linux/arch/arm/probes/kprobes/core.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.c
   3 *
   4 * Kprobes on ARM
   5 *
   6 * Abhishek Sagar <sagar.abhishek@gmail.com>
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * Nicolas Pitre <nico@marvell.com>
  10 * Copyright (C) 2007 Marvell Ltd.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kprobes.h>
  24#include <linux/module.h>
  25#include <linux/slab.h>
  26#include <linux/stop_machine.h>
  27#include <linux/sched/debug.h>
  28#include <linux/stringify.h>
  29#include <asm/traps.h>
  30#include <asm/opcodes.h>
  31#include <asm/cacheflush.h>
  32#include <linux/percpu.h>
  33#include <linux/bug.h>
  34#include <asm/patch.h>
  35
  36#include "../decode-arm.h"
  37#include "../decode-thumb.h"
  38#include "core.h"
  39
  40#define MIN_STACK_SIZE(addr)                            \
  41        min((unsigned long)MAX_STACK_SIZE,              \
  42            (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  43
  44#define flush_insns(addr, size)                         \
  45        flush_icache_range((unsigned long)(addr),       \
  46                           (unsigned long)(addr) +      \
  47                           (size))
  48
  49/* Used as a marker in ARM_pc to note when we're in a jprobe. */
  50#define JPROBE_MAGIC_ADDR               0xffffffff
  51
  52DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  53DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  54
  55
  56int __kprobes arch_prepare_kprobe(struct kprobe *p)
  57{
  58        kprobe_opcode_t insn;
  59        kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  60        unsigned long addr = (unsigned long)p->addr;
  61        bool thumb;
  62        kprobe_decode_insn_t *decode_insn;
  63        const union decode_action *actions;
  64        int is;
  65        const struct decode_checker **checkers;
  66
  67        if (in_exception_text(addr))
  68                return -EINVAL;
  69
  70#ifdef CONFIG_THUMB2_KERNEL
  71        thumb = true;
  72        addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
  73        insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
  74        if (is_wide_instruction(insn)) {
  75                u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
  76                insn = __opcode_thumb32_compose(insn, inst2);
  77                decode_insn = thumb32_probes_decode_insn;
  78                actions = kprobes_t32_actions;
  79                checkers = kprobes_t32_checkers;
  80        } else {
  81                decode_insn = thumb16_probes_decode_insn;
  82                actions = kprobes_t16_actions;
  83                checkers = kprobes_t16_checkers;
  84        }
  85#else /* !CONFIG_THUMB2_KERNEL */
  86        thumb = false;
  87        if (addr & 0x3)
  88                return -EINVAL;
  89        insn = __mem_to_opcode_arm(*p->addr);
  90        decode_insn = arm_probes_decode_insn;
  91        actions = kprobes_arm_actions;
  92        checkers = kprobes_arm_checkers;
  93#endif
  94
  95        p->opcode = insn;
  96        p->ainsn.insn = tmp_insn;
  97
  98        switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
  99        case INSN_REJECTED:     /* not supported */
 100                return -EINVAL;
 101
 102        case INSN_GOOD:         /* instruction uses slot */
 103                p->ainsn.insn = get_insn_slot();
 104                if (!p->ainsn.insn)
 105                        return -ENOMEM;
 106                for (is = 0; is < MAX_INSN_SIZE; ++is)
 107                        p->ainsn.insn[is] = tmp_insn[is];
 108                flush_insns(p->ainsn.insn,
 109                                sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
 110                p->ainsn.insn_fn = (probes_insn_fn_t *)
 111                                        ((uintptr_t)p->ainsn.insn | thumb);
 112                break;
 113
 114        case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
 115                p->ainsn.insn = NULL;
 116                break;
 117        }
 118
 119        /*
 120         * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
 121         * 'str r0, [sp, #-68]' should also be prohibited.
 122         * See __und_svc.
