linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7/* For the CLR_() macros */
   8#include <pthread.h>
   9
  10#include "../perf.h"
  11#include "../builtin.h"
  12#include "../util/util.h"
  13#include <subcmd/parse-options.h>
  14#include "../util/cloexec.h"
  15
  16#include "bench.h"
  17
  18#include <errno.h>
  19#include <sched.h>
  20#include <stdio.h>
  21#include <assert.h>
  22#include <malloc.h>
  23#include <signal.h>
  24#include <stdlib.h>
  25#include <string.h>
  26#include <unistd.h>
  27#include <sys/mman.h>
  28#include <sys/time.h>
  29#include <sys/resource.h>
  30#include <sys/wait.h>
  31#include <sys/prctl.h>
  32#include <sys/types.h>
  33#include <linux/time64.h>
  34
  35#include <numa.h>
  36#include <numaif.h>
  37
  38/*
  39 * Regular printout to the terminal, supressed if -q is specified:
  40 */
  41#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  42
  43/*
  44 * Debug printf:
  45 */
  46#undef dprintf
  47#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  48
  49struct thread_data {
  50        int                     curr_cpu;
  51        cpu_set_t               bind_cpumask;
  52        int                     bind_node;
  53        u8                      *process_data;
  54        int                     process_nr;
  55        int                     thread_nr;
  56        int                     task_nr;
  57        unsigned int            loops_done;
  58        u64                     val;
  59        u64                     runtime_ns;
  60        u64                     system_time_ns;
  61        u64                     user_time_ns;
  62        double                  speed_gbs;
  63        pthread_mutex_t         *process_lock;
  64};
  65
  66/* Parameters set by options: */
  67
  68struct params {
  69        /* Startup synchronization: */
  70        bool                    serialize_startup;
  71
  72        /* Task hierarchy: */
  73        int                     nr_proc;
  74        int                     nr_threads;
  75
  76        /* Working set sizes: */
  77        const char              *mb_global_str;
  78        const char              *mb_proc_str;
  79        const char              *mb_proc_locked_str;
  80        const char              *mb_thread_str;
  81
  82        double                  mb_global;
  83        double                  mb_proc;
  84        double                  mb_proc_locked;
  85        double                  mb_thread;
  86
  87        /* Access patterns to the working set: */
  88        bool                    data_reads;
  89        bool                    data_writes;
  90        bool                    data_backwards;
  91        bool                    data_zero_memset;
  92        bool                    data_rand_walk;
  93        u32                     nr_loops;
  94        u32                     nr_secs;
  95        u32                     sleep_usecs;
  96
  97        /* Working set initialization: */
  98        bool                    init_zero;
  99        bool                    init_random;
 100        bool                    init_cpu0;
 101
 102        /* Misc options: */
 103        int                     show_details;
 104        int                     run_all;
 105        int                     thp;
 106
 107        long                    bytes_global;
 108        long                    bytes_process;
 109        long                    bytes_process_locked;
 110        long                    bytes_thread;
 111
 112        int                     nr_tasks;
 113        bool                    show_quiet;
 114
 115        bool                    show_convergence;
 116        bool                    measure_convergence;
 117
 118        int                     perturb_secs;
 119        int                     nr_cpus;
 120        int                     nr_nodes;
 121
 122        /* Affinity options -C and -N: */
 123        char                    *cpu_list_str;
 124        char                    *node_list_str;
 125};
 126
 127
 128/* Global, read-writable area, accessible to all processes and threads: */
 129
 130struct global_info {
 131        u8                      *data;
 132
 133        pthread_mutex_t         startup_mutex;
 134        int                     nr_tasks_started;
 135
 136        pthread_mutex_t         startup_done_mutex;
 137
 138        pthread_mutex_t         start_work_mutex;
 139        int                     nr_tasks_working;
 140
 141        pthread_mutex_t         stop_work_mutex;
 142        u64                     bytes_done;
 143
 144        struct thread_data      *threads;
 145
 146        /* Convergence latency measurement: */
 147        bool                    all_converged;
 148        bool                    stop_work;
 149
 150        int                     print_once;
 151
 152        struct params           p;
 153};
 154
 155static struct global_info       *g = NULL;
 156
 157static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 158static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 159
 160struct params p0;
 161
 162static const struct option options[] = {
 163        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 164        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 165
 166        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 167        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 168        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 169        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 170
 171        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 172        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 173        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 174
 175        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
 176        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 177        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 178        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 179        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 180
 181
 182        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 183        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 184        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 185        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 186
 187        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 188        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 189        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 190        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 191        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 192        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 193        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 194
 195        /* Special option string parsing callbacks: */
 196        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 197                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 198                        parse_cpus_opt),
 199        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 200                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 201                        parse_nodes_opt),
 202        OPT_END()
 203};
 204
 205static const char * const bench_numa_usage[] = {
 206        "perf bench numa <options>",
 207        NULL
 208};
 209
 210static const char * const numa_usage[] = {
 211        "perf bench numa mem [<options>]",
 212        NULL
 213};
 214
 215static cpu_set_t bind_to_cpu(int target_cpu)
 216{
 217        cpu_set_t orig_mask, mask;
 218        int ret;
 219
 220        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 221        BUG_ON(ret);
 222
 223        CPU_ZERO(&mask);
 224
 225        if (target_cpu == -1) {
 226                int cpu;
 227
 228                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 229                        CPU_SET(cpu, &mask);
 230        } else {
