linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/extable.h>
  25#include <linux/mm.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/debug.h>
  28#include <linux/smp.h>
  29#include <linux/spinlock.h>
  30#include <linux/kallsyms.h>
  31#include <linux/bootmem.h>
  32#include <linux/interrupt.h>
  33#include <linux/ptrace.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdebug.h>
  36#include <linux/kprobes.h>
  37#include <linux/notifier.h>
  38#include <linux/kdb.h>
  39#include <linux/irq.h>
  40#include <linux/perf_event.h>
  41
  42#include <asm/addrspace.h>
  43#include <asm/bootinfo.h>
  44#include <asm/branch.h>
  45#include <asm/break.h>
  46#include <asm/cop2.h>
  47#include <asm/cpu.h>
  48#include <asm/cpu-type.h>
  49#include <asm/dsp.h>
  50#include <asm/fpu.h>
  51#include <asm/fpu_emulator.h>
  52#include <asm/idle.h>
  53#include <asm/mips-cm.h>
  54#include <asm/mips-r2-to-r6-emul.h>
  55#include <asm/mips-cm.h>
  56#include <asm/mipsregs.h>
  57#include <asm/mipsmtregs.h>
  58#include <asm/module.h>
  59#include <asm/msa.h>
  60#include <asm/pgtable.h>
  61#include <asm/ptrace.h>
  62#include <asm/sections.h>
  63#include <asm/siginfo.h>
  64#include <asm/tlbdebug.h>
  65#include <asm/traps.h>
  66#include <linux/uaccess.h>
  67#include <asm/watch.h>
  68#include <asm/mmu_context.h>
  69#include <asm/types.h>
  70#include <asm/stacktrace.h>
  71#include <asm/uasm.h>
  72
  73extern void check_wait(void);
  74extern asmlinkage void rollback_handle_int(void);
  75extern asmlinkage void handle_int(void);
  76extern u32 handle_tlbl[];
  77extern u32 handle_tlbs[];
  78extern u32 handle_tlbm[];
  79extern asmlinkage void handle_adel(void);
  80extern asmlinkage void handle_ades(void);
  81extern asmlinkage void handle_ibe(void);
  82extern asmlinkage void handle_dbe(void);
  83extern asmlinkage void handle_sys(void);
  84extern asmlinkage void handle_bp(void);
  85extern asmlinkage void handle_ri(void);
  86extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  87extern asmlinkage void handle_ri_rdhwr(void);
  88extern asmlinkage void handle_cpu(void);
  89extern asmlinkage void handle_ov(void);
  90extern asmlinkage void handle_tr(void);
  91extern asmlinkage void handle_msa_fpe(void);
  92extern asmlinkage void handle_fpe(void);
  93extern asmlinkage void handle_ftlb(void);
  94extern asmlinkage void handle_msa(void);
  95extern asmlinkage void handle_mdmx(void);
  96extern asmlinkage void handle_watch(void);
  97extern asmlinkage void handle_mt(void);
  98extern asmlinkage void handle_dsp(void);
  99extern asmlinkage void handle_mcheck(void);
 100extern asmlinkage void handle_reserved(void);
 101extern void tlb_do_page_fault_0(void);
 102
 103void (*board_be_init)(void);
 104int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 105void (*board_nmi_handler_setup)(void);
 106void (*board_ejtag_handler_setup)(void);
 107void (*board_bind_eic_interrupt)(int irq, int regset);
 108void (*board_ebase_setup)(void);
 109void(*board_cache_error_setup)(void);
 110
 111static void show_raw_backtrace(unsigned long reg29)
 112{
 113        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 114        unsigned long addr;
 115
 116        printk("Call Trace:");
 117#ifdef CONFIG_KALLSYMS
 118        printk("\n");
 119#endif
 120        while (!kstack_end(sp)) {
 121                unsigned long __user *p =
 122                        (unsigned long __user *)(unsigned long)sp++;
 123                if (__get_user(addr, p)) {
 124                        printk(" (Bad stack address)");
 125                        break;
 126                }
 127                if (__kernel_text_address(addr))
 128                        print_ip_sym(addr);
 129        }
 130        printk("\n");
 131}
 132
 133#ifdef CONFIG_KALLSYMS
 134int raw_show_trace;
 135static int __init set_raw_show_trace(char *str)
 136{
 137        raw_show_trace = 1;
 138        return 1;
 139}
 140__setup("raw_show_trace", set_raw_show_trace);
 141#endif
 142
 143static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 144{
 145        unsigned long sp = regs->regs[29];
 146        unsigned long ra = regs->regs[31];
 147        unsigned long pc = regs->cp0_epc;
 148
 149        if (!task)
 150                task = current;
 151
 152        if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 153                show_raw_backtrace(sp);
 154                return;
 155        }
 156        printk("Call Trace:\n");
 157        do {
 158                print_ip_sym(pc);
 159                pc = unwind_stack(task, &sp, pc, &ra);
 160        } while (pc);
 161        pr_cont("\n");
 162}
 163
 164/*
 165 * This routine abuses get_user()/put_user() to reference pointers
 166 * with at least a bit of error checking ...