 123         */
 124        if ((p->ainsn.stack_space < 0) ||
 125                        (p->ainsn.stack_space > MAX_STACK_SIZE))
 126                return -EINVAL;
 127
 128        return 0;
 129}
 130
 131void __kprobes arch_arm_kprobe(struct kprobe *p)
 132{
 133        unsigned int brkp;
 134        void *addr;
 135
 136        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 137                /* Remove any Thumb flag */
 138                addr = (void *)((uintptr_t)p->addr & ~1);
 139
 140                if (is_wide_instruction(p->opcode))
 141                        brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
 142                else
 143                        brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
 144        } else {
 145                kprobe_opcode_t insn = p->opcode;
 146
 147                addr = p->addr;
 148                brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
 149
 150                if (insn >= 0xe0000000)
 151                        brkp |= 0xe0000000;  /* Unconditional instruction */
 152                else
 153                        brkp |= insn & 0xf0000000;  /* Copy condition from insn */
 154        }
 155
 156        patch_text(addr, brkp);
 157}
 158
 159/*
 160 * The actual disarming is done here on each CPU and synchronized using
 161 * stop_machine. This synchronization is necessary on SMP to avoid removing
 162 * a probe between the moment the 'Undefined Instruction' exception is raised
 163 * and the moment the exception handler reads the faulting instruction from
 164 * memory. It is also needed to atomically set the two half-words of a 32-bit
 165 * Thumb breakpoint.
 166 */
 167struct patch {
 168        void *addr;
 169        unsigned int insn;
 170};
 171
 172static int __kprobes_remove_breakpoint(void *data)
 173{
 174        struct patch *p = data;
 175        __patch_text(p->addr, p->insn);
 176        return 0;
 177}
 178
 179void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
 180{
 181        struct patch p = {
 182                .addr = addr,
 183                .insn = insn,
 184        };
 185        stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
 186}
 187
 188void __kprobes arch_disarm_kprobe(struct kprobe *p)
 189{
 190        kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
 191                        p->opcode);
 192}
 193
 194void __kprobes arch_remove_kprobe(struct kprobe *p)
 195{
 196        if (p->ainsn.insn) {
 197                free_insn_slot(p->ainsn.insn, 0);
 198                p->ainsn.insn = NULL;
 199        }
 200}
 201
 202static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 203{
 204        kcb->prev_kprobe.kp = kprobe_running();
 205        kcb->prev_kprobe.status = kcb->kprobe_status;
 206}
 207
 208static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 209{
 210        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 211        kcb->kprobe_status = kcb->prev_kprobe.status;
 212}
 213
 214static void __kprobes set_current_kprobe(struct kprobe *p)
 215{
 216        __this_cpu_write(current_kprobe, p);
 217}
 218
 219static void __kprobes
 220singlestep_skip(struct kprobe *p, struct pt_regs *regs)
 221{
 222#ifdef CONFIG_THUMB2_KERNEL
 223        regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
 224        if (is_wide_instruction(p->opcode))
 225                regs->ARM_pc += 4;
 226        else
 227                regs->ARM_pc += 2;
 228#else
 229        regs->ARM_pc += 4;
 230#endif
 231}
 232
 233static inline void __kprobes
 234singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 235{
 236        p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
 237}
 238
 239/*
 240 * Called with IRQs disabled. IRQs must remain disabled from that point
 241 * all the way until processing this kprobe is complete.  The current
 242 * kprobes implementation cannot process more than one nested level of
 243 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 244 * risk encountering a new kprobe in an interrupt handler.
 245 */
 246void __kprobes kprobe_handler(struct pt_regs *regs)
 247{
 248        struct kprobe *p, *cur;
 249        struct kprobe_ctlblk *kcb;
 250
 251        kcb = get_kprobe_ctlblk();
 252        cur = kprobe_running();
 253
 254#ifdef CONFIG_THUMB2_KERNEL
 255        /*
 256         * First look for a probe which was registered using an address with
 257         * bit 0 set, this is the usual situation for pointers to Thumb code.
 258         * If not found, fallback to looking for one with bit 0 clear.
 259         */
 260        p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
 261        if (!p)
 262                p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 263
 264#else /* ! CONFIG_THUMB2_KERNEL */
 265        p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 266#endif
 267
 268        if (p) {
 269                if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
 270                        /*
 271                         * Probe hit but conditional execution check failed,
 272                         * so just skip the instruction and continue as if
 273                         * nothing had happened.
 274                         * In this case, we can skip recursing check too.