 231                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 232                CPU_SET(target_cpu, &mask);
 233        }
 234
 235        ret = sched_setaffinity(0, sizeof(mask), &mask);
 236        BUG_ON(ret);
 237
 238        return orig_mask;
 239}
 240
 241static cpu_set_t bind_to_node(int target_node)
 242{
 243        int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 244        cpu_set_t orig_mask, mask;
 245        int cpu;
 246        int ret;
 247
 248        BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 249        BUG_ON(!cpus_per_node);
 250
 251        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 252        BUG_ON(ret);
 253
 254        CPU_ZERO(&mask);
 255
 256        if (target_node == -1) {
 257                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 258                        CPU_SET(cpu, &mask);
 259        } else {
 260                int cpu_start = (target_node + 0) * cpus_per_node;
 261                int cpu_stop  = (target_node + 1) * cpus_per_node;
 262
 263                BUG_ON(cpu_stop > g->p.nr_cpus);
 264
 265                for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 266                        CPU_SET(cpu, &mask);
 267        }
 268
 269        ret = sched_setaffinity(0, sizeof(mask), &mask);
 270        BUG_ON(ret);
 271
 272        return orig_mask;
 273}
 274
 275static void bind_to_cpumask(cpu_set_t mask)
 276{
 277        int ret;
 278
 279        ret = sched_setaffinity(0, sizeof(mask), &mask);
 280        BUG_ON(ret);
 281}
 282
 283static void mempol_restore(void)
 284{
 285        int ret;
 286
 287        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 288
 289        BUG_ON(ret);
 290}
 291
 292static void bind_to_memnode(int node)
 293{
 294        unsigned long nodemask;
 295        int ret;
 296
 297        if (node == -1)
 298                return;
 299
 300        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 301        nodemask = 1L << node;
 302
 303        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 304        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 305
 306        BUG_ON(ret);
 307}
 308
 309#define HPSIZE (2*1024*1024)
 310
 311#define set_taskname(fmt...)                            \
 312do {                                                    \
 313        char name[20];                                  \
 314                                                        \
 315        snprintf(name, 20, fmt);                        \
 316        prctl(PR_SET_NAME, name);                       \
 317} while (0)
 318
 319static u8 *alloc_data(ssize_t bytes0, int map_flags,
 320                      int init_zero, int init_cpu0, int thp, int init_random)
 321{
 322        cpu_set_t orig_mask;
 323        ssize_t bytes;
 324        u8 *buf;
 325        int ret;
 326
 327        if (!bytes0)
 328                return NULL;
 329
 330        /* Allocate and initialize all memory on CPU#0: */
 331        if (init_cpu0) {
 332                orig_mask = bind_to_node(0);
 333                bind_to_memnode(0);
 334        }
 335
 336        bytes = bytes0 + HPSIZE;
 337
 338        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 339        BUG_ON(buf == (void *)-1);
 340
 341        if (map_flags == MAP_PRIVATE) {
 342                if (thp > 0) {
 343                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 344                        if (ret && !g->print_once) {
 345                                g->print_once = 1;
 346                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 347                        }
 348                }
 349                if (thp < 0) {
 350                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 351                        if (ret && !g->print_once) {
 352                                g->print_once = 1;
 353                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 354                        }
 355                }
 356        }
 357
 358        if (init_zero) {
 359                bzero(buf, bytes);
 360        } else {
 361                /* Initialize random contents, different in each word: */
 362                if (init_random) {
 363                        u64 *wbuf = (void *)buf;
 364                        long off = rand();
 365                        long i;
 366
 367                        for (i = 0; i < bytes/8; i++)
 368                                wbuf[i] = i + off;
 369                }
 370        }
 371
 372        /* Align to 2MB boundary: */
 373        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 374
 375        /* Restore affinity: */
 376        if (init_cpu0) {
 377                bind_to_cpumask(orig_mask);
 378                mempol_restore();
 379        }
 380
 381        return buf;
 382}
 383
 384static void free_data(void *data, ssize_t bytes)
 385{
 386        int ret;
 387
 388        if (!data)
 389                return;
 390
 391        ret = munmap(data, bytes);
 392        BUG_ON(ret);
 393}
 394
 395/*
 396 * Create a shared memory buffer that can be shared between processes, zeroed:
 397 */
 398static void * zalloc_shared_data(ssize_t bytes)
 399{
 400        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 401}
 402
 403/*
 404 * Create a shared memory buffer that can be shared between processes:
 405 */
 406static void * setup_shared_data(ssize_t bytes)
 407{
 408        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 409}
 410
 411/*
 412 * Allocate process-local memory - this will either be shared between
 413 * threads of this process, or only be accessed by this thread:
 414 */
 415static void * setup_private_data(ssize_t bytes)
 416{
 417        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 418}
 419
 420/*
 421 * Return a process-shared (global) mutex:
 422 */
 423static void init_global_mutex(pthread_mutex_t *mutex)
 424{
 425        pthread_mutexattr_t attr;
 426
 427        pthread_mutexattr_init(&attr);
 428        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 429        pthread_mutex_init(mutex, &attr);
 430}
 431
 432static int parse_cpu_list(const char *arg)
 433{
 434        p0.cpu_list_str = strdup(arg);
 435
 436        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 437
 438        return 0;
 439}
 440
 441static int parse_setup_cpu_list(void)
 442{
 443        struct thread_data *td;
 444        char *str0, *str;
 445        int t;
 446
 447        if (!g->p.cpu_list_str)
 448                return 0;
 449
 450        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 451
 452        str0 = str = strdup(g->p.cpu_list_str);
 453        t = 0;
 454
 455        BUG_ON(!str);
 456
 457        tprintf("# binding tasks to CPUs:\n");
 458        tprintf("#  ");
 459
 460        while (true) {
 461                int bind_cpu, bind_cpu_0, bind_cpu_1;
 462                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 463                int bind_len;
 464                int step;
 465                int mul;
 466
 467                tok = strsep(&str, ",");
 468                if (!tok)
 469                        break;
 470
 471                tok_end = strstr(tok, "-");
 472
 473                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 474                if (!tok_end) {
 475                        /* Single CPU specified: */
 476                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 477                } else {
 478                        /* CPU range specified (for example: "5-11"): */
 479                        bind_cpu_0 = atol(tok);
 480                        bind_cpu_1 = atol(tok_end + 1);
 481                }
 482
 483                step = 1;
 484                tok_step = strstr(tok, "#");
 485                if (tok_step) {
 486                        step = atol(tok_step + 1);
 487                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 488                }
 489
 490                /*
 491                 * Mask length.
