linux/arch/blackfin/mach-common/smp.c
<<
>>
Prefs
   1/*
   2 * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
   3 *
   4 * Copyright 2007-2009 Analog Devices Inc.
   5 *                         Philippe Gerum <rpm@xenomai.org>
   6 *
   7 * Licensed under the GPL-2.
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task_stack.h>
  16#include <linux/interrupt.h>
  17#include <linux/cache.h>
  18#include <linux/clockchips.h>
  19#include <linux/profile.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/cpumask.h>
  25#include <linux/seq_file.h>
  26#include <linux/irq.h>
  27#include <linux/slab.h>
  28#include <linux/atomic.h>
  29#include <asm/cacheflush.h>
  30#include <asm/irq_handler.h>
  31#include <asm/mmu_context.h>
  32#include <asm/pgtable.h>
  33#include <asm/pgalloc.h>
  34#include <asm/processor.h>
  35#include <asm/ptrace.h>
  36#include <asm/cpu.h>
  37#include <asm/time.h>
  38#include <linux/err.h>
  39
  40/*
  41 * Anomaly notes:
  42 * 05000120 - we always define corelock as 32-bit integer in L2
  43 */
  44struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
  45
  46#ifdef CONFIG_ICACHE_FLUSH_L1
  47unsigned long blackfin_iflush_l1_entry[NR_CPUS];
  48#endif
  49
  50struct blackfin_initial_pda initial_pda_coreb;
  51
  52enum ipi_message_type {
  53        BFIN_IPI_NONE,
  54        BFIN_IPI_TIMER,
  55        BFIN_IPI_RESCHEDULE,
  56        BFIN_IPI_CALL_FUNC,
  57        BFIN_IPI_CPU_STOP,
  58};
  59
  60struct blackfin_flush_data {
  61        unsigned long start;
  62        unsigned long end;
  63};
  64
  65void *secondary_stack;
  66
  67static struct blackfin_flush_data smp_flush_data;
  68
  69static DEFINE_SPINLOCK(stop_lock);
  70
  71/* A magic number - stress test shows this is safe for common cases */
  72#define BFIN_IPI_MSGQ_LEN 5
  73
  74/* Simple FIFO buffer, overflow leads to panic */
  75struct ipi_data {
  76        atomic_t count;
  77        atomic_t bits;
  78};
  79
  80static DEFINE_PER_CPU(struct ipi_data, bfin_ipi);
  81
  82static void ipi_cpu_stop(unsigned int cpu)
  83{
  84        spin_lock(&stop_lock);
  85        printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  86        dump_stack();
  87        spin_unlock(&stop_lock);
  88
  89        set_cpu_online(cpu, false);
  90
  91        local_irq_disable();
  92
  93        while (1)
  94                SSYNC();
  95}
  96
  97static void ipi_flush_icache(void *info)
  98{
  99        struct blackfin_flush_data *fdata = info;
 100
 101        /* Invalidate the memory holding the bounds of the flushed region. */
 102        blackfin_dcache_invalidate_range((unsigned long)fdata,
 103                                         (unsigned long)fdata + sizeof(*fdata));
 104
 105        /* Make sure all write buffers in the data side of the core
 106         * are flushed before trying to invalidate the icache.  This
 107         * needs to be after the data flush and before the icache
 108         * flush so that the SSYNC does the right thing in preventing
 109         * the instruction prefetcher from hitting things in cached
 110         * memory at the wrong time -- it runs much further ahead than
 111         * the pipeline.
 112         */
 113        SSYNC();
 114
 115        /* ipi_flaush_icache is invoked by generic flush_icache_range,
 116         * so call blackfin arch icache flush directly here.
 117         */
 118        blackfin_icache_flush_range(fdata->start, fdata->end);
 119}
 120
 121/* Use IRQ_SUPPLE_0 to request reschedule.
