linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/sched/signal.h>
  25#include <linux/time.h>
  26#include <linux/math64.h>
  27#include <linux/export.h>
  28#include <sound/core.h>
  29#include <sound/control.h>
  30#include <sound/tlv.h>
  31#include <sound/info.h>
  32#include <sound/pcm.h>
  33#include <sound/pcm_params.h>
  34#include <sound/timer.h>
  35
  36#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  37#define CREATE_TRACE_POINTS
  38#include "pcm_trace.h"
  39#else
  40#define trace_hwptr(substream, pos, in_interrupt)
  41#define trace_xrun(substream)
  42#define trace_hw_ptr_error(substream, reason)
  43#endif
  44
  45/*
  46 * fill ring buffer with silence
  47 * runtime->silence_start: starting pointer to silence area
  48 * runtime->silence_filled: size filled with silence
  49 * runtime->silence_threshold: threshold from application
  50 * runtime->silence_size: maximal size from application
  51 *
  52 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  53 */
  54void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  55{
  56        struct snd_pcm_runtime *runtime = substream->runtime;
  57        snd_pcm_uframes_t frames, ofs, transfer;
  58
  59        if (runtime->silence_size < runtime->boundary) {
  60                snd_pcm_sframes_t noise_dist, n;
  61                if (runtime->silence_start != runtime->control->appl_ptr) {
  62                        n = runtime->control->appl_ptr - runtime->silence_start;
  63                        if (n < 0)
  64                                n += runtime->boundary;
  65                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  66                                runtime->silence_filled -= n;
  67                        else
  68                                runtime->silence_filled = 0;
  69                        runtime->silence_start = runtime->control->appl_ptr;
  70                }
  71                if (runtime->silence_filled >= runtime->buffer_size)
  72                        return;
  73                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  74                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  75                        return;
  76                frames = runtime->silence_threshold - noise_dist;
  77                if (frames > runtime->silence_size)
  78                        frames = runtime->silence_size;
  79        } else {
  80                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  81                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  82                        if (avail > runtime->buffer_size)
  83                                avail = runtime->buffer_size;
  84                        runtime->silence_filled = avail > 0 ? avail : 0;
  85                        runtime->silence_start = (runtime->status->hw_ptr +
  86                                                  runtime->silence_filled) %
  87                                                 runtime->boundary;
  88                } else {
  89                        ofs = runtime->status->hw_ptr;
  90                        frames = new_hw_ptr - ofs;
  91                        if ((snd_pcm_sframes_t)frames < 0)
  92                                frames += runtime->boundary;
  93                        runtime->silence_filled -= frames;
  94                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  95                                runtime->silence_filled = 0;
  96                                runtime->silence_start = new_hw_ptr;
  97                        } else {
  98                                runtime->silence_start = ofs;
  99                        }
 100                }
 101                frames = runtime->buffer_size - runtime->silence_filled;
 102        }
 103        if (snd_BUG_ON(frames > runtime->buffer_size))
 104                return;
 105        if (frames == 0)
 106                return;
 107        ofs = runtime->silence_start % runtime->buffer_size;
 108        while (frames > 0) {
 109                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 110                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 111                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 112                        if (substream->ops->silence) {
 113                                int err;
 114                                err = substream->ops->silence(substream, -1, ofs, transfer);
 115                                snd_BUG_ON(err < 0);
 116                        } else {
 117                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 118                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 119                        }
 120                } else {
 121                        unsigned int c;
 122                        unsigned int channels = runtime->channels;
 123                        if (substream->ops->silence) {
 124                                for (c = 0; c < channels; ++c) {
 125                                        int err;
 126                                        err = substream->ops->silence(substream, c, ofs, transfer);
 127                                        snd_BUG_ON(err < 0);
 128                                }
 129                        } else {
 130                                size_t dma_csize = runtime->dma_bytes / channels;
 131                                for (c = 0; c < channels; ++c) {
 132                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 133                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 134                                }
 135                        }
 136                }
 137                runtime->silence_filled += transfer;
 138                frames -= transfer;
 139                ofs = 0;
 140        }
 141}
 142
 143#ifdef CONFIG_SND_DEBUG
 144void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 145                           char *name, size_t len)
 146{
 147        snprintf(name, len, "pcmC%dD%d%c:%d",
 148                 substream->pcm->card->number,
 149                 substream->pcm->device,
 150                 substream->stream ? 'c' : 'p',
 151                 substream->number);
 152}
 153EXPORT_SYMBOL(snd_pcm_debug_name);
 154#endif
 155
 156#define XRUN_DEBUG_BASIC        (1<<0)
 157#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 158#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 159
 160#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 161
 162#define xrun_debug(substream, mask) \
 163                        ((substream)->pstr->xrun_debug & (mask))
 164#else
 165#define xrun_debug(substream, mask)     0
 166#endif
 167
 168#define dump_stack_on_xrun(substream) do {                      \
 169                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 170                        dump_stack();                           \
 171        } while (0)
 172
 173static void xrun(struct snd_pcm_substream *substream)
 174{
 175        struct snd_pcm_runtime *runtime = substream->runtime;
 176
 177        trace_xrun(substream);
 178        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 179                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 180        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 181        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 182                char name[16];
 183                snd_pcm_debug_name(substream, name, sizeof(name));
 184                pcm_warn(substream->pcm, "XRUN: %s\n", name);
 185                dump_stack_on_xrun(substream);
 186        }
 187}
 188
 189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
 191        do {                                                            \
 192                trace_hw_ptr_error(substream, reason);  \
 193                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 194                        pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 195                                           (in_interrupt) ? 'Q' : 'P', ##args); \
 196                        dump_stack_on_xrun(substream);                  \
 197                }                                                       \
 198        } while (0)
 199
 200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 201
 202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 203
 204#endif
 205
 206int snd_pcm_update_state(struct snd_pcm_substream *substream,
 207                         struct snd_pcm_runtime *runtime)
 208{
 209        snd_pcm_uframes_t avail;
 210
 211        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 212                avail = snd_pcm_playback_avail(runtime);
 213        else
 214                avail = snd_pcm_capture_avail(runtime);
 215        if (avail > runtime->avail_max)
 216                runtime->avail_max = avail;
 217        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 218                if (avail >= runtime->buffer_size) {
 219                        snd_pcm_drain_done(substream);
 220                        return -EPIPE;
 221                }
 222        } else {
 223                if (avail >= runtime->stop_threshold) {
 224                        xrun(substream);
 225                        return -EPIPE;
 226                }
 227        }
 228        if (runtime->twake) {
 229                if (avail >= runtime->twake)
 230                        wake_up(&runtime->tsleep);
 231        } else if (avail >= runtime->control->avail_min)
 232                wake_up(&runtime->sleep);
 233        return 0;
 234}
 235
 236static void update_audio_tstamp(struct snd_pcm_substream *substream,
 237                                struct timespec *curr_tstamp,
 238                                struct timespec *audio_tstamp)
 239{
 240        struct snd_pcm_runtime *runtime = substream->runtime;
 241        u64 audio_frames, audio_nsecs;
 242        struct timespec driver_tstamp;
 243
 244        if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 245                return;
 246
 247        if (!(substream->ops->get_time_info) ||
 248                (runtime->audio_tstamp_report.actual_type ==
 249                        SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 250
 251                /*
 252                 * provide audio timestamp derived from pointer position
 253                 * add delay only if requested
 254                 */
 255
 256                audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 257
 258                if (runtime->audio_tstamp_config.report_delay) {
 259                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 260                                audio_frames -=  runtime->delay;
 261                        else
 262                                audio_frames +=  runtime->delay;
 263                }
 264                audio_nsecs = div_u64(audio_frames * 1000000000LL,
 265                                runtime->rate);
 266                *audio_tstamp = ns_to_timespec(audio_nsecs);
 267        }
 268        runtime->status->audio_tstamp = *audio_tstamp;
 269        runtime->status->tstamp = *curr_tstamp;
 270
 271        /*
 272         * re-take a driver timestamp to let apps detect if the reference tstamp
 273         * read by low-level hardware was provided with a delay
 274         */
 275        snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 276        runtime->driver_tstamp = driver_tstamp;
 277}
 278
 279static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 280                                  unsigned int in_interrupt)
 281{
 282        struct snd_pcm_runtime *runtime = substream->runtime;
 283        snd_pcm_uframes_t pos;
 284        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 285        snd_pcm_sframes_t hdelta, delta;
 286        unsigned long jdelta;
 287        unsigned long curr_jiffies;
 288        struct timespec curr_tstamp;
 289        struct timespec audio_tstamp;
 290        int crossed_boundary = 0;
 291
 292        old_hw_ptr = runtime->status->hw_ptr;
 293
 294        /*
 295         * group pointer, time and jiffies reads to allow for more
 296         * accurate correlations/corrections.