 492                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 493                 * where the _4 means the next 4 CPUs are allowed.
 494                 */
 495                bind_len = 1;
 496                tok_len = strstr(tok, "_");
 497                if (tok_len) {
 498                        bind_len = atol(tok_len + 1);
 499                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 500                }
 501
 502                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 503                mul = 1;
 504                tok_mul = strstr(tok, "x");
 505                if (tok_mul) {
 506                        mul = atol(tok_mul + 1);
 507                        BUG_ON(mul <= 0);
 508                }
 509
 510                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 511
 512                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 513                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 514                        return -1;
 515                }
 516
 517                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 518                BUG_ON(bind_cpu_0 > bind_cpu_1);
 519
 520                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 521                        int i;
 522
 523                        for (i = 0; i < mul; i++) {
 524                                int cpu;
 525
 526                                if (t >= g->p.nr_tasks) {
 527                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 528                                        goto out;
 529                                }
 530                                td = g->threads + t;
 531
 532                                if (t)
 533                                        tprintf(",");
 534                                if (bind_len > 1) {
 535                                        tprintf("%2d/%d", bind_cpu, bind_len);
 536                                } else {
 537                                        tprintf("%2d", bind_cpu);
 538                                }
 539
 540                                CPU_ZERO(&td->bind_cpumask);
 541                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 542                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 543                                        CPU_SET(cpu, &td->bind_cpumask);
 544                                }
 545                                t++;
 546                        }
 547                }
 548        }
 549out:
 550
 551        tprintf("\n");
 552
 553        if (t < g->p.nr_tasks)
 554                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 555
 556        free(str0);
 557        return 0;
 558}
 559
 560static int parse_cpus_opt(const struct option *opt __maybe_unused,
 561                          const char *arg, int unset __maybe_unused)
 562{
 563        if (!arg)
 564                return -1;
 565
 566        return parse_cpu_list(arg);
 567}
 568
 569static int parse_node_list(const char *arg)
 570{
 571        p0.node_list_str = strdup(arg);
 572
 573        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 574
 575        return 0;
 576}
 577
 578static int parse_setup_node_list(void)
 579{
 580        struct thread_data *td;
 581        char *str0, *str;
 582        int t;
 583
 584        if (!g->p.node_list_str)
 585                return 0;
 586
 587        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 588
 589        str0 = str = strdup(g->p.node_list_str);
 590        t = 0;
 591
 592        BUG_ON(!str);
 593
 594        tprintf("# binding tasks to NODEs:\n");
 595        tprintf("# ");
 596
 597        while (true) {
 598                int bind_node, bind_node_0, bind_node_1;
 599                char *tok, *tok_end, *tok_step, *tok_mul;
 600                int step;
 601                int mul;
 602
 603                tok = strsep(&str, ",");
 604                if (!tok)
 605                        break;
 606
 607                tok_end = strstr(tok, "-");
 608
 609                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 610                if (!tok_end) {
 611                        /* Single NODE specified: */
 612                        bind_node_0 = bind_node_1 = atol(tok);
 613                } else {
 614                        /* NODE range specified (for example: "5-11"): */
 615                        bind_node_0 = atol(tok);
 616                        bind_node_1 = atol(tok_end + 1);
 617                }
 618
 619                step = 1;
 620                tok_step = strstr(tok, "#");
 621                if (tok_step) {
 622                        step = atol(tok_step + 1);
 623                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 624                }
 625
 626                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 627                mul = 1;
 628                tok_mul = strstr(tok, "x");
 629                if (tok_mul) {
 630                        mul = atol(tok_mul + 1);
 631                        BUG_ON(mul <= 0);
 632                }
 633
 634                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 635
 636                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 637                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 638                        return -1;
 639                }
 640
 641                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 642                BUG_ON(bind_node_0 > bind_node_1);
 643
 644                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 645                        int i;
 646
 647                        for (i = 0; i < mul; i++) {
 648                                if (t >= g->p.nr_tasks) {
 649                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 650                                        goto out;
 651                                }
 652                                td = g->threads + t;
 653
 654                                if (!t)
 655                                        tprintf(" %2d", bind_node);
 656                                else
 657                                        tprintf(",%2d", bind_node);
 658
 659                                td->bind_node = bind_node;
 660                                t++;
 661                        }
 662                }
 663        }
 664out:
 665
 666        tprintf("\n");
 667
 668        if (t < g->p.nr_tasks)
 669                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 670
 671        free(str0);
 672        return 0;
 673}
 674
 675static int parse_nodes_opt(const struct option *opt __maybe_unused,
 676                          const char *arg, int unset __maybe_unused)
 677{
 678        if (!arg)
 679                return -1;
 680
 681        return parse_node_list(arg);
 682
 683        return 0;
 684}
 685
 686#define BIT(x) (1ul << x)
 687
 688static inline uint32_t lfsr_32(uint32_t lfsr)
 689{
 690        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 691        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 692}
 693
 694/*
 695 * Make sure there's real data dependency to RAM (when read
 696 * accesses are enabled), so the compiler, the CPU and the
 697 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 698 * accesses:
 699 */
 700static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 701{
 702        if (g->p.data_reads)
 703                val += *data;
 704        if (g->p.data_writes)
 705                *data = val + 1;
 706        return val;
 707}
 708
 709/*
 710 * The worker process does two types of work, a forwards going
 711 * loop and a backwards going loop.
 712 *
 713 * We do this so that on multiprocessor systems we do not create
 714 * a 'train' of processing, with highly synchronized processes,
 715 * skewing the whole benchmark.