 275                         */
 276                        singlestep_skip(p, regs);
 277                } else if (cur) {
 278                        /* Kprobe is pending, so we're recursing. */
 279                        switch (kcb->kprobe_status) {
 280                        case KPROBE_HIT_ACTIVE:
 281                        case KPROBE_HIT_SSDONE:
 282                        case KPROBE_HIT_SS:
 283                                /* A pre- or post-handler probe got us here. */
 284                                kprobes_inc_nmissed_count(p);
 285                                save_previous_kprobe(kcb);
 286                                set_current_kprobe(p);
 287                                kcb->kprobe_status = KPROBE_REENTER;
 288                                singlestep(p, regs, kcb);
 289                                restore_previous_kprobe(kcb);
 290                                break;
 291                        case KPROBE_REENTER:
 292                                /* A nested probe was hit in FIQ, it is a BUG */
 293                                pr_warn("Unrecoverable kprobe detected at %p.\n",
 294                                        p->addr);
 295                                /* fall through */
 296                        default:
 297                                /* impossible cases */
 298                                BUG();
 299                        }
 300                } else {
 301                        /* Probe hit and conditional execution check ok. */
 302                        set_current_kprobe(p);
 303                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 304
 305                        /*
 306                         * If we have no pre-handler or it returned 0, we
 307                         * continue with normal processing.  If we have a
 308                         * pre-handler and it returned non-zero, it prepped
 309                         * for calling the break_handler below on re-entry,
 310                         * so get out doing nothing more here.
 311                         */
 312                        if (!p->pre_handler || !p->pre_handler(p, regs)) {
 313                                kcb->kprobe_status = KPROBE_HIT_SS;
 314                                singlestep(p, regs, kcb);
 315                                if (p->post_handler) {
 316                                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 317                                        p->post_handler(p, regs, 0);
 318                                }
 319                                reset_current_kprobe();
 320                        }
 321                }
 322        } else if (cur) {
 323                /* We probably hit a jprobe.  Call its break handler. */
 324                if (cur->break_handler && cur->break_handler(cur, regs)) {
 325                        kcb->kprobe_status = KPROBE_HIT_SS;
 326                        singlestep(cur, regs, kcb);
 327                        if (cur->post_handler) {
 328                                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 329                                cur->post_handler(cur, regs, 0);
 330                        }
 331                }
 332                reset_current_kprobe();
 333        } else {
 334                /*
 335                 * The probe was removed and a race is in progress.
 336                 * There is nothing we can do about it.  Let's restart
 337                 * the instruction.  By the time we can restart, the
 338                 * real instruction will be there.
 339                 */
 340        }
 341}
 342
 343static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 344{
 345        unsigned long flags;
 346        local_irq_save(flags);
 347        kprobe_handler(regs);
 348        local_irq_restore(flags);
 349        return 0;
 350}
 351
 352int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 353{
 354        struct kprobe *cur = kprobe_running();
 355        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 356
 357        switch (kcb->kprobe_status) {
 358        case KPROBE_HIT_SS:
 359        case KPROBE_REENTER:
 360                /*
 361                 * We are here because the instruction being single
 362                 * stepped caused a page fault. We reset the current
 363                 * kprobe and the PC to point back to the probe address
 364                 * and allow the page fault handler to continue as a
 365                 * normal page fault.
 366                 */
 367                regs->ARM_pc = (long)cur->addr;
 368                if (kcb->kprobe_status == KPROBE_REENTER) {
 369                        restore_previous_kprobe(kcb);
 370                } else {
 371                        reset_current_kprobe();
 372                }
 373                break;
 374
 375        case KPROBE_HIT_ACTIVE:
 376        case KPROBE_HIT_SSDONE:
 377                /*
 378                 * We increment the nmissed count for accounting,
 379                 * we can also use npre/npostfault count for accounting
 380                 * these specific fault cases.
 381                 */
 382                kprobes_inc_nmissed_count(cur);
 383
 384                /*
 385                 * We come here because instructions in the pre/post
 386                 * handler caused the page_fault, this could happen
 387                 * if handler tries to access user space by
 388                 * copy_from_user(), get_user() etc. Let the
 389                 * user-specified handler try to fix it.
 390                 */
 391                if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 392                        return 1;
 393                break;
 394
 395        default:
 396                break;
 397        }
 398
 399        return 0;
 400}
 401
 402int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 403                                       unsigned long val, void *data)
 404{
 405        /*
 406         * notify_die() is currently never called on ARM,
 407         * so this callback is currently empty.
 408         */
 409        return NOTIFY_DONE;
 410}
 411
 412/*
 413 * When a retprobed function returns, trampoline_handler() is called,
 414 * calling the kretprobe's handler. We construct a struct pt_regs to
 415 * give a view of registers r0-r11 to the user return-handler.  This is
 416 * not a complete pt_regs structure, but that should be plenty sufficient
 417 * for kretprobe handlers which should normally be interested in r0 only
 418 * anyway.