 297         * The values are stored at the end of this routine after
 298         * corrections for hw_ptr position
 299         */
 300        pos = substream->ops->pointer(substream);
 301        curr_jiffies = jiffies;
 302        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 303                if ((substream->ops->get_time_info) &&
 304                        (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 305                        substream->ops->get_time_info(substream, &curr_tstamp,
 306                                                &audio_tstamp,
 307                                                &runtime->audio_tstamp_config,
 308                                                &runtime->audio_tstamp_report);
 309
 310                        /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 311                        if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 312                                snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 313                } else
 314                        snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 315        }
 316
 317        if (pos == SNDRV_PCM_POS_XRUN) {
 318                xrun(substream);
 319                return -EPIPE;
 320        }
 321        if (pos >= runtime->buffer_size) {
 322                if (printk_ratelimit()) {
 323                        char name[16];
 324                        snd_pcm_debug_name(substream, name, sizeof(name));
 325                        pcm_err(substream->pcm,
 326                                "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 327                                name, pos, runtime->buffer_size,
 328                                runtime->period_size);
 329                }
 330                pos = 0;
 331        }
 332        pos -= pos % runtime->min_align;
 333        trace_hwptr(substream, pos, in_interrupt);
 334        hw_base = runtime->hw_ptr_base;
 335        new_hw_ptr = hw_base + pos;
 336        if (in_interrupt) {
 337                /* we know that one period was processed */
 338                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 339                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 340                if (delta > new_hw_ptr) {
 341                        /* check for double acknowledged interrupts */
 342                        hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 343                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 344                                hw_base += runtime->buffer_size;
 345                                if (hw_base >= runtime->boundary) {
 346                                        hw_base = 0;
 347                                        crossed_boundary++;
 348                                }
 349                                new_hw_ptr = hw_base + pos;
 350                                goto __delta;
 351                        }
 352                }
 353        }
 354        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 355        /* pointer crosses the end of the ring buffer */
 356        if (new_hw_ptr < old_hw_ptr) {
 357                hw_base += runtime->buffer_size;
 358                if (hw_base >= runtime->boundary) {
 359                        hw_base = 0;
 360                        crossed_boundary++;
 361                }
 362                new_hw_ptr = hw_base + pos;
 363        }
 364      __delta:
 365        delta = new_hw_ptr - old_hw_ptr;
 366        if (delta < 0)
 367                delta += runtime->boundary;
 368
 369        if (runtime->no_period_wakeup) {
 370                snd_pcm_sframes_t xrun_threshold;
 371                /*
 372                 * Without regular period interrupts, we have to check
 373                 * the elapsed time to detect xruns.
 374                 */
 375                jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 376                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 377                        goto no_delta_check;
 378                hdelta = jdelta - delta * HZ / runtime->rate;
 379                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 380                while (hdelta > xrun_threshold) {
 381                        delta += runtime->buffer_size;
 382                        hw_base += runtime->buffer_size;
 383                        if (hw_base >= runtime->boundary) {
 384                                hw_base = 0;
 385                                crossed_boundary++;
 386                        }
 387                        new_hw_ptr = hw_base + pos;
 388                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 389                }
 390                goto no_delta_check;
 391        }
 392
 393        /* something must be really wrong */
 394        if (delta >= runtime->buffer_size + runtime->period_size) {
 395                hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 396                             "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 397                             substream->stream, (long)pos,
 398                             (long)new_hw_ptr, (long)old_hw_ptr);
 399                return 0;
 400        }
 401
 402        /* Do jiffies check only in xrun_debug mode */
 403        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 404                goto no_jiffies_check;
 405
 406        /* Skip the jiffies check for hardwares with BATCH flag.
 407         * Such hardware usually just increases the position at each IRQ,
 408         * thus it can't give any strange position.
 409         */
 410        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 411                goto no_jiffies_check;
 412        hdelta = delta;
 413        if (hdelta < runtime->delay)
 414                goto no_jiffies_check;
 415        hdelta -= runtime->delay;
 416        jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 417        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 418                delta = jdelta /
 419                        (((runtime->period_size * HZ) / runtime->rate)
 420                                                                + HZ/100);
 421                /* move new_hw_ptr according jiffies not pos variable */
 422                new_hw_ptr = old_hw_ptr;
 423                hw_base = delta;
 424                /* use loop to avoid checks for delta overflows */
 425                /* the delta value is small or zero in most cases */
 426                while (delta > 0) {
 427                        new_hw_ptr += runtime->period_size;
 428                        if (new_hw_ptr >= runtime->boundary) {
 429                                new_hw_ptr -= runtime->boundary;
 430                                crossed_boundary--;
 431                        }
 432                        delta--;
 433                }
 434                /* align hw_base to buffer_size */
 435                hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 436                             "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 437                             (long)pos, (long)hdelta,
 438                             (long)runtime->period_size, jdelta,
 439                             ((hdelta * HZ) / runtime->rate), hw_base,
 440                             (unsigned long)old_hw_ptr,
 441                             (unsigned long)new_hw_ptr);
 442                /* reset values to proper state */
 443                delta = 0;
 444                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 445        }
 446 no_jiffies_check:
 447        if (delta > runtime->period_size + runtime->period_size / 2) {
 448                hw_ptr_error(substream, in_interrupt,
 449                             "Lost interrupts?",
 450                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 451                             substream->stream, (long)delta,
 452                             (long)new_hw_ptr,
 453                             (long)old_hw_ptr);
 454        }
 455
 456 no_delta_check:
 457        if (runtime->status->hw_ptr == new_hw_ptr) {
 458                update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 459                return 0;
 460        }
 461
 462        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 463            runtime->silence_size > 0)
 464                snd_pcm_playback_silence(substream, new_hw_ptr);
 465
 466        if (in_interrupt) {
 467                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 468                if (delta < 0)
 469                        delta += runtime->boundary;
 470                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 471                runtime->hw_ptr_interrupt += delta;
 472                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 473                        runtime->hw_ptr_interrupt -= runtime->boundary;
 474        }
 475        runtime->hw_ptr_base = hw_base;
 476        runtime->status->hw_ptr = new_hw_ptr;
 477        runtime->hw_ptr_jiffies = curr_jiffies;
 478        if (crossed_boundary) {
 479                snd_BUG_ON(crossed_boundary != 1);
 480                runtime->hw_ptr_wrap += runtime->boundary;
 481        }
 482
 483        update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 484
 485        return snd_pcm_update_state(substream, runtime);
 486}
 487
 488/* CAUTION: call it with irq disabled */
 489int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 490{
 491        return snd_pcm_update_hw_ptr0(substream, 0);
 492}
 493
 494/**
 495 * snd_pcm_set_ops - set the PCM operators
 496 * @pcm: the pcm instance
 497 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 498 * @ops: the operator table
 499 *
 500 * Sets the given PCM operators to the pcm instance.
 501 */
 502void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 503                     const struct snd_pcm_ops *ops)
 504{
 505        struct snd_pcm_str *stream = &pcm->streams[direction];
 506        struct snd_pcm_substream *substream;
 507        
 508        for (substream = stream->substream; substream != NULL; substream = substream->next)
 509                substream->ops = ops;
 510}
 511
 512EXPORT_SYMBOL(snd_pcm_set_ops);
 513
 514/**
 515 * snd_pcm_sync - set the PCM sync id
 516 * @substream: the pcm substream
 517 *
 518 * Sets the PCM sync identifier for the card.
 519 */
 520void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 521{
 522        struct snd_pcm_runtime *runtime = substream->runtime;
 523        
 524        runtime->sync.id32[0] = substream->pcm->card->number;
 525        runtime->sync.id32[1] = -1;
 526        runtime->sync.id32[2] = -1;
 527        runtime->sync.id32[3] = -1;
 528}
 529
 530EXPORT_SYMBOL(snd_pcm_set_sync);
 531
 532/*
 533 *  Standard ioctl routine
 534 */
 535
 536static inline unsigned int div32(unsigned int a, unsigned int b, 
 537                                 unsigned int *r)
 538{
 539        if (b == 0) {
 540                *r = 0;
 541                return UINT_MAX;
 542        }
 543        *r = a % b;
 544        return a / b;
 545}
 546
 547static inline unsigned int div_down(unsigned int a, unsigned int b)
 548{
 549        if (b == 0)
 550                return UINT_MAX;
 551        return a / b;
 552}
 553
 554static inline unsigned int div_up(unsigned int a, unsigned int b)
 555{
 556        unsigned int r;
 557        unsigned int q;
 558        if (b == 0)
 559                return UINT_MAX;
 560        q = div32(a, b, &r);
 561        if (r)
 562                ++q;
 563        return q;
 564}
 565
 566static inline unsigned int mul(unsigned int a, unsigned int b)
 567{
 568        if (a == 0)
 569                return 0;
 570        if (div_down(UINT_MAX, a) < b)
 571                return UINT_MAX;
 572        return a * b;
 573}
 574
 575static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 576                                    unsigned int c, unsigned int *r)
 577{
 578        u_int64_t n = (u_int64_t) a * b;
 579        if (c == 0) {
 580                snd_BUG_ON(!n);
 581                *r = 0;
 582                return UINT_MAX;
 583        }
 584        n = div_u64_rem(n, c, r);
 585        if (n >= UINT_MAX) {
 586                *r = 0;
 587                return UINT_MAX;
 588        }
 589        return n;
 590}
 591
 592/**
 593 * snd_interval_refine - refine the interval value of configurator
 594 * @i: the interval value to refine
 595 * @v: the interval value to refer to
 596 *
 597 * Refines the interval value with the reference value.
 598 * The interval is changed to the range satisfying both intervals.
 599 * The interval status (min, max, integer, etc.) are evaluated.
 600 *
 601 * Return: Positive if the value is changed, zero if it's not changed, or a
 602 * negative error code.
