linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_extsockclass;
  76int selinux_policycap_alwaysnetwork;
  77int selinux_policycap_cgroupseclabel;
  78
  79static DEFINE_RWLOCK(policy_rwlock);
  80
  81static struct sidtab sidtab;
  82struct policydb policydb;
  83int ss_initialized;
  84
  85/*
  86 * The largest sequence number that has been used when
  87 * providing an access decision to the access vector cache.
  88 * The sequence number only changes when a policy change
  89 * occurs.
  90 */
  91static u32 latest_granting;
  92
  93/* Forward declaration. */
  94static int context_struct_to_string(struct context *context, char **scontext,
  95                                    u32 *scontext_len);
  96
  97static void context_struct_compute_av(struct context *scontext,
  98                                        struct context *tcontext,
  99                                        u16 tclass,
 100                                        struct av_decision *avd,
 101                                        struct extended_perms *xperms);
 102
 103struct selinux_mapping {
 104        u16 value; /* policy value */
 105        unsigned num_perms;
 106        u32 perms[sizeof(u32) * 8];
 107};
 108
 109static struct selinux_mapping *current_mapping;
 110static u16 current_mapping_size;
 111
 112static int selinux_set_mapping(struct policydb *pol,
 113                               struct security_class_mapping *map,
 114                               struct selinux_mapping **out_map_p,
 115                               u16 *out_map_size)
 116{
 117        struct selinux_mapping *out_map = NULL;
 118        size_t size = sizeof(struct selinux_mapping);
 119        u16 i, j;
 120        unsigned k;
 121        bool print_unknown_handle = false;
 122
 123        /* Find number of classes in the input mapping */
 124        if (!map)
 125                return -EINVAL;
 126        i = 0;
 127        while (map[i].name)
 128                i++;
 129
 130        /* Allocate space for the class records, plus one for class zero */
 131        out_map = kcalloc(++i, size, GFP_ATOMIC);
 132        if (!out_map)
 133                return -ENOMEM;
 134
 135        /* Store the raw class and permission values */
 136        j = 0;
 137        while (map[j].name) {
 138                struct security_class_mapping *p_in = map + (j++);
 139                struct selinux_mapping *p_out = out_map + j;
 140
 141                /* An empty class string skips ahead */
 142                if (!strcmp(p_in->name, "")) {
 143                        p_out->num_perms = 0;
 144                        continue;
 145                }
 146
 147                p_out->value = string_to_security_class(pol, p_in->name);
 148                if (!p_out->value) {
 149                        printk(KERN_INFO
 150                               "SELinux:  Class %s not defined in policy.\n",
 151                               p_in->name);
 152                        if (pol->reject_unknown)
 153                                goto err;
 154                        p_out->num_perms = 0;
 155                        print_unknown_handle = true;
 156                        continue;
 157                }
 158
 159                k = 0;
 160                while (p_in->perms && p_in->perms[k]) {
 161                        /* An empty permission string skips ahead */
 162                        if (!*p_in->perms[k]) {
 163                                k++;
 164                                continue;
 165                        }
 166                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 167                                                            p_in->perms[k]);
 168                        if (!p_out->perms[k]) {
 169                                printk(KERN_INFO
 170                                       "SELinux:  Permission %s in class %s not defined in policy.\n",
 171                                       p_in->perms[k], p_in->name);
 172                                if (pol->reject_unknown)
 173                                        goto err;
 174                                print_unknown_handle = true;
 175                        }
 176
 177                        k++;
 178                }
 179                p_out->num_perms = k;
 180        }
 181
 182        if (print_unknown_handle)
 183                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 184                       pol->allow_unknown ? "allowed" : "denied");
 185
 186        *out_map_p = out_map;
 187        *out_map_size = i;
 188        return 0;
 189err:
 190        kfree(out_map);
 191        return -EINVAL;
 192}
 193
 194/*
 195 * Get real, policy values from mapped values
 196 */
 197
 198static u16 unmap_class(u16 tclass)
 199{
 200        if (tclass < current_mapping_size)
 201                return current_mapping[tclass].value;
 202
 203        return tclass;
 204}
 205
 206/*
 207 * Get kernel value for class from its policy value
 208 */
 209static u16 map_class(u16 pol_value)
 210{
 211        u16 i;
 212
 213        for (i = 1; i < current_mapping_size; i++) {
 214                if (current_mapping[i].value == pol_value)
 215                        return i;
 216        }
 217
 218        return SECCLASS_NULL;
 219}
 220
 221static void map_decision(u16 tclass, struct av_decision *avd,
 222                         int allow_unknown)
 223{
 224        if (tclass < current_mapping_size) {
 225                unsigned i, n = current_mapping[tclass].num_perms;
 226                u32 result;
 227
 228                for (i = 0, result = 0; i < n; i++) {
 229                        if (avd->allowed & current_mapping[tclass].perms[i])
 230                                result |= 1<<i;
 231                        if (allow_unknown && !current_mapping[tclass].perms[i])
 232                                result |= 1<<i;
 233                }
 234                avd->allowed = result;
 235
 236                for (i = 0, result = 0; i < n; i++)
 237                        if (avd->auditallow & current_mapping[tclass].perms[i])
 238                                result |= 1<<i;
 239                avd->auditallow = result;
 240
 241                for (i = 0, result = 0; i < n; i++) {
 242                        if (avd->auditdeny & current_mapping[tclass].perms[i])
 243                                result |= 1<<i;
 244                        if (!allow_unknown && !current_mapping[tclass].perms[i])
 245                                result |= 1<<i;
 246                }
 247                /*
 248                 * In case the kernel has a bug and requests a permission
 249                 * between num_perms and the maximum permission number, we
 250                 * should audit that denial
 251                 */
 252                for (; i < (sizeof(u32)*8); i++)
 253                        result |= 1<<i;
 254                avd->auditdeny = result;
 255        }
 256}
 257
 258int security_mls_enabled(void)
 259{
 260        return policydb.mls_enabled;
 261}
 262
 263/*
 264 * Return the boolean value of a constraint expression
 265 * when it is applied to the specified source and target
 266 * security contexts.
 267 *
 268 * xcontext is a special beast...  It is used by the validatetrans rules
 269 * only.  For these rules, scontext is the context before the transition,
 270 * tcontext is the context after the transition, and xcontext is the context
 271 * of the process performing the transition.  All other callers of
 272 * constraint_expr_eval should pass in NULL for xcontext.
 273 */
 274static int constraint_expr_eval(struct context *scontext,
 275                                struct context *tcontext,
 276                                struct context *xcontext,
 277                                struct constraint_expr *cexpr)
 278{
 279        u32 val1, val2;
 280        struct context *c;
 281        struct role_datum *r1, *r2;
 282        struct mls_level *l1, *l2;
 283        struct constraint_expr *e;
 284        int s[CEXPR_MAXDEPTH];
 285        int sp = -1;
 286
 287        for (e = cexpr; e; e = e->next) {
 288                switch (e->expr_type) {
 289                case CEXPR_NOT:
 290                        BUG_ON(sp < 0);
 291                        s[sp] = !s[sp];
 292                        break;
 293                case CEXPR_AND:
 294                        BUG_ON(sp < 1);
 295                        sp--;
 296                        s[sp] &= s[sp + 1];
 297                        break;
 298                case CEXPR_OR:
 299                        BUG_ON(sp < 1);
 300                        sp--;
 301                        s[sp] |= s[sp + 1];
 302                        break;
 303                case CEXPR_ATTR:
 304                        if (sp == (CEXPR_MAXDEPTH - 1))
 305                                return 0;
 306                        switch (e->attr) {
 307                        case CEXPR_USER:
 308                                val1 = scontext->user;
 309                                val2 = tcontext->user;
 310                                break;
 311                        case CEXPR_TYPE:
 312                                val1 = scontext->type;
 313                                val2 = tcontext->type;
 314                                break;
 315                        case CEXPR_ROLE:
 316                                val1 = scontext->role;
 317                                val2 = tcontext->role;
 318                                r1 = policydb.role_val_to_struct[val1 - 1];
 319                                r2 = policydb.role_val_to_struct[val2 - 1];
 320                                switch (e->op) {
 321                                case CEXPR_DOM:
 322                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 323                                                                  val2 - 1);
 324                                        continue;
 325                                case CEXPR_DOMBY:
 326                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 327                                                                  val1 - 1);
 328                                        continue;
 329                                case CEXPR_INCOMP:
 330                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 331                                                                    val2 - 1) &&
 332                                                   !ebitmap_get_bit(&r2->dominates,
 333                                                                    val1 - 1));
 334                                        continue;
 335                                default:
 336                                        break;
 337                                }
 338                                break;
 339                        case CEXPR_L1L2:
 340                                l1 = &(scontext->range.level[0]);
 341                                l2 = &(tcontext->range.level[0]);
 342                                goto mls_ops;
 343                        case CEXPR_L1H2:
 344                                l1 = &(scontext->range.level[0]);
 345                                l2 = &(tcontext->range.level[1]);
 346                                goto mls_ops;
 347                        case CEXPR_H1L2:
 348                                l1 = &(scontext->range.level[1]);
 349                                l2 = &(tcontext->range.level[0]);
 350                                goto mls_ops;
 351                        case CEXPR_H1H2:
 352                                l1 = &(scontext->range.level[1]);
 353                                l2 = &(tcontext->range.level[1]);
 354                                goto mls_ops;
 355                        case CEXPR_L1H1:
 356                                l1 = &(scontext->range.level[0]);
 357                                l2 = &(scontext->range.level[1]);
 358                                goto mls_ops;
 359                        case CEXPR_L2H2:
 360                                l1 = &(tcontext->range.level[0]);
 361                                l2 = &(tcontext->range.level[1]);
 362                                goto mls_ops;
 363mls_ops:
 364                        switch (e->op) {
 365                        case CEXPR_EQ:
 366                                s[++sp] = mls_level_eq(l1, l2);
 367                                continue;
 368                        case CEXPR_NEQ:
 369                                s[++sp] = !mls_level_eq(l1, l2);
 370                                continue;
 371                        case CEXPR_DOM:
 372                                s[++sp] = mls_level_dom(l1, l2);
 373                                continue;
 374                        case CEXPR_DOMBY:
 375                                s[++sp] = mls_level_dom(l2, l1);
 376                                continue;
 377                        case CEXPR_INCOMP:
 378                                s[++sp] = mls_level_incomp(l2, l1);
 379                                continue;
 380                        default:
 381                                BUG();
 382                                return 0;
 383                        }
 384                        break;
 385                        default:
 386                                BUG();
 387                                return 0;
 388                        }
 389
 390                        switch (e->op) {
 391                        case CEXPR_EQ:
 392                                s[++sp] = (val1 == val2);
 393                                break;
 394                        case CEXPR_NEQ:
 395                                s[++sp] = (val1 != val2);
 396                                break;
 397                        default:
 398                                BUG();
 399                                return 0;
 400                        }
 401                        break;
 402                case CEXPR_NAMES:
 403                        if (sp == (CEXPR_MAXDEPTH-1))
 404                                return 0;
 405                        c = scontext;
 406                        if (e->attr & CEXPR_TARGET)
 407                                c = tcontext;
 408                        else if (e->attr & CEXPR_XTARGET) {
 409                                c = xcontext;
 410                                if (!c) {
 411                                        BUG();
 412                                        return 0;
 413                                }
 414                        }
 415                        if (e->attr & CEXPR_USER)
 416                                val1 = c->user;
 417                        else if (e->attr & CEXPR_ROLE)
 418                                val1 = c->role;
 419                        else if (e->attr & CEXPR_TYPE)
 420                                val1 = c->type;
 421                        else {
 422                                BUG();
 423                                return 0;
 424                        }
 425
 426                        switch (e->op) {
 427                        case CEXPR_EQ:
 428                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 429                                break;
 430                        case CEXPR_NEQ:
 431                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 432                                break;
 433                        default:
 434                                BUG();
 435                                return 0;
 436                        }
 437                        break;
 438                default:
 439                        BUG();
 440                        return 0;
 441                }
 442        }
 443
 444        BUG_ON(sp != 0);
 445        return s[0];
 446}
 447
 448/*
 449 * security_dump_masked_av - dumps masked permissions during
 450 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 451 */
 452static int dump_masked_av_helper(void *k, void *d, void *args)
 453{
 454        struct perm_datum *pdatum = d;
 455        char **permission_names = args;
 456
 457        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 458
 459        permission_names[pdatum->value - 1] = (char *)k;
 460
 461        return 0;
 462}
 463
 464static void security_dump_masked_av(struct context *scontext,
 465                                    struct context *tcontext,
 466                                    u16 tclass,
 467                                    u32 permissions,
 468                                    const char *reason)
 469{
 470        struct common_datum *common_dat;
 471        struct class_datum *tclass_dat;
 472        struct audit_buffer *ab;
 473        char *tclass_name;
 474        char *scontext_name = NULL;
 475        char *tcontext_name = NULL;
 476        char *permission_names[32];
 477        int index;
 478        u32 length;
 479        bool need_comma = false;
 480
 481        if (!permissions)
 482                return;
 483
 484        tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 485        tclass_dat = policydb.class_val_to_struct[tclass - 1];
 486        common_dat = tclass_dat->comdatum;
 487
 488        /* init permission_names */
 489        if (common_dat &&
 490            hashtab_map(common_dat->permissions.table,
 491                        dump_masked_av_helper, permission_names) < 0)
 492                goto out;
 493
 494        if (hashtab_map(tclass_dat->permissions.table,
 495                        dump_masked_av_helper, permission_names) < 0)
 496                goto out;
 497
 498        /* get scontext/tcontext in text form */
 499        if (context_struct_to_string(scontext,
 500                                     &scontext_name, &length) < 0)
 501                goto out;
 502
 503        if (context_struct_to_string(tcontext,
 504                                     &tcontext_name, &length) < 0)
 505                goto out;
 506
 507        /* audit a message */
 508        ab = audit_log_start(current->audit_context,
 509                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 510        if (!ab)
 511                goto out;
 512
 513        audit_log_format(ab, "op=security_compute_av reason=%s "
 514                         "scontext=%s tcontext=%s tclass=%s perms=",
 515                         reason, scontext_name, tcontext_name, tclass_name);
 516
 517        for (index = 0; index < 32; index++) {
 518                u32 mask = (1 << index);
 519
 520                if ((mask & permissions) == 0)
 521                        continue;
 522
 523                audit_log_format(ab, "%s%s",
 524                                 need_comma ? "," : "",
 525                                 permission_names[index]
 526                                 ? permission_names[index] : "????");
 527                need_comma = true;
 528        }
 529        audit_log_end(ab);
 530out:
 531        /* release scontext/tcontext */
 532        kfree(tcontext_name);
 533        kfree(scontext_name);
 534
 535        return;
 536}
 537
 538/*
 539 * security_boundary_permission - drops violated permissions
 540 * on boundary constraint.
