linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1/*
   2 * linux/arch/ia64/kernel/time.c
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      Stephane Eranian <eranian@hpl.hp.com>
   6 *      David Mosberger <davidm@hpl.hp.com>
   7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   8 * Copyright (C) 1999-2000 VA Linux Systems
   9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/profile.h>
  17#include <linux/sched.h>
  18#include <linux/time.h>
  19#include <linux/nmi.h>
  20#include <linux/interrupt.h>
  21#include <linux/efi.h>
  22#include <linux/timex.h>
  23#include <linux/timekeeper_internal.h>
  24#include <linux/platform_device.h>
  25#include <linux/sched/cputime.h>
  26
  27#include <asm/machvec.h>
  28#include <asm/delay.h>
  29#include <asm/hw_irq.h>
  30#include <asm/ptrace.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33
  34#include "fsyscall_gtod_data.h"
  35
  36static u64 itc_get_cycles(struct clocksource *cs);
  37
  38struct fsyscall_gtod_data_t fsyscall_gtod_data;
  39
  40struct itc_jitter_data_t itc_jitter_data;
  41
  42volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  43
  44#ifdef CONFIG_IA64_DEBUG_IRQ
  45
  46unsigned long last_cli_ip;
  47EXPORT_SYMBOL(last_cli_ip);
  48
  49#endif
  50
  51static struct clocksource clocksource_itc = {
  52        .name           = "itc",
  53        .rating         = 350,
  54        .read           = itc_get_cycles,
  55        .mask           = CLOCKSOURCE_MASK(64),
  56        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  57};
  58static struct clocksource *itc_clocksource;
  59
  60#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  61
  62#include <linux/kernel_stat.h>
  63
  64extern u64 cycle_to_nsec(u64 cyc);
  65
  66void vtime_flush(struct task_struct *tsk)
  67{
  68        struct thread_info *ti = task_thread_info(tsk);
  69        u64 delta;
  70
  71        if (ti->utime)
  72                account_user_time(tsk, cycle_to_nsec(ti->utime));
  73
  74        if (ti->gtime)
  75                account_guest_time(tsk, cycle_to_nsec(ti->gtime));
  76
  77        if (ti->idle_time)
  78                account_idle_time(cycle_to_nsec(ti->idle_time));
  79
  80        if (ti->stime) {
  81                delta = cycle_to_nsec(ti->stime);
  82                account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
  83        }
  84
  85        if (ti->hardirq_time) {
  86                delta = cycle_to_nsec(ti->hardirq_time);
  87                account_system_index_time(tsk, delta, CPUTIME_IRQ);
  88        }
  89
  90        if (ti->softirq_time) {
  91                delta = cycle_to_nsec(ti->softirq_time));
  92                account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
  93        }
  94
  95        ti->utime = 0;
  96        ti->gtime = 0;
  97        ti->idle_time = 0;
  98        ti->stime = 0;
  99        ti->hardirq_time = 0;
 100        ti->softirq_time = 0;
 101}
 102
 103/*
 104 * Called from the context switch with interrupts disabled, to charge all
 105 * accumulated times to the current process, and to prepare accounting on
 106 * the next process.
 107 */
 108void arch_vtime_task_switch(struct task_struct *prev)
 109{
 110        struct thread_info *pi = task_thread_info(prev);
 111        struct thread_info *ni = task_thread_info(current);
 112
 113        ni->ac_stamp = pi->ac_stamp;
 114        ni->ac_stime = ni->ac_utime = 0;
 115}
 116
 117/*
 118 * Account time for a transition between system, hard irq or soft irq state.
 119 * Note that this function is called with interrupts enabled.