 603 */
 604int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 605{
 606        int changed = 0;
 607        if (snd_BUG_ON(snd_interval_empty(i)))
 608                return -EINVAL;
 609        if (i->min < v->min) {
 610                i->min = v->min;
 611                i->openmin = v->openmin;
 612                changed = 1;
 613        } else if (i->min == v->min && !i->openmin && v->openmin) {
 614                i->openmin = 1;
 615                changed = 1;
 616        }
 617        if (i->max > v->max) {
 618                i->max = v->max;
 619                i->openmax = v->openmax;
 620                changed = 1;
 621        } else if (i->max == v->max && !i->openmax && v->openmax) {
 622                i->openmax = 1;
 623                changed = 1;
 624        }
 625        if (!i->integer && v->integer) {
 626                i->integer = 1;
 627                changed = 1;
 628        }
 629        if (i->integer) {
 630                if (i->openmin) {
 631                        i->min++;
 632                        i->openmin = 0;
 633                }
 634                if (i->openmax) {
 635                        i->max--;
 636                        i->openmax = 0;
 637                }
 638        } else if (!i->openmin && !i->openmax && i->min == i->max)
 639                i->integer = 1;
 640        if (snd_interval_checkempty(i)) {
 641                snd_interval_none(i);
 642                return -EINVAL;
 643        }
 644        return changed;
 645}
 646
 647EXPORT_SYMBOL(snd_interval_refine);
 648
 649static int snd_interval_refine_first(struct snd_interval *i)
 650{
 651        if (snd_BUG_ON(snd_interval_empty(i)))
 652                return -EINVAL;
 653        if (snd_interval_single(i))
 654                return 0;
 655        i->max = i->min;
 656        i->openmax = i->openmin;
 657        if (i->openmax)
 658                i->max++;
 659        return 1;
 660}
 661
 662static int snd_interval_refine_last(struct snd_interval *i)
 663{
 664        if (snd_BUG_ON(snd_interval_empty(i)))
 665                return -EINVAL;
 666        if (snd_interval_single(i))
 667                return 0;
 668        i->min = i->max;
 669        i->openmin = i->openmax;
 670        if (i->openmin)
 671                i->min--;
 672        return 1;
 673}
 674
 675void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 676{
 677        if (a->empty || b->empty) {
 678                snd_interval_none(c);
 679                return;
 680        }
 681        c->empty = 0;
 682        c->min = mul(a->min, b->min);
 683        c->openmin = (a->openmin || b->openmin);
 684        c->max = mul(a->max,  b->max);
 685        c->openmax = (a->openmax || b->openmax);
 686        c->integer = (a->integer && b->integer);
 687}
 688
 689/**
 690 * snd_interval_div - refine the interval value with division
 691 * @a: dividend
 692 * @b: divisor
 693 * @c: quotient
 694 *
 695 * c = a / b
 696 *
 697 * Returns non-zero if the value is changed, zero if not changed.
 698 */
 699void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 700{
 701        unsigned int r;
 702        if (a->empty || b->empty) {
 703                snd_interval_none(c);
 704                return;
 705        }
 706        c->empty = 0;
 707        c->min = div32(a->min, b->max, &r);
 708        c->openmin = (r || a->openmin || b->openmax);
 709        if (b->min > 0) {
 710                c->max = div32(a->max, b->min, &r);
 711                if (r) {
 712                        c->max++;
 713                        c->openmax = 1;
 714                } else
 715                        c->openmax = (a->openmax || b->openmin);
 716        } else {
 717                c->max = UINT_MAX;
 718                c->openmax = 0;
 719        }
 720        c->integer = 0;
 721}
 722
 723/**
 724 * snd_interval_muldivk - refine the interval value
 725 * @a: dividend 1
 726 * @b: dividend 2
 727 * @k: divisor (as integer)
 728 * @c: result
 729  *
 730 * c = a * b / k
 731 *
 732 * Returns non-zero if the value is changed, zero if not changed.
 733 */
 734void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 735                      unsigned int k, struct snd_interval *c)
 736{
 737        unsigned int r;
 738        if (a->empty || b->empty) {
 739                snd_interval_none(c);
 740                return;
 741        }
 742        c->empty = 0;
 743        c->min = muldiv32(a->min, b->min, k, &r);
 744        c->openmin = (r || a->openmin || b->openmin);
 745        c->max = muldiv32(a->max, b->max, k, &r);
 746        if (r) {
 747                c->max++;
 748                c->openmax = 1;
 749        } else
 750                c->openmax = (a->openmax || b->openmax);
 751        c->integer = 0;
 752}
 753
 754/**
 755 * snd_interval_mulkdiv - refine the interval value
 756 * @a: dividend 1
 757 * @k: dividend 2 (as integer)
 758 * @b: divisor
 759 * @c: result
 760 *
 761 * c = a * k / b
 762 *
 763 * Returns non-zero if the value is changed, zero if not changed.
 764 */
 765void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 766                      const struct snd_interval *b, struct snd_interval *c)
 767{
 768        unsigned int r;
 769        if (a->empty || b->empty) {
 770                snd_interval_none(c);
 771                return;
 772        }
 773        c->empty = 0;
 774        c->min = muldiv32(a->min, k, b->max, &r);
 775        c->openmin = (r || a->openmin || b->openmax);
 776        if (b->min > 0) {
 777                c->max = muldiv32(a->max, k, b->min, &r);
 778                if (r) {
 779                        c->max++;
 780                        c->openmax = 1;
 781                } else
 782                        c->openmax = (a->openmax || b->openmin);
 783        } else {
 784                c->max = UINT_MAX;
 785                c->openmax = 0;
 786        }
 787        c->integer = 0;
 788}
 789
 790/* ---- */
 791
 792
 793/**
 794 * snd_interval_ratnum - refine the interval value
 795 * @i: interval to refine
 796 * @rats_count: number of ratnum_t 
 797 * @rats: ratnum_t array
 798 * @nump: pointer to store the resultant numerator
 799 * @denp: pointer to store the resultant denominator
 800 *
 801 * Return: Positive if the value is changed, zero if it's not changed, or a
 802 * negative error code.
 803 */
 804int snd_interval_ratnum(struct snd_interval *i,
 805                        unsigned int rats_count, const struct snd_ratnum *rats,
 806                        unsigned int *nump, unsigned int *denp)
 807{
 808        unsigned int best_num, best_den;
 809        int best_diff;
 810        unsigned int k;
 811        struct snd_interval t;
 812        int err;
 813        unsigned int result_num, result_den;
 814        int result_diff;
 815
 816        best_num = best_den = best_diff = 0;
 817        for (k = 0; k < rats_count; ++k) {
 818                unsigned int num = rats[k].num;
 819                unsigned int den;
 820                unsigned int q = i->min;
 821                int diff;
 822                if (q == 0)
 823                        q = 1;
 824                den = div_up(num, q);
 825                if (den < rats[k].den_min)
 826                        continue;
 827                if (den > rats[k].den_max)
 828                        den = rats[k].den_max;
 829                else {
 830                        unsigned int r;
 831                        r = (den - rats[k].den_min) % rats[k].den_step;
 832                        if (r != 0)
 833                                den -= r;
 834                }
 835                diff = num - q * den;
 836                if (diff < 0)
 837                        diff = -diff;
 838                if (best_num == 0 ||
 839                    diff * best_den < best_diff * den) {
 840                        best_diff = diff;
 841                        best_den = den;
 842                        best_num = num;
 843                }
 844        }
 845        if (best_den == 0) {
 846                i->empty = 1;
 847                return -EINVAL;
 848        }
 849        t.min = div_down(best_num, best_den);
 850        t.openmin = !!(best_num % best_den);
 851        
 852        result_num = best_num;
 853        result_diff = best_diff;
 854        result_den = best_den;
 855        best_num = best_den = best_diff = 0;
 856        for (k = 0; k < rats_count; ++k) {
 857                unsigned int num = rats[k].num;
 858                unsigned int den;
 859                unsigned int q = i->max;
 860                int diff;
 861                if (q == 0) {
 862                        i->empty = 1;
 863                        return -EINVAL;
 864                }
 865                den = div_down(num, q);
 866                if (den > rats[k].den_max)
 867                        continue;
 868                if (den < rats[k].den_min)
 869                        den = rats[k].den_min;
 870                else {
 871                        unsigned int r;
 872                        r = (den - rats[k].den_min) % rats[k].den_step;
 873                        if (r != 0)
 874                                den += rats[k].den_step - r;
 875                }
 876                diff = q * den - num;
 877                if (diff < 0)
 878                        diff = -diff;
 879                if (best_num == 0 ||
 880                    diff * best_den < best_diff * den) {
 881                        best_diff = diff;
 882                        best_den = den;
 883                        best_num = num;
 884                }
 885        }
 886        if (best_den == 0) {
 887                i->empty = 1;
 888                return -EINVAL;
 889        }
 890        t.max = div_up(best_num, best_den);
 891        t.openmax = !!(best_num % best_den);
 892        t.integer = 0;
 893        err = snd_interval_refine(i, &t);
 894        if (err < 0)
 895                return err;
 896
 897        if (snd_interval_single(i)) {
 898                if (best_diff * result_den < result_diff * best_den) {
 899                        result_num = best_num;
 900                        result_den = best_den;
 901                }
 902                if (nump)
 903                        *nump = result_num;
 904                if (denp)
 905                        *denp = result_den;
 906        }
 907        return err;
 908}
 909
 910EXPORT_SYMBOL(snd_interval_ratnum);
 911
 912/**
 913 * snd_interval_ratden - refine the interval value
 914 * @i: interval to refine
 915 * @rats_count: number of struct ratden
 916 * @rats: struct ratden array
 917 * @nump: pointer to store the resultant numerator
 918 * @denp: pointer to store the resultant denominator
 919 *
 920 * Return: Positive if the value is changed, zero if it's not changed, or a
 921 * negative error code.
