linux/security/keys/key.c
<<
>>
Prefs
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44        printk("__key_check: key %p {%08x} should be {%08x}\n",
  45               key, key->magic, KEY_DEBUG_MAGIC);
  46        BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56        struct key_user *candidate = NULL, *user;
  57        struct rb_node *parent = NULL;
  58        struct rb_node **p;
  59
  60try_again:
  61        p = &key_user_tree.rb_node;
  62        spin_lock(&key_user_lock);
  63
  64        /* search the tree for a user record with a matching UID */
  65        while (*p) {
  66                parent = *p;
  67                user = rb_entry(parent, struct key_user, node);
  68
  69                if (uid_lt(uid, user->uid))
  70                        p = &(*p)->rb_left;
  71                else if (uid_gt(uid, user->uid))
  72                        p = &(*p)->rb_right;
  73                else
  74                        goto found;
  75        }
  76
  77        /* if we get here, we failed to find a match in the tree */
  78        if (!candidate) {
  79                /* allocate a candidate user record if we don't already have
  80                 * one */
  81                spin_unlock(&key_user_lock);
  82
  83                user = NULL;
  84                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85                if (unlikely(!candidate))
  86                        goto out;
  87
  88                /* the allocation may have scheduled, so we need to repeat the
  89                 * search lest someone else added the record whilst we were
  90                 * asleep */
  91                goto try_again;
  92        }
  93
  94        /* if we get here, then the user record still hadn't appeared on the
  95         * second pass - so we use the candidate record */
  96        atomic_set(&candidate->usage, 1);
  97        atomic_set(&candidate->nkeys, 0);
  98        atomic_set(&candidate->nikeys, 0);
  99        candidate->uid = uid;
 100        candidate->qnkeys = 0;
 101        candidate->qnbytes = 0;
 102        spin_lock_init(&candidate->lock);
 103        mutex_init(&candidate->cons_lock);
 104
 105        rb_link_node(&candidate->node, parent, p);
 106        rb_insert_color(&candidate->node, &key_user_tree);
 107        spin_unlock(&key_user_lock);
 108        user = candidate;
 109        goto out;
 110
 111        /* okay - we found a user record for this UID */
 112found:
 113        atomic_inc(&user->usage);
 114        spin_unlock(&key_user_lock);
 115        kfree(candidate);
 116out:
 117        return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125        if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126                rb_erase(&user->node, &key_user_tree);
 127                spin_unlock(&key_user_lock);
 128
 129                kfree(user);
 130        }
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139        struct rb_node *parent, **p;
 140        struct key *xkey;
 141
 142        /* propose a random serial number and look for a hole for it in the
 143         * serial number tree */
 144        do {
 145                get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147                key->serial >>= 1; /* negative numbers are not permitted */
 148        } while (key->serial < 3);
 149
 150        spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153        parent = NULL;
 154        p = &key_serial_tree.rb_node;
 155
 156        while (*p) {
 157                parent = *p;
 158                xkey = rb_entry(parent, struct key, serial_node);
 159
 160                if (key->serial < xkey->serial)
 161                        p = &(*p)->rb_left;
 162                else if (key->serial > xkey->serial)
 163                        p = &(*p)->rb_right;
 164                else
 165                        goto serial_exists;
 166        }
 167
 168        /* we've found a suitable hole - arrange for this key to occupy it */
 169        rb_link_node(&key->serial_node, parent, p);
 170        rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172        spin_unlock(&key_serial_lock);
 173        return;
 174
 175        /* we found a key with the proposed serial number - walk the tree from
 176         * that point looking for the next unused serial number */
 177serial_exists:
 178        for (;;) {
 179                key->serial++;
 180                if (key->serial < 3) {
 181                        key->serial = 3;
 182                        goto attempt_insertion;
 183                }
 184
 185                parent = rb_next(parent);
 186                if (!parent)
 187                        goto attempt_insertion;
 188
 189                xkey = rb_entry(parent, struct key, serial_node);
 190                if (key->serial < xkey->serial)
 191                        goto attempt_insertion;
 192        }