 541 */
 542static void type_attribute_bounds_av(struct context *scontext,
 543                                     struct context *tcontext,
 544                                     u16 tclass,
 545                                     struct av_decision *avd)
 546{
 547        struct context lo_scontext;
 548        struct context lo_tcontext, *tcontextp = tcontext;
 549        struct av_decision lo_avd;
 550        struct type_datum *source;
 551        struct type_datum *target;
 552        u32 masked = 0;
 553
 554        source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555                                    scontext->type - 1);
 556        BUG_ON(!source);
 557
 558        if (!source->bounds)
 559                return;
 560
 561        target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 562                                    tcontext->type - 1);
 563        BUG_ON(!target);
 564
 565        memset(&lo_avd, 0, sizeof(lo_avd));
 566
 567        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 568        lo_scontext.type = source->bounds;
 569
 570        if (target->bounds) {
 571                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 572                lo_tcontext.type = target->bounds;
 573                tcontextp = &lo_tcontext;
 574        }
 575
 576        context_struct_compute_av(&lo_scontext,
 577                                  tcontextp,
 578                                  tclass,
 579                                  &lo_avd,
 580                                  NULL);
 581
 582        masked = ~lo_avd.allowed & avd->allowed;
 583
 584        if (likely(!masked))
 585                return;         /* no masked permission */
 586
 587        /* mask violated permissions */
 588        avd->allowed &= ~masked;
 589
 590        /* audit masked permissions */
 591        security_dump_masked_av(scontext, tcontext,
 592                                tclass, masked, "bounds");
 593}
 594
 595/*
 596 * flag which drivers have permissions
 597 * only looking for ioctl based extended permssions
 598 */
 599void services_compute_xperms_drivers(
 600                struct extended_perms *xperms,
 601                struct avtab_node *node)
 602{
 603        unsigned int i;
 604
 605        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 606                /* if one or more driver has all permissions allowed */
 607                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 608                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 609        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 610                /* if allowing permissions within a driver */
 611                security_xperm_set(xperms->drivers.p,
 612                                        node->datum.u.xperms->driver);
 613        }
 614
 615        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 616        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 617                xperms->len = 1;
 618}
 619
 620/*
 621 * Compute access vectors and extended permissions based on a context
 622 * structure pair for the permissions in a particular class.
 623 */
 624static void context_struct_compute_av(struct context *scontext,
 625                                        struct context *tcontext,
 626                                        u16 tclass,
 627                                        struct av_decision *avd,
 628                                        struct extended_perms *xperms)
 629{
 630        struct constraint_node *constraint;
 631        struct role_allow *ra;
 632        struct avtab_key avkey;
 633        struct avtab_node *node;
 634        struct class_datum *tclass_datum;
 635        struct ebitmap *sattr, *tattr;
 636        struct ebitmap_node *snode, *tnode;
 637        unsigned int i, j;
 638
 639        avd->allowed = 0;
 640        avd->auditallow = 0;
 641        avd->auditdeny = 0xffffffff;
 642        if (xperms) {
 643                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 644                xperms->len = 0;
 645        }
 646
 647        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 648                if (printk_ratelimit())
 649                        printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 650                return;
 651        }
 652
 653        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 654
 655        /*
 656         * If a specific type enforcement rule was defined for
 657         * this permission check, then use it.
 658         */
 659        avkey.target_class = tclass;
 660        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 661        sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 662        BUG_ON(!sattr);
 663        tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 664        BUG_ON(!tattr);
 665        ebitmap_for_each_positive_bit(sattr, snode, i) {
 666                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667                        avkey.source_type = i + 1;
 668                        avkey.target_type = j + 1;
 669                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 670                             node;
 671                             node = avtab_search_node_next(node, avkey.specified)) {
 672                                if (node->key.specified == AVTAB_ALLOWED)
 673                                        avd->allowed |= node->datum.u.data;
 674                                else if (node->key.specified == AVTAB_AUDITALLOW)
 675                                        avd->auditallow |= node->datum.u.data;
 676                                else if (node->key.specified == AVTAB_AUDITDENY)
 677                                        avd->auditdeny &= node->datum.u.data;
 678                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 679                                        services_compute_xperms_drivers(xperms, node);
 680                        }
 681
 682                        /* Check conditional av table for additional permissions */
 683                        cond_compute_av(&policydb.te_cond_avtab, &avkey,
 684                                        avd, xperms);
 685
 686                }
 687        }
 688
 689        /*
 690         * Remove any permissions prohibited by a constraint (this includes
 691         * the MLS policy).
 692         */
 693        constraint = tclass_datum->constraints;
 694        while (constraint) {
 695                if ((constraint->permissions & (avd->allowed)) &&
 696                    !constraint_expr_eval(scontext, tcontext, NULL,
 697                                          constraint->expr)) {
 698                        avd->allowed &= ~(constraint->permissions);
 699                }
 700                constraint = constraint->next;
 701        }
 702
 703        /*
 704         * If checking process transition permission and the
 705         * role is changing, then check the (current_role, new_role)
 706         * pair.
 707         */
 708        if (tclass == policydb.process_class &&
 709            (avd->allowed & policydb.process_trans_perms) &&
 710            scontext->role != tcontext->role) {
 711                for (ra = policydb.role_allow; ra; ra = ra->next) {
 712                        if (scontext->role == ra->role &&
 713                            tcontext->role == ra->new_role)
 714                                break;
 715                }
 716                if (!ra)
 717                        avd->allowed &= ~policydb.process_trans_perms;
 718        }
 719
 720        /*
 721         * If the given source and target types have boundary
 722         * constraint, lazy checks have to mask any violated
 723         * permission and notice it to userspace via audit.
 724         */
 725        type_attribute_bounds_av(scontext, tcontext,
 726                                 tclass, avd);
 727}
 728
 729static int security_validtrans_handle_fail(struct context *ocontext,
 730                                           struct context *ncontext,
 731                                           struct context *tcontext,
 732                                           u16 tclass)
 733{
 734        char *o = NULL, *n = NULL, *t = NULL;
 735        u32 olen, nlen, tlen;
 736
 737        if (context_struct_to_string(ocontext, &o, &olen))
 738                goto out;
 739        if (context_struct_to_string(ncontext, &n, &nlen))
 740                goto out;
 741        if (context_struct_to_string(tcontext, &t, &tlen))
 742                goto out;
 743        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 744                  "op=security_validate_transition seresult=denied"
 745                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 746                  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 747out:
 748        kfree(o);
 749        kfree(n);
 750        kfree(t);
 751
 752        if (!selinux_enforcing)
 753                return 0;
 754        return -EPERM;
 755}
 756
 757static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 758                                          u16 orig_tclass, bool user)
 759{
 760        struct context *ocontext;
 761        struct context *ncontext;
 762        struct context *tcontext;
 763        struct class_datum *tclass_datum;
 764        struct constraint_node *constraint;
 765        u16 tclass;
 766        int rc = 0;
 767
 768        if (!ss_initialized)
 769                return 0;
 770
 771        read_lock(&policy_rwlock);
 772
 773        if (!user)
 774                tclass = unmap_class(orig_tclass);
 775        else
 776                tclass = orig_tclass;
 777
 778        if (!tclass || tclass > policydb.p_classes.nprim) {
 779                rc = -EINVAL;
 780                goto out;
 781        }
 782        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 783
 784        ocontext = sidtab_search(&sidtab, oldsid);
 785        if (!ocontext) {
 786                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 787                        __func__, oldsid);
 788                rc = -EINVAL;
 789                goto out;
 790        }
 791
 792        ncontext = sidtab_search(&sidtab, newsid);
 793        if (!ncontext) {
 794                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 795                        __func__, newsid);
 796                rc = -EINVAL;
 797                goto out;
 798        }
 799
 800        tcontext = sidtab_search(&sidtab, tasksid);
 801        if (!tcontext) {
 802                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 803                        __func__, tasksid);
 804                rc = -EINVAL;
 805                goto out;
 806        }
 807
 808        constraint = tclass_datum->validatetrans;
 809        while (constraint) {
 810                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 811                                          constraint->expr)) {
 812                        if (user)
 813                                rc = -EPERM;
 814                        else
 815                                rc = security_validtrans_handle_fail(ocontext,
 816                                                                     ncontext,
 817                                                                     tcontext,
 818                                                                     tclass);
 819                        goto out;
 820                }
 821                constraint = constraint->next;
 822        }
 823
 824out:
 825        read_unlock(&policy_rwlock);
 826        return rc;
 827}
 828
 829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 830                                        u16 tclass)
 831{
 832        return security_compute_validatetrans(oldsid, newsid, tasksid,
 833                                                tclass, true);
 834}
 835
 836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 837                                 u16 orig_tclass)
 838{
 839        return security_compute_validatetrans(oldsid, newsid, tasksid,
 840                                                orig_tclass, false);
 841}
 842
 843/*
 844 * security_bounded_transition - check whether the given
 845 * transition is directed to bounded, or not.
 846 * It returns 0, if @newsid is bounded by @oldsid.
 847 * Otherwise, it returns error code.