 419 */
 420void __naked __kprobes kretprobe_trampoline(void)
 421{
 422        __asm__ __volatile__ (
 423                "stmdb  sp!, {r0 - r11}         \n\t"
 424                "mov    r0, sp                  \n\t"
 425                "bl     trampoline_handler      \n\t"
 426                "mov    lr, r0                  \n\t"
 427                "ldmia  sp!, {r0 - r11}         \n\t"
 428#ifdef CONFIG_THUMB2_KERNEL
 429                "bx     lr                      \n\t"
 430#else
 431                "mov    pc, lr                  \n\t"
 432#endif
 433                : : : "memory");
 434}
 435
 436/* Called from kretprobe_trampoline */
 437static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 438{
 439        struct kretprobe_instance *ri = NULL;
 440        struct hlist_head *head, empty_rp;
 441        struct hlist_node *tmp;
 442        unsigned long flags, orig_ret_address = 0;
 443        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 444        kprobe_opcode_t *correct_ret_addr = NULL;
 445
 446        INIT_HLIST_HEAD(&empty_rp);
 447        kretprobe_hash_lock(current, &head, &flags);
 448
 449        /*
 450         * It is possible to have multiple instances associated with a given
 451         * task either because multiple functions in the call path have
 452         * a return probe installed on them, and/or more than one return
 453         * probe was registered for a target function.
 454         *
 455         * We can handle this because:
 456         *     - instances are always inserted at the head of the list
 457         *     - when multiple return probes are registered for the same
 458         *       function, the first instance's ret_addr will point to the
 459         *       real return address, and all the rest will point to
 460         *       kretprobe_trampoline
 461         */
 462        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 463                if (ri->task != current)
 464                        /* another task is sharing our hash bucket */
 465                        continue;
 466
 467                orig_ret_address = (unsigned long)ri->ret_addr;
 468
 469                if (orig_ret_address != trampoline_address)
 470                        /*
 471                         * This is the real return address. Any other
 472                         * instances associated with this task are for
 473                         * other calls deeper on the call stack
 474                         */
 475                        break;
 476        }
 477
 478        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 479
 480        correct_ret_addr = ri->ret_addr;
 481        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 482                if (ri->task != current)
 483                        /* another task is sharing our hash bucket */
 484                        continue;
 485
 486                orig_ret_address = (unsigned long)ri->ret_addr;
 487                if (ri->rp && ri->rp->handler) {
 488                        __this_cpu_write(current_kprobe, &ri->rp->kp);
 489                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 490                        ri->ret_addr = correct_ret_addr;
 491                        ri->rp->handler(ri, regs);
 492                        __this_cpu_write(current_kprobe, NULL);
 493                }
 494
 495                recycle_rp_inst(ri, &empty_rp);
 496
 497                if (orig_ret_address != trampoline_address)
 498                        /*
 499                         * This is the real return address. Any other
 500                         * instances associated with this task are for
 501                         * other calls deeper on the call stack
 502                         */
 503                        break;
 504        }
 505
 506        kretprobe_hash_unlock(current, &flags);
 507
 508        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 509                hlist_del(&ri->hlist);
 510                kfree(ri);
 511        }
 512
 513        return (void *)orig_ret_address;
 514}
 515
 516void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 517                                      struct pt_regs *regs)
 518{
 519        ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 520
 521        /* Replace the return addr with trampoline addr. */
 522        regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 523}
 524
 525int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 526{
 527        struct jprobe *jp = container_of(p, struct jprobe, kp);
 528        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 529        long sp_addr = regs->ARM_sp;
 530        long cpsr;
 531
 532        kcb->jprobe_saved_regs = *regs;
 533        memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 534        regs->ARM_pc = (long)jp->entry;
 535
 536        cpsr = regs->ARM_cpsr | PSR_I_BIT;
 537#ifdef CONFIG_THUMB2_KERNEL
 538        /* Set correct Thumb state in cpsr */
 539        if (regs->ARM_pc & 1)
 540                cpsr |= PSR_T_BIT;
 541        else
 542                cpsr &= ~PSR_T_BIT;
 543#endif
 544        regs->ARM_cpsr = cpsr;
 545
 546        preempt_disable();
 547        return 1;
 548}
 549
 550void __kprobes jprobe_return(void)
 551{
 552        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 553
 554        __asm__ __volatile__ (
 555                /*
 556                 * Setup an empty pt_regs. Fill SP and PC fields as
 557                 * they're needed by longjmp_break_handler.
 558                 *
 559                 * We allocate some slack between the original SP and start of
 560                 * our fabricated regs. To be precise we want to have worst case
 561                 * covered which is STMFD with all 16 regs so we allocate 2 *
 562                 * sizeof(struct_pt_regs)).