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction method for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226                      kuid_t uid, kgid_t gid, const struct cred *cred,
 227                      key_perm_t perm, unsigned long flags,
 228                      int (*restrict_link)(struct key *,
 229                                           const struct key_type *,
 230                                           const union key_payload *))
 231{
 232        struct key_user *user = NULL;
 233        struct key *key;
 234        size_t desclen, quotalen;
 235        int ret;
 236
 237        key = ERR_PTR(-EINVAL);
 238        if (!desc || !*desc)
 239                goto error;
 240
 241        if (type->vet_description) {
 242                ret = type->vet_description(desc);
 243                if (ret < 0) {
 244                        key = ERR_PTR(ret);
 245                        goto error;
 246                }
 247        }
 248
 249        desclen = strlen(desc);
 250        quotalen = desclen + 1 + type->def_datalen;
 251
 252        /* get hold of the key tracking for this user */
 253        user = key_user_lookup(uid);
 254        if (!user)
 255                goto no_memory_1;
 256
 257        /* check that the user's quota permits allocation of another key and
 258         * its description */
 259        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 260                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261                        key_quota_root_maxkeys : key_quota_maxkeys;
 262                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 263                        key_quota_root_maxbytes : key_quota_maxbytes;
 264
 265                spin_lock(&user->lock);
 266                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 267                        if (user->qnkeys + 1 >= maxkeys ||
 268                            user->qnbytes + quotalen >= maxbytes ||
 269                            user->qnbytes + quotalen < user->qnbytes)
 270                                goto no_quota;
 271                }
 272
 273                user->qnkeys++;
 274                user->qnbytes += quotalen;
 275                spin_unlock(&user->lock);
 276        }
 277
 278        /* allocate and initialise the key and its description */
 279        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 280        if (!key)
 281                goto no_memory_2;
 282
 283        key->index_key.desc_len = desclen;
 284        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 285        if (!key->index_key.description)
 286                goto no_memory_3;
 287
 288        atomic_set(&key->usage, 1);
 289        init_rwsem(&key->sem);
 290        lockdep_set_class(&key->sem, &type->lock_class);
 291        key->index_key.type = type;
 292        key->user = user;
 293        key->quotalen = quotalen;
 294        key->datalen = type->def_datalen;
 295        key->uid = uid;
 296        key->gid = gid;
 297        key->perm = perm;
 298        key->restrict_link = restrict_link;
 299
 300        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302        if (flags & KEY_ALLOC_BUILT_IN)
 303                key->flags |= 1 << KEY_FLAG_BUILTIN;
 304
 305#ifdef KEY_DEBUGGING
 306        key->magic = KEY_DEBUG_MAGIC;
 307#endif
 308
 309        /* let the security module know about the key */
 310        ret = security_key_alloc(key, cred, flags);
 311        if (ret < 0)
 312                goto security_error;
 313
 314        /* publish the key by giving it a serial number */
 315        atomic_inc(&user->nkeys);
 316        key_alloc_serial(key);
 317
 318error:
 319        return key;
 320
 321security_error:
 322        kfree(key->description);
 323        kmem_cache_free(key_jar, key);
 324        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 325                spin_lock(&user->lock);
 326                user->qnkeys--;
 327                user->qnbytes -= quotalen;
 328                spin_unlock(&user->lock);
 329        }
 330        key_user_put(user);
 331        key = ERR_PTR(ret);
 332        goto error;
 333
 334no_memory_3:
 335        kmem_cache_free(key_jar, key);
 336no_memory_2:
 337        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 338                spin_lock(&user->lock);
 339                user->qnkeys--;
 340                user->qnbytes -= quotalen;
 341                spin_unlock(&user->lock);
 342        }
 343        key_user_put(user);
 344no_memory_1:
 345        key = ERR_PTR(-ENOMEM);
 346        goto error;
 347
 348no_quota:
 349        spin_unlock(&user->lock);
 350        key_user_put(user);
 351        key = ERR_PTR(-EDQUOT);
 352        goto error;
 353}
 354EXPORT_SYMBOL(key_alloc);
 355
 356/**
 357 * key_payload_reserve - Adjust data quota reservation for the key's payload
 358 * @key: The key to make the reservation for.