 848 *
 849 * @oldsid : current security identifier
 850 * @newsid : destinated security identifier
 851 */
 852int security_bounded_transition(u32 old_sid, u32 new_sid)
 853{
 854        struct context *old_context, *new_context;
 855        struct type_datum *type;
 856        int index;
 857        int rc;
 858
 859        read_lock(&policy_rwlock);
 860
 861        rc = -EINVAL;
 862        old_context = sidtab_search(&sidtab, old_sid);
 863        if (!old_context) {
 864                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 865                       __func__, old_sid);
 866                goto out;
 867        }
 868
 869        rc = -EINVAL;
 870        new_context = sidtab_search(&sidtab, new_sid);
 871        if (!new_context) {
 872                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 873                       __func__, new_sid);
 874                goto out;
 875        }
 876
 877        rc = 0;
 878        /* type/domain unchanged */
 879        if (old_context->type == new_context->type)
 880                goto out;
 881
 882        index = new_context->type;
 883        while (true) {
 884                type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 885                                          index - 1);
 886                BUG_ON(!type);
 887
 888                /* not bounded anymore */
 889                rc = -EPERM;
 890                if (!type->bounds)
 891                        break;
 892
 893                /* @newsid is bounded by @oldsid */
 894                rc = 0;
 895                if (type->bounds == old_context->type)
 896                        break;
 897
 898                index = type->bounds;
 899        }
 900
 901        if (rc) {
 902                char *old_name = NULL;
 903                char *new_name = NULL;
 904                u32 length;
 905
 906                if (!context_struct_to_string(old_context,
 907                                              &old_name, &length) &&
 908                    !context_struct_to_string(new_context,
 909                                              &new_name, &length)) {
 910                        audit_log(current->audit_context,
 911                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 912                                  "op=security_bounded_transition "
 913                                  "seresult=denied "
 914                                  "oldcontext=%s newcontext=%s",
 915                                  old_name, new_name);
 916                }
 917                kfree(new_name);
 918                kfree(old_name);
 919        }
 920out:
 921        read_unlock(&policy_rwlock);
 922
 923        return rc;
 924}
 925
 926static void avd_init(struct av_decision *avd)
 927{
 928        avd->allowed = 0;
 929        avd->auditallow = 0;
 930        avd->auditdeny = 0xffffffff;
 931        avd->seqno = latest_granting;
 932        avd->flags = 0;
 933}
 934
 935void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 936                                        struct avtab_node *node)
 937{
 938        unsigned int i;
 939
 940        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 941                if (xpermd->driver != node->datum.u.xperms->driver)
 942                        return;
 943        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 944                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 945                                        xpermd->driver))
 946                        return;
 947        } else {
 948                BUG();
 949        }
 950
 951        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 952                xpermd->used |= XPERMS_ALLOWED;
 953                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 954                        memset(xpermd->allowed->p, 0xff,
 955                                        sizeof(xpermd->allowed->p));
 956                }
 957                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 958                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 959                                xpermd->allowed->p[i] |=
 960                                        node->datum.u.xperms->perms.p[i];
 961                }
 962        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 963                xpermd->used |= XPERMS_AUDITALLOW;
 964                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 965                        memset(xpermd->auditallow->p, 0xff,
 966                                        sizeof(xpermd->auditallow->p));
 967                }
 968                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 969                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 970                                xpermd->auditallow->p[i] |=
 971                                        node->datum.u.xperms->perms.p[i];
 972                }
 973        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 974                xpermd->used |= XPERMS_DONTAUDIT;
 975                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976                        memset(xpermd->dontaudit->p, 0xff,
 977                                        sizeof(xpermd->dontaudit->p));
 978                }
 979                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 981                                xpermd->dontaudit->p[i] |=
 982                                        node->datum.u.xperms->perms.p[i];
 983                }
 984        } else {
 985                BUG();
 986        }
 987}
 988
 989void security_compute_xperms_decision(u32 ssid,
 990                                u32 tsid,
 991                                u16 orig_tclass,
 992                                u8 driver,
 993                                struct extended_perms_decision *xpermd)
 994{
 995        u16 tclass;
 996        struct context *scontext, *tcontext;
 997        struct avtab_key avkey;
 998        struct avtab_node *node;
 999        struct ebitmap *sattr, *tattr;
1000        struct ebitmap_node *snode, *tnode;
1001        unsigned int i, j;
1002
1003        xpermd->driver = driver;
1004        xpermd->used = 0;
1005        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1006        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1007        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1008
1009        read_lock(&policy_rwlock);
1010        if (!ss_initialized)
1011                goto allow;
1012
1013        scontext = sidtab_search(&sidtab, ssid);
1014        if (!scontext) {
1015                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1016                       __func__, ssid);
1017                goto out;
1018        }
1019
1020        tcontext = sidtab_search(&sidtab, tsid);
1021        if (!tcontext) {
1022                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1023                       __func__, tsid);
1024                goto out;
1025        }
1026
1027        tclass = unmap_class(orig_tclass);
1028        if (unlikely(orig_tclass && !tclass)) {
1029                if (policydb.allow_unknown)
1030                        goto allow;
1031                goto out;
1032        }
1033
1034
1035        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1036                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1037                goto out;
1038        }
1039
1040        avkey.target_class = tclass;
1041        avkey.specified = AVTAB_XPERMS;
1042        sattr = flex_array_get(policydb.type_attr_map_array,
1043                                scontext->type - 1);
1044        BUG_ON(!sattr);
1045        tattr = flex_array_get(policydb.type_attr_map_array,
1046                                tcontext->type - 1);
1047        BUG_ON(!tattr);
1048        ebitmap_for_each_positive_bit(sattr, snode, i) {
1049                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1050                        avkey.source_type = i + 1;
1051                        avkey.target_type = j + 1;
1052                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1053                             node;
1054                             node = avtab_search_node_next(node, avkey.specified))
1055                                services_compute_xperms_decision(xpermd, node);
1056
1057                        cond_compute_xperms(&policydb.te_cond_avtab,
1058                                                &avkey, xpermd);
1059                }
1060        }
1061out:
1062        read_unlock(&policy_rwlock);
1063        return;
1064allow:
1065        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1066        goto out;
1067}
1068
1069/**
1070 * security_compute_av - Compute access vector decisions.
1071 * @ssid: source security identifier
1072 * @tsid: target security identifier
1073 * @tclass: target security class
1074 * @avd: access vector decisions
1075 * @xperms: extended permissions
1076 *
1077 * Compute a set of access vector decisions based on the
1078 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1079 */
1080void security_compute_av(u32 ssid,
1081                         u32 tsid,
1082                         u16 orig_tclass,
1083                         struct av_decision *avd,
1084                         struct extended_perms *xperms)
1085{
1086        u16 tclass;
1087        struct context *scontext = NULL, *tcontext = NULL;
1088
1089        read_lock(&policy_rwlock);
1090        avd_init(avd);
1091        xperms->len = 0;
1092        if (!ss_initialized)
1093                goto allow;
1094
1095        scontext = sidtab_search(&sidtab, ssid);
1096        if (!scontext) {
1097                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1098                       __func__, ssid);
1099                goto out;
1100        }
1101
1102        /* permissive domain? */
1103        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1104                avd->flags |= AVD_FLAGS_PERMISSIVE;
1105
1106        tcontext = sidtab_search(&sidtab, tsid);
1107        if (!tcontext) {
1108                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109                       __func__, tsid);
1110                goto out;
1111        }
1112
1113        tclass = unmap_class(orig_tclass);
1114        if (unlikely(orig_tclass && !tclass)) {
1115                if (policydb.allow_unknown)
1116                        goto allow;
1117                goto out;
1118        }
1119        context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1120        map_decision(orig_tclass, avd, policydb.allow_unknown);
1121out:
1122        read_unlock(&policy_rwlock);
1123        return;
1124allow:
1125        avd->allowed = 0xffffffff;
1126        goto out;
1127}
1128
1129void security_compute_av_user(u32 ssid,
1130                              u32 tsid,
1131                              u16 tclass,
1132                              struct av_decision *avd)
1133{
1134        struct context *scontext = NULL, *tcontext = NULL;
1135
1136        read_lock(&policy_rwlock);
1137        avd_init(avd);
1138        if (!ss_initialized)
1139                goto allow;
1140
1141        scontext = sidtab_search(&sidtab, ssid);
1142        if (!scontext) {
1143                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144                       __func__, ssid);
1145                goto out;
1146        }
1147
1148        /* permissive domain? */
1149        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1150                avd->flags |= AVD_FLAGS_PERMISSIVE;
1151
1152        tcontext = sidtab_search(&sidtab, tsid);
1153        if (!tcontext) {
1154                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1155                       __func__, tsid);
1156                goto out;
1157        }
1158
1159        if (unlikely(!tclass)) {
1160                if (policydb.allow_unknown)
1161                        goto allow;
1162                goto out;
1163        }
1164
1165        context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1166 out:
1167        read_unlock(&policy_rwlock);
1168        return;
1169allow:
1170        avd->allowed = 0xffffffff;
1171        goto out;
1172}
1173
1174/*
1175 * Write the security context string representation of
1176 * the context structure `context' into a dynamically
1177 * allocated string of the correct size.  Set `*scontext'
1178 * to point to this string and set `*scontext_len' to
1179 * the length of the string.
1180 */
1181static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1182{
1183        char *scontextp;
1184
1185        if (scontext)
1186                *scontext = NULL;
1187        *scontext_len = 0;
1188
1189        if (context->len) {
1190                *scontext_len = context->len;
1191                if (scontext) {
1192                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1193                        if (!(*scontext))
1194                                return -ENOMEM;
1195                }
1196                return 0;
1197        }
1198
1199        /* Compute the size of the context. */
1200        *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1201        *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1202        *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1203        *scontext_len += mls_compute_context_len(context);
1204
1205        if (!scontext)
1206                return 0;
1207
1208        /* Allocate space for the context; caller must free this space. */
1209        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1210        if (!scontextp)
1211                return -ENOMEM;
1212        *scontext = scontextp;
1213
1214        /*
1215         * Copy the user name, role name and type name into the context.
1216         */
1217        scontextp += sprintf(scontextp, "%s:%s:%s",
1218                sym_name(&policydb, SYM_USERS, context->user - 1),
1219                sym_name(&policydb, SYM_ROLES, context->role - 1),
1220                sym_name(&policydb, SYM_TYPES, context->type - 1));
1221
1222        mls_sid_to_context(context, &scontextp);
1223
1224        *scontextp = 0;
1225
1226        return 0;
1227}
1228
1229#include "initial_sid_to_string.h"
1230
1231const char *security_get_initial_sid_context(u32 sid)
1232{
1233        if (unlikely(sid > SECINITSID_NUM))
1234                return NULL;
1235        return initial_sid_to_string[sid];
1236}
1237
1238static int security_sid_to_context_core(u32 sid, char **scontext,
1239                                        u32 *scontext_len, int force)
1240{
1241        struct context *context;
1242        int rc = 0;
1243
1244        if (scontext)
1245                *scontext = NULL;
1246        *scontext_len  = 0;
1247
1248        if (!ss_initialized) {
1249                if (sid <= SECINITSID_NUM) {
1250                        char *scontextp;
1251
1252                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1253                        if (!scontext)
1254                                goto out;
1255                        scontextp = kmemdup(initial_sid_to_string[sid],
1256                                            *scontext_len, GFP_ATOMIC);
1257                        if (!scontextp) {
1258                                rc = -ENOMEM;
1259                                goto out;
1260                        }
1261                        *scontext = scontextp;
1262                        goto out;
1263                }
1264                printk(KERN_ERR "SELinux: %s:  called before initial "
1265                       "load_policy on unknown SID %d\n", __func__, sid);
1266                rc = -EINVAL;
1267                goto out;
1268        }
1269        read_lock(&policy_rwlock);
1270        if (force)
1271                context = sidtab_search_force(&sidtab, sid);
1272        else
1273                context = sidtab_search(&sidtab, sid);
1274        if (!context) {
1275                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1276                        __func__, sid);
1277                rc = -EINVAL;
1278                goto out_unlock;
1279        }
1280        rc = context_struct_to_string(context, scontext, scontext_len);
1281out_unlock:
1282        read_unlock(&policy_rwlock);
1283out:
1284        return rc;
1285
1286}
1287
1288/**
1289 * security_sid_to_context - Obtain a context for a given SID.
1290 * @sid: security identifier, SID
1291 * @scontext: security context
1292 * @scontext_len: length in bytes
1293 *
1294 * Write the string representation of the context associated with @sid
1295 * into a dynamically allocated string of the correct size.  Set @scontext
1296 * to point to this string and set @scontext_len to the length of the string.
1297 */
1298int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1299{
1300        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1301}
1302
1303int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1304{
1305        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1306}
1307
1308/*
1309 * Caveat:  Mutates scontext.