 167 */
 168static void show_stacktrace(struct task_struct *task,
 169        const struct pt_regs *regs)
 170{
 171        const int field = 2 * sizeof(unsigned long);
 172        long stackdata;
 173        int i;
 174        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 175
 176        printk("Stack :");
 177        i = 0;
 178        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 179                if (i && ((i % (64 / field)) == 0)) {
 180                        pr_cont("\n");
 181                        printk("       ");
 182                }
 183                if (i > 39) {
 184                        pr_cont(" ...");
 185                        break;
 186                }
 187
 188                if (__get_user(stackdata, sp++)) {
 189                        pr_cont(" (Bad stack address)");
 190                        break;
 191                }
 192
 193                pr_cont(" %0*lx", field, stackdata);
 194                i++;
 195        }
 196        pr_cont("\n");
 197        show_backtrace(task, regs);
 198}
 199
 200void show_stack(struct task_struct *task, unsigned long *sp)
 201{
 202        struct pt_regs regs;
 203        mm_segment_t old_fs = get_fs();
 204
 205        regs.cp0_status = KSU_KERNEL;
 206        if (sp) {
 207                regs.regs[29] = (unsigned long)sp;
 208                regs.regs[31] = 0;
 209                regs.cp0_epc = 0;
 210        } else {
 211                if (task && task != current) {
 212                        regs.regs[29] = task->thread.reg29;
 213                        regs.regs[31] = 0;
 214                        regs.cp0_epc = task->thread.reg31;
 215#ifdef CONFIG_KGDB_KDB
 216                } else if (atomic_read(&kgdb_active) != -1 &&
 217                           kdb_current_regs) {
 218                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 219#endif /* CONFIG_KGDB_KDB */
 220                } else {
 221                        prepare_frametrace(&regs);
 222                }
 223        }
 224        /*
 225         * show_stack() deals exclusively with kernel mode, so be sure to access
 226         * the stack in the kernel (not user) address space.
 227         */
 228        set_fs(KERNEL_DS);
 229        show_stacktrace(task, &regs);
 230        set_fs(old_fs);
 231}
 232
 233static void show_code(unsigned int __user *pc)
 234{
 235        long i;
 236        unsigned short __user *pc16 = NULL;
 237
 238        printk("Code:");
 239
 240        if ((unsigned long)pc & 1)
 241                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 242        for(i = -3 ; i < 6 ; i++) {
 243                unsigned int insn;
 244                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 245                        pr_cont(" (Bad address in epc)\n");
 246                        break;
 247                }
 248                pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 249        }
 250        pr_cont("\n");
 251}
 252
 253static void __show_regs(const struct pt_regs *regs)
 254{
 255        const int field = 2 * sizeof(unsigned long);
 256        unsigned int cause = regs->cp0_cause;
 257        unsigned int exccode;
 258        int i;
 259
 260        show_regs_print_info(KERN_DEFAULT);
 261
 262        /*
 263         * Saved main processor registers
 264         */
 265        for (i = 0; i < 32; ) {
 266                if ((i % 4) == 0)
 267                        printk("$%2d   :", i);
 268                if (i == 0)
 269                        pr_cont(" %0*lx", field, 0UL);
 270                else if (i == 26 || i == 27)
 271                        pr_cont(" %*s", field, "");
 272                else
 273                        pr_cont(" %0*lx", field, regs->regs[i]);
 274
 275                i++;
 276                if ((i % 4) == 0)
 277                        pr_cont("\n");
 278        }
 279
 280#ifdef CONFIG_CPU_HAS_SMARTMIPS
 281        printk("Acx    : %0*lx\n", field, regs->acx);
 282#endif
 283        printk("Hi    : %0*lx\n", field, regs->hi);
 284        printk("Lo    : %0*lx\n", field, regs->lo);
 285
 286        /*
 287         * Saved cp0 registers
 288         */
 289        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 290               (void *) regs->cp0_epc);
 291        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 292               (void *) regs->regs[31]);
 293
 294        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 295
 296        if (cpu_has_3kex) {
 297                if (regs->cp0_status & ST0_KUO)
 298                        pr_cont("KUo ");
 299                if (regs->cp0_status & ST0_IEO)
 300                        pr_cont("IEo ");
 301                if (regs->cp0_status & ST0