 359 * @datalen: The amount of data payload the caller now wants.
 360 *
 361 * Adjust the amount of the owning user's key data quota that a key reserves.
 362 * If the amount is increased, then -EDQUOT may be returned if there isn't
 363 * enough free quota available.
 364 *
 365 * If successful, 0 is returned.
 366 */
 367int key_payload_reserve(struct key *key, size_t datalen)
 368{
 369        int delta = (int)datalen - key->datalen;
 370        int ret = 0;
 371
 372        key_check(key);
 373
 374        /* contemplate the quota adjustment */
 375        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 376                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 377                        key_quota_root_maxbytes : key_quota_maxbytes;
 378
 379                spin_lock(&key->user->lock);
 380
 381                if (delta > 0 &&
 382                    (key->user->qnbytes + delta >= maxbytes ||
 383                     key->user->qnbytes + delta < key->user->qnbytes)) {
 384                        ret = -EDQUOT;
 385                }
 386                else {
 387                        key->user->qnbytes += delta;
 388                        key->quotalen += delta;
 389                }
 390                spin_unlock(&key->user->lock);
 391        }
 392
 393        /* change the recorded data length if that didn't generate an error */
 394        if (ret == 0)
 395                key->datalen = datalen;
 396
 397        return ret;
 398}
 399EXPORT_SYMBOL(key_payload_reserve);
 400
 401/*
 402 * Instantiate a key and link it into the target keyring atomically.  Must be
 403 * called with the target keyring's semaphore writelocked.  The target key's
 404 * semaphore need not be locked as instantiation is serialised by
 405 * key_construction_mutex.
 406 */
 407static int __key_instantiate_and_link(struct key *key,
 408                                      struct key_preparsed_payload *prep,
 409                                      struct key *keyring,
 410                                      struct key *authkey,
 411                                      struct assoc_array_edit **_edit)
 412{
 413        int ret, awaken;
 414
 415        key_check(key);
 416        key_check(keyring);
 417
 418        awaken = 0;
 419        ret = -EBUSY;
 420
 421        mutex_lock(&key_construction_mutex);
 422
 423        /* can't instantiate twice */
 424        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 425                /* instantiate the key */
 426                ret = key->type->instantiate(key, prep);
 427
 428                if (ret == 0) {
 429                        /* mark the key as being instantiated */
 430                        atomic_inc(&key->user->nikeys);
 431                        set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 432
 433                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 434                                awaken = 1;
 435
 436                        /* and link it into the destination keyring */
 437                        if (keyring) {
 438                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 439                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 440
 441                                __key_link(key, _edit);
 442                        }
 443
 444                        /* disable the authorisation key */
 445                        if (authkey)
 446                                key_revoke(authkey);
 447
 448                        if (prep->expiry != TIME_T_MAX) {
 449                                key->expiry = prep->expiry;
 450                                key_schedule_gc(prep->expiry + key_gc_delay);
 451                        }
 452                }
 453        }
 454
 455        mutex_unlock(&key_construction_mutex);
 456
 457        /* wake up anyone waiting for a key to be constructed */
 458        if (awaken)
 459                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 460
 461        return ret;
 462}
 463
 464/**
 465 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 466 * @key: The key to instantiate.
 467 * @data: The data to use to instantiate the keyring.
 468 * @datalen: The length of @data.
 469 * @keyring: Keyring to create a link in on success (or NULL).
 470 * @authkey: The authorisation token permitting instantiation.
 471 *
 472 * Instantiate a key that's in the uninstantiated state using the provided data
 473 * and, if successful, link it in to the destination keyring if one is
 474 * supplied.
 475 *
 476 * If successful, 0 is returned, the authorisation token is revoked and anyone
 477 * waiting for the key is woken up.  If the key was already instantiated,
 478 * -EBUSY will be returned.