1310 */
1311static int string_to_context_struct(struct policydb *pol,
1312                                    struct sidtab *sidtabp,
1313                                    char *scontext,
1314                                    u32 scontext_len,
1315                                    struct context *ctx,
1316                                    u32 def_sid)
1317{
1318        struct role_datum *role;
1319        struct type_datum *typdatum;
1320        struct user_datum *usrdatum;
1321        char *scontextp, *p, oldc;
1322        int rc = 0;
1323
1324        context_init(ctx);
1325
1326        /* Parse the security context. */
1327
1328        rc = -EINVAL;
1329        scontextp = (char *) scontext;
1330
1331        /* Extract the user. */
1332        p = scontextp;
1333        while (*p && *p != ':')
1334                p++;
1335
1336        if (*p == 0)
1337                goto out;
1338
1339        *p++ = 0;
1340
1341        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1342        if (!usrdatum)
1343                goto out;
1344
1345        ctx->user = usrdatum->value;
1346
1347        /* Extract role. */
1348        scontextp = p;
1349        while (*p && *p != ':')
1350                p++;
1351
1352        if (*p == 0)
1353                goto out;
1354
1355        *p++ = 0;
1356
1357        role = hashtab_search(pol->p_roles.table, scontextp);
1358        if (!role)
1359                goto out;
1360        ctx->role = role->value;
1361
1362        /* Extract type. */
1363        scontextp = p;
1364        while (*p && *p != ':')
1365                p++;
1366        oldc = *p;
1367        *p++ = 0;
1368
1369        typdatum = hashtab_search(pol->p_types.table, scontextp);
1370        if (!typdatum || typdatum->attribute)
1371                goto out;
1372
1373        ctx->type = typdatum->value;
1374
1375        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1376        if (rc)
1377                goto out;
1378
1379        rc = -EINVAL;
1380        if ((p - scontext) < scontext_len)
1381                goto out;
1382
1383        /* Check the validity of the new context. */
1384        if (!policydb_context_isvalid(pol, ctx))
1385                goto out;
1386        rc = 0;
1387out:
1388        if (rc)
1389                context_destroy(ctx);
1390        return rc;
1391}
1392
1393static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1394                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1395                                        int force)
1396{
1397        char *scontext2, *str = NULL;
1398        struct context context;
1399        int rc = 0;
1400
1401        /* An empty security context is never valid. */
1402        if (!scontext_len)
1403                return -EINVAL;
1404
1405        if (!ss_initialized) {
1406                int i;
1407
1408                for (i = 1; i < SECINITSID_NUM; i++) {
1409                        if (!strcmp(initial_sid_to_string[i], scontext)) {
1410                                *sid = i;
1411                                return 0;
1412                        }
1413                }
1414                *sid = SECINITSID_KERNEL;
1415                return 0;
1416        }
1417        *sid = SECSID_NULL;
1418
1419        /* Copy the string so that we can modify the copy as we parse it. */
1420        scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1421        if (!scontext2)
1422                return -ENOMEM;
1423        memcpy(scontext2, scontext, scontext_len);
1424        scontext2[scontext_len] = 0;
1425
1426        if (force) {
1427                /* Save another copy for storing in uninterpreted form */
1428                rc = -ENOMEM;
1429                str = kstrdup(scontext2, gfp_flags);
1430                if (!str)
1431                        goto out;
1432        }
1433
1434        read_lock(&policy_rwlock);
1435        rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1436                                      scontext_len, &context, def_sid);
1437        if (rc == -EINVAL && force) {
1438                context.str = str;
1439                context.len = scontext_len;
1440                str = NULL;
1441        } else if (rc)
1442                goto out_unlock;
1443        rc = sidtab_context_to_sid(&sidtab, &context, sid);
1444        context_destroy(&context);
1445out_unlock:
1446        read_unlock(&policy_rwlock);
1447out:
1448        kfree(scontext2);
1449        kfree(str);
1450        return rc;
1451}
1452
1453/**
1454 * security_context_to_sid - Obtain a SID for a given security context.
1455 * @scontext: security context
1456 * @scontext_len: length in bytes
1457 * @sid: security identifier, SID
1458 * @gfp: context for the allocation
1459 *
1460 * Obtains a SID associated with the security context that
1461 * has the string representation specified by @scontext.
1462 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1463 * memory is available, or 0 on success.
1464 */
1465int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1466                            gfp_t gfp)
1467{
1468        return security_context_to_sid_core(scontext, scontext_len,
1469                                            sid, SECSID_NULL, gfp, 0);
1470}
1471
1472int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1473{
1474        return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1475}
1476
1477/**
1478 * security_context_to_sid_default - Obtain a SID for a given security context,
1479 * falling back to specified default if needed.
1480 *
1481 * @scontext: security context
1482 * @scontext_len: length in bytes
1483 * @sid: security identifier, SID
1484 * @def_sid: default SID to assign on error
1485 *
1486 * Obtains a SID associated with the security context that
1487 * has the string representation specified by @scontext.
1488 * The default SID is passed to the MLS layer to be used to allow
1489 * kernel labeling of the MLS field if the MLS field is not present
1490 * (for upgrading to MLS without full relabel).
1491 * Implicitly forces adding of the context even if it cannot be mapped yet.
1492 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1493 * memory is available, or 0 on success.
1494 */
1495int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1496                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1497{
1498        return security_context_to_sid_core(scontext, scontext_len,
1499                                            sid, def_sid, gfp_flags, 1);
1500}
1501
1502int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1503                                  u32 *sid)
1504{
1505        return security_context_to_sid_core(scontext, scontext_len,
1506                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1507}
1508
1509static int compute_sid_handle_invalid_context(
1510        struct context *scontext,
1511        struct context *tcontext,
1512        u16 tclass,
1513        struct context *newcontext)
1514{
1515        char *s = NULL, *t = NULL, *n = NULL;
1516        u32 slen, tlen, nlen;
1517
1518        if (context_struct_to_string(scontext, &s, &slen))
1519                goto out;
1520        if (context_struct_to_string(tcontext, &t, &tlen))
1521                goto out;
1522        if (context_struct_to_string(newcontext, &n, &nlen))
1523                goto out;
1524        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1525                  "op=security_compute_sid invalid_context=%s"
1526                  " scontext=%s"
1527                  " tcontext=%s"
1528                  " tclass=%s",
1529                  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1530out:
1531        kfree(s);
1532        kfree(t);
1533        kfree(n);
1534        if (!selinux_enforcing)
1535                return 0;
1536        return -EACCES;
1537}
1538
1539static void filename_compute_type(struct policydb *p, struct context *newcontext,
1540                                  u32 stype, u32 ttype, u16 tclass,
1541                                  const char *objname)
1542{
1543        struct filename_trans ft;
1544        struct filename_trans_datum *otype;
1545
1546        /*
1547         * Most filename trans rules are going to live in specific directories
1548         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1549         * if the ttype does not contain any rules.
1550         */
1551        if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1552                return;
1553
1554        ft.stype = stype;
1555        ft.ttype = ttype;
1556        ft.tclass = tclass;
1557        ft.name = objname;
1558
1559        otype = hashtab_search(p->filename_trans, &ft);
1560        if (otype)
1561                newcontext->type = otype->otype;
1562}
1563
1564static int security_compute_sid(u32 ssid,
1565                                u32 tsid,
1566                                u16 orig_tclass,
1567                                u32 specified,
1568                                const char *objname,
1569                                u32 *out_sid,
1570                                bool kern)
1571{
1572        struct class_datum *cladatum = NULL;
1573        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1574        struct role_trans *roletr = NULL;
1575        struct avtab_key avkey;
1576        struct avtab_datum *avdatum;
1577        struct avtab_node *node;
1578        u16 tclass;
1579        int rc = 0;
1580        bool sock;
1581
1582        if (!ss_initialized) {
1583                switch (orig_tclass) {
1584                case SECCLASS_PROCESS: /* kernel value */
1585                        *out_sid = ssid;
1586                        break;
1587                default:
1588                        *out_sid = tsid;
1589                        break;
1590                }
1591                goto out;
1592        }
1593
1594        context_init(&newcontext);
1595
1596        read_lock(&policy_rwlock);
1597
1598        if (kern) {
1599                tclass = unmap_class(orig_tclass);
1600                sock = security_is_socket_class(orig_tclass);
1601        } else {
1602                tclass = orig_tclass;
1603                sock = security_is_socket_class(map_class(tclass));
1604        }
1605
1606        scontext = sidtab_search(&sidtab, ssid);
1607        if (!scontext) {
1608                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1609                       __func__, ssid);
1610                rc = -EINVAL;
1611                goto out_unlock;
1612        }
1613        tcontext = sidtab_search(&sidtab, tsid);
1614        if (!tcontext) {
1615                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1616                       __func__, tsid);
1617                rc = -EINVAL;
1618                goto out_unlock;
1619        }
1620
1621        if (tclass && tclass <= policydb.p_classes.nprim)
1622                cladatum = policydb.class_val_to_struct[tclass - 1];
1623
1624        /* Set the user identity. */
1625        switch (specified) {
1626        case AVTAB_TRANSITION:
1627        case AVTAB_CHANGE:
1628                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1629                        newcontext.user = tcontext->user;
1630                } else {
1631                        /* notice this gets both DEFAULT_SOURCE and unset */
1632                        /* Use the process user identity. */
1633                        newcontext.user = scontext->user;
1634                }
1635                break;
1636        case AVTAB_MEMBER:
1637                /* Use the related object owner. */
1638                newcontext.user = tcontext->user;
1639                break;
1640        }
1641
1642        /* Set the role to default values. */
1643        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1644                newcontext.role = scontext->role;
1645        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1646                newcontext.role = tcontext->role;
1647        } else {
1648                if ((tclass == policydb.process_class) || (sock == true))
1649                        newcontext.role = scontext->role;
1650                else
1651                        newcontext.role = OBJECT_R_VAL;
1652        }
1653
1654        /* Set the type to default values. */
1655        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1656                newcontext.type = scontext->type;
1657        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1658                newcontext.type = tcontext->type;
1659        } else {
1660                if ((tclass == policydb.process_class) || (sock == true)) {
1661                        /* Use the type of process. */
1662                        newcontext.type = scontext->type;
1663                } else {
1664                        /* Use the type of the related object. */
1665                        newcontext.type = tcontext->type;
1666                }
1667        }
1668
1669        /* Look for a type transition/member/change rule. */
1670        avkey.source_type = scontext->type;
1671        avkey.target_type = tcontext->type;
1672        avkey.target_class = tclass;
1673        avkey.specified = specified;
1674        avdatum = avtab_search(&policydb.te_avtab, &avkey);
1675
1676        /* If no permanent rule, also check for enabled conditional rules */
1677        if (!avdatum) {
1678                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1679                for (; node; node = avtab_search_node_next(node, specified)) {
1680                        if (node->key.specified & AVTAB_ENABLED) {
1681                                avdatum = &node->datum;
1682                                break;
1683                        }
1684                }
1685        }
1686
1687        if (avdatum) {
1688                /* Use the type from the type transition/member/change rule. */
1689                newcontext.type = avdatum->u.data;
1690        }
1691
1692        /* if we have a objname this is a file trans check so check those rules */
1693        if (objname)
1694                filename_compute_type(&policydb, &newcontext, scontext->type,
1695                                      tcontext->type, tclass, objname);
1696
1697        /* Check for class-specific changes. */
1698        if (specified & AVTAB_TRANSITION) {
1699                /* Look for a role transition rule. */
1700                for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1701                        if ((roletr->role == scontext->role) &&
1702                            (roletr->type == tcontext->type) &&
1703                            (roletr->tclass == tclass)) {
1704                                /* Use the role transition rule. */
1705                                newcontext.role = roletr->new_role;
1706                                break;
1707                        }
1708                }
1709        }
1710
1711        /* Set the MLS attributes.
1712           This is done last because it may allocate memory. */
1713        rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1714                             &newcontext, sock);
1715        if (rc)
1716                goto out_unlock;
1717
1718        /* Check the validity of the context. */
1719        if (!policydb_context_isvalid(&policydb, &newcontext)) {
1720                rc = compute_sid_handle_invalid_context(scontext,
1721                                                        tcontext,
1722                                                        tclass,
1723                                                        &newcontext);
1724                if (rc)
1725                        goto out_unlock;
1726        }
1727        /* Obtain the sid for the context. */
1728        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1729out_unlock:
1730        read_unlock(&policy_rwlock);
1731        context_destroy(&newcontext);
1732out:
1733        return rc;
1734}
1735
1736/**
1737 * security_transition_sid - Compute the SID for a new subject/object.
1738 * @ssid: source security identifier
1739 * @tsid: target security identifier
1740 * @tclass: target security class
1741 * @out_sid: security identifier for new subject/object
1742 *
1743 * Compute a SID to use for labeling a new subject or object in the
1744 * class @tclass based on a SID pair (@ssid, @tsid).