 120 */
 121static __u64 vtime_delta(struct task_struct *tsk)
 122{
 123        struct thread_info *ti = task_thread_info(tsk);
 124        __u64 now, delta_stime;
 125
 126        WARN_ON_ONCE(!irqs_disabled());
 127
 128        now = ia64_get_itc();
 129        delta_stime = now - ti->ac_stamp;
 130        ti->ac_stamp = now;
 131
 132        return delta_stime;
 133}
 134
 135void vtime_account_system(struct task_struct *tsk)
 136{
 137        struct thread_info *ti = task_thread_info(tsk);
 138        __u64 stime = vtime_delta(tsk);
 139
 140        if ((tsk->flags & PF_VCPU) && !irq_count())
 141                ti->gtime += stime;
 142        else if (hardirq_count())
 143                ti->hardirq_time += stime;
 144        else if (in_serving_softirq())
 145                ti->softirq_time += stime;
 146        else
 147                ti->stime += stime;
 148}
 149EXPORT_SYMBOL_GPL(vtime_account_system);
 150
 151void vtime_account_idle(struct task_struct *tsk)
 152{
 153        struct thread_info *ti = task_thread_info(tsk);
 154
 155        ti->idle_time += vtime_delta(tsk);
 156}
 157
 158#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 159
 160static irqreturn_t
 161timer_interrupt (int irq, void *dev_id)
 162{
 163        unsigned long new_itm;
 164
 165        if (cpu_is_offline(smp_processor_id())) {
 166                return IRQ_HANDLED;
 167        }
 168
 169        platform_timer_interrupt(irq, dev_id);
 170
 171        new_itm = local_cpu_data->itm_next;
 172
 173        if (!time_after(ia64_get_itc(), new_itm))
 174                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 175                       ia64_get_itc(), new_itm);
 176
 177        profile_tick(CPU_PROFILING);
 178
 179        while (1) {
 180                update_process_times(user_mode(get_irq_regs()));
 181
 182                new_itm += local_cpu_data->itm_delta;
 183
 184                if (smp_processor_id() == time_keeper_id)
 185                        xtime_update(1);
 186
 187                local_cpu_data->itm_next = new_itm;
 188
 189                if (time_after(new_itm, ia64_get_itc()))
 190                        break;
 191
 192                /*
 193                 * Allow IPIs to interrupt the timer loop.
 194                 */
 195                local_irq_enable();
 196                local_irq_disable();
 197        }
 198
 199        do {
 200                /*
 201                 * If we're too close to the next clock tick for
 202                 * comfort, we increase the safety margin by
 203                 * intentionally dropping the next tick(s).  We do NOT
 204                 * update itm.next because that would force us to call
 205                 * xtime_update() which in turn would let our clock run
 206                 * too fast (with the potentially devastating effect
 207                 * of losing monotony of time).
 208                 */
 209                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 210                        new_itm += local_cpu_data->itm_delta;
 211                ia64_set_itm(new_itm);
 212                /* double check, in case we got hit by a (slow) PMI: */
 213        } while (time_after_eq(ia64_get_itc(), new_itm));
 214        return IRQ_HANDLED;
 215}
 216
 217/*
 218 * Encapsulate access to the itm structure for SMP.
 219 */
 220void
 221ia64_cpu_local_tick (void)
 222{
 223        int cpu = smp_processor_id();
 224        unsigned long shift = 0, delta;
 225
 226        /* arrange for the cycle counter to generate a timer interrupt: */
 227        ia64_set_itv(IA64_TIMER_VECTOR);
 228
 229        delta = local_cpu_data->itm_delta;
 230        /*
 231         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 232         * same time:
 233         */
 234        if (cpu) {
 235                unsigned long hi = 1UL << ia64_fls(cpu);
 236                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 237        }
 238        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 239        ia64_set_itm(local_cpu_data->itm_next);
 240}
 241
 242static int nojitter;
 243
 244static int __init nojitter_setup(char *str)
 245{
 246        nojitter = 1;
 247        printk("Jitter checking for ITC timers disabled\n");
 248        return 1;
 249}
 250
 251__setup("nojitter", nojitter_setup);
 252
 253
 254void ia64_init_itm(void)
 255{
 256        unsigned long platform_base_freq, itc_freq;
 257        struct pal_freq_ratio itc_ratio, proc_ratio;
 258        long status, platform_base_drift, itc_drift;
 259
 260        /*
 261         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 262         * frequency and then a PAL call to determine the frequency ratio between the ITC
 263         * and the base frequency.
 264         */
 265        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 266                                    &platform_base_freq, &platform_base_drift);
 267        if (status != 0) {
 268                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 269        } else {
 270                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 271                if (status != 0)
 272                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 273        }
 274        if (status != 0) {
 275                /* invent "random" values */
 276                printk(KERN_ERR
 277                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 278                platform_base_freq = 100000000;
 279                platform_base_drift = -1;       /* no drift info */
 280                itc_ratio.num = 3;
 281                itc_ratio.den = 1;
 282        }
 283        if (platform_base_freq < 40000000) {
 284                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 285                       platform_base_freq);
 286                platform_base_freq = 75000000;
 287                platform_base_drift = -1;
 288        }
 289        if (!proc_ratio.den)
 290                proc_ratio.den = 1;     /* avoid division by zero */
 291        if (!itc_ratio.den)
 292                itc_ratio.den = 1;      /* avoid division by zero */
 293
 294        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 295
 296        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 297        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 298               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 299               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 300               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 301
 302        if (platform_base_drift != -1) {
 303                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 304                printk("+/-%ldppm\n", itc_drift);
 305        } else {
 306                itc_drift = -1;
 307                printk("\n");
 308        }
 309
 310        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 311        local_cpu_data->itc_freq = itc_freq;
 312        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 313        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 314                                        + itc_freq/2)/itc_freq;
 315
 316        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 317#ifdef CONFIG_SMP
 318                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 319                 * Jitter compensation requires a cmpxchg which may limit
 320                 * the scalability of the syscalls for retrieving time.