 479 */
 480int key_instantiate_and_link(struct key *key,
 481                             const void *data,
 482                             size_t datalen,
 483                             struct key *keyring,
 484                             struct key *authkey)
 485{
 486        struct key_preparsed_payload prep;
 487        struct assoc_array_edit *edit;
 488        int ret;
 489
 490        memset(&prep, 0, sizeof(prep));
 491        prep.data = data;
 492        prep.datalen = datalen;
 493        prep.quotalen = key->type->def_datalen;
 494        prep.expiry = TIME_T_MAX;
 495        if (key->type->preparse) {
 496                ret = key->type->preparse(&prep);
 497                if (ret < 0)
 498                        goto error;
 499        }
 500
 501        if (keyring) {
 502                if (keyring->restrict_link) {
 503                        ret = keyring->restrict_link(keyring, key->type,
 504                                                     &prep.payload);
 505                        if (ret < 0)
 506                                goto error;
 507                }
 508                ret = __key_link_begin(keyring, &key->index_key, &edit);
 509                if (ret < 0)
 510                        goto error;
 511        }
 512
 513        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 514
 515        if (keyring)
 516                __key_link_end(keyring, &key->index_key, edit);
 517
 518error:
 519        if (key->type->preparse)
 520                key->type->free_preparse(&prep);
 521        return ret;
 522}
 523
 524EXPORT_SYMBOL(key_instantiate_and_link);
 525
 526/**
 527 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 528 * @key: The key to instantiate.
 529 * @timeout: The timeout on the negative key.
 530 * @error: The error to return when the key is hit.
 531 * @keyring: Keyring to create a link in on success (or NULL).
 532 * @authkey: The authorisation token permitting instantiation.
 533 *
 534 * Negatively instantiate a key that's in the uninstantiated state and, if
 535 * successful, set its timeout and stored error and link it in to the
 536 * destination keyring if one is supplied.  The key and any links to the key
 537 * will be automatically garbage collected after the timeout expires.
 538 *
 539 * Negative keys are used to rate limit repeated request_key() calls by causing
 540 * them to return the stored error code (typically ENOKEY) until the negative
 541 * key expires.
 542 *
 543 * If successful, 0 is returned, the authorisation token is revoked and anyone
 544 * waiting for the key is woken up.  If the key was already instantiated,
 545 * -EBUSY will be returned.
 546 */
 547int key_reject_and_link(struct key *key,
 548                        unsigned timeout,
 549                        unsigned error,
 550                        struct key *keyring,
 551                        struct key *authkey)
 552{
 553        struct assoc_array_edit *edit;
 554        struct timespec now;
 555        int ret, awaken, link_ret = 0;
 556
 557        key_check(key);
 558        key_check(keyring);
 559
 560        awaken = 0;
 561        ret = -EBUSY;
 562
 563        if (keyring) {
 564                if (keyring->restrict_link)
 565                        return -EPERM;
 566
 567                link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 568        }
 569
 570        mutex_lock(&key_construction_mutex);
 571
 572        /* can't instantiate twice */
 573        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 574                /* mark the key as being negatively instantiated */
 575                atomic_inc(&key->user->nikeys);
 576                key->reject_error = -error;
 577                smp_wmb();
 578                set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 579                set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 580                now = current_kernel_time();
 581                key->expiry = now.tv_sec + timeout;
 582                key_schedule_gc(key->expiry + key_gc_delay);
 583
 584                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 585                        awaken = 1;
 586
 587                ret = 0;
 588
 589                /* and link it into the destination keyring */
 590                if (keyring && link_ret == 0)
 591                        __key_link(key, &edit);
 592
 593                /* disable the authorisation key */
 594                if (authkey)
 595                        key_revoke(authkey);
 596        }
 597
 598        mutex_unlock(&key_construction_mutex);
 599
 600        if (keyring && link_ret == 0)
 601                __key_link_end(keyring, &key->index_key, edit);
 602
 603        /* wake up anyone waiting for a key to be constructed */
 604        if (awaken)
 605                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 606
 607        return ret == 0 ? link_ret : ret;
 608}
 609EXPORT_SYMBOL(key_reject_and_link);
 610
 611/**
 612 * key_put - Discard a reference to a key.
 613 * @key: The key to discard a reference from.
 614 *
 615 * Discard a reference to a key, and when all the references are gone, we
 616 * schedule the cleanup task to come and pull it out of the tree in process
 617 * context at some later time.
