 628 * Go through vma areas and sum size of mlocked
 629 * vma pages, as return value.
 630 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
 631 * is also counted.
 632 * Return value: previously mlocked page counts
 633 */
 634static int count_mm_mlocked_page_nr(struct mm_struct *mm,
 635                unsigned long start, size_t len)
 636{
 637        struct vm_area_struct *vma;
 638        int count = 0;
 639
 640        if (mm == NULL)
 641                mm = current->mm;
 642
 643        vma = find_vma(mm, start);
 644        if (vma == NULL)
 645                vma = mm->mmap;
 646
 647        for (; vma ; vma = vma->vm_next) {
 648                if (start >= vma->vm_end)
 649                        continue;
 650                if (start + len <=  vma->vm_start)
 651                        break;
 652                if (vma->vm_flags & VM_LOCKED) {
 653                        if (start > vma->vm_start)
 654                                count -= (start - vma->vm_start);
 655                        if (start + len < vma->vm_end) {
 656                                count += start + len - vma->vm_start;
 657                                break;
 658                        }
 659                        count += vma->vm_end - vma->vm_start;
 660                }
 661        }
 662
 663        return count >> PAGE_SHIFT;
 664}
 665
 666static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 667{
 668        unsigned long locked;
 669        unsigned long lock_limit;
 670        int error = -ENOMEM;
 671
 672        if (!can_do_mlock())
 673                return -EPERM;
 674
 675        lru_add_drain_all();    /* flush pagevec */
 676
 677        len = PAGE_ALIGN(len + (offset_in_page(start)));
 678        start &= PAGE_MASK;
 679
 680        lock_limit = rlimit(RLIMIT_MEMLOCK);
 681        lock_limit >>= PAGE_SHIFT;
 682        locked = len >> PAGE_SHIFT;
 683
 684        if (down_write_killable(&current->mm->mmap_sem))
 685                return -EINTR;
 686
 687        locked += current->mm->locked_vm;
 688        if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
 689                /*
 690                 * It is possible that the regions requested intersect with
 691                 * previously mlocked areas, that part area in "mm->locked_vm"
 692                 * should not be counted to new mlock increment count. So check
 693                 * and adjust locked count if necessary.
 694                 */
 695                locked -= count_mm_mlocked_page_nr(current->mm,
 696                                start, len);
 697        }
 698
 699        /* check against resource limits */
 700        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 701                error = apply_vma_lock_flags(start, len, flags);
 702
 703        up_write(&current->mm->mmap_sem);
 704        if (error)
 705                return error;
 706
 707        error = __mm_populate(start, len, 0);
 708        if (error)
 709                return __mlock_posix_error_return(error);
 710        return 0;
 711}
 712
 713SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 714{
 715        return do_mlock(start, len, VM_LOCKED);
 716}
 717
 718SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 719{
 720        vm_flags_t vm_flags = VM_LOCKED;
 721
 722        if (flags & ~MLOCK_ONFAULT)
 723                return -EINVAL;
 724
 725        if (flags & MLOCK_ONFAULT)
 726                vm_flags |= VM_LOCKONFAULT;
 727
 728        return do_mlock(start, len, vm_flags);
 729}
 730
 731SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 732{
 733        int ret;
 734
 735        len = PAGE_ALIGN(len + (offset_in_page(start)));
 736        start &= PAGE_MASK;
 737
 738        if (down_write_killable(&current->mm->mmap_sem))
 739                return -EINTR;
 740        ret = apply_vma_lock_flags(start, len, 0);
 741        up_write(&current->mm->mmap_sem);
 742
 743        return ret;
 744}
 745
 746/*
 747 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 748 * and translate into the appropriate modifications to mm->def_flags and/or the
 749 * flags for all current VMAs.
 750 *
 751 * There are a couple of subtleties with this.  If mlockall() is called multiple
 752 * times with different flags, the values do not necessarily stack.  If mlockall
 753 * is called once including the MCL_FUTURE flag and then a second time without
 754 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 755 */
 756static int apply_mlockall_flags(int flags)
 757{
 758        struct vm_area_struct * vma, * prev = NULL;
 759        vm_flags_t to_add = 0;
 760
 761        current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 762        if (flags & MCL_FUTURE) {
 763                current->mm->def_flags |= VM_LOCKED;
 764
 765                if (flags & MCL_ONFAULT)
 766                        current->mm->def_flags |= VM_LOCKONFAULT;
 767
 768                if (!(flags & MCL_CURRENT))
 769                        goto out;
 770        }
 771
 772        if (flags & MCL_CURRENT) {
 773                to_add |= VM_LOCKED;
 774                if (flags & MCL_ONFAULT)
 775                        to_add |= VM_LOCKONFAULT;
 776        }
 777
 778        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 779                vm_flags_t newflags;
 780
 781                newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 782                newflags |= to_add;
 783
 784                /* Ignore errors */
 785                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 786                cond_resched_rcu_qs();
 787        }
 788out:
 789        return 0;
 790}
 791
 792SYSCALL_DEFINE1(mlockall, int, flags)
 793{
 794        unsigned long lock_limit;
 795        int ret;
 796
 797        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
 798                return -EINVAL;
 799
 800        if (!can_do_mlock())
 801                return -EPERM;
 802
 803        if (flags & MCL_CURRENT)
 804                lru_add_drain_all();    /* flush pagevec */
 805
 806        lock_limit = rlimit(RLIMIT_MEMLOCK);
 807        lock_limit >>= PAGE_SHIFT;
 808
 809        if (down_write_killable(&current->mm->mmap_sem))
 810                return -EINTR;
 811
 812        ret = -ENOMEM;
 813        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 814            capable(CAP_IPC_LOCK))
 815                ret = apply_mlockall_flags(flags);
 816        up_write(&current->mm->mmap_sem);
 817        if (!ret && (flags & MCL_CURRENT))
 818                mm_populate(0, TASK_SIZE);
 819
 820        return ret;
 821}
 822
 823SYSCALL_DEFINE0(munlockall)
 824{
 825        int ret;
 826
 827        if (down_write_killable(&current->mm->mmap_sem))
 828                return -EINTR;
 829        ret = apply_mlockall_flags(0);
 830        up_write(&current->mm->mmap_sem);
 831        return ret;
 832}
 833
 834/*
 835 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 836 * shm segments) get accounted against the user_struct instead.
 837 */
 838static DEFINE_SPINLOCK(shmlock_user_lock);
 839
 840int user_shm_lock(size_t size, struct user_struct *user)
 841{
 842        unsigned long lock_limit, locked;
 843        int allowed = 0;
 844
 845        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 846        lock_limit = rlimit(RLIMIT_MEMLOCK);
 847        if (lock_limit == RLIM_INFINITY)
 848                allowed = 1;
 849        lock_limit >>= PAGE_SHIFT;
 850        spin_lock(&shmlock_user_lock);
 851        if (!allowed &&
 852            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 853                goto out;
 854        get_uid(user);
 855        user->locked_shm += locked;
 856        allowed = 1;
 857out:
 858        spin_unlock(&shmlock_user_lock);
 859        return allowed;
 860}
 861
 862void user_shm_unlock(size_t size, struct user_struct *user)
 863{
 864        spin_lock(&shmlock_user_lock);
 865        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 866        spin_unlock(&shmlock_user_lock);
 867        free_uid(user);
 868}
 869