 122 * When returning from interrupt to user space,
 123 * there is chance to reschedule */
 124static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
 125{
 126        unsigned int cpu = smp_processor_id();
 127
 128        platform_clear_ipi(cpu, IRQ_SUPPLE_0);
 129        return IRQ_HANDLED;
 130}
 131
 132DECLARE_PER_CPU(struct clock_event_device, coretmr_events);
 133void ipi_timer(void)
 134{
 135        int cpu = smp_processor_id();
 136        struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
 137        evt->event_handler(evt);
 138}
 139
 140static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
 141{
 142        struct ipi_data *bfin_ipi_data;
 143        unsigned int cpu = smp_processor_id();
 144        unsigned long pending;
 145        unsigned long msg;
 146
 147        platform_clear_ipi(cpu, IRQ_SUPPLE_1);
 148
 149        smp_rmb();
 150        bfin_ipi_data = this_cpu_ptr(&bfin_ipi);
 151        while ((pending = atomic_xchg(&bfin_ipi_data->bits, 0)) != 0) {
 152                msg = 0;
 153                do {
 154                        msg = find_next_bit(&pending, BITS_PER_LONG, msg + 1);
 155                        switch (msg) {
 156                        case BFIN_IPI_TIMER:
 157                                ipi_timer();
 158                                break;
 159                        case BFIN_IPI_RESCHEDULE:
 160                                scheduler_ipi();
 161                                break;
 162                        case BFIN_IPI_CALL_FUNC:
 163                                generic_smp_call_function_interrupt();
 164                                break;
 165                        case BFIN_IPI_CPU_STOP:
 166                                ipi_cpu_stop(cpu);
 167                                break;
 168                        default:
 169                                goto out;
 170                        }
 171                        atomic_dec(&bfin_ipi_data->count);
 172                } while (msg < BITS_PER_LONG);
 173
 174        }
 175out:
 176        return IRQ_HANDLED;
 177}
 178
 179static void bfin_ipi_init(void)
 180{
 181        unsigned int cpu;
 182        struct ipi_data *bfin_ipi_data;
 183        for_each_possible_cpu(cpu) {
 184                bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
 185                atomic_set(&bfin_ipi_data->bits, 0);
 186                atomic_set(&bfin_ipi_data->count, 0);
 187        }
 188}
 189
 190void send_ipi(const struct cpumask *cpumask, enum ipi_message_type msg)
 191{
 192        unsigned int cpu;
 193        struct ipi_data *bfin_ipi_data;
 194        unsigned long flags;
 195
 196        local_irq_save(flags);
 197        for_each_cpu(cpu, cpumask) {
 198                bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
 199                atomic_or((1 << msg), &bfin_ipi_data->bits);
 200                atomic_inc(&bfin_ipi_data->count);
 201        }
 202        local_irq_restore(flags);
 203        smp_wmb();
 204        for_each_cpu(cpu, cpumask)
 205                platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
 206}
 207
 208void arch_send_call_function_single_ipi(int cpu)
 209{
 210        send_ipi(cpumask_of(cpu), BFIN_IPI_CALL_FUNC);
 211}
 212
 213void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 214{
 215        send_ipi(mask, BFIN_IPI_CALL_FUNC);
 216}
 217
 218void smp_send_reschedule(int cpu)
 219{
 220        send_ipi(cpumask_of(cpu), BFIN_IPI_RESCHEDULE);
 221
 222        return;
 223}
 224
 225void smp_send_msg(const struct cpumask *mask, unsigned long type)
 226{
 227        send_ipi(mask, type);
 228}
 229
 230void smp_timer_broadcast(const struct cpumask *mask)
 231{
 232        smp_send_msg(mask, BFIN_IPI_TIMER);
 233}
 234
 235void smp_send_stop(void)
 236{
 237        cpumask_t callmap;
 238
 239        preempt_disable();
 240        cpumask_copy(&callmap, cpu_online_mask);
 241        cpumask_clear_cpu(smp_processor_id(), &callmap);
 242        if (!cpumask_empty(&callmap))
 243                send_ipi(&callmap, BFIN_IPI_CPU_STOP);
 244
 245        preempt_enable();
 246
 247        return;
 248}
 249
 250int __cpu_up(unsigned int cpu, struct task_struct *idle)
 251{
 252        int ret;
 253
 254        secondary_stack = task_stack_page(idle) + THREAD_SIZE;
 255
 256        ret = platform_boot_secondary(cpu, idle);
 257
 258        secondary_stack = NULL;
 259
 260        return ret;
 261}
 262
 263static void setup_secondary(unsigned int cpu)
 264{
 265        unsigned long ilat;
 266
 267        bfin_write_IMASK(0);
 268        CSYNC();
 269        ilat = bfin_read_ILAT();
 270        CSYNC();
 271        bfin_write_ILAT(ilat);
 272        CSYNC();
 273
 274        /* Enable interrupt levels IVG7-15. IARs have been already
 275         * programmed by the boot CPU.  */
 276        bfin_irq_flags |= IMASK_IVG15 |
 277            IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
 278            IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
 279}
 280
 281void secondary_start_kernel(void)
 282{
 283        unsigned int cpu = smp_processor_id();
 284        struct mm_struct *mm = &init_mm;
 285
 286        if (_bfin_swrst & SWRST_DBL_FAULT_B) {
 287                printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
 288#ifdef CONFIG_DEBUG_DOUBLEFAULT
 289                printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
 290                        initial_pda_coreb.seqstat_doublefault & SEQSTAT_EXCAUSE,
 291                        initial_pda_coreb.retx_doublefault);
 292                printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
 293                        initial_pda_coreb.dcplb_doublefault_addr);
 294                printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
 295                        initial_pda_coreb.icplb_doublefault_addr);
 296#endif
 297                printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
 298                        initial_pda_coreb.retx);
 299        }
 300
 301        /*
 302         * We want the D-cache to be enabled early, in case the atomic
 303         * support code emulates cache coherence (see
 304         * __ARCH_SYNC_CORE_DCACHE).