 618 */
 619void key_put(struct key *key)
 620{
 621        if (key) {
 622                key_check(key);
 623
 624                if (atomic_dec_and_test(&key->usage))
 625                        schedule_work(&key_gc_work);
 626        }
 627}
 628EXPORT_SYMBOL(key_put);
 629
 630/*
 631 * Find a key by its serial number.
 632 */
 633struct key *key_lookup(key_serial_t id)
 634{
 635        struct rb_node *n;
 636        struct key *key;
 637
 638        spin_lock(&key_serial_lock);
 639
 640        /* search the tree for the specified key */
 641        n = key_serial_tree.rb_node;
 642        while (n) {
 643                key = rb_entry(n, struct key, serial_node);
 644
 645                if (id < key->serial)
 646                        n = n->rb_left;
 647                else if (id > key->serial)
 648                        n = n->rb_right;
 649                else
 650                        goto found;
 651        }
 652
 653not_found:
 654        key = ERR_PTR(-ENOKEY);
 655        goto error;
 656
 657found:
 658        /* pretend it doesn't exist if it is awaiting deletion */
 659        if (atomic_read(&key->usage) == 0)
 660                goto not_found;
 661
 662        /* this races with key_put(), but that doesn't matter since key_put()
 663         * doesn't actually change the key
 664         */
 665        __key_get(key);
 666
 667error:
 668        spin_unlock(&key_serial_lock);
 669        return key;
 670}
 671
 672/*
 673 * Find and lock the specified key type against removal.
 674 *
 675 * We return with the sem read-locked if successful.  If the type wasn't
 676 * available -ENOKEY is returned instead.
 677 */
 678struct key_type *key_type_lookup(const char *type)
 679{
 680        struct key_type *ktype;
 681
 682        down_read(&key_types_sem);
 683
 684        /* look up the key type to see if it's one of the registered kernel
 685         * types */
 686        list_for_each_entry(ktype, &key_types_list, link) {
 687                if (strcmp(ktype->name, type) == 0)
 688                        goto found_kernel_type;
 689        }
 690
 691        up_read(&key_types_sem);
 692        ktype = ERR_PTR(-ENOKEY);
 693
 694found_kernel_type:
 695        return ktype;
 696}
 697
 698void key_set_timeout(struct key *key, unsigned timeout)
 699{
 700        struct timespec now;
 701        time_t expiry = 0;
 702
 703        /* make the changes with the locks held to prevent races */
 704        down_write(&key->sem);
 705
 706        if (timeout > 0) {
 707                now = current_kernel_time();
 708                expiry = now.tv_sec + timeout;
 709        }
 710
 711        key->expiry = expiry;
 712        key_schedule_gc(key->expiry + key_gc_delay);
 713
 714        up_write(&key->sem);
 715}
 716EXPORT_SYMBOL_GPL(key_set_timeout);
 717
 718/*
 719 * Unlock a key type locked by key_type_lookup().
 720 */
 721void key_type_put(struct key_type *ktype)
 722{
 723        up_read(&key_types_sem);
 724}
 725
 726/*
 727 * Attempt to update an existing key.
 728 *
 729 * The key is given to us with an incremented refcount that we need to discard
 730 * if we get an error.
 731 */
 732static inline key_ref_t __key_update(key_ref_t key_ref,
 733                                     struct key_preparsed_payload *prep)
 734{
 735        struct key *key = key_ref_to_ptr(key_ref);
 736        int ret;
 737
 738        /* need write permission on the key to update it */
 739        ret = key_permission(key_ref, KEY_NEED_WRITE);
 740        if (ret < 0)
 741                goto error;
 742
 743        ret = -EEXIST;
 744        if (!key->type->update)
 745                goto error;
 746
 747        down_write(&key->sem);
 748
 749        ret = key->type->update(key, prep);
 750        if (ret == 0)
 751                /* updating a negative key instantiates it */
 752                clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 753
 754        up_write(&key->sem);
 755
 756        if (ret < 0)
 757                goto error;
 758out:
 759        return key_ref;
 760
 761error:
 762        key_put(key);
 763        key_ref = ERR_PTR(ret);
 764        goto out;
 765}
 766
 767/**
 768 * key_create_or_update - Update or create and instantiate a key.