 922 */
 923static int snd_interval_ratden(struct snd_interval *i,
 924                               unsigned int rats_count,
 925                               const struct snd_ratden *rats,
 926                               unsigned int *nump, unsigned int *denp)
 927{
 928        unsigned int best_num, best_diff, best_den;
 929        unsigned int k;
 930        struct snd_interval t;
 931        int err;
 932
 933        best_num = best_den = best_diff = 0;
 934        for (k = 0; k < rats_count; ++k) {
 935                unsigned int num;
 936                unsigned int den = rats[k].den;
 937                unsigned int q = i->min;
 938                int diff;
 939                num = mul(q, den);
 940                if (num > rats[k].num_max)
 941                        continue;
 942                if (num < rats[k].num_min)
 943                        num = rats[k].num_max;
 944                else {
 945                        unsigned int r;
 946                        r = (num - rats[k].num_min) % rats[k].num_step;
 947                        if (r != 0)
 948                                num += rats[k].num_step - r;
 949                }
 950                diff = num - q * den;
 951                if (best_num == 0 ||
 952                    diff * best_den < best_diff * den) {
 953                        best_diff = diff;
 954                        best_den = den;
 955                        best_num = num;
 956                }
 957        }
 958        if (best_den == 0) {
 959                i->empty = 1;
 960                return -EINVAL;
 961        }
 962        t.min = div_down(best_num, best_den);
 963        t.openmin = !!(best_num % best_den);
 964        
 965        best_num = best_den = best_diff = 0;
 966        for (k = 0; k < rats_count; ++k) {
 967                unsigned int num;
 968                unsigned int den = rats[k].den;
 969                unsigned int q = i->max;
 970                int diff;
 971                num = mul(q, den);
 972                if (num < rats[k].num_min)
 973                        continue;
 974                if (num > rats[k].num_max)
 975                        num = rats[k].num_max;
 976                else {
 977                        unsigned int r;
 978                        r = (num - rats[k].num_min) % rats[k].num_step;
 979                        if (r != 0)
 980                                num -= r;
 981                }
 982                diff = q * den - num;
 983                if (best_num == 0 ||
 984                    diff * best_den < best_diff * den) {
 985                        best_diff = diff;
 986                        best_den = den;
 987                        best_num = num;
 988                }
 989        }
 990        if (best_den == 0) {
 991                i->empty = 1;
 992                return -EINVAL;
 993        }
 994        t.max = div_up(best_num, best_den);
 995        t.openmax = !!(best_num % best_den);
 996        t.integer = 0;
 997        err = snd_interval_refine(i, &t);
 998        if (err < 0)
 999                return err;
1000
1001        if (snd_interval_single(i)) {
1002                if (nump)
1003                        *nump = best_num;
1004                if (denp)
1005                        *denp = best_den;
1006        }
1007        return err;
1008}
1009
1010/**
1011 * snd_interval_list - refine the interval value from the list
1012 * @i: the interval value to refine
1013 * @count: the number of elements in the list
1014 * @list: the value list
1015 * @mask: the bit-mask to evaluate
1016 *
1017 * Refines the interval value from the list.
1018 * When mask is non-zero, only the elements corresponding to bit 1 are
1019 * evaluated.
1020 *
1021 * Return: Positive if the value is changed, zero if it's not changed, or a
1022 * negative error code.
1023 */
1024int snd_interval_list(struct snd_interval *i, unsigned int count,
1025                      const unsigned int *list, unsigned int mask)
1026{
1027        unsigned int k;
1028        struct snd_interval list_range;
1029
1030        if (!count) {
1031                i->empty = 1;
1032                return -EINVAL;
1033        }
1034        snd_interval_any(&list_range);
1035        list_range.min = UINT_MAX;
1036        list_range.max = 0;
1037        for (k = 0; k < count; k++) {
1038                if (mask && !(mask & (1 << k)))
1039                        continue;
1040                if (!snd_interval_test(i, list[k]))
1041                        continue;
1042                list_range.min = min(list_range.min, list[k]);
1043                list_range.max = max(list_range.max, list[k]);
1044        }
1045        return snd_interval_refine(i, &list_range);
1046}
1047
1048EXPORT_SYMBOL(snd_interval_list);
1049
1050/**
1051 * snd_interval_ranges - refine the interval value from the list of ranges
1052 * @i: the interval value to refine
1053 * @count: the number of elements in the list of ranges
1054 * @ranges: the ranges list
1055 * @mask: the bit-mask to evaluate
1056 *
1057 * Refines the interval value from the list of ranges.
1058 * When mask is non-zero, only the elements corresponding to bit 1 are
1059 * evaluated.
1060 *
1061 * Return: Positive if the value is changed, zero if it's not changed, or a
1062 * negative error code.
1063 */
1064int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1065                        const struct snd_interval *ranges, unsigned int mask)
1066{
1067        unsigned int k;
1068        struct snd_interval range_union;
1069        struct snd_interval range;
1070
1071        if (!count) {
1072                snd_interval_none(i);
1073                return -EINVAL;
1074        }
1075        snd_interval_any(&range_union);
1076        range_union.min = UINT_MAX;
1077        range_union.max = 0;
1078        for (k = 0; k < count; k++) {
1079                if (mask && !(mask & (1 << k)))
1080                        continue;
1081                snd_interval_copy(&range, &ranges[k]);
1082                if (snd_interval_refine(&range, i) < 0)
1083                        continue;
1084                if (snd_interval_empty(&range))
1085                        continue;
1086
1087                if (range.min < range_union.min) {
1088                        range_union.min = range.min;
1089                        range_union.openmin = 1;
1090                }
1091                if (range.min == range_union.min && !range.openmin)
1092                        range_union.openmin = 0;
1093                if (range.max > range_union.max) {
1094                        range_union.max = range.max;
1095                        range_union.openmax = 1;
1096                }
1097                if (range.max == range_union.max && !range.openmax)
1098                        range_union.openmax = 0;
1099        }
1100        return snd_interval_refine(i, &range_union);
1101}
1102EXPORT_SYMBOL(snd_interval_ranges);
1103
1104static int snd_interval_step(struct snd_interval *i, unsigned int step)
1105{
1106        unsigned int n;
1107        int changed = 0;
1108        n = i->min % step;
1109        if (n != 0 || i->openmin) {
1110                i->min += step - n;
1111                i->openmin = 0;
1112                changed = 1;
1113        }
1114        n = i->max % step;
1115        if (n != 0 || i->openmax) {
1116                i->max -= n;
1117                i->openmax = 0;
1118                changed = 1;
1119        }
1120        if (snd_interval_checkempty(i)) {
1121                i->empty = 1;
1122                return -EINVAL;
1123        }
1124        return changed;
1125}
1126
1127/* Info constraints helpers */
1128
1129/**
1130 * snd_pcm_hw_rule_add - add the hw-constraint rule
1131 * @runtime: the pcm runtime instance
1132 * @cond: condition bits
1133 * @var: the variable to evaluate
1134 * @func: the evaluation function
1135 * @private: the private data pointer passed to function
1136 * @dep: the dependent variables
1137 *
1138 * Return: Zero if successful, or a negative error code on failure.
1139 */
1140int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1141                        int var,
1142                        snd_pcm_hw_rule_func_t func, void *private,
1143                        int dep, ...)
1144{
1145        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1146        struct snd_pcm_hw_rule *c;
1147        unsigned int k;
1148        va_list args;
1149        va_start(args, dep);
1150        if (constrs->rules_num >= constrs->rules_all) {
1151                struct snd_pcm_hw_rule *new;
1152                unsigned int new_rules = constrs->rules_all + 16;
1153                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1154                if (!new) {
1155                        va_end(args);
1156                        return -ENOMEM;
1157                }
1158                if (constrs->rules) {
1159                        memcpy(new, constrs->rules,
1160                               constrs->rules_num * sizeof(*c));
1161                        kfree(constrs->rules);
1162                }
1163                constrs->rules = new;
1164                constrs->rules_all = new_rules;
1165        }
1166        c = &constrs->rules[constrs->rules_num];
1167        c->cond = cond;
1168        c->func = func;
1169        c->var = var;
1170        c->private = private;
1171        k = 0;
1172        while (1) {
1173                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1174                        va_end(args);
1175                        return -EINVAL;
1176                }
1177                c->deps[k++] = dep;
1178                if (dep < 0)
1179                        break;
1180                dep = va_arg(args, int);
1181        }
1182        constrs->rules_num++;
1183        va_end(args);
1184        return 0;
1185}
1186
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                               u_int32_t mask)
1201{
1202        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203        struct snd_mask *maskp = constrs_mask(constrs, var);
1204        *maskp->bits &= mask;
1205        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206        if (*maskp->bits == 0)
1207                return -EINVAL;
1208        return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222                                 u_int64_t mask)
1223{
1224        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225        struct snd_mask *maskp = constrs_mask(constrs, var);
1226        maskp->bits[0] &= (u_int32_t)mask;
1227        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229        if (! maskp->bits[0] && ! maskp->bits[1])
1230                return -EINVAL;
1231        return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248        return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
1250
1251EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1252
1253/**
1254 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1255 * @runtime: PCM runtime instance
1256 * @var: hw_params variable to apply the range
1257 * @min: the minimal value
1258 * @max: the maximal value
1259 * 
1260 * Apply the min/max range constraint to an interval parameter.
1261 *
1262 * Return: Positive if the value is changed, zero if it's not changed, or a
1263 * negative error code.
1264 */
1265int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1266                                 unsigned int min, unsigned int max)
1267{
1268        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1269        struct snd_interval t;
1270        t.min = min;
1271        t.max = max;
1272        t.openmin = t.openmax = 0;
1273        t.integer = 0;
1274        return snd_interval_refine(constrs_interval(constrs, var), &t);
1275}
1276
1277EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1278
1279static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1280                                struct snd_pcm_hw_rule *rule)
1281{
1282        struct snd_pcm_hw_constraint_list *list = rule->private;
1283        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1284}               
1285
1286
1287/**
1288 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1289 * @runtime: PCM runtime instance
1290 * @cond: condition bits
1291 * @var: hw_params variable to apply the list constraint
1292 * @l: list
1293 * 
1294 * Apply the list of constraints to an interval parameter.
1295 *
1296 * Return: Zero if successful, or a negative error code on failure.
1297 */
1298int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1299                               unsigned int cond,
1300                               snd_pcm_hw_param_t var,
1301                               const struct snd_pcm_hw_constraint_list *l)
1302{
1303        return snd_pcm_hw_rule_add(runtime, cond, var,
1304                                   snd_pcm_hw_rule_list, (void *)l,
1305                                   var, -1);
1306}
1307
1308EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1309
1310static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1311                                  struct snd_pcm_hw_rule *rule)
1312{
1313        struct snd_pcm_hw_constraint_ranges *r = rule->private;
1314        return snd_interval_ranges(hw_param_interval(params, rule->var),
1315                                   r->count, r->ranges, r->mask);
1316}
1317
1318
1319/**
1320 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1321 * @runtime: PCM runtime instance
1322 * @cond: condition bits
1323 * @var: hw_params variable to apply the list of range constraints
1324 * @r: ranges
1325 *
1326 * Apply the list of range constraints to an interval parameter.
1327 *
1328 * Return: Zero if successful, or a negative error code on failure.