 716 */
 717static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 718{
 719        long words = bytes/sizeof(u64);
 720        u64 *data = (void *)__data;
 721        long chunk_0, chunk_1;
 722        u64 *d0, *d, *d1;
 723        long off;
 724        long i;
 725
 726        BUG_ON(!data && words);
 727        BUG_ON(data && !words);
 728
 729        if (!data)
 730                return val;
 731
 732        /* Very simple memset() work variant: */
 733        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 734                bzero(data, bytes);
 735                return val;
 736        }
 737
 738        /* Spread out by PID/TID nr and by loop nr: */
 739        chunk_0 = words/nr_max;
 740        chunk_1 = words/g->p.nr_loops;
 741        off = nr*chunk_0 + loop*chunk_1;
 742
 743        while (off >= words)
 744                off -= words;
 745
 746        if (g->p.data_rand_walk) {
 747                u32 lfsr = nr + loop + val;
 748                int j;
 749
 750                for (i = 0; i < words/1024; i++) {
 751                        long start, end;
 752
 753                        lfsr = lfsr_32(lfsr);
 754
 755                        start = lfsr % words;
 756                        end = min(start + 1024, words-1);
 757
 758                        if (g->p.data_zero_memset) {
 759                                bzero(data + start, (end-start) * sizeof(u64));
 760                        } else {
 761                                for (j = start; j < end; j++)
 762                                        val = access_data(data + j, val);
 763                        }
 764                }
 765        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 766
 767                d0 = data + off;
 768                d  = data + off + 1;
 769                d1 = data + words;
 770
 771                /* Process data forwards: */
 772                for (;;) {
 773                        if (unlikely(d >= d1))
 774                                d = data;
 775                        if (unlikely(d == d0))
 776                                break;
 777
 778                        val = access_data(d, val);
 779
 780                        d++;
 781                }
 782        } else {
 783                /* Process data backwards: */
 784
 785                d0 = data + off;
 786                d  = data + off - 1;
 787                d1 = data + words;
 788
 789                /* Process data forwards: */
 790                for (;;) {
 791                        if (unlikely(d < data))
 792                                d = data + words-1;
 793                        if (unlikely(d == d0))
 794                                break;
 795
 796                        val = access_data(d, val);
 797
 798                        d--;
 799                }
 800        }
 801
 802        return val;
 803}
 804
 805static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 806{
 807        unsigned int cpu;
 808
 809        cpu = sched_getcpu();
 810
 811        g->threads[task_nr].curr_cpu = cpu;
 812        prctl(0, bytes_worked);
 813}
 814
 815#define MAX_NR_NODES    64
 816
 817/*
 818 * Count the number of nodes a process's threads
 819 * are spread out on.
 820 *
 821 * A count of 1 means that the process is compressed
 822 * to a single node. A count of g->p.nr_nodes means it's
 823 * spread out on the whole system.
 824 */
 825static int count_process_nodes(int process_nr)
 826{
 827        char node_present[MAX_NR_NODES] = { 0, };
 828        int nodes;
 829        int n, t;
 830
 831        for (t = 0; t < g->p.nr_threads; t++) {
 832                struct thread_data *td;
 833                int task_nr;
 834                int node;
 835
 836                task_nr = process_nr*g->p.nr_threads + t;
 837                td = g->threads + task_nr;
 838
 839                node = numa_node_of_cpu(td->curr_cpu);
 840                if (node < 0) /* curr_cpu was likely still -1 */
 841                        return 0;
 842
 843                node_present[node] = 1;
 844        }
 845
 846        nodes = 0;
 847
 848        for (n = 0; n < MAX_NR_NODES; n++)
 849                nodes += node_present[n];
 850
 851        return nodes;
 852}
 853
 854/*
 855 * Count the number of distinct process-threads a node contains.
 856 *
 857 * A count of 1 means that the node contains only a single
 858 * process. If all nodes on the system contain at most one
 859 * process then we are well-converged.
 860 */
 861static int count_node_processes(int node)
 862{
 863        int processes = 0;
 864        int t, p;
 865
 866        for (p = 0; p < g->p.nr_proc; p++) {
 867                for (t = 0; t < g->p.nr_threads; t++) {
 868                        struct thread_data *td;
 869                        int task_nr;
 870                        int n;
 871
 872                        task_nr = p*g->p.nr_threads + t;
 873                        td = g->threads + task_nr;
 874
 875                        n = numa_node_of_cpu(td->curr_cpu);
 876                        if (n == node) {
 877                                processes++;
 878                                break;
 879                        }
 880                }
 881        }
 882
 883        return processes;
 884}
 885
 886static void calc_convergence_compression(int *strong)
 887{
 888        unsigned int nodes_min, nodes_max;
 889        int p;
 890
 891        nodes_min = -1;
 892        nodes_max =  0;
 893
 894        for (p = 0; p < g->p.nr_proc; p++) {
 895                unsigned int nodes = count_process_nodes(p);
 896
 897                if (!nodes) {
 898                        *strong = 0;
 899                        return;
 900                }
 901
 902                nodes_min = min(nodes, nodes_min);
 903                nodes_max = max(nodes, nodes_max);
 904        }
 905
 906        /* Strong convergence: all threads compress on a single node: */
 907        if (nodes_min == 1 && nodes_max == 1) {
 908                *strong = 1;
 909        } else {
 910                *strong = 0;
 911                tprintf(" {%d-%d}", nodes_min, nodes_max);
 912        }
 913}
 914
 915static void calc_convergence(double runtime_ns_max, double *convergence)
 916{
 917        unsigned int loops_done_min, loops_done_max;
 918        int process_groups;
 919        int nodes[MAX_NR_NODES];
 920        int distance;
 921        int nr_min;
 922        int nr_max;
 923        int strong;
 924        int sum;
 925        int nr;
 926        int node;
 927        int cpu;
 928        int t;
 929
 930        if (!g->p.show_convergence && !g->p.measure_convergence)
 931                return;
 932
 933        for (node = 0; node < g->p.nr_nodes; node++)
 934                nodes[node] = 0;
 935
 936        loops_done_min = -1;
 937        loops_done_max = 0;
 938
 939        for (t = 0; t < g->p.nr_tasks; t++) {
 940                struct thread_data *td = g->threads + t;
 941                unsigned int loops_done;
 942
 943                cpu = td->curr_cpu;
 944
 945                /* Not all threads have written it yet: */
 946                if (cpu < 0)
 947                        continue;
 948
 949                node = numa_node_of_cpu(cpu);
 950
 951                nodes[node]++;
 952
 953                loops_done = td->loops_done;
 954                loops_done_min = min(loops_done, loops_done_min);
 955                loops_done_max = max(loops_done, loops_done_max);
 956        }
 957
 958        nr_max = 0;
 959        nr_min = g->p.nr_tasks;
 960        sum = 0;