 563                 *
 564                 * This is to prevent any simulated instruction from writing
 565                 * over the regs when they are accessing the stack.
 566                 */
 567#ifdef CONFIG_THUMB2_KERNEL
 568                "sub    r0, %0, %1              \n\t"
 569                "mov    sp, r0                  \n\t"
 570#else
 571                "sub    sp, %0, %1              \n\t"
 572#endif
 573                "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 574                "str    %0, [sp, %2]            \n\t"
 575                "str    r0, [sp, %3]            \n\t"
 576                "mov    r0, sp                  \n\t"
 577                "bl     kprobe_handler          \n\t"
 578
 579                /*
 580                 * Return to the context saved by setjmp_pre_handler
 581                 * and restored by longjmp_break_handler.
 582                 */
 583#ifdef CONFIG_THUMB2_KERNEL
 584                "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
 585                "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
 586                "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
 587                "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
 588                                                      /* rfe context */
 589                "ldmia  sp, {r0 - r12}          \n\t"
 590                "mov    sp, lr                  \n\t"
 591                "ldr    lr, [sp], #4            \n\t"
 592                "rfeia  sp!                     \n\t"
 593#else
 594                "ldr    r0, [sp, %4]            \n\t"
 595                "msr    cpsr_cxsf, r0           \n\t"
 596                "ldmia  sp, {r0 - pc}           \n\t"
 597#endif
 598                :
 599                : "r" (kcb->jprobe_saved_regs.ARM_sp),
 600                  "I" (sizeof(struct pt_regs) * 2),
 601                  "J" (offsetof(struct pt_regs, ARM_sp)),
 602                  "J" (offsetof(struct pt_regs, ARM_pc)),
 603                  "J" (offsetof(struct pt_regs, ARM_cpsr)),
 604                  "J" (offsetof(struct pt_regs, ARM_lr))
 605                : "memory", "cc");
 606}
 607
 608int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 609{
 610        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 611        long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 612        long orig_sp = regs->ARM_sp;
 613        struct jprobe *jp = container_of(p, struct jprobe, kp);
 614
 615        if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 616                if (orig_sp != stack_addr) {
 617                        struct pt_regs *saved_regs =
 618                                (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 619                        printk("current sp %lx does not match saved sp %lx\n",
 620                               orig_sp, stack_addr);
 621                        printk("Saved registers for jprobe %p\n", jp);
 622                        show_regs(saved_regs);
 623                        printk("Current registers\n");
 624                        show_regs(regs);
 625                        BUG();
 626                }
 627                *regs = kcb->jprobe_saved_regs;
 628                memcpy((void *)stack_addr, kcb->jprobes_stack,
 629                       MIN_STACK_SIZE(stack_addr));
 630                preempt_enable_no_resched();
 631                return 1;
 632        }
 633        return 0;
 634}
 635
 636int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 637{
 638        return 0;
 639}
 640
 641#ifdef CONFIG_THUMB2_KERNEL
 642
 643static struct undef_hook kprobes_thumb16_break_hook = {
 644        .instr_mask     = 0xffff,
 645        .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
 646        .cpsr_mask      = MODE_MASK,
 647        .cpsr_val       = SVC_MODE,
 648        .fn             = kprobe_trap_handler,
 649};
 650
 651static struct undef_hook kprobes_thumb32_break_hook = {
 652        .instr_mask     = 0xffffffff,
 653        .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
 654        .cpsr_mask      = MODE_MASK,
 655        .cpsr_val       = SVC_MODE,
 656        .fn             = kprobe_trap_handler,
 657};
 658
 659#else  /* !CONFIG_THUMB2_KERNEL */
 660
 661static struct undef_hook kprobes_arm_break_hook = {
 662        .instr_mask     = 0x0fffffff,
 663        .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
 664        .cpsr_mask      = MODE_MASK,
 665        .cpsr_val       = SVC_MODE,
 666        .fn             = kprobe_trap_handler,
 667};
 668
 669#endif /* !CONFIG_THUMB2_KERNEL */
 670
 671int __init arch_init_kprobes()
 672{
 673        arm_probes_decode_init();
 674#ifdef CONFIG_THUMB2_KERNEL
 675        register_undef_hook(&kprobes_thumb16_break_hook);
 676        register_undef_hook(&kprobes_thumb32_break_hook);
 677#else
 678        register_undef_hook(&kprobes_arm_break_hook);
 679#endif
 680        return 0;
 681}
 682