 769 * @keyring_ref: A pointer to the destination keyring with possession flag.
 770 * @type: The type of key.
 771 * @description: The searchable description for the key.
 772 * @payload: The data to use to instantiate or update the key.
 773 * @plen: The length of @payload.
 774 * @perm: The permissions mask for a new key.
 775 * @flags: The quota flags for a new key.
 776 *
 777 * Search the destination keyring for a key of the same description and if one
 778 * is found, update it, otherwise create and instantiate a new one and create a
 779 * link to it from that keyring.
 780 *
 781 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 782 * concocted.
 783 *
 784 * Returns a pointer to the new key if successful, -ENODEV if the key type
 785 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 786 * caller isn't permitted to modify the keyring or the LSM did not permit
 787 * creation of the key.
 788 *
 789 * On success, the possession flag from the keyring ref will be tacked on to
 790 * the key ref before it is returned.
 791 */
 792key_ref_t key_create_or_update(key_ref_t keyring_ref,
 793                               const char *type,
 794                               const char *description,
 795                               const void *payload,
 796                               size_t plen,
 797                               key_perm_t perm,
 798                               unsigned long flags)
 799{
 800        struct keyring_index_key index_key = {
 801                .description    = description,
 802        };
 803        struct key_preparsed_payload prep;
 804        struct assoc_array_edit *edit;
 805        const struct cred *cred = current_cred();
 806        struct key *keyring, *key = NULL;
 807        key_ref_t key_ref;
 808        int ret;
 809        int (*restrict_link)(struct key *,
 810                             const struct key_type *,
 811                             const union key_payload *) = NULL;
 812
 813        /* look up the key type to see if it's one of the registered kernel
 814         * types */
 815        index_key.type = key_type_lookup(type);
 816        if (IS_ERR(index_key.type)) {
 817                key_ref = ERR_PTR(-ENODEV);
 818                goto error;
 819        }
 820
 821        key_ref = ERR_PTR(-EINVAL);
 822        if (!index_key.type->instantiate ||
 823            (!index_key.description && !index_key.type->preparse))
 824                goto error_put_type;
 825
 826        keyring = key_ref_to_ptr(keyring_ref);
 827
 828        key_check(keyring);
 829
 830        key_ref = ERR_PTR(-EPERM);
 831        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 832                restrict_link = keyring->restrict_link;
 833
 834        key_ref = ERR_PTR(-ENOTDIR);
 835        if (keyring->type != &key_type_keyring)
 836                goto error_put_type;
 837
 838        memset(&prep, 0, sizeof(prep));
 839        prep.data = payload;
 840        prep.datalen = plen;
 841        prep.quotalen = index_key.type->def_datalen;
 842        prep.expiry = TIME_T_MAX;
 843        if (index_key.type->preparse) {
 844                ret = index_key.type->preparse(&prep);
 845                if (ret < 0) {
 846                        key_ref = ERR_PTR(ret);
 847                        goto error_free_prep;
 848                }
 849                if (!index_key.description)
 850                        index_key.description = prep.description;
 851                key_ref = ERR_PTR(-EINVAL);
 852                if (!index_key.description)
 853                        goto error_free_prep;
 854        }
 855        index_key.desc_len = strlen(index_key.description);
 856
 857        if (restrict_link) {
 858                ret = restrict_link(keyring, index_key.type, &prep.payload);
 859                if (ret < 0) {
 860                        key_ref = ERR_PTR(ret);
 861                        goto error_free_prep;
 862                }
 863        }
 864
 865        ret = __key_link_begin(keyring, &index_key, &edit);
 866        if (ret < 0) {
 867                key_ref = ERR_PTR(ret);
 868                goto error_free_prep;
 869        }
 870
 871        /* if we're going to allocate a new key, we're going to have
 872         * to modify the keyring */
 873        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 874        if (ret < 0) {
 875                key_ref = ERR_PTR(ret);
 876                goto error_link_end;
 877        }
 878
 879        /* if it's possible to update this type of key, search for an existing
 880         * key of the same type and description in the destination keyring and
 881         * update that instead if possible
 882         */
 883        if (index_key.type->update) {
 884                key_ref = find_key_to_update(keyring_ref, &index_key);
 885                if (key_ref)
 886                        goto found_matching_key;
 887        }
 888
 889        /* if the client doesn't provide, decide on the permissions we want */
 890        if (perm == KEY_PERM_UNDEF) {