 961
 962        for (node = 0; node < g->p.nr_nodes; node++) {
 963                nr = nodes[node];
 964                nr_min = min(nr, nr_min);
 965                nr_max = max(nr, nr_max);
 966                sum += nr;
 967        }
 968        BUG_ON(nr_min > nr_max);
 969
 970        BUG_ON(sum > g->p.nr_tasks);
 971
 972        if (0 && (sum < g->p.nr_tasks))
 973                return;
 974
 975        /*
 976         * Count the number of distinct process groups present
 977         * on nodes - when we are converged this will decrease
 978         * to g->p.nr_proc:
 979         */
 980        process_groups = 0;
 981
 982        for (node = 0; node < g->p.nr_nodes; node++) {
 983                int processes = count_node_processes(node);
 984
 985                nr = nodes[node];
 986                tprintf(" %2d/%-2d", nr, processes);
 987
 988                process_groups += processes;
 989        }
 990
 991        distance = nr_max - nr_min;
 992
 993        tprintf(" [%2d/%-2d]", distance, process_groups);
 994
 995        tprintf(" l:%3d-%-3d (%3d)",
 996                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 997
 998        if (loops_done_min && loops_done_max) {
 999                double skew = 1.0 - (double)loops_done_min/loops_done_max;
1000
1001                tprintf(" [%4.1f%%]", skew * 100.0);
1002        }
1003
1004        calc_convergence_compression(&strong);
1005
1006        if (strong && process_groups == g->p.nr_proc) {
1007                if (!*convergence) {
1008                        *convergence = runtime_ns_max;
1009                        tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1010                        if (g->p.measure_convergence) {
1011                                g->all_converged = true;
1012                                g->stop_work = true;
1013                        }
1014                }
1015        } else {
1016                if (*convergence) {
1017                        tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1018                        *convergence = 0;
1019                }
1020                tprintf("\n");
1021        }
1022}
1023
1024static void show_summary(double runtime_ns_max, int l, double *convergence)
1025{
1026        tprintf("\r #  %5.1f%%  [%.1f mins]",
1027                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1028
1029        calc_convergence(runtime_ns_max, convergence);
1030
1031        if (g->p.show_details >= 0)
1032                fflush(stdout);
1033}
1034
1035static void *worker_thread(void *__tdata)
1036{
1037        struct thread_data *td = __tdata;
1038        struct timeval start0, start, stop, diff;
1039        int process_nr = td->process_nr;
1040        int thread_nr = td->thread_nr;
1041        unsigned long last_perturbance;
1042        int task_nr = td->task_nr;
1043        int details = g->p.show_details;
1044        int first_task, last_task;
1045        double convergence = 0;
1046        u64 val = td->val;
1047        double runtime_ns_max;
1048        u8 *global_data;
1049        u8 *process_data;
1050        u8 *thread_data;
1051        u64 bytes_done;
1052        long work_done;
1053        u32 l;
1054        struct rusage rusage;
1055
1056        bind_to_cpumask(td->bind_cpumask);
1057        bind_to_memnode(td->bind_node);
1058
1059        set_taskname("thread %d/%d", process_nr, thread_nr);
1060
1061        global_data = g->data;
1062        process_data = td->process_data;
1063        thread_data = setup_private_data(g->p.bytes_thread);
1064
1065        bytes_done = 0;
1066
1067        last_task = 0;
1068        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1069                last_task = 1;
1070
1071        first_task = 0;
1072        if (process_nr == 0 && thread_nr == 0)
1073                first_task = 1;
1074
1075        if (details >= 2) {
1076                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1077                        process_nr, thread_nr, global_data, process_data, thread_data);
1078        }
1079
1080        if (g->p.serialize_startup) {
1081                pthread_mutex_lock(&g->startup_mutex);
1082                g->nr_tasks_started++;
1083                pthread_mutex_unlock(&g->startup_mutex);
1084
1085                /* Here we will wait for the main process to start us all at once: */
1086                pthread_mutex_lock(&g->start_work_mutex);
1087                g->nr_tasks_working++;
1088
1089                /* Last one wake the main process: */
1090                if (g->nr_tasks_working == g->p.nr_tasks)
1091                        pthread_mutex_unlock(&g->startup_done_mutex);
1092
1093                pthread_mutex_unlock(&g->start_work_mutex);
1094        }
1095
1096        gettimeofday(&start0, NULL);
1097
1098        start = stop = start0;
1099        last_perturbance = start.tv_sec;
1100
1101        for (l = 0; l < g->p.nr_loops; l++) {
1102                start = stop;
1103
1104                if (g->stop_work)
1105                        break;
1106
1107                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1108                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1109                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1110
1111                if (g->p.sleep_usecs) {
1112                        pthread_mutex_lock(td->process_lock);
1113                        usleep(g->p.sleep_usecs);
1114                        pthread_mutex_unlock(td->process_lock);
1115                }
1116                /*
1117                 * Amount of work to be done under a process-global lock:
1118                 */
1119                if (g->p.bytes_process_locked) {
1120                        pthread_mutex_lock(td->process_lock);
1121                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1122                        pthread_mutex_unlock(td->process_lock);
1123                }
1124
1125                work_done = g->p.bytes_global + g->p.bytes_process +
1126                            g->p.bytes_process_locked + g->p.bytes_thread;
1127
1128                update_curr_cpu(task_nr, work_done);
1129                bytes_done += work_done;
1130
1131                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1132                        continue;
1133
1134                td->loops_done = l;
1135
1136                gettimeofday(&stop, NULL);
1137
1138                /* Check whether our max runtime timed out: */
1139                if (g->p.nr_secs) {
1140                        timersub(&stop, &start0, &diff);
1141                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1142                                g->stop_work = true;
1143                                break;
1144                        }
1145                }
1146
1147                /* Update the summary at most once per second: */
1148                if (start.tv_sec == stop.tv_sec)
1149                        continue;
1150
1151                /*
1152                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1153                 * by migrating to CPU#0:
1154                 */
1155                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1156                        cpu_set_t orig_mask;
1157                        int target_cpu;
1158                        int this_cpu;
1159
1160                        last_perturbance = stop.tv_sec;
1161
1162                        /*
1163                         * Depending on where we are running, move into
1164                         * the other half of the system, to create some