1745 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1746 * if insufficient memory is available, or %0 if the new SID was
1747 * computed successfully.
1748 */
1749int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1750                            const struct qstr *qstr, u32 *out_sid)
1751{
1752        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1753                                    qstr ? qstr->name : NULL, out_sid, true);
1754}
1755
1756int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1757                                 const char *objname, u32 *out_sid)
1758{
1759        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1760                                    objname, out_sid, false);
1761}
1762
1763/**
1764 * security_member_sid - Compute the SID for member selection.
1765 * @ssid: source security identifier
1766 * @tsid: target security identifier
1767 * @tclass: target security class
1768 * @out_sid: security identifier for selected member
1769 *
1770 * Compute a SID to use when selecting a member of a polyinstantiated
1771 * object of class @tclass based on a SID pair (@ssid, @tsid).
1772 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1773 * if insufficient memory is available, or %0 if the SID was
1774 * computed successfully.
1775 */
1776int security_member_sid(u32 ssid,
1777                        u32 tsid,
1778                        u16 tclass,
1779                        u32 *out_sid)
1780{
1781        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1782                                    out_sid, false);
1783}
1784
1785/**
1786 * security_change_sid - Compute the SID for object relabeling.
1787 * @ssid: source security identifier
1788 * @tsid: target security identifier
1789 * @tclass: target security class
1790 * @out_sid: security identifier for selected member
1791 *
1792 * Compute a SID to use for relabeling an object of class @tclass
1793 * based on a SID pair (@ssid, @tsid).
1794 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1795 * if insufficient memory is available, or %0 if the SID was
1796 * computed successfully.
1797 */
1798int security_change_sid(u32 ssid,
1799                        u32 tsid,
1800                        u16 tclass,
1801                        u32 *out_sid)
1802{
1803        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1804                                    out_sid, false);
1805}
1806
1807/* Clone the SID into the new SID table. */
1808static int clone_sid(u32 sid,
1809                     struct context *context,
1810                     void *arg)
1811{
1812        struct sidtab *s = arg;
1813
1814        if (sid > SECINITSID_NUM)
1815                return sidtab_insert(s, sid, context);
1816        else
1817                return 0;
1818}
1819
1820static inline int convert_context_handle_invalid_context(struct context *context)
1821{
1822        char *s;
1823        u32 len;
1824
1825        if (selinux_enforcing)
1826                return -EINVAL;
1827
1828        if (!context_struct_to_string(context, &s, &len)) {
1829                printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1830                kfree(s);
1831        }
1832        return 0;
1833}
1834
1835struct convert_context_args {
1836        struct policydb *oldp;
1837        struct policydb *newp;
1838};
1839
1840/*
1841 * Convert the values in the security context
1842 * structure `c' from the values specified
1843 * in the policy `p->oldp' to the values specified
1844 * in the policy `p->newp'.  Verify that the
1845 * context is valid under the new policy.
1846 */
1847static int convert_context(u32 key,
1848                           struct context *c,
1849                           void *p)
1850{
1851        struct convert_context_args *args;
1852        struct context oldc;
1853        struct ocontext *oc;
1854        struct mls_range *range;
1855        struct role_datum *role;
1856        struct type_datum *typdatum;
1857        struct user_datum *usrdatum;
1858        char *s;
1859        u32 len;
1860        int rc = 0;
1861
1862        if (key <= SECINITSID_NUM)
1863                goto out;
1864
1865        args = p;
1866
1867        if (c->str) {
1868                struct context ctx;
1869
1870                rc = -ENOMEM;
1871                s = kstrdup(c->str, GFP_KERNEL);
1872                if (!s)
1873                        goto out;
1874
1875                rc = string_to_context_struct(args->newp, NULL, s,
1876                                              c->len, &ctx, SECSID_NULL);
1877                kfree(s);
1878                if (!rc) {
1879                        printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1880                               c->str);
1881                        /* Replace string with mapped representation. */
1882                        kfree(c->str);
1883                        memcpy(c, &ctx, sizeof(*c));
1884                        goto out;
1885                } else if (rc == -EINVAL) {
1886                        /* Retain string representation for later mapping. */
1887                        rc = 0;
1888                        goto out;
1889                } else {
1890                        /* Other error condition, e.g. ENOMEM. */
1891                        printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1892                               c->str, -rc);
1893                        goto out;
1894                }
1895        }
1896
1897        rc = context_cpy(&oldc, c);
1898        if (rc)
1899                goto out;
1900
1901        /* Convert the user. */
1902        rc = -EINVAL;
1903        usrdatum = hashtab_search(args->newp->p_users.table,
1904                                  sym_name(args->oldp, SYM_USERS, c->user - 1));
1905        if (!usrdatum)
1906                goto bad;
1907        c->user = usrdatum->value;
1908
1909        /* Convert the role. */
1910        rc = -EINVAL;
1911        role = hashtab_search(args->newp->p_roles.table,
1912                              sym_name(args->oldp, SYM_ROLES, c->role - 1));
1913        if (!role)
1914                goto bad;
1915        c->role = role->value;
1916
1917        /* Convert the type. */
1918        rc = -EINVAL;
1919        typdatum = hashtab_search(args->newp->p_types.table,
1920                                  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1921        if (!typdatum)
1922                goto bad;
1923        c->type = typdatum->value;
1924
1925        /* Convert the MLS fields if dealing with MLS policies */
1926        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1927                rc = mls_convert_context(args->oldp, args->newp, c);
1928                if (rc)
1929                        goto bad;
1930        } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1931                /*
1932                 * Switching between MLS and non-MLS policy:
1933                 * free any storage used by the MLS fields in the
1934                 * context for all existing entries in the sidtab.
1935                 */
1936                mls_context_destroy(c);
1937        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1938                /*
1939                 * Switching between non-MLS and MLS policy:
1940                 * ensure that the MLS fields of the context for all
1941                 * existing entries in the sidtab are filled in with a
1942                 * suitable default value, likely taken from one of the
1943                 * initial SIDs.
1944                 */
1945                oc = args->newp->ocontexts[OCON_ISID];
1946                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1947                        oc = oc->next;
1948                rc = -EINVAL;
1949                if (!oc) {
1950                        printk(KERN_ERR "SELinux:  unable to look up"
1951                                " the initial SIDs list\n");
1952                        goto bad;
1953                }
1954                range = &oc->context[0].range;
1955                rc = mls_range_set(c, range);
1956                if (rc)
1957                        goto bad;
1958        }
1959
1960        /* Check the validity of the new context. */
1961        if (!policydb_context_isvalid(args->newp, c)) {
1962                rc = convert_context_handle_invalid_context(&oldc);
1963                if (rc)
1964                        goto bad;
1965        }
1966
1967        context_destroy(&oldc);
1968
1969        rc = 0;
1970out:
1971        return rc;
1972bad:
1973        /* Map old representation to string and save it. */
1974        rc = context_struct_to_string(&oldc, &s, &len);
1975        if (rc)
1976                return rc;
1977        context_destroy(&oldc);
1978        context_destroy(c);
1979        c->str = s;
1980        c->len = len;
1981        printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1982               c->str);
1983        rc = 0;
1984        goto out;
1985}
1986
1987static void security_load_policycaps(void)
1988{
1989        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1990                                                  POLICYDB_CAPABILITY_NETPEER);
1991        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1992                                                  POLICYDB_CAPABILITY_OPENPERM);
1993        selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps,
1994                                          POLICYDB_CAPABILITY_EXTSOCKCLASS);
1995        selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1996                                                  POLICYDB_CAPABILITY_ALWAYSNETWORK);
1997        selinux_policycap_cgroupseclabel =
1998                ebitmap_get_bit(&policydb.policycaps,
1999                                POLICYDB_CAPABILITY_CGROUPSECLABEL);
2000}
2001
2002static int security_preserve_bools(struct policydb *p);
2003
2004/**
2005 * security_load_policy - Load a security policy configuration.
2006 * @data: binary policy data
2007 * @len: length of data in bytes
2008 *
2009 * Load a new set of security policy configuration data,
2010 * validate it and convert the SID table as necessary.
2011 * This function will flush the access vector cache after
2012 * loading the new policy.
2013 */
2014int security_load_policy(void *data, size_t len)
2015{
2016        struct policydb *oldpolicydb, *newpolicydb;
2017        struct sidtab oldsidtab, newsidtab;
2018        struct selinux_mapping *oldmap, *map = NULL;
2019        struct convert_context_args args;
2020        u32 seqno;
2021        u16 map_size;
2022        int rc = 0;
2023        struct policy_file file = { data, len }, *fp = &file;
2024
2025        oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2026        if (!oldpolicydb) {
2027                rc = -ENOMEM;
2028                goto out;
2029        }
2030        newpolicydb = oldpolicydb + 1;
2031
2032        if (!ss_initialized) {
2033                avtab_cache_init();
2034                rc = policydb_read(&policydb, fp);
2035                if (rc) {
2036                        avtab_cache_destroy();
2037                        goto out;
2038                }
2039
2040                policydb.len = len;
2041                rc = selinux_set_mapping(&policydb, secclass_map,
2042                                         &current_mapping,
2043                                         &current_mapping_size);
2044                if (rc) {
2045                        policydb_destroy(&policydb);
2046                        avtab_cache_destroy();
2047                        goto out;
2048                }
2049
2050                rc = policydb_load_isids(&policydb, &sidtab);
2051                if (rc) {
2052                        policydb_destroy(&policydb);
2053                        avtab_cache_destroy();
2054                        goto out;
2055                }
2056
2057                security_load_policycaps();
2058                ss_initialized = 1;
2059                seqno = ++latest_granting;
2060                selinux_complete_init();
2061                avc_ss_reset(seqno);
2062                selnl_notify_policyload(seqno);
2063                selinux_status_update_policyload(seqno);
2064                selinux_netlbl_cache_invalidate();
2065                selinux_xfrm_notify_policyload();
2066                goto out;
2067        }
2068
2069#if 0
2070        sidtab_hash_eval(&sidtab, "sids");
2071#endif
2072
2073        rc = policydb_read(newpolicydb, fp);
2074        if (rc)
2075                goto out;
2076
2077        newpolicydb->len = len;
2078        /* If switching between different policy types, log MLS status */
2079        if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2080                printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2081        else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2082                printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2083
2084        rc = policydb_load_isids(newpolicydb, &newsidtab);
2085        if (rc) {
2086                printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2087                policydb_destroy(newpolicydb);
2088                goto out;
2089        }
2090
2091        rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2092        if (rc)
2093                goto err;
2094
2095        rc = security_preserve_bools(newpolicydb);
2096        if (rc) {
2097                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2098                goto err;
2099        }
2100
2101        /* Clone the SID table. */
2102        sidtab_shutdown(&sidtab);
2103
2104        rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2105        if (rc)
2106                goto err;
2107
2108        /*
2109         * Convert the internal representations of contexts
2110         * in the new SID table.
2111         */
2112        args.oldp = &policydb;
2113        args.newp = newpolicydb;
2114        rc = sidtab_map(&newsidtab, convert_context, &args);
2115        if (rc) {
2116                printk(KERN_ERR "SELinux:  unable to convert the internal"
2117                        " representation of contexts in the new SID"
2118                        " table\n");
2119                goto err;
2120        }
2121
2122        /* Save the old policydb and SID table to free later. */
2123        memcpy(oldpolicydb, &policydb, sizeof(policydb));
2124        sidtab_set(&oldsidtab, &sidtab);
2125
2126        /* Install the new policydb and SID table. */
2127        write_lock_irq(&policy_rwlock);
2128        memcpy(&policydb, newpolicydb, sizeof(policydb));
2129        sidtab_set(&sidtab, &newsidtab);
2130        security_load_policycaps();
2131        oldmap = current_mapping;
2132        current_mapping = map;
2133        current_mapping_size = map_size;
2134        seqno = ++latest_granting;
2135        write_unlock_irq(&policy_rwlock);
2136
2137        /* Free the old policydb and SID table. */
2138        policydb_destroy(oldpolicydb);
2139        sidtab_destroy(&oldsidtab);
2140        kfree(oldmap);
2141
2142        avc_ss_reset(seqno);
2143        selnl_notify_policyload(seqno);
2144        selinux_status_update_policyload(seqno);
2145        selinux_netlbl_cache_invalidate();
2146        selinux_xfrm_notify_policyload();
2147
2148        rc = 0;
2149        goto out;
2150
2151err:
2152        kfree(map);
2153        sidtab_destroy(&newsidtab);
2154        policydb_destroy(newpolicydb);
2155
2156out:
2157        kfree(oldpolicydb);
2158        return rc;
2159}
2160
2161size_t security_policydb_len(void)
2162{
2163        size_t len;
2164
2165        read_lock(&policy_rwlock);
2166        len = policydb.len;
2167        read_unlock(&policy_rwlock);
2168
2169        return len;
2170}
2171
2172/**
2173 * security_port_sid - Obtain the SID for a port.