 891                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 892                perm |= KEY_USR_VIEW;
 893
 894                if (index_key.type->read)
 895                        perm |= KEY_POS_READ;
 896
 897                if (index_key.type == &key_type_keyring ||
 898                    index_key.type->update)
 899                        perm |= KEY_POS_WRITE;
 900        }
 901
 902        /* allocate a new key */
 903        key = key_alloc(index_key.type, index_key.description,
 904                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 905        if (IS_ERR(key)) {
 906                key_ref = ERR_CAST(key);
 907                goto error_link_end;
 908        }
 909
 910        /* instantiate it and link it into the target keyring */
 911        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 912        if (ret < 0) {
 913                key_put(key);
 914                key_ref = ERR_PTR(ret);
 915                goto error_link_end;
 916        }
 917
 918        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 919
 920error_link_end:
 921        __key_link_end(keyring, &index_key, edit);
 922error_free_prep:
 923        if (index_key.type->preparse)
 924                index_key.type->free_preparse(&prep);
 925error_put_type:
 926        key_type_put(index_key.type);
 927error:
 928        return key_ref;
 929
 930 found_matching_key:
 931        /* we found a matching key, so we're going to try to update it
 932         * - we can drop the locks first as we have the key pinned
 933         */
 934        __key_link_end(keyring, &index_key, edit);
 935
 936        key_ref = __key_update(key_ref, &prep);
 937        goto error_free_prep;
 938}
 939EXPORT_SYMBOL(key_create_or_update);
 940
 941/**
 942 * key_update - Update a key's contents.
 943 * @key_ref: The pointer (plus possession flag) to the key.
 944 * @payload: The data to be used to update the key.
 945 * @plen: The length of @payload.
 946 *
 947 * Attempt to update the contents of a key with the given payload data.  The
 948 * caller must be granted Write permission on the key.  Negative keys can be
 949 * instantiated by this method.
 950 *
 951 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 952 * type does not support updating.  The key type may return other errors.
 953 */
 954int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 955{
 956        struct key_preparsed_payload prep;
 957        struct key *key = key_ref_to_ptr(key_ref);
 958        int ret;
 959
 960        key_check(key);
 961
 962        /* the key must be writable */
 963        ret = key_permission(key_ref, KEY_NEED_WRITE);
 964        if (ret < 0)
 965                goto error;
 966
 967        /* attempt to update it if supported */
 968        ret = -EOPNOTSUPP;
 969        if (!key->type->update)
 970                goto error;
 971
 972        memset(&prep, 0, sizeof(prep));
 973        prep.data = payload;
 974        prep.datalen = plen;
 975        prep.quotalen = key->type->def_datalen;
 976        prep.expiry = TIME_T_MAX;
 977        if (key->type->preparse) {
 978                ret = key->type->preparse(&prep);
 979                if (ret < 0)
 980                        goto error;
 981        }
 982
 983        down_write(&key->sem);
 984
 985        ret = key->type->update(key, &prep);
 986        if (ret == 0)
 987                /* updating a negative key instantiates it */
 988                clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 989
 990        up_write(&key->sem);
 991
 992error:
 993        if (key->type->preparse)
 994                key->type->free_preparse(&prep);
 995        return ret;
 996}
 997EXPORT_SYMBOL(key_update);
 998
 999/**
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1002 *
1003 * Mark a key as being revoked and ask the type to free up its resources.  The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1007 */
1008void key_revoke(struct key *key)
1009{
1010        struct timespec now;
1011        time_t time;
1012
1013        key_check(key);
1014
1015        /* make sure no one's trying to change or use the key when we mark it
1016         * - we tell lockdep that we might nest because we might be revoking an
1017         *   authorisation key whilst holding the sem on a key we've just
1018         *   instantiated
1019         */
1020        down_write_nested(&key->sem, 1);
1021        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022            key->type->revoke)
1023                key->type->revoke(key);
1024
1025        /* set the death time to no more than the expiry time */
1026        now = current_kernel_time();
1027        time = now.tv_sec;
1028        if (key->revoked_at == 0 || key->revoked_at > time) {
1029                key->revoked_at = time;
1030                key_schedule_gc(key->revoked_at + key_gc_delay);
1031        }
1032
1033        up_write(&key->sem);
1034}
1035EXPORT_SYMBOL(key_revoke);
1036
1037/**
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1040 *
1041 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1042 * is ignored by all searches and other operations from this point.