1165                         * real disturbance:
1166                         */
1167                        this_cpu = g->threads[task_nr].curr_cpu;
1168                        if (this_cpu < g->p.nr_cpus/2)
1169                                target_cpu = g->p.nr_cpus-1;
1170                        else
1171                                target_cpu = 0;
1172
1173                        orig_mask = bind_to_cpu(target_cpu);
1174
1175                        /* Here we are running on the target CPU already */
1176                        if (details >= 1)
1177                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1178
1179                        bind_to_cpumask(orig_mask);
1180                }
1181
1182                if (details >= 3) {
1183                        timersub(&stop, &start, &diff);
1184                        runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1185                        runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1186
1187                        if (details >= 0) {
1188                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1189                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1190                        }
1191                        fflush(stdout);
1192                }
1193                if (!last_task)
1194                        continue;
1195
1196                timersub(&stop, &start0, &diff);
1197                runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1198                runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1199
1200                show_summary(runtime_ns_max, l, &convergence);
1201        }
1202
1203        gettimeofday(&stop, NULL);
1204        timersub(&stop, &start0, &diff);
1205        td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1206        td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1207        td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1208
1209        getrusage(RUSAGE_THREAD, &rusage);
1210        td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1211        td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1212        td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1213        td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1214
1215        free_data(thread_data, g->p.bytes_thread);
1216
1217        pthread_mutex_lock(&g->stop_work_mutex);
1218        g->bytes_done += bytes_done;
1219        pthread_mutex_unlock(&g->stop_work_mutex);
1220
1221        return NULL;
1222}
1223
1224/*
1225 * A worker process starts a couple of threads:
1226 */
1227static void worker_process(int process_nr)
1228{
1229        pthread_mutex_t process_lock;
1230        struct thread_data *td;
1231        pthread_t *pthreads;
1232        u8 *process_data;
1233        int task_nr;
1234        int ret;
1235        int t;
1236
1237        pthread_mutex_init(&process_lock, NULL);
1238        set_taskname("process %d", process_nr);
1239
1240        /*
1241         * Pick up the memory policy and the CPU binding of our first thread,
1242         * so that we initialize memory accordingly:
1243         */
1244        task_nr = process_nr*g->p.nr_threads;
1245        td = g->threads + task_nr;
1246
1247        bind_to_memnode(td->bind_node);
1248        bind_to_cpumask(td->bind_cpumask);
1249
1250        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1251        process_data = setup_private_data(g->p.bytes_process);
1252
1253        if (g->p.show_details >= 3) {
1254                printf(" # process %2d global mem: %p, process mem: %p\n",
1255                        process_nr, g->data, process_data);
1256        }
1257
1258        for (t = 0; t < g->p.nr_threads; t++) {
1259                task_nr = process_nr*g->p.nr_threads + t;
1260                td = g->threads + task_nr;
1261
1262                td->process_data = process_data;
1263                td->process_nr   = process_nr;
1264                td->thread_nr    = t;
1265                td->task_nr      = task_nr;
1266                td->val          = rand();
1267                td->curr_cpu     = -1;
1268                td->process_lock = &process_lock;
1269
1270                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1271                BUG_ON(ret);
1272        }
1273
1274        for (t = 0; t < g->p.nr_threads; t++) {
1275                ret = pthread_join(pthreads[t], NULL);
1276                BUG_ON(ret);
1277        }
1278
1279        free_data(process_data, g->p.bytes_process);
1280        free(pthreads);
1281}
1282
1283static void print_summary(void)
1284{
1285        if (g->p.show_details < 0)
1286                return;
1287
1288        printf("\n ###\n");
1289        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1290                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1291        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1292                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1293        printf(" #      %5dx %5ldMB process shared mem operations\n",
1294                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1295        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1296                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1297
1298        printf(" ###\n");
1299
1300        printf("\n ###\n"); fflush(stdout);
1301}
1302
1303static void init_thread_data(void)
1304{
1305        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1306        int t;
1307
1308        g->threads = zalloc_shared_data(size);
1309
1310        for (t = 0; t < g->p.nr_tasks; t++) {
1311                struct thread_data *td = g->threads + t;
1312                int cpu;
1313
1314                /* Allow all nodes by default: */
1315                td->bind_node = -1;
1316
1317                /* Allow all CPUs by default: */
1318                CPU_ZERO(&td->bind_cpumask);
1319                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1320                        CPU_SET(cpu, &td->bind_cpumask);
1321        }
1322}
1323
1324static void deinit_thread_data(void)
1325{
1326        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1327
1328        free_data(g->threads, size);
1329}
1330
1331static int init(void)
1332{
1333        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1334
1335        /* Copy over options: */
1336        g->p = p0;
1337
1338        g->p.nr_cpus = numa_num_configured_cpus();
1339
1340        g->p.nr_nodes = numa_max_node() + 1;
1341
1342        /* char array in count_process_nodes(): */
1343        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1344
1345        if (g->p.show_quiet && !g->p.show_details)
1346                g->p.show_details = -1;
1347
1348        /* Some memory should be specified: */
1349        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1350                return -1;
1351
1352        if (g->p.mb_global_str) {
1353                g->p.mb_global = atof(g->p.mb_global_str);
1354                BUG_ON(g->p.mb_global < 0);
1355        }
1356
1357        if (g->p.mb_proc_str) {
1358                g->p.mb_proc = atof(g->p.mb_proc_str);
1359                BUG_ON(g->p.mb_proc < 0);
1360        }
1361
1362        if (g->p.mb_proc_locked_str) {
1363                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1364                BUG_ON(g->p.mb_proc_locked < 0);
1365                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1366        }
1367
1368        if (g->p.mb_thread_str) {
1369                g->p.mb_thread = atof(g->p.mb_thread_str);