2174 * @protocol: protocol number
2175 * @port: port number
2176 * @out_sid: security identifier
2177 */
2178int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2179{
2180        struct ocontext *c;
2181        int rc = 0;
2182
2183        read_lock(&policy_rwlock);
2184
2185        c = policydb.ocontexts[OCON_PORT];
2186        while (c) {
2187                if (c->u.port.protocol == protocol &&
2188                    c->u.port.low_port <= port &&
2189                    c->u.port.high_port >= port)
2190                        break;
2191                c = c->next;
2192        }
2193
2194        if (c) {
2195                if (!c->sid[0]) {
2196                        rc = sidtab_context_to_sid(&sidtab,
2197                                                   &c->context[0],
2198                                                   &c->sid[0]);
2199                        if (rc)
2200                                goto out;
2201                }
2202                *out_sid = c->sid[0];
2203        } else {
2204                *out_sid = SECINITSID_PORT;
2205        }
2206
2207out:
2208        read_unlock(&policy_rwlock);
2209        return rc;
2210}
2211
2212/**
2213 * security_netif_sid - Obtain the SID for a network interface.
2214 * @name: interface name
2215 * @if_sid: interface SID
2216 */
2217int security_netif_sid(char *name, u32 *if_sid)
2218{
2219        int rc = 0;
2220        struct ocontext *c;
2221
2222        read_lock(&policy_rwlock);
2223
2224        c = policydb.ocontexts[OCON_NETIF];
2225        while (c) {
2226                if (strcmp(name, c->u.name) == 0)
2227                        break;
2228                c = c->next;
2229        }
2230
2231        if (c) {
2232                if (!c->sid[0] || !c->sid[1]) {
2233                        rc = sidtab_context_to_sid(&sidtab,
2234                                                  &c->context[0],
2235                                                  &c->sid[0]);
2236                        if (rc)
2237                                goto out;
2238                        rc = sidtab_context_to_sid(&sidtab,
2239                                                   &c->context[1],
2240                                                   &c->sid[1]);
2241                        if (rc)
2242                                goto out;
2243                }
2244                *if_sid = c->sid[0];
2245        } else
2246                *if_sid = SECINITSID_NETIF;
2247
2248out:
2249        read_unlock(&policy_rwlock);
2250        return rc;
2251}
2252
2253static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2254{
2255        int i, fail = 0;
2256
2257        for (i = 0; i < 4; i++)
2258                if (addr[i] != (input[i] & mask[i])) {
2259                        fail = 1;
2260                        break;
2261                }
2262
2263        return !fail;
2264}
2265
2266/**
2267 * security_node_sid - Obtain the SID for a node (host).
2268 * @domain: communication domain aka address family
2269 * @addrp: address
2270 * @addrlen: address length in bytes
2271 * @out_sid: security identifier
2272 */
2273int security_node_sid(u16 domain,
2274                      void *addrp,
2275                      u32 addrlen,
2276                      u32 *out_sid)
2277{
2278        int rc;
2279        struct ocontext *c;
2280
2281        read_lock(&policy_rwlock);
2282
2283        switch (domain) {
2284        case AF_INET: {
2285                u32 addr;
2286
2287                rc = -EINVAL;
2288                if (addrlen != sizeof(u32))
2289                        goto out;
2290
2291                addr = *((u32 *)addrp);
2292
2293                c = policydb.ocontexts[OCON_NODE];
2294                while (c) {
2295                        if (c->u.node.addr == (addr & c->u.node.mask))
2296                                break;
2297                        c = c->next;
2298                }
2299                break;
2300        }
2301
2302        case AF_INET6:
2303                rc = -EINVAL;
2304                if (addrlen != sizeof(u64) * 2)
2305                        goto out;
2306                c = policydb.ocontexts[OCON_NODE6];
2307                while (c) {
2308                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2309                                                c->u.node6.mask))
2310                                break;
2311                        c = c->next;
2312                }
2313                break;
2314
2315        default:
2316                rc = 0;
2317                *out_sid = SECINITSID_NODE;
2318                goto out;
2319        }
2320
2321        if (c) {
2322                if (!c->sid[0]) {
2323                        rc = sidtab_context_to_sid(&sidtab,
2324                                                   &c->context[0],
2325                                                   &c->sid[0]);
2326                        if (rc)
2327                                goto out;
2328                }
2329                *out_sid = c->sid[0];
2330        } else {
2331                *out_sid = SECINITSID_NODE;
2332        }
2333
2334        rc = 0;
2335out:
2336        read_unlock(&policy_rwlock);
2337        return rc;
2338}
2339
2340#define SIDS_NEL 25
2341
2342/**
2343 * security_get_user_sids - Obtain reachable SIDs for a user.
2344 * @fromsid: starting SID
2345 * @username: username
2346 * @sids: array of reachable SIDs for user
2347 * @nel: number of elements in @sids
2348 *
2349 * Generate the set of SIDs for legal security contexts
2350 * for a given user that can be reached by @fromsid.
2351 * Set *@sids to point to a dynamically allocated
2352 * array containing the set of SIDs.  Set *@nel to the
2353 * number of elements in the array.
2354 */
2355
2356int security_get_user_sids(u32 fromsid,
2357                           char *username,
2358                           u32 **sids,
2359                           u32 *nel)
2360{
2361        struct context *fromcon, usercon;
2362        u32 *mysids = NULL, *mysids2, sid;
2363        u32 mynel = 0, maxnel = SIDS_NEL;
2364        struct user_datum *user;
2365        struct role_datum *role;
2366        struct ebitmap_node *rnode, *tnode;
2367        int rc = 0, i, j;
2368
2369        *sids = NULL;
2370        *nel = 0;
2371
2372        if (!ss_initialized)
2373                goto out;
2374
2375        read_lock(&policy_rwlock);
2376
2377        context_init(&usercon);
2378
2379        rc = -EINVAL;
2380        fromcon = sidtab_search(&sidtab, fromsid);
2381        if (!fromcon)
2382                goto out_unlock;
2383
2384        rc = -EINVAL;
2385        user = hashtab_search(policydb.p_users.table, username);
2386        if (!user)
2387                goto out_unlock;
2388
2389        usercon.user = user->value;
2390
2391        rc = -ENOMEM;
2392        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2393        if (!mysids)
2394                goto out_unlock;
2395
2396        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2397                role = policydb.role_val_to_struct[i];
2398                usercon.role = i + 1;
2399                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2400                        usercon.type = j + 1;
2401
2402                        if (mls_setup_user_range(fromcon, user, &usercon))
2403                                continue;
2404
2405                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2406                        if (rc)
2407                                goto out_unlock;
2408                        if (mynel < maxnel) {
2409                                mysids[mynel++] = sid;
2410                        } else {
2411                                rc = -ENOMEM;
2412                                maxnel += SIDS_NEL;
2413                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2414                                if (!mysids2)
2415                                        goto out_unlock;
2416                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2417                                kfree(mysids);
2418                                mysids = mysids2;
2419                                mysids[mynel++] = sid;
2420                        }
2421                }
2422        }
2423        rc = 0;
2424out_unlock:
2425        read_unlock(&policy_rwlock);
2426        if (rc || !mynel) {
2427                kfree(mysids);
2428                goto out;
2429        }
2430
2431        rc = -ENOMEM;
2432        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2433        if (!mysids2) {
2434                kfree(mysids);
2435                goto out;
2436        }
2437        for (i = 0, j = 0; i < mynel; i++) {
2438                struct av_decision dummy_avd;
2439                rc = avc_has_perm_noaudit(fromsid, mysids[i],
2440                                          SECCLASS_PROCESS, /* kernel value */
2441                                          PROCESS__TRANSITION, AVC_STRICT,
2442                                          &dummy_avd);
2443                if (!rc)
2444                        mysids2[j++] = mysids[i];
2445                cond_resched();
2446        }
2447        rc = 0;
2448        kfree(mysids);
2449        *sids = mysids2;
2450        *nel = j;
2451out:
2452        return rc;
2453}
2454
2455/**
2456 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2457 * @fstype: filesystem type
2458 * @path: path from root of mount
2459 * @sclass: file security class
2460 * @sid: SID for path
2461 *
2462 * Obtain a SID to use for a file in a filesystem that
2463 * cannot support xattr or use a fixed labeling behavior like
2464 * transition SIDs or task SIDs.
2465 *
2466 * The caller must acquire the policy_rwlock before calling this function.
2467 */
2468static inline int __security_genfs_sid(const char *fstype,
2469                                       char *path,
2470                                       u16 orig_sclass,
2471                                       u32 *sid)
2472{
2473        int len;
2474        u16 sclass;
2475        struct genfs *genfs;
2476        struct ocontext *c;
2477        int rc, cmp = 0;
2478
2479        while (path[0] == '/' && path[1] == '/')
2480                path++;
2481
2482        sclass = unmap_class(orig_sclass);
2483        *sid = SECINITSID_UNLABELED;
2484
2485        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2486                cmp = strcmp(fstype, genfs->fstype);
2487                if (cmp <= 0)
2488                        break;
2489        }
2490
2491        rc = -ENOENT;
2492        if (!genfs || cmp)
2493                goto out;
2494
2495        for (c = genfs->head; c; c = c->next) {
2496                len = strlen(c->u.name);
2497                if ((!c->v.sclass || sclass == c->v.sclass) &&
2498                    (strncmp(c->u.name, path, len) == 0))
2499                        break;
2500        }
2501
2502        rc = -ENOENT;
2503        if (!c)
2504                goto out;
2505
2506        if (!c->sid[0]) {
2507                rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2508                if (rc)
2509                        goto out;
2510        }
2511
2512        *sid = c->sid[0];
2513        rc = 0;
2514out:
2515        return rc;
2516}
2517
2518/**
2519 * security_genfs_sid - Obtain a SID for a file in a filesystem
2520 * @fstype: filesystem type
2521 * @path: path from root of mount
2522 * @sclass: file security class
2523 * @sid: SID for path
2524 *
2525 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2526 * it afterward.
2527 */
2528int security_genfs_sid(const char *fstype,
2529                       char *path,
2530                       u16 orig_sclass,
2531                       u32 *sid)
2532{
2533        int retval;
2534
2535        read_lock(&policy_rwlock);
2536        retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2537        read_unlock(&policy_rwlock);
2538        return retval;
2539}
2540
2541/**
2542 * security_fs_use - Determine how to handle labeling for a filesystem.