1329 */
1330int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1331                                 unsigned int cond,
1332                                 snd_pcm_hw_param_t var,
1333                                 const struct snd_pcm_hw_constraint_ranges *r)
1334{
1335        return snd_pcm_hw_rule_add(runtime, cond, var,
1336                                   snd_pcm_hw_rule_ranges, (void *)r,
1337                                   var, -1);
1338}
1339EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1340
1341static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1342                                   struct snd_pcm_hw_rule *rule)
1343{
1344        const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1345        unsigned int num = 0, den = 0;
1346        int err;
1347        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1348                                  r->nrats, r->rats, &num, &den);
1349        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1350                params->rate_num = num;
1351                params->rate_den = den;
1352        }
1353        return err;
1354}
1355
1356/**
1357 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1358 * @runtime: PCM runtime instance
1359 * @cond: condition bits
1360 * @var: hw_params variable to apply the ratnums constraint
1361 * @r: struct snd_ratnums constriants
1362 *
1363 * Return: Zero if successful, or a negative error code on failure.
1364 */
1365int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1366                                  unsigned int cond,
1367                                  snd_pcm_hw_param_t var,
1368                                  const struct snd_pcm_hw_constraint_ratnums *r)
1369{
1370        return snd_pcm_hw_rule_add(runtime, cond, var,
1371                                   snd_pcm_hw_rule_ratnums, (void *)r,
1372                                   var, -1);
1373}
1374
1375EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1376
1377static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1378                                   struct snd_pcm_hw_rule *rule)
1379{
1380        const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1381        unsigned int num = 0, den = 0;
1382        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1383                                  r->nrats, r->rats, &num, &den);
1384        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1385                params->rate_num = num;
1386                params->rate_den = den;
1387        }
1388        return err;
1389}
1390
1391/**
1392 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1393 * @runtime: PCM runtime instance
1394 * @cond: condition bits
1395 * @var: hw_params variable to apply the ratdens constraint
1396 * @r: struct snd_ratdens constriants
1397 *
1398 * Return: Zero if successful, or a negative error code on failure.
1399 */
1400int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1401                                  unsigned int cond,
1402                                  snd_pcm_hw_param_t var,
1403                                  const struct snd_pcm_hw_constraint_ratdens *r)
1404{
1405        return snd_pcm_hw_rule_add(runtime, cond, var,
1406                                   snd_pcm_hw_rule_ratdens, (void *)r,
1407                                   var, -1);
1408}
1409
1410EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1411
1412static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1413                                  struct snd_pcm_hw_rule *rule)
1414{
1415        unsigned int l = (unsigned long) rule->private;
1416        int width = l & 0xffff;
1417        unsigned int msbits = l >> 16;
1418        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1419
1420        if (!snd_interval_single(i))
1421                return 0;
1422
1423        if ((snd_interval_value(i) == width) ||
1424            (width == 0 && snd_interval_value(i) > msbits))
1425                params->msbits = min_not_zero(params->msbits, msbits);
1426
1427        return 0;
1428}
1429
1430/**
1431 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1432 * @runtime: PCM runtime instance
1433 * @cond: condition bits
1434 * @width: sample bits width
1435 * @msbits: msbits width
1436 *
1437 * This constraint will set the number of most significant bits (msbits) if a
1438 * sample format with the specified width has been select. If width is set to 0
1439 * the msbits will be set for any sample format with a width larger than the
1440 * specified msbits.
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1445                                 unsigned int cond,
1446                                 unsigned int width,
1447                                 unsigned int msbits)
1448{
1449        unsigned long l = (msbits << 16) | width;
1450        return snd_pcm_hw_rule_add(runtime, cond, -1,
1451                                    snd_pcm_hw_rule_msbits,
1452                                    (void*) l,
1453                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1454}
1455
1456EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1457
1458static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1459                                struct snd_pcm_hw_rule *rule)
1460{
1461        unsigned long step = (unsigned long) rule->private;
1462        return snd_interval_step(hw_param_interval(params, rule->var), step);
1463}
1464
1465/**
1466 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1467 * @runtime: PCM runtime instance
1468 * @cond: condition bits
1469 * @var: hw_params variable to apply the step constraint
1470 * @step: step size
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1475                               unsigned int cond,
1476                               snd_pcm_hw_param_t var,
1477                               unsigned long step)
1478{
1479        return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                                   snd_pcm_hw_rule_step, (void *) step,
1481                                   var, -1);
1482}
1483
1484EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1485
1486static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1487{
1488        static unsigned int pow2_sizes[] = {
1489                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1490                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1491                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1492                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1493        };
1494        return snd_interval_list(hw_param_interval(params, rule->var),
1495                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1496}               
1497
1498/**
1499 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1500 * @runtime: PCM runtime instance
1501 * @cond: condition bits
1502 * @var: hw_params variable to apply the power-of-2 constraint
1503 *
1504 * Return: Zero if successful, or a negative error code on failure.
1505 */
1506int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1507                               unsigned int cond,
1508                               snd_pcm_hw_param_t var)
1509{
1510        return snd_pcm_hw_rule_add(runtime, cond, var, 
1511                                   snd_pcm_hw_rule_pow2, NULL,
1512                                   var, -1);
1513}
1514
1515EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1516
1517static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1518                                           struct snd_pcm_hw_rule *rule)
1519{
1520        unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1521        struct snd_interval *rate;
1522
1523        rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1524        return snd_interval_list(rate, 1, &base_rate, 0);
1525}
1526
1527/**
1528 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1529 * @runtime: PCM runtime instance
1530 * @base_rate: the rate at which the hardware does not resample
1531 *
1532 * Return: Zero if successful, or a negative error code on failure.
1533 */
1534int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1535                               unsigned int base_rate)
1536{
1537        return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1538                                   SNDRV_PCM_HW_PARAM_RATE,
1539                                   snd_pcm_hw_rule_noresample_func,
1540                                   (void *)(uintptr_t)base_rate,
1541                                   SNDRV_PCM_HW_PARAM_RATE, -1);
1542}
1543EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1544
1545static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1546                                  snd_pcm_hw_param_t var)
1547{
1548        if (hw_is_mask(var)) {
1549                snd_mask_any(hw_param_mask(params, var));
1550                params->cmask |= 1 << var;
1551                params->rmask |= 1 << var;
1552                return;
1553        }
1554        if (hw_is_interval(var)) {
1555                snd_interval_any(hw_param_interval(params, var));
1556                params->cmask |= 1 << var;
1557                params->rmask |= 1 << var;
1558                return;
1559        }
1560        snd_BUG();
1561}
1562
1563void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1564{
1565        unsigned int k;
1566        memset(params, 0, sizeof(*params));
1567        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1568                _snd_pcm_hw_param_any(params, k);
1569        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1570                _snd_pcm_hw_param_any(params, k);
1571        params->info = ~0U;
1572}
1573
1574EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1575
1576/**
1577 * snd_pcm_hw_param_value - return @params field @var value
1578 * @params: the hw_params instance
1579 * @var: parameter to retrieve
1580 * @dir: pointer to the direction (-1,0,1) or %NULL
1581 *
1582 * Return: The value for field @var if it's fixed in configuration space
1583 * defined by @params. -%EINVAL otherwise.
1584 */
1585int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1586                           snd_pcm_hw_param_t var, int *dir)
1587{
1588        if (hw_is_mask(var)) {
1589                const struct snd_mask *mask = hw_param_mask_c(params, var);
1590                if (!snd_mask_single(mask))
1591                        return -EINVAL;
1592                if (dir)
1593                        *dir = 0;
1594                return snd_mask_value(mask);
1595        }
1596        if (hw_is_interval(var)) {
1597                const struct snd_interval *i = hw_param_interval_c(params, var);
1598                if (!snd_interval_single(i))
1599                        return -EINVAL;
1600                if (dir)
1601                        *dir = i->openmin;
1602                return snd_interval_value(i);
1603        }
1604        return -EINVAL;
1605}
1606
1607EXPORT_SYMBOL(snd_pcm_hw_param_value);
1608
1609void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1610                                snd_pcm_hw_param_t var)
1611{
1612        if (hw_is_mask(var)) {
1613                snd_mask_none(hw_param_mask(params, var));
1614                params->cmask |= 1 << var;
1615                params->rmask |= 1 << var;
1616        } else if (hw_is_interval(var)) {
1617                snd_interval_none(hw_param_interval(params, var));
1618                params->cmask |= 1 << var;
1619                params->rmask |= 1 << var;
1620        } else {
1621                snd_BUG();
1622        }
1623}
1624
1625EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1626
1627static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1628                                   snd_pcm_hw_param_t var)
1629{
1630        int changed;
1631        if (hw_is_mask(var))
1632                changed = snd_mask_refine_first(hw_param_mask(params, var));
1633        else if (hw_is_interval(var))
1634                changed = snd_interval_refine_first(hw_param_interval(params, var));
1635        else
1636                return -EINVAL;
1637        if (changed) {
1638                params->cmask |= 1 << var;
1639                params->rmask |= 1 << var;
1640        }
1641        return changed;
1642}
1643
1644
1645/**
1646 * snd_pcm_hw_param_first - refine config space and return minimum value
1647 * @pcm: PCM instance
1648 * @params: the hw_params instance
1649 * @var: parameter to retrieve
1650 * @dir: pointer to the direction (-1,0,1) or %NULL
1651 *
1652 * Inside configuration space defined by @params remove from @var all
1653 * values > minimum. Reduce configuration space accordingly.
1654 *
1655 * Return: The minimum, or a negative error code on failure.