1043 */
1044void key_invalidate(struct key *key)
1045{
1046        kenter("%d", key_serial(key));
1047
1048        key_check(key);
1049
1050        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051                down_write_nested(&key->sem, 1);
1052                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053                        key_schedule_gc_links();
1054                up_write(&key->sem);
1055        }
1056}
1057EXPORT_SYMBOL(key_invalidate);
1058
1059/**
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1063 *
1064 * Instantiate a key from preparsed data.  We assume we can just copy the data
1065 * in directly and clear the old pointers.
1066 *
1067 * This can be pointed to directly by the key type instantiate op pointer.
1068 */
1069int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070{
1071        int ret;
1072
1073        pr_devel("==>%s()\n", __func__);
1074
1075        ret = key_payload_reserve(key, prep->quotalen);
1076        if (ret == 0) {
1077                rcu_assign_keypointer(key, prep->payload.data[0]);
1078                key->payload.data[1] = prep->payload.data[1];
1079                key->payload.data[2] = prep->payload.data[2];
1080                key->payload.data[3] = prep->payload.data[3];
1081                prep->payload.data[0] = NULL;
1082                prep->payload.data[1] = NULL;
1083                prep->payload.data[2] = NULL;
1084                prep->payload.data[3] = NULL;
1085        }
1086        pr_devel("<==%s() = %d\n", __func__, ret);
1087        return ret;
1088}
1089EXPORT_SYMBOL(generic_key_instantiate);
1090
1091/**
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1094 *
1095 * Register a new key type.
1096 *
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1098 */
1099int register_key_type(struct key_type *ktype)
1100{
1101        struct key_type *p;
1102        int ret;
1103
1104        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105
1106        ret = -EEXIST;
1107        down_write(&key_types_sem);
1108
1109        /* disallow key types with the same name */
1110        list_for_each_entry(p, &key_types_list, link) {
1111                if (strcmp(p->name, ktype->name) == 0)
1112                        goto out;
1113        }
1114
1115        /* store the type */
1116        list_add(&ktype->link, &key_types_list);
1117
1118        pr_notice("Key type %s registered\n", ktype->name);
1119        ret = 0;
1120
1121out:
1122        up_write(&key_types_sem);
1123        return ret;
1124}
1125EXPORT_SYMBOL(register_key_type);
1126
1127/**
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1130 *
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1134 */
1135void unregister_key_type(struct key_type *ktype)
1136{
1137        down_write(&key_types_sem);
1138        list_del_init(&ktype->link);
1139        downgrade_write(&key_types_sem);
1140        key_gc_keytype(ktype);
1141        pr_notice("Key type %s unregistered\n", ktype->name);
1142        up_read(&key_types_sem);
1143}
1144EXPORT_SYMBOL(unregister_key_type);
1145
1146/*
1147 * Initialise the key management state.
1148 */
1149void __init key_init(void)
1150{
1151        /* allocate a slab in which we can store keys */
1152        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154
1155        /* add the special key types */
1156        list_add_tail(&key_type_keyring.link, &key_types_list);
1157        list_add_tail(&key_type_dead.link, &key_types_list);
1158        list_add_tail(&key_type_user.link, &key_types_list);
1159        list_add_tail(&key_type_logon.link, &key_types_list);
1160
1161        /* record the root user tracking */
1162        rb_link_node(&root_key_user.node,
1163                     NULL,
1164                     &key_user_tree.rb_node);
1165
1166        rb_insert_color(&root_key_user.node,
1167                        &key_user_tree);
1168}
1169