2543 * @sb: superblock in question
2544 */
2545int security_fs_use(struct super_block *sb)
2546{
2547        int rc = 0;
2548        struct ocontext *c;
2549        struct superblock_security_struct *sbsec = sb->s_security;
2550        const char *fstype = sb->s_type->name;
2551
2552        read_lock(&policy_rwlock);
2553
2554        c = policydb.ocontexts[OCON_FSUSE];
2555        while (c) {
2556                if (strcmp(fstype, c->u.name) == 0)
2557                        break;
2558                c = c->next;
2559        }
2560
2561        if (c) {
2562                sbsec->behavior = c->v.behavior;
2563                if (!c->sid[0]) {
2564                        rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2565                                                   &c->sid[0]);
2566                        if (rc)
2567                                goto out;
2568                }
2569                sbsec->sid = c->sid[0];
2570        } else {
2571                rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2572                                          &sbsec->sid);
2573                if (rc) {
2574                        sbsec->behavior = SECURITY_FS_USE_NONE;
2575                        rc = 0;
2576                } else {
2577                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2578                }
2579        }
2580
2581out:
2582        read_unlock(&policy_rwlock);
2583        return rc;
2584}
2585
2586int security_get_bools(int *len, char ***names, int **values)
2587{
2588        int i, rc;
2589
2590        read_lock(&policy_rwlock);
2591        *names = NULL;
2592        *values = NULL;
2593
2594        rc = 0;
2595        *len = policydb.p_bools.nprim;
2596        if (!*len)
2597                goto out;
2598
2599        rc = -ENOMEM;
2600        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2601        if (!*names)
2602                goto err;
2603
2604        rc = -ENOMEM;
2605        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2606        if (!*values)
2607                goto err;
2608
2609        for (i = 0; i < *len; i++) {
2610                (*values)[i] = policydb.bool_val_to_struct[i]->state;
2611
2612                rc = -ENOMEM;
2613                (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2614                if (!(*names)[i])
2615                        goto err;
2616        }
2617        rc = 0;
2618out:
2619        read_unlock(&policy_rwlock);
2620        return rc;
2621err:
2622        if (*names) {
2623                for (i = 0; i < *len; i++)
2624                        kfree((*names)[i]);
2625        }
2626        kfree(*values);
2627        goto out;
2628}
2629
2630
2631int security_set_bools(int len, int *values)
2632{
2633        int i, rc;
2634        int lenp, seqno = 0;
2635        struct cond_node *cur;
2636
2637        write_lock_irq(&policy_rwlock);
2638
2639        rc = -EFAULT;
2640        lenp = policydb.p_bools.nprim;
2641        if (len != lenp)
2642                goto out;
2643
2644        for (i = 0; i < len; i++) {
2645                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2646                        audit_log(current->audit_context, GFP_ATOMIC,
2647                                AUDIT_MAC_CONFIG_CHANGE,
2648                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2649                                sym_name(&policydb, SYM_BOOLS, i),
2650                                !!values[i],
2651                                policydb.bool_val_to_struct[i]->state,
2652                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2653                                audit_get_sessionid(current));
2654                }
2655                if (values[i])
2656                        policydb.bool_val_to_struct[i]->state = 1;
2657                else
2658                        policydb.bool_val_to_struct[i]->state = 0;
2659        }
2660
2661        for (cur = policydb.cond_list; cur; cur = cur->next) {
2662                rc = evaluate_cond_node(&policydb, cur);
2663                if (rc)
2664                        goto out;
2665        }
2666
2667        seqno = ++latest_granting;
2668        rc = 0;
2669out:
2670        write_unlock_irq(&policy_rwlock);
2671        if (!rc) {
2672                avc_ss_reset(seqno);
2673                selnl_notify_policyload(seqno);
2674                selinux_status_update_policyload(seqno);
2675                selinux_xfrm_notify_policyload();
2676        }
2677        return rc;
2678}
2679
2680int security_get_bool_value(int index)
2681{
2682        int rc;
2683        int len;
2684
2685        read_lock(&policy_rwlock);
2686
2687        rc = -EFAULT;
2688        len = policydb.p_bools.nprim;
2689        if (index >= len)
2690                goto out;
2691
2692        rc = policydb.bool_val_to_struct[index]->state;
2693out:
2694        read_unlock(&policy_rwlock);
2695        return rc;
2696}
2697
2698static int security_preserve_bools(struct policydb *p)
2699{
2700        int rc, nbools = 0, *bvalues = NULL, i;
2701        char **bnames = NULL;
2702        struct cond_bool_datum *booldatum;
2703        struct cond_node *cur;
2704
2705        rc = security_get_bools(&nbools, &bnames, &bvalues);
2706        if (rc)
2707                goto out;
2708        for (i = 0; i < nbools; i++) {
2709                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2710                if (booldatum)
2711                        booldatum->state = bvalues[i];
2712        }
2713        for (cur = p->cond_list; cur; cur = cur->next) {
2714                rc = evaluate_cond_node(p, cur);
2715                if (rc)
2716                        goto out;
2717        }
2718
2719out:
2720        if (bnames) {
2721                for (i = 0; i < nbools; i++)
2722                        kfree(bnames[i]);
2723        }
2724        kfree(bnames);
2725        kfree(bvalues);
2726        return rc;
2727}
2728
2729/*
2730 * security_sid_mls_copy() - computes a new sid based on the given
2731 * sid and the mls portion of mls_sid.
2732 */
2733int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2734{
2735        struct context *context1;
2736        struct context *context2;
2737        struct context newcon;
2738        char *s;
2739        u32 len;
2740        int rc;
2741
2742        rc = 0;
2743        if (!ss_initialized || !policydb.mls_enabled) {
2744                *new_sid = sid;
2745                goto out;
2746        }
2747
2748        context_init(&newcon);
2749
2750        read_lock(&policy_rwlock);
2751
2752        rc = -EINVAL;
2753        context1 = sidtab_search(&sidtab, sid);
2754        if (!context1) {
2755                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2756                        __func__, sid);
2757                goto out_unlock;
2758        }
2759
2760        rc = -EINVAL;
2761        context2 = sidtab_search(&sidtab, mls_sid);
2762        if (!context2) {
2763                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2764                        __func__, mls_sid);
2765                goto out_unlock;
2766        }
2767
2768        newcon.user = context1->user;
2769        newcon.role = context1->role;
2770        newcon.type = context1->type;
2771        rc = mls_context_cpy(&newcon, context2);
2772        if (rc)
2773                goto out_unlock;
2774
2775        /* Check the validity of the new context. */
2776        if (!policydb_context_isvalid(&policydb, &newcon)) {
2777                rc = convert_context_handle_invalid_context(&newcon);
2778                if (rc) {
2779                        if (!context_struct_to_string(&newcon, &s, &len)) {
2780                                audit_log(current->audit_context,
2781                                          GFP_ATOMIC, AUDIT_SELINUX_ERR,
2782                                          "op=security_sid_mls_copy "
2783                                          "invalid_context=%s", s);
2784                                kfree(s);
2785                        }
2786                        goto out_unlock;
2787                }
2788        }
2789
2790        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2791out_unlock:
2792        read_unlock(&policy_rwlock);
2793        context_destroy(&newcon);
2794out:
2795        return rc;
2796}
2797
2798/**
2799 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2800 * @nlbl_sid: NetLabel SID
2801 * @nlbl_type: NetLabel labeling protocol type
2802 * @xfrm_sid: XFRM SID
2803 *
2804 * Description:
2805 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2806 * resolved into a single SID it is returned via @peer_sid and the function
2807 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2808 * returns a negative value.  A table summarizing the behavior is below:
2809 *
2810 *                                 | function return |      @sid
2811 *   ------------------------------+-----------------+-----------------
2812 *   no peer labels                |        0        |    SECSID_NULL
2813 *   single peer label             |        0        |    <peer_label>
2814 *   multiple, consistent labels   |        0        |    <peer_label>
2815 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2816 *
2817 */
2818int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2819                                 u32 xfrm_sid,
2820                                 u32 *peer_sid)
2821{
2822        int rc;
2823        struct context *nlbl_ctx;
2824        struct context *xfrm_ctx;
2825
2826        *peer_sid = SECSID_NULL;
2827
2828        /* handle the common (which also happens to be the set of easy) cases
2829         * right away, these two if statements catch everything involving a
2830         * single or absent peer SID/label */
2831        if (xfrm_sid == SECSID_NULL) {
2832                *peer_sid = nlbl_sid;
2833                return 0;
2834        }
2835        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2836         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2837         * is present */
2838        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2839                *peer_sid = xfrm_sid;
2840                return 0;
2841        }
2842
2843        /* we don't need to check ss_initialized here since the only way both
2844         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2845         * security server was initialized and ss_initialized was true */
2846        if (!policydb.mls_enabled)
2847                return 0;
2848
2849        read_lock(&policy_rwlock);
2850
2851        rc = -EINVAL;
2852        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2853        if (!nlbl_ctx) {
2854                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2855                       __func__, nlbl_sid);
2856                goto out;
2857        }
2858        rc = -EINVAL;
2859        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2860        if (!xfrm_ctx) {
2861                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2862                       __func__, xfrm_sid);
2863                goto out;
2864        }
2865        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2866        if (rc)
2867                goto out;
2868
2869        /* at present NetLabel SIDs/labels really only carry MLS
2870         * information so if the MLS portion of the NetLabel SID
2871         * matches the MLS portion of the labeled XFRM SID/label
2872         * then pass along the XFRM SID as it is the most
2873         * expressive */
2874        *peer_sid = xfrm_sid;
2875out:
2876        read_unlock(&policy_rwlock);
2877        return rc;
2878}
2879
2880static int get_classes_callback(void *k, void *d, void *args)
2881{
2882        struct class_datum *datum = d;
2883        char *name = k, **classes = args;
2884        int value = datum->value - 1;
2885
2886        classes[value] = kstrdup(name, GFP_ATOMIC);
2887        if (!classes[value])
2888                return -ENOMEM;
2889
2890        return 0;
2891}
2892
2893int security_get_classes(char ***classes, int *nclasses)
2894{
2895        int rc;
2896
2897        read_lock(&policy_rwlock);
2898
2899        rc = -ENOMEM;
2900        *nclasses = policydb.p_classes.nprim;
2901        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2902        if (!*classes)
2903                goto out;
2904
2905        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2906                        *classes);
2907        if (rc) {
2908                int i;
2909                for (i = 0; i < *nclasses; i++)
2910                        kfree((*classes)[i]);
2911                kfree(*classes);
2912        }
2913
2914out:
2915        read_unlock(&policy_rwlock);
2916        return rc;
2917}
2918
2919static int get_permissions_callback(void *k, void *d, void *args)
2920{
2921        struct perm_datum *datum = d;
2922        char *name = k, **perms = args;
2923        int value = datum->value - 1;
2924
2925        perms[value] = kstrdup(name, GFP_ATOMIC);
2926        if (!perms[value])
2927                return -ENOMEM;
2928
2929        return 0;
2930}
2931
2932int security_get_permissions(char *class, char ***perms, int *nperms)
2933{
2934        int rc, i;
2935        struct class_datum *match;
2936
2937        read_lock(&policy_rwlock);
2938
2939        rc = -EINVAL;
2940        match = hashtab_search(policydb.p_classes.table, class);
2941        if (!match) {
2942                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2943                        __func__, class);
2944                goto out;
2945        }
2946
2947        rc = -ENOMEM;
2948        *nperms = match->permissions.nprim;
2949        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2950        if (!*perms)
2951                goto out;
2952
2953        if (match->comdatum) {
2954                rc = hashtab_map(match->comdatum->permissions.table,
2955                                get_permissions_callback, *perms);
2956                if (rc)
2957                        goto err;
2958        }
2959
2960        rc = hashtab_map(match->permissions.table, get_permissions_callback,
2961                        *perms);
2962        if (rc)
2963                goto err;
2964
2965out:
2966        read_unlock(&policy_rwlock);
2967        return rc;
2968
2969err:
2970        read_unlock(&policy_rwlock);
2971        for (i = 0; i < *nperms; i++)
2972                kfree((*perms)[i]);
2973        kfree(*perms);
2974        return rc;
2975}
2976
2977int security_get_reject_unknown(void)
2978{
2979        return policydb.reject_unknown;
2980}
2981
2982int security_get_allow_unknown(void)
2983{
2984        return policydb.allow_unknown;
2985}
2986
2987/**
2988 * security_policycap_supported - Check for a specific policy capability
2989 * @req_cap: capability
2990 *
2991 * Description:
2992 * This function queries the currently loaded policy to see if it supports the
2993 * capability specified by @req_cap.  Returns true (1) if the capability is
2994 * supported, false (0) if it isn't supported.