1656 */
1657int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1658                           struct snd_pcm_hw_params *params, 
1659                           snd_pcm_hw_param_t var, int *dir)
1660{
1661        int changed = _snd_pcm_hw_param_first(params, var);
1662        if (changed < 0)
1663                return changed;
1664        if (params->rmask) {
1665                int err = snd_pcm_hw_refine(pcm, params);
1666                if (snd_BUG_ON(err < 0))
1667                        return err;
1668        }
1669        return snd_pcm_hw_param_value(params, var, dir);
1670}
1671
1672EXPORT_SYMBOL(snd_pcm_hw_param_first);
1673
1674static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1675                                  snd_pcm_hw_param_t var)
1676{
1677        int changed;
1678        if (hw_is_mask(var))
1679                changed = snd_mask_refine_last(hw_param_mask(params, var));
1680        else if (hw_is_interval(var))
1681                changed = snd_interval_refine_last(hw_param_interval(params, var));
1682        else
1683                return -EINVAL;
1684        if (changed) {
1685                params->cmask |= 1 << var;
1686                params->rmask |= 1 << var;
1687        }
1688        return changed;
1689}
1690
1691
1692/**
1693 * snd_pcm_hw_param_last - refine config space and return maximum value
1694 * @pcm: PCM instance
1695 * @params: the hw_params instance
1696 * @var: parameter to retrieve
1697 * @dir: pointer to the direction (-1,0,1) or %NULL
1698 *
1699 * Inside configuration space defined by @params remove from @var all
1700 * values < maximum. Reduce configuration space accordingly.
1701 *
1702 * Return: The maximum, or a negative error code on failure.
1703 */
1704int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1705                          struct snd_pcm_hw_params *params,
1706                          snd_pcm_hw_param_t var, int *dir)
1707{
1708        int changed = _snd_pcm_hw_param_last(params, var);
1709        if (changed < 0)
1710                return changed;
1711        if (params->rmask) {
1712                int err = snd_pcm_hw_refine(pcm, params);
1713                if (snd_BUG_ON(err < 0))
1714                        return err;
1715        }
1716        return snd_pcm_hw_param_value(params, var, dir);
1717}
1718
1719EXPORT_SYMBOL(snd_pcm_hw_param_last);
1720
1721/**
1722 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1723 * @pcm: PCM instance
1724 * @params: the hw_params instance
1725 *
1726 * Choose one configuration from configuration space defined by @params.
1727 * The configuration chosen is that obtained fixing in this order:
1728 * first access, first format, first subformat, min channels,
1729 * min rate, min period time, max buffer size, min tick time
1730 *
1731 * Return: Zero if successful, or a negative error code on failure.
1732 */
1733int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1734                             struct snd_pcm_hw_params *params)
1735{
1736        static int vars[] = {
1737                SNDRV_PCM_HW_PARAM_ACCESS,
1738                SNDRV_PCM_HW_PARAM_FORMAT,
1739                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1740                SNDRV_PCM_HW_PARAM_CHANNELS,
1741                SNDRV_PCM_HW_PARAM_RATE,
1742                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1743                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1744                SNDRV_PCM_HW_PARAM_TICK_TIME,
1745                -1
1746        };
1747        int err, *v;
1748
1749        for (v = vars; *v != -1; v++) {
1750                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1751                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1752                else
1753                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1754                if (snd_BUG_ON(err < 0))
1755                        return err;
1756        }
1757        return 0;
1758}
1759
1760static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1761                                   void *arg)
1762{
1763        struct snd_pcm_runtime *runtime = substream->runtime;
1764        unsigned long flags;
1765        snd_pcm_stream_lock_irqsave(substream, flags);
1766        if (snd_pcm_running(substream) &&
1767            snd_pcm_update_hw_ptr(substream) >= 0)
1768                runtime->status->hw_ptr %= runtime->buffer_size;
1769        else {
1770                runtime->status->hw_ptr = 0;
1771                runtime->hw_ptr_wrap = 0;
1772        }
1773        snd_pcm_stream_unlock_irqrestore(substream, flags);
1774        return 0;
1775}
1776
1777static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1778                                          void *arg)
1779{
1780        struct snd_pcm_channel_info *info = arg;
1781        struct snd_pcm_runtime *runtime = substream->runtime;
1782        int width;
1783        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1784                info->offset = -1;
1785                return 0;
1786        }
1787        width = snd_pcm_format_physical_width(runtime->format);
1788        if (width < 0)
1789                return width;
1790        info->offset = 0;
1791        switch (runtime->access) {
1792        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1793        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1794                info->first = info->channel * width;
1795                info->step = runtime->channels * width;
1796                break;
1797        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1798        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1799        {
1800                size_t size = runtime->dma_bytes / runtime->channels;
1801                info->first = info->channel * size * 8;
1802                info->step = width;
1803                break;
1804        }
1805        default:
1806                snd_BUG();
1807                break;
1808        }
1809        return 0;
1810}
1811
1812static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1813                                       void *arg)
1814{
1815        struct snd_pcm_hw_params *params = arg;
1816        snd_pcm_format_t format;
1817        int channels;
1818        ssize_t frame_size;
1819
1820        params->fifo_size = substream->runtime->hw.fifo_size;
1821        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1822                format = params_format(params);
1823                channels = params_channels(params);
1824                frame_size = snd_pcm_format_size(format, channels);
1825                if (frame_size > 0)
1826                        params->fifo_size /= (unsigned)frame_size;
1827        }
1828        return 0;
1829}
1830
1831/**
1832 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1833 * @substream: the pcm substream instance
1834 * @cmd: ioctl command
1835 * @arg: ioctl argument
1836 *
1837 * Processes the generic ioctl commands for PCM.
1838 * Can be passed as the ioctl callback for PCM ops.
1839 *
1840 * Return: Zero if successful, or a negative error code on failure.
1841 */
1842int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1843                      unsigned int cmd, void *arg)
1844{
1845        switch (cmd) {
1846        case SNDRV_PCM_IOCTL1_INFO:
1847                return 0;
1848        case SNDRV_PCM_IOCTL1_RESET:
1849                return snd_pcm_lib_ioctl_reset(substream, arg);
1850        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1851                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1852        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1853                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1854        }
1855        return -ENXIO;
1856}
1857
1858EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1859
1860/**
1861 * snd_pcm_period_elapsed - update the pcm status for the next period
1862 * @substream: the pcm substream instance
1863 *
1864 * This function is called from the interrupt handler when the
1865 * PCM has processed the period size.  It will update the current
1866 * pointer, wake up sleepers, etc.
1867 *
1868 * Even if more than one periods have elapsed since the last call, you
1869 * have to call this only once.
1870 */
1871void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1872{
1873        struct snd_pcm_runtime *runtime;
1874        unsigned long flags;
1875
1876        if (PCM_RUNTIME_CHECK(substream))
1877                return;
1878        runtime = substream->runtime;
1879
1880        snd_pcm_stream_lock_irqsave(substream, flags);
1881        if (!snd_pcm_running(substream) ||
1882            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1883                goto _end;
1884
1885#ifdef CONFIG_SND_PCM_TIMER
1886        if (substream->timer_running)
1887                snd_timer_interrupt(substream->timer, 1);
1888#endif
1889 _end:
1890        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891        snd_pcm_stream_unlock_irqrestore(substream, flags);
1892}
1893
1894EXPORT_SYMBOL(snd_pcm_period_elapsed);
1895
1896/*
1897 * Wait until avail_min data becomes available
1898 * Returns a negative error code if any error occurs during operation.
1899 * The available space is stored on availp.  When err = 0 and avail = 0
1900 * on the capture stream, it indicates the stream is in DRAINING state.
1901 */
1902static int wait_for_avail(struct snd_pcm_substream *substream,
1903                              snd_pcm_uframes_t *availp)
1904{
1905        struct snd_pcm_runtime *runtime = substream->runtime;
1906        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1907        wait_queue_t wait;
1908        int err = 0;
1909        snd_pcm_uframes_t avail = 0;
1910        long wait_time, tout;
1911
1912        init_waitqueue_entry(&wait, current);
1913        set_current_state(TASK_INTERRUPTIBLE);
1914        add_wait_queue(&runtime->tsleep, &wait);
1915
1916        if (runtime->no_period_wakeup)
1917                wait_time = MAX_SCHEDULE_TIMEOUT;
1918        else {
1919                wait_time = 10;
1920                if (runtime->rate) {
1921                        long t = runtime->period_size * 2 / runtime->rate;
1922                        wait_time = max(t, wait_time);
1923                }
1924                wait_time = msecs_to_jiffies(wait_time * 1000);
1925        }
1926
1927        for (;;) {
1928                if (signal_pending(current)) {
1929                        err = -ERESTARTSYS;
1930                        break;
1931                }
1932
1933                /*
1934                 * We need to check if space became available already
1935                 * (and thus the wakeup happened already) first to close
1936                 * the race of space already having become available.
1937                 * This check must happen after been added to the waitqueue
1938                 * and having current state be INTERRUPTIBLE.