1370                BUG_ON(g->p.mb_thread < 0);
1371        }
1372
1373        BUG_ON(g->p.nr_threads <= 0);
1374        BUG_ON(g->p.nr_proc <= 0);
1375
1376        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1377
1378        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1379        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1380        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1381        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1382
1383        g->data = setup_shared_data(g->p.bytes_global);
1384
1385        /* Startup serialization: */
1386        init_global_mutex(&g->start_work_mutex);
1387        init_global_mutex(&g->startup_mutex);
1388        init_global_mutex(&g->startup_done_mutex);
1389        init_global_mutex(&g->stop_work_mutex);
1390
1391        init_thread_data();
1392
1393        tprintf("#\n");
1394        if (parse_setup_cpu_list() || parse_setup_node_list())
1395                return -1;
1396        tprintf("#\n");
1397
1398        print_summary();
1399
1400        return 0;
1401}
1402
1403static void deinit(void)
1404{
1405        free_data(g->data, g->p.bytes_global);
1406        g->data = NULL;
1407
1408        deinit_thread_data();
1409
1410        free_data(g, sizeof(*g));
1411        g = NULL;
1412}
1413
1414/*
1415 * Print a short or long result, depending on the verbosity setting:
1416 */
1417static void print_res(const char *name, double val,
1418                      const char *txt_unit, const char *txt_short, const char *txt_long)
1419{
1420        if (!name)
1421                name = "main,";
1422
1423        if (!g->p.show_quiet)
1424                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1425        else
1426                printf(" %14.3f %s\n", val, txt_long);
1427}
1428
1429static int __bench_numa(const char *name)
1430{
1431        struct timeval start, stop, diff;
1432        u64 runtime_ns_min, runtime_ns_sum;
1433        pid_t *pids, pid, wpid;
1434        double delta_runtime;
1435        double runtime_avg;
1436        double runtime_sec_max;
1437        double runtime_sec_min;
1438        int wait_stat;
1439        double bytes;
1440        int i, t, p;
1441
1442        if (init())
1443                return -1;
1444
1445        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1446        pid = -1;
1447
1448        /* All threads try to acquire it, this way we can wait for them to start up: */
1449        pthread_mutex_lock(&g->start_work_mutex);
1450
1451        if (g->p.serialize_startup) {
1452                tprintf(" #\n");
1453                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1454        }
1455
1456        gettimeofday(&start, NULL);
1457
1458        for (i = 0; i < g->p.nr_proc; i++) {
1459                pid = fork();
1460                dprintf(" # process %2d: PID %d\n", i, pid);
1461
1462                BUG_ON(pid < 0);
1463                if (!pid) {
1464                        /* Child process: */
1465                        worker_process(i);
1466
1467                        exit(0);
1468                }
1469                pids[i] = pid;
1470
1471        }
1472        /* Wait for all the threads to start up: */
1473        while (g->nr_tasks_started != g->p.nr_tasks)
1474                usleep(USEC_PER_MSEC);
1475
1476        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1477
1478        if (g->p.serialize_startup) {
1479                double startup_sec;
1480
1481                pthread_mutex_lock(&g->startup_done_mutex);
1482
1483                /* This will start all threads: */
1484                pthread_mutex_unlock(&g->start_work_mutex);
1485
1486                /* This mutex is locked - the last started thread will wake us: */
1487                pthread_mutex_lock(&g->startup_done_mutex);
1488
1489                gettimeofday(&stop, NULL);
1490
1491                timersub(&stop, &start, &diff);
1492
1493                startup_sec = diff.tv_sec * NSEC_PER_SEC;
1494                startup_sec += diff.tv_usec * NSEC_PER_USEC;
1495                startup_sec /= NSEC_PER_SEC;
1496
1497                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1498                tprintf(" #\n");
1499
1500                start = stop;
1501                pthread_mutex_unlock(&g->startup_done_mutex);
1502        } else {
1503                gettimeofday(&start, NULL);
1504        }
1505
1506        /* Parent process: */
1507
1508
1509        for (i = 0; i < g->p.nr_proc; i++) {
1510                wpid = waitpid(pids[i], &wait_stat, 0);
1511                BUG_ON(wpid < 0);
1512                BUG_ON(!WIFEXITED(wait_stat));
1513
1514        }
1515
1516        runtime_ns_sum = 0;
1517        runtime_ns_min = -1LL;
1518
1519        for (t = 0; t < g->p.nr_tasks; t++) {
1520                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1521
1522                runtime_ns_sum += thread_runtime_ns;
1523                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1524        }
1525
1526        gettimeofday(&stop, NULL);
1527        timersub(&stop, &start, &diff);
1528
1529        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1530
1531        tprintf("\n ###\n");
1532        tprintf("\n");
1533
1534        runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1535        runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1536        runtime_sec_max /= NSEC_PER_SEC;
1537
1538        runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1539
1540        bytes = g->bytes_done;
1541        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1542
1543        if (g->p.measure_convergence) {
1544                print_res(name, runtime_sec_max,
1545                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1546        }
1547
1548        print_res(name, runtime_sec_max,
1549                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1550
1551        print_res(name, runtime_sec_min,
1552                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1553
1554        print_res(name, runtime_avg,
1555                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1556
1557        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1558        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1559                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1560
1561        print_res(name, bytes / g->p.nr_tasks / 1e9,
1562                "GB,", "data/thread",           "GB data processed, per thread");
1563
1564        print_res(name, bytes / 1e9,
1565                "GB,", "data-total",            "GB data processed, total");
1566
1567        print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1568                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1569
1570        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1571                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1572
1573        print_res(name, bytes / runtime_sec_max / 1e9,
1574                "GB/sec,", "total-speed",       "GB/sec total speed");
1575
1576        if (g->p.show_details >= 2) {
1577                char tname[14 + 2 * 10 + 1];
1578                struct thread_data *td;
1579                for (p = 0; p < g->p.nr_proc; p++) {
1580                        for (t = 0; t < g->p.nr_threads; t++) {
1581                                memset(tname, 0, sizeof(tname));
1582                                td = g->threads + p*g->p.nr_threads + t;
1583                                snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1584                                print_res(tname, td->speed_gbs,