2995 *
2996 */
2997int security_policycap_supported(unsigned int req_cap)
2998{
2999        int rc;
3000
3001        read_lock(&policy_rwlock);
3002        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3003        read_unlock(&policy_rwlock);
3004
3005        return rc;
3006}
3007
3008struct selinux_audit_rule {
3009        u32 au_seqno;
3010        struct context au_ctxt;
3011};
3012
3013void selinux_audit_rule_free(void *vrule)
3014{
3015        struct selinux_audit_rule *rule = vrule;
3016
3017        if (rule) {
3018                context_destroy(&rule->au_ctxt);
3019                kfree(rule);
3020        }
3021}
3022
3023int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3024{
3025        struct selinux_audit_rule *tmprule;
3026        struct role_datum *roledatum;
3027        struct type_datum *typedatum;
3028        struct user_datum *userdatum;
3029        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3030        int rc = 0;
3031
3032        *rule = NULL;
3033
3034        if (!ss_initialized)
3035                return -EOPNOTSUPP;
3036
3037        switch (field) {
3038        case AUDIT_SUBJ_USER:
3039        case AUDIT_SUBJ_ROLE:
3040        case AUDIT_SUBJ_TYPE:
3041        case AUDIT_OBJ_USER:
3042        case AUDIT_OBJ_ROLE:
3043        case AUDIT_OBJ_TYPE:
3044                /* only 'equals' and 'not equals' fit user, role, and type */
3045                if (op != Audit_equal && op != Audit_not_equal)
3046                        return -EINVAL;
3047                break;
3048        case AUDIT_SUBJ_SEN:
3049        case AUDIT_SUBJ_CLR:
3050        case AUDIT_OBJ_LEV_LOW:
3051        case AUDIT_OBJ_LEV_HIGH:
3052                /* we do not allow a range, indicated by the presence of '-' */
3053                if (strchr(rulestr, '-'))
3054                        return -EINVAL;
3055                break;
3056        default:
3057                /* only the above fields are valid */
3058                return -EINVAL;
3059        }
3060
3061        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3062        if (!tmprule)
3063                return -ENOMEM;
3064
3065        context_init(&tmprule->au_ctxt);
3066
3067        read_lock(&policy_rwlock);
3068
3069        tmprule->au_seqno = latest_granting;
3070
3071        switch (field) {
3072        case AUDIT_SUBJ_USER:
3073        case AUDIT_OBJ_USER:
3074                rc = -EINVAL;
3075                userdatum = hashtab_search(policydb.p_users.table, rulestr);
3076                if (!userdatum)
3077                        goto out;
3078                tmprule->au_ctxt.user = userdatum->value;
3079                break;
3080        case AUDIT_SUBJ_ROLE:
3081        case AUDIT_OBJ_ROLE:
3082                rc = -EINVAL;
3083                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3084                if (!roledatum)
3085                        goto out;
3086                tmprule->au_ctxt.role = roledatum->value;
3087                break;
3088        case AUDIT_SUBJ_TYPE:
3089        case AUDIT_OBJ_TYPE:
3090                rc = -EINVAL;
3091                typedatum = hashtab_search(policydb.p_types.table, rulestr);
3092                if (!typedatum)
3093                        goto out;
3094                tmprule->au_ctxt.type = typedatum->value;
3095                break;
3096        case AUDIT_SUBJ_SEN:
3097        case AUDIT_SUBJ_CLR:
3098        case AUDIT_OBJ_LEV_LOW:
3099        case AUDIT_OBJ_LEV_HIGH:
3100                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3101                if (rc)
3102                        goto out;
3103                break;
3104        }
3105        rc = 0;
3106out:
3107        read_unlock(&policy_rwlock);
3108
3109        if (rc) {
3110                selinux_audit_rule_free(tmprule);
3111                tmprule = NULL;
3112        }
3113
3114        *rule = tmprule;
3115
3116        return rc;
3117}
3118
3119/* Check to see if the rule contains any selinux fields */
3120int selinux_audit_rule_known(struct audit_krule *rule)
3121{
3122        int i;
3123
3124        for (i = 0; i < rule->field_count; i++) {
3125                struct audit_field *f = &rule->fields[i];
3126                switch (f->type) {
3127                case AUDIT_SUBJ_USER:
3128                case AUDIT_SUBJ_ROLE:
3129                case AUDIT_SUBJ_TYPE:
3130                case AUDIT_SUBJ_SEN:
3131                case AUDIT_SUBJ_CLR:
3132                case AUDIT_OBJ_USER:
3133                case AUDIT_OBJ_ROLE:
3134                case AUDIT_OBJ_TYPE:
3135                case AUDIT_OBJ_LEV_LOW:
3136                case AUDIT_OBJ_LEV_HIGH:
3137                        return 1;
3138                }
3139        }
3140
3141        return 0;
3142}
3143
3144int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3145                             struct audit_context *actx)
3146{
3147        struct context *ctxt;
3148        struct mls_level *level;
3149        struct selinux_audit_rule *rule = vrule;
3150        int match = 0;
3151
3152        if (unlikely(!rule)) {
3153                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3154                return -ENOENT;
3155        }
3156
3157        read_lock(&policy_rwlock);
3158
3159        if (rule->au_seqno < latest_granting) {
3160                match = -ESTALE;
3161                goto out;
3162        }
3163
3164        ctxt = sidtab_search(&sidtab, sid);
3165        if (unlikely(!ctxt)) {
3166                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3167                          sid);
3168                match = -ENOENT;
3169                goto out;
3170        }
3171
3172        /* a field/op pair that is not caught here will simply fall through
3173           without a match */
3174        switch (field) {
3175        case AUDIT_SUBJ_USER:
3176        case AUDIT_OBJ_USER:
3177                switch (op) {
3178                case Audit_equal:
3179                        match = (ctxt->user == rule->au_ctxt.user);
3180                        break;
3181                case Audit_not_equal:
3182                        match = (ctxt->user != rule->au_ctxt.user);
3183                        break;
3184                }
3185                break;
3186        case AUDIT_SUBJ_ROLE:
3187        case AUDIT_OBJ_ROLE:
3188                switch (op) {
3189                case Audit_equal:
3190                        match = (ctxt->role == rule->au_ctxt.role);
3191                        break;
3192                case Audit_not_equal:
3193                        match = (ctxt->role != rule->au_ctxt.role);
3194                        break;
3195                }
3196                break;
3197        case AUDIT_SUBJ_TYPE:
3198        case AUDIT_OBJ_TYPE:
3199                switch (op) {
3200                case Audit_equal:
3201                        match = (ctxt->type == rule->au_ctxt.type);
3202                        break;
3203                case Audit_not_equal:
3204                        match = (ctxt->type != rule->au_ctxt.type);
3205                        break;
3206                }
3207                break;
3208        case AUDIT_SUBJ_SEN:
3209        case AUDIT_SUBJ_CLR:
3210        case AUDIT_OBJ_LEV_LOW:
3211        case AUDIT_OBJ_LEV_HIGH:
3212                level = ((field == AUDIT_SUBJ_SEN ||
3213                          field == AUDIT_OBJ_LEV_LOW) ?
3214                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3215                switch (op) {
3216                case Audit_equal:
3217                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3218                                             level);
3219                        break;
3220                case Audit_not_equal:
3221                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3222                                              level);
3223                        break;
3224                case Audit_lt:
3225                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3226                                               level) &&
3227                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3228                                               level));
3229                        break;
3230                case Audit_le:
3231                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3232                                              level);
3233                        break;
3234                case Audit_gt:
3235                        match = (mls_level_dom(level,
3236                                              &rule->au_ctxt.range.level[0]) &&
3237                                 !mls_level_eq(level,
3238                                               &rule->au_ctxt.range.level[0]));
3239                        break;
3240                case Audit_ge:
3241                        match = mls_level_dom(level,
3242                                              &rule->au_ctxt.range.level[0]);
3243                        break;
3244                }
3245        }
3246
3247out:
3248        read_unlock(&policy_rwlock);
3249        return match;
3250}
3251
3252static int (*aurule_callback)(void) = audit_update_lsm_rules;
3253
3254static int aurule_avc_callback(u32 event)
3255{
3256        int err = 0;
3257
3258        if (event == AVC_CALLBACK_RESET && aurule_callback)
3259                err = aurule_callback();
3260        return err;
3261}
3262
3263static int __init aurule_init(void)
3264{
3265        int err;
3266
3267        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3268        if (err)
3269                panic("avc_add_callback() failed, error %d\n", err);
3270
3271        return err;
3272}
3273__initcall(aurule_init);
3274
3275#ifdef CONFIG_NETLABEL
3276/**
3277 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3278 * @secattr: the NetLabel packet security attributes
3279 * @sid: the SELinux SID
3280 *
3281 * Description:
3282 * Attempt to cache the context in @ctx, which was derived from the packet in
3283 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3284 * already been initialized.
3285 *
3286 */
3287static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3288                                      u32 sid)
3289{
3290        u32 *sid_cache;
3291
3292        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3293        if (sid_cache == NULL)
3294                return;
3295        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3296        if (secattr->cache == NULL) {
3297                kfree(sid_cache);
3298                return;
3299        }
3300
3301        *sid_cache = sid;
3302        secattr->cache->free = kfree;
3303        secattr->cache->data = sid_cache;
3304        secattr->flags |= NETLBL_SECATTR_CACHE;
3305}
3306
3307/**
3308 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3309 * @secattr: the NetLabel packet security attributes
3310 * @sid: the SELinux SID
3311 *
3312 * Description:
3313 * Convert the given NetLabel security attributes in @secattr into a
3314 * SELinux SID.  If the @secattr field does not contain a full SELinux
3315 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3316 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3317 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3318 * conversion for future lookups.  Returns zero on success, negative values on
3319 * failure.
3320 *
3321 */
3322int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3323                                   u32 *sid)
3324{
3325        int rc;
3326        struct context *ctx;
3327        struct context ctx_new;
3328
3329        if (!ss_initialized) {
3330                *sid = SECSID_NULL;
3331                return 0;
3332        }
3333
3334        read_lock(&policy_rwlock);
3335
3336        if (secattr->flags & NETLBL_SECATTR_CACHE)
3337                *sid = *(u32 *)secattr->cache->data;
3338        else if (secattr->flags & NETLBL_SECATTR_SECID)
3339                *sid = secattr->attr.secid;
3340        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3341                rc = -EIDRM;
3342                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3343                if (ctx == NULL)
3344                        goto out;
3345
3346                context_init(&ctx_new);
3347                ctx_new.user = ctx->user;
3348                ctx_new.role = ctx->role;
3349                ctx_new.type = ctx->type;
3350                mls_import_netlbl_lvl(&ctx_new, secattr);
3351                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3352                        rc = mls_import_netlbl_cat(&ctx_new, secattr);
3353                        if (rc)
3354                                goto out;
3355                }
3356                rc = -EIDRM;
3357                if (!mls_context_isvalid(&policydb, &ctx_new))
3358                        goto out_free;
3359
3360                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3361                if (rc)
3362                        goto out_free;
3363
3364                security_netlbl_cache_add(secattr, *sid);
3365
3366                ebitmap_destroy(&ctx_new.range.level[0].cat);
3367        } else
3368                *sid = SECSID_NULL;
3369
3370        read_unlock(&policy_rwlock);
3371        return 0;
3372out_free:
3373        ebitmap_destroy(&ctx_new.range.level[0].cat);
3374out:
3375        read_unlock(&policy_rwlock);
3376        return rc;
3377}
3378
3379/**
3380 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3381 * @sid: the SELinux SID
3382 * @secattr: the NetLabel packet security attributes
3383 *
3384 * Description:
3385 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3386 * Returns zero on success, negative values on failure.
3387 *
3388 */
3389int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3390{
3391        int rc;
3392        struct context *ctx;
3393
3394        if (!ss_initialized)
3395                return 0;
3396
3397        read_lock(&policy_rwlock);
3398
3399        rc = -ENOENT;
3400        ctx = sidtab_search(&sidtab, sid);
3401        if (ctx == NULL)
3402                goto out;
3403
3404        rc = -ENOMEM;
3405        secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3406                                  GFP_ATOMIC);
3407        if (secattr->domain == NULL)
3408                goto out;
3409
3410        secattr->attr.secid = sid;
3411        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3412        mls_export_netlbl_lvl(ctx, secattr);
3413        rc = mls_export_netlbl_cat(ctx, secattr);
3414out:
3415        read_unlock(&policy_rwlock);
3416        return rc;
3417}
3418#endif /* CONFIG_NETLABEL */
3419
3420/**
3421 * security_read_policy - read the policy.
3422 * @data: binary policy data
3423 * @len: length of data in bytes
3424 *
3425 */
3426int security_read_policy(void **data, size_t *len)
3427{
3428        int rc;
3429        struct policy_file fp;
3430
3431        if (!ss_initialized)
3432                return -EINVAL;
3433
3434        *len = security_policydb_len();
3435
3436        *data = vmalloc_user(*len);
3437        if (!*data)
3438                return -ENOMEM;
3439
3440        fp.data = *data;
3441        fp.len = *len;
3442
3443        read_lock(&policy_rwlock);
3444        rc = policydb_write(&policydb, &fp);
3445        read_unlock(&policy_rwlock);
3446
3447        if (rc)
3448                return rc;
3449
3450        *len = (unsigned long)fp.data - (unsigned long)*data;
3451        return 0;
3452
3453}
3454