1939                 */
1940                if (is_playback)
1941                        avail = snd_pcm_playback_avail(runtime);
1942                else
1943                        avail = snd_pcm_capture_avail(runtime);
1944                if (avail >= runtime->twake)
1945                        break;
1946                snd_pcm_stream_unlock_irq(substream);
1947
1948                tout = schedule_timeout(wait_time);
1949
1950                snd_pcm_stream_lock_irq(substream);
1951                set_current_state(TASK_INTERRUPTIBLE);
1952                switch (runtime->status->state) {
1953                case SNDRV_PCM_STATE_SUSPENDED:
1954                        err = -ESTRPIPE;
1955                        goto _endloop;
1956                case SNDRV_PCM_STATE_XRUN:
1957                        err = -EPIPE;
1958                        goto _endloop;
1959                case SNDRV_PCM_STATE_DRAINING:
1960                        if (is_playback)
1961                                err = -EPIPE;
1962                        else 
1963                                avail = 0; /* indicate draining */
1964                        goto _endloop;
1965                case SNDRV_PCM_STATE_OPEN:
1966                case SNDRV_PCM_STATE_SETUP:
1967                case SNDRV_PCM_STATE_DISCONNECTED:
1968                        err = -EBADFD;
1969                        goto _endloop;
1970                case SNDRV_PCM_STATE_PAUSED:
1971                        continue;
1972                }
1973                if (!tout) {
1974                        pcm_dbg(substream->pcm,
1975                                "%s write error (DMA or IRQ trouble?)\n",
1976                                is_playback ? "playback" : "capture");
1977                        err = -EIO;
1978                        break;
1979                }
1980        }
1981 _endloop:
1982        set_current_state(TASK_RUNNING);
1983        remove_wait_queue(&runtime->tsleep, &wait);
1984        *availp = avail;
1985        return err;
1986}
1987        
1988static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1989                                      unsigned int hwoff,
1990                                      unsigned long data, unsigned int off,
1991                                      snd_pcm_uframes_t frames)
1992{
1993        struct snd_pcm_runtime *runtime = substream->runtime;
1994        int err;
1995        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1996        if (substream->ops->copy) {
1997                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1998                        return err;
1999        } else {
2000                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2001                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2002                        return -EFAULT;
2003        }
2004        return 0;
2005}
2006 
2007typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2008                          unsigned long data, unsigned int off,
2009                          snd_pcm_uframes_t size);
2010
2011static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2012                                            unsigned long data,
2013                                            snd_pcm_uframes_t size,
2014                                            int nonblock,
2015                                            transfer_f transfer)
2016{
2017        struct snd_pcm_runtime *runtime = substream->runtime;
2018        snd_pcm_uframes_t xfer = 0;
2019        snd_pcm_uframes_t offset = 0;
2020        snd_pcm_uframes_t avail;
2021        int err = 0;
2022
2023        if (size == 0)
2024                return 0;
2025
2026        snd_pcm_stream_lock_irq(substream);
2027        switch (runtime->status->state) {
2028        case SNDRV_PCM_STATE_PREPARED:
2029        case SNDRV_PCM_STATE_RUNNING:
2030        case SNDRV_PCM_STATE_PAUSED:
2031                break;
2032        case SNDRV_PCM_STATE_XRUN:
2033                err = -EPIPE;
2034                goto _end_unlock;
2035        case SNDRV_PCM_STATE_SUSPENDED:
2036                err = -ESTRPIPE;
2037                goto _end_unlock;
2038        default:
2039                err = -EBADFD;
2040                goto _end_unlock;
2041        }
2042
2043        runtime->twake = runtime->control->avail_min ? : 1;
2044        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2045                snd_pcm_update_hw_ptr(substream);
2046        avail = snd_pcm_playback_avail(runtime);
2047        while (size > 0) {
2048                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2049                snd_pcm_uframes_t cont;
2050                if (!avail) {
2051                        if (nonblock) {
2052                                err = -EAGAIN;
2053                                goto _end_unlock;
2054                        }
2055                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2056                                        runtime->control->avail_min ? : 1);
2057                        err = wait_for_avail(substream, &avail);
2058                        if (err < 0)
2059                                goto _end_unlock;
2060                }
2061                frames = size > avail ? avail : size;
2062                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2063                if (frames > cont)
2064                        frames = cont;
2065                if (snd_BUG_ON(!frames)) {
2066                        runtime->twake = 0;
2067                        snd_pcm_stream_unlock_irq(substream);
2068                        return -EINVAL;
2069                }
2070                appl_ptr = runtime->control->appl_ptr;
2071                appl_ofs = appl_ptr % runtime->buffer_size;
2072                snd_pcm_stream_unlock_irq(substream);
2073                err = transfer(substream, appl_ofs, data, offset, frames);
2074                snd_pcm_stream_lock_irq(substream);
2075                if (err < 0)
2076                        goto _end_unlock;
2077                switch (runtime->status->state) {
2078                case SNDRV_PCM_STATE_XRUN:
2079                        err = -EPIPE;
2080                        goto _end_unlock;
2081                case SNDRV_PCM_STATE_SUSPENDED:
2082                        err = -ESTRPIPE;
2083                        goto _end_unlock;
2084                default:
2085                        break;
2086                }
2087                appl_ptr += frames;
2088                if (appl_ptr >= runtime->boundary)
2089                        appl_ptr -= runtime->boundary;
2090                runtime->control->appl_ptr = appl_ptr;
2091                if (substream->ops->ack)
2092                        substream->ops->ack(substream);
2093
2094                offset += frames;
2095                size -= frames;
2096                xfer += frames;
2097                avail -= frames;
2098                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2099                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2100                        err = snd_pcm_start(substream);
2101                        if (err < 0)
2102                                goto _end_unlock;
2103                }
2104        }
2105 _end_unlock:
2106        runtime->twake = 0;
2107        if (xfer > 0 && err >= 0)
2108                snd_pcm_update_state(substream, runtime);
2109        snd_pcm_stream_unlock_irq(substream);
2110        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2111}
2112
2113/* sanity-check for read/write methods */
2114static int pcm_sanity_check(struct snd_pcm_substream *substream)
2115{
2116        struct snd_pcm_runtime *runtime;
2117        if (PCM_RUNTIME_CHECK(substream))
2118                return -ENXIO;
2119        runtime = substream->runtime;
2120        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2121                return -EINVAL;
2122        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2123                return -EBADFD;
2124        return 0;
2125}
2126
2127snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2128{
2129        struct snd_pcm_runtime *runtime;
2130        int nonblock;
2131        int err;
2132
2133        err = pcm_sanity_check(substream);
2134        if (err < 0)
2135                return err;
2136        runtime = substream->runtime;
2137        nonblock = !!(substream->f_flags & O_NONBLOCK);
2138
2139        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2140            runtime->channels > 1)
2141                return -EINVAL;
2142        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2143                                  snd_pcm_lib_write_transfer);
2144}
2145
2146EXPORT_SYMBOL(snd_pcm_lib_write);
2147
2148static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2149                                       unsigned int hwoff,
2150                                       unsigned long data, unsigned int off,
2151                                       snd_pcm_uframes_t frames)
2152{
2153        struct snd_pcm_runtime *runtime = substream->runtime;
2154        int err;
2155        void __user **bufs = (void __user **)data;
2156        int channels = runtime->channels;
2157        int c;
2158        if (substream->ops->copy) {
2159                if (snd_BUG_ON(!substream->ops->silence))
2160                        return -EINVAL;
2161                for (c = 0; c < channels; ++c, ++bufs) {
2162                        if (*bufs == NULL) {
2163                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2164                                        return err;
2165                        } else {
2166                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2167                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2168                                        return err;
2169                        }
2170                }
2171        } else {
2172                /* default transfer behaviour */
2173                size_t dma_csize = runtime->dma_bytes / channels;
2174                for (c = 0; c < channels; ++c, ++bufs) {
2175                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2176                        if (*bufs == NULL) {
2177                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2178                        } else {
2179                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2180                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2181                                        return -EFAULT;
2182                        }
2183                }
2184        }
2185        return 0;
2186}
2187 
2188snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2189                                     void __user **bufs,
2190                                     snd_pcm_uframes_t frames)
2191{
2192        struct snd_pcm_runtime *runtime;
2193        int nonblock;
2194        int err;
2195
2196        err = pcm_sanity_check(substream);
2197        if (err < 0)
2198                return err;
2199        runtime = substream->runtime;
2200        nonblock = !!(substream->f_flags & O_NONBLOCK);
2201
2202        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2203                return -EINVAL;
2204        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2205                                  nonblock, snd_pcm_lib_writev_transfer);
2206}
2207
2208EXPORT_SYMBOL(snd_pcm_lib_writev);
2209
2210static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2211                                     unsigned int hwoff,
2212                                     unsigned long data, unsigned int off,
2213                                     snd_pcm_uframes_t frames)
2214{
2215        struct snd_pcm_runtime *runtime = substream->runtime;
2216        int err;
2217        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2218        if (substream->ops->copy) {
2219                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2220                        return err;
2221        } else {
2222                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2223                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2224                        return -EFAULT;
2225        }
2226        return 0;
2227}
2228
2229static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2230                                           unsigned long data,
2231                                           snd_pcm_uframes_t size,
2232                                           int nonblock,
2233                                           transfer_f transfer)
2234{
2235        struct snd_pcm_runtime *runtime = substream->runtime;
2236        snd_pcm_uframes_t xfer = 0;
2237        snd_pcm_uframes_t offset = 0;
2238        snd_pcm_uframes_t avail;
2239        int err = 0;
2240
2241        if (size == 0)
2242                return 0;
2243
2244        snd_pcm_stream_lock_irq(substream);
2245        switch (runtime->status->state) {
2246        case SNDRV_PCM_STATE_PREPARED:
2247                if (size >= runtime->start_threshold) {
2248                        err = snd_pcm_start(substream);
2249                        if (err < 0)
2250                                goto _end_unlock;
2251                }
2252                break;
2253        case SNDRV_PCM_STATE_DRAINING:
2254        case SNDRV_PCM_STATE_RUNNING:
2255        case SNDRV_PCM_STATE_PAUSED:
2256                break;
2257        case SNDRV_PCM_STATE_XRUN:
2258                err = -EPIPE;
2259                goto _end_unlock;
2260        case SNDRV_PCM_STATE_SUSPENDED:
2261                err = -ESTRPIPE;
2262                goto _end_unlock;
2263        default:
2264                err = -EBADFD;
2265                goto _end_unlock;
2266        }
2267
2268        runtime->twake = runtime->control->avail_min ? : 1;
2269        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2270                snd_pcm_update_hw_ptr(substream);
2271        avail = snd_pcm_capture_avail(runtime);
2272        while (size > 0) {
2273                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2274                snd_pcm_uframes_t cont;
2275                if (!avail) {
2276                        if (runtime->status->state ==
2277                            SNDRV_PCM_STATE_DRAINING) {