 305         */
 306        init_exception_vectors();
 307
 308        local_irq_disable();
 309
 310        /* Attach the new idle task to the global mm. */
 311        mmget(mm);
 312        mmgrab(mm);
 313        current->active_mm = mm;
 314
 315        preempt_disable();
 316
 317        setup_secondary(cpu);
 318
 319        platform_secondary_init(cpu);
 320        /* setup local core timer */
 321        bfin_local_timer_setup();
 322
 323        local_irq_enable();
 324
 325        bfin_setup_caches(cpu);
 326
 327        notify_cpu_starting(cpu);
 328        /*
 329         * Calibrate loops per jiffy value.
 330         * IRQs need to be enabled here - D-cache can be invalidated
 331         * in timer irq handler, so core B can read correct jiffies.
 332         */
 333        calibrate_delay();
 334
 335        /* We are done with local CPU inits, unblock the boot CPU. */
 336        set_cpu_online(cpu, true);
 337        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 338}
 339
 340void __init smp_prepare_boot_cpu(void)
 341{
 342}
 343
 344void __init smp_prepare_cpus(unsigned int max_cpus)
 345{
 346        platform_prepare_cpus(max_cpus);
 347        bfin_ipi_init();
 348        platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
 349        platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
 350}
 351
 352void __init smp_cpus_done(unsigned int max_cpus)
 353{
 354        unsigned long bogosum = 0;
 355        unsigned int cpu;
 356
 357        for_each_online_cpu(cpu)
 358                bogosum += loops_per_jiffy;
 359
 360        printk(KERN_INFO "SMP: Total of %d processors activated "
 361               "(%lu.%02lu BogoMIPS).\n",
 362               num_online_cpus(),
 363               bogosum / (500000/HZ),
 364               (bogosum / (5000/HZ)) % 100);
 365}
 366
 367void smp_icache_flush_range_others(unsigned long start, unsigned long end)
 368{
 369        smp_flush_data.start = start;
 370        smp_flush_data.end = end;
 371
 372        preempt_disable();
 373        if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 1))
 374                printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
 375        preempt_enable();
 376}
 377EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
 378
 379#ifdef __ARCH_SYNC_CORE_ICACHE
 380unsigned long icache_invld_count[NR_CPUS];
 381void resync_core_icache(void)
 382{
 383        unsigned int cpu = get_cpu();
 384        blackfin_invalidate_entire_icache();
 385        icache_invld_count[cpu]++;
 386        put_cpu();
 387}
 388EXPORT_SYMBOL(resync_core_icache);
 389#endif
 390
 391#ifdef __ARCH_SYNC_CORE_DCACHE
 392unsigned long dcache_invld_count[NR_CPUS];
 393unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
 394
 395void resync_core_dcache(void)
 396{
 397        unsigned int cpu = get_cpu();
 398        blackfin_invalidate_entire_dcache();
 399        dcache_invld_count[cpu]++;
 400        put_cpu();
 401}
 402EXPORT_SYMBOL(resync_core_dcache);
 403#endif
 404
 405#ifdef CONFIG_HOTPLUG_CPU
 406int __cpu_disable(void)
 407{
 408        unsigned int cpu = smp_processor_id();
 409
 410        if (cpu == 0)
 411                return -EPERM;
 412
 413        set_cpu_online(cpu, false);
 414        return 0;
 415}
 416
 417int __cpu_die(unsigned int cpu)
 418{
 419        return cpu_wait_death(cpu, 5);
 420}
 421
 422void cpu_die(void)
 423{
 424        (void)cpu_report_death();
 425
 426        atomic_dec(&init_mm.mm_users);
 427        atomic_dec(&init_mm.mm_count);
 428
 429        local_irq_disable();
 430        platform_cpu_die();
 431}
 432#endif
 433