1585                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1586                                print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1587                                        "secs", "thread-system-time", "system CPU time/thread");
1588                                print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1589                                        "secs", "thread-user-time", "user CPU time/thread");
1590                        }
1591                }
1592        }
1593
1594        free(pids);
1595
1596        deinit();
1597
1598        return 0;
1599}
1600
1601#define MAX_ARGS 50
1602
1603static int command_size(const char **argv)
1604{
1605        int size = 0;
1606
1607        while (*argv) {
1608                size++;
1609                argv++;
1610        }
1611
1612        BUG_ON(size >= MAX_ARGS);
1613
1614        return size;
1615}
1616
1617static void init_params(struct params *p, const char *name, int argc, const char **argv)
1618{
1619        int i;
1620
1621        printf("\n # Running %s \"perf bench numa", name);
1622
1623        for (i = 0; i < argc; i++)
1624                printf(" %s", argv[i]);
1625
1626        printf("\"\n");
1627
1628        memset(p, 0, sizeof(*p));
1629
1630        /* Initialize nonzero defaults: */
1631
1632        p->serialize_startup            = 1;
1633        p->data_reads                   = true;
1634        p->data_writes                  = true;
1635        p->data_backwards               = true;
1636        p->data_rand_walk               = true;
1637        p->nr_loops                     = -1;
1638        p->init_random                  = true;
1639        p->mb_global_str                = "1";
1640        p->nr_proc                      = 1;
1641        p->nr_threads                   = 1;
1642        p->nr_secs                      = 5;
1643        p->run_all                      = argc == 1;
1644}
1645
1646static int run_bench_numa(const char *name, const char **argv)
1647{
1648        int argc = command_size(argv);
1649
1650        init_params(&p0, name, argc, argv);
1651        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1652        if (argc)
1653                goto err;
1654
1655        if (__bench_numa(name))
1656                goto err;
1657
1658        return 0;
1659
1660err:
1661        return -1;
1662}
1663
1664#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1665#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1666
1667#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1668#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1669
1670#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1671#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1672
1673/*
1674 * The built-in test-suite executed by "perf bench numa -a".
1675 *
1676 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1677 */
1678static const char *tests[][MAX_ARGS] = {
1679   /* Basic single-stream NUMA bandwidth measurements: */
1680   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1681                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1682   { "RAM-bw-local-NOTHP,",
1683                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1685   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1686                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1687
1688   /* 2-stream NUMA bandwidth measurements: */
1689   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1690                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1691   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1692                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1693
1694   /* Cross-stream NUMA bandwidth measurement: */
1695   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1696                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1697
1698   /* Convergence latency measurements: */
1699   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1700   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1701   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1702   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1703   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1704   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1705   { " 4x4-convergence-NOTHP,",
1706                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1707   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1708   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1709   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1710   { " 8x4-convergence-NOTHP,",
1711                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1712   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1713   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1714   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1715   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1716   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1717
1718   /* Various NUMA process/thread layout bandwidth measurements: */
1719   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1720   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1721   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1722   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1723   { " 8x1-bw-process-NOTHP,",
1724                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1725   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1726
1727   { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1728   { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1729   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1730   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1731
1732   { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1733   { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1734   { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1735   { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1736   { " 4x8-bw-thread-NOTHP,",
1737                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1738   { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1739   { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1740
1741   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1742   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1743
1744   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1745   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1746   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1747   { "numa01-bw-thread-NOTHP,",
1748                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1749};
1750
1751static int bench_all(void)
1752{
1753        int nr = ARRAY_SIZE(tests);
1754        int ret;
1755        int i;
1756
1757        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1758        BUG_ON(ret < 0);
1759
1760        for (i = 0; i < nr; i++) {
1761                run_bench_numa(tests[i][0], tests[i] + 1);
1762        }
1763
1764        printf("\n");
1765
1766        return 0;
1767}
1768
1769int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1770{
1771        init_params(&p0, "main,", argc, argv);
1772        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1773        if (argc)
1774                goto err;
1775
1776        if (p0.run_all)
1777                return bench_all();
1778
1779        if (__bench_numa(NULL))
1780                goto err;
1781
1782        return 0;
1783
1784err:
1785        usage_with_options(numa_usage, options);
1786        return -1;
1787}
1788