 321                 * The ITC synchronization is usually successful to within a few
 322                 * ITC ticks but this is not a sure thing. If you need to improve
 323                 * timer performance in SMP situations then boot the kernel with the
 324                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 325                 * even going backward) if the ITC offsets between the individual CPUs
 326                 * are too large.
 327                 */
 328                if (!nojitter)
 329                        itc_jitter_data.itc_jitter = 1;
 330#endif
 331        } else
 332                /*
 333                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 334                 * ITC values may fluctuate significantly between processors.
 335                 * Clock should not be used for hrtimers. Mark itc as only
 336                 * useful for boot and testing.
 337                 *
 338                 * Note that jitter compensation is off! There is no point of
 339                 * synchronizing ITCs since they may be large differentials
 340                 * that change over time.
 341                 *
 342                 * The only way to fix this would be to repeatedly sync the
 343                 * ITCs. Until that time we have to avoid ITC.
 344                 */
 345                clocksource_itc.rating = 50;
 346
 347        /* avoid softlock up message when cpu is unplug and plugged again. */
 348        touch_softlockup_watchdog();
 349
 350        /* Setup the CPU local timer tick */
 351        ia64_cpu_local_tick();
 352
 353        if (!itc_clocksource) {
 354                clocksource_register_hz(&clocksource_itc,
 355                                                local_cpu_data->itc_freq);
 356                itc_clocksource = &clocksource_itc;
 357        }
 358}
 359
 360static u64 itc_get_cycles(struct clocksource *cs)
 361{
 362        unsigned long lcycle, now, ret;
 363
 364        if (!itc_jitter_data.itc_jitter)
 365                return get_cycles();
 366
 367        lcycle = itc_jitter_data.itc_lastcycle;
 368        now = get_cycles();
 369        if (lcycle && time_after(lcycle, now))
 370                return lcycle;
 371
 372        /*
 373         * Keep track of the last timer value returned.
 374         * In an SMP environment, you could lose out in contention of
 375         * cmpxchg. If so, your cmpxchg returns new value which the
 376         * winner of contention updated to. Use the new value instead.
 377         */
 378        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 379        if (unlikely(ret != lcycle))
 380                return ret;
 381
 382        return now;
 383}
 384
 385
 386static struct irqaction timer_irqaction = {
 387        .handler =      timer_interrupt,
 388        .flags =        IRQF_IRQPOLL,
 389        .name =         "timer"
 390};
 391
 392void read_persistent_clock64(struct timespec64 *ts)
 393{
 394        efi_gettimeofday(ts);
 395}
 396
 397void __init
 398time_init (void)
 399{
 400        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 401        ia64_init_itm();
 402}
 403
 404/*
 405 * Generic udelay assumes that if preemption is allowed and the thread
 406 * migrates to another CPU, that the ITC values are synchronized across
 407 * all CPUs.
 408 */
 409static void
 410ia64_itc_udelay (unsigned long usecs)
 411{
 412        unsigned long start = ia64_get_itc();
 413        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 414
 415        while (time_before(ia64_get_itc(), end))
 416                cpu_relax();
 417}
 418
 419void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 420
 421void
 422udelay (unsigned long usecs)
 423{
 424        (*ia64_udelay)(usecs);
 425}
 426EXPORT_SYMBOL(udelay);
 427
 428/* IA64 doesn't cache the timezone */
 429void update_vsyscall_tz(void)
 430{
 431}
 432
 433void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
 434                         struct clocksource *c, u32 mult, u64 cycle_last)
 435{
 436        write_seqcount_begin(&fsyscall_gtod_data.seq);
 437
 438        /* copy fsyscall clock data */
 439        fsyscall_gtod_data.clk_mask = c->mask;
 440        fsyscall_gtod_data.clk_mult = mult;
 441        fsyscall_gtod_data.clk_shift = c->shift;
 442        fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
 443        fsyscall_gtod_data.clk_cycle_last = cycle_last;
 444
 445        /* copy kernel time structures */
 446        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
 447        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
 448        fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
 449                                                        + wall->tv_sec;
 450        fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
 451                                                        + wall->tv_nsec;
 452
 453        /* normalize */
 454        while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
 455                fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
 456                fsyscall_gtod_data.monotonic_time.tv_sec++;
 457        }
 458
 459        write_seqcount_end(&fsyscall_gtod_data.seq);
 460}
 461
 462