2278                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2279                                goto _end_unlock;
2280                        }
2281                        if (nonblock) {
2282                                err = -EAGAIN;
2283                                goto _end_unlock;
2284                        }
2285                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2286                                        runtime->control->avail_min ? : 1);
2287                        err = wait_for_avail(substream, &avail);
2288                        if (err < 0)
2289                                goto _end_unlock;
2290                        if (!avail)
2291                                continue; /* draining */
2292                }
2293                frames = size > avail ? avail : size;
2294                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2295                if (frames > cont)
2296                        frames = cont;
2297                if (snd_BUG_ON(!frames)) {
2298                        runtime->twake = 0;
2299                        snd_pcm_stream_unlock_irq(substream);
2300                        return -EINVAL;
2301                }
2302                appl_ptr = runtime->control->appl_ptr;
2303                appl_ofs = appl_ptr % runtime->buffer_size;
2304                snd_pcm_stream_unlock_irq(substream);
2305                err = transfer(substream, appl_ofs, data, offset, frames);
2306                snd_pcm_stream_lock_irq(substream);
2307                if (err < 0)
2308                        goto _end_unlock;
2309                switch (runtime->status->state) {
2310                case SNDRV_PCM_STATE_XRUN:
2311                        err = -EPIPE;
2312                        goto _end_unlock;
2313                case SNDRV_PCM_STATE_SUSPENDED:
2314                        err = -ESTRPIPE;
2315                        goto _end_unlock;
2316                default:
2317                        break;
2318                }
2319                appl_ptr += frames;
2320                if (appl_ptr >= runtime->boundary)
2321                        appl_ptr -= runtime->boundary;
2322                runtime->control->appl_ptr = appl_ptr;
2323                if (substream->ops->ack)
2324                        substream->ops->ack(substream);
2325
2326                offset += frames;
2327                size -= frames;
2328                xfer += frames;
2329                avail -= frames;
2330        }
2331 _end_unlock:
2332        runtime->twake = 0;
2333        if (xfer > 0 && err >= 0)
2334                snd_pcm_update_state(substream, runtime);
2335        snd_pcm_stream_unlock_irq(substream);
2336        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2337}
2338
2339snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2340{
2341        struct snd_pcm_runtime *runtime;
2342        int nonblock;
2343        int err;
2344        
2345        err = pcm_sanity_check(substream);
2346        if (err < 0)
2347                return err;
2348        runtime = substream->runtime;
2349        nonblock = !!(substream->f_flags & O_NONBLOCK);
2350        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2351                return -EINVAL;
2352        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2353}
2354
2355EXPORT_SYMBOL(snd_pcm_lib_read);
2356
2357static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2358                                      unsigned int hwoff,
2359                                      unsigned long data, unsigned int off,
2360                                      snd_pcm_uframes_t frames)
2361{
2362        struct snd_pcm_runtime *runtime = substream->runtime;
2363        int err;
2364        void __user **bufs = (void __user **)data;
2365        int channels = runtime->channels;
2366        int c;
2367        if (substream->ops->copy) {
2368                for (c = 0; c < channels; ++c, ++bufs) {
2369                        char __user *buf;
2370                        if (*bufs == NULL)
2371                                continue;
2372                        buf = *bufs + samples_to_bytes(runtime, off);
2373                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2374                                return err;
2375                }
2376        } else {
2377                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2378                for (c = 0; c < channels; ++c, ++bufs) {
2379                        char *hwbuf;
2380                        char __user *buf;
2381                        if (*bufs == NULL)
2382                                continue;
2383
2384                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2385                        buf = *bufs + samples_to_bytes(runtime, off);
2386                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2387                                return -EFAULT;
2388                }
2389        }
2390        return 0;
2391}
2392 
2393snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2394                                    void __user **bufs,
2395                                    snd_pcm_uframes_t frames)
2396{
2397        struct snd_pcm_runtime *runtime;
2398        int nonblock;
2399        int err;
2400
2401        err = pcm_sanity_check(substream);
2402        if (err < 0)
2403                return err;
2404        runtime = substream->runtime;
2405        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2406                return -EBADFD;
2407
2408        nonblock = !!(substream->f_flags & O_NONBLOCK);
2409        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2410                return -EINVAL;
2411        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2412}
2413
2414EXPORT_SYMBOL(snd_pcm_lib_readv);
2415
2416/*
2417 * standard channel mapping helpers
2418 */
2419
2420/* default channel maps for multi-channel playbacks, up to 8 channels */
2421const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2422        { .channels = 1,
2423          .map = { SNDRV_CHMAP_MONO } },
2424        { .channels = 2,
2425          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2426        { .channels = 4,
2427          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2429        { .channels = 6,
2430          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2433        { .channels = 8,
2434          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2437                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2438        { }
2439};
2440EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2441
2442/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2443const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2444        { .channels = 1,
2445          .map = { SNDRV_CHMAP_MONO } },
2446        { .channels = 2,
2447          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2448        { .channels = 4,
2449          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2450                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2451        { .channels = 6,
2452          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2454                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455        { .channels = 8,
2456          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2459                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2460        { }
2461};
2462EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2463
2464static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2465{
2466        if (ch > info->max_channels)
2467                return false;
2468        return !info->channel_mask || (info->channel_mask & (1U << ch));
2469}
2470
2471static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2472                              struct snd_ctl_elem_info *uinfo)
2473{
2474        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2475
2476        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2477        uinfo->count = 0;
2478        uinfo->count = info->max_channels;
2479        uinfo->value.integer.min = 0;
2480        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2481        return 0;
2482}
2483
2484/* get callback for channel map ctl element
2485 * stores the channel position firstly matching with the current channels
2486 */
2487static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2488                             struct snd_ctl_elem_value *ucontrol)
2489{
2490        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491        unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2492        struct snd_pcm_substream *substream;
2493        const struct snd_pcm_chmap_elem *map;
2494
2495        if (snd_BUG_ON(!info->chmap))
2496                return -EINVAL;
2497        substream = snd_pcm_chmap_substream(info, idx);
2498        if (!substream)
2499                return -ENODEV;
2500        memset(ucontrol->value.integer.value, 0,
2501               sizeof(ucontrol->value.integer.value));
2502        if (!substream->runtime)
2503                return 0; /* no channels set */
2504        for (map = info->chmap; map->channels; map++) {
2505                int i;
2506                if (map->channels == substream->runtime->channels &&
2507                    valid_chmap_channels(info, map->channels)) {
2508                        for (i = 0; i < map->channels; i++)
2509                                ucontrol->value.integer.value[i] = map->map[i];
2510                        return 0;
2511                }
2512        }
2513        return -EINVAL;
2514}
2515
2516/* tlv callback for channel map ctl element
2517 * expands the pre-defined channel maps in a form of TLV
2518 */
2519static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2520                             unsigned int size, unsigned int __user *tlv)
2521{
2522        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2523        const struct snd_pcm_chmap_elem *map;
2524        unsigned int __user *dst;
2525        int c, count = 0;
2526
2527        if (snd_BUG_ON(!info->chmap))
2528                return -EINVAL;
2529        if (size < 8)
2530                return -ENOMEM;
2531        if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2532                return -EFAULT;
2533        size -= 8;
2534        dst = tlv + 2;
2535        for (map = info->chmap; map->channels; map++) {
2536                int chs_bytes = map->channels * 4;
2537                if (!valid_chmap_channels(info, map->channels))
2538                        continue;
2539                if (size < 8)
2540                        return -ENOMEM;
2541                if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2542                    put_user(chs_bytes, dst + 1))
2543                        return -EFAULT;
2544                dst += 2;
2545                size -= 8;
2546                count += 8;
2547                if (size < chs_bytes)
2548                        return -ENOMEM;
2549                size -= chs_bytes;
2550                count += chs_bytes;
2551                for (c = 0; c < map->channels; c++) {
2552                        if (put_user(map->map[c], dst))
2553                                return -EFAULT;
2554                        dst++;
2555                }
2556        }
2557        if (put_user(count, tlv + 1))
2558                return -EFAULT;
2559        return 0;
2560}
2561
2562static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2563{
2564        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2565        info->pcm->streams[info->stream].chmap_kctl = NULL;
2566        kfree(info);
2567}
2568
2569/**
2570 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2571 * @pcm: the assigned PCM instance
2572 * @stream: stream direction
2573 * @chmap: channel map elements (for query)
2574 * @max_channels: the max number of channels for the stream
2575 * @private_value: the value passed to each kcontrol's private_value field
2576 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2577 *
2578 * Create channel-mapping control elements assigned to the given PCM stream(s).
2579 * Return: Zero if successful, or a negative error value.
2580 */
2581int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2582                           const struct snd_pcm_chmap_elem *chmap,
2583                           int max_channels,
2584                           unsigned long private_value,
2585                           struct snd_pcm_chmap **info_ret)
2586{
2587        struct snd_pcm_chmap *info;
2588        struct snd_kcontrol_new knew = {
2589                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2590                .access = SNDRV_CTL_ELEM_ACCESS_READ |
2591                        SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2592                        SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2593                .info = pcm_chmap_ctl_info,
2594                .get = pcm_chmap_ctl_get,
2595                .tlv.c = pcm_chmap_ctl_tlv,
2596        };
2597        int err;
2598
2599        if (WARN_ON(pcm->streams[stream].chmap_kctl))
2600                return -EBUSY;
2601        info = kzalloc(sizeof(*info), GFP_KERNEL);
2602        if (!info)
2603                return -ENOMEM;
2604        info->pcm = pcm;
2605        info->stream = stream;
2606        info->chmap = chmap;
2607        info->max_channels = max_channels;
2608        if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2609                knew.name = "Playback Channel Map";
2610        else
2611                knew.name = "Capture Channel Map";
2612        knew.device = pcm->device;
2613        knew.count = pcm->streams[stream].substream_count;
2614        knew.private_value = private_value;
2615        info->kctl = snd_ctl_new1(&knew, info);
2616        if (!info->kctl) {
2617                kfree(info);
2618                return -ENOMEM;
2619        }
2620        info->kctl->private_free = pcm_chmap_ctl_private_free;
2621        err = snd_ctl_add(pcm->card, info->kctl);
2622        if (err < 0)
2623                return err;
2624        pcm->streams[stream].chmap_kctl = info->kctl;
2625        if (info_ret)
2626                *info_ret = info;
2627        return 0;
2628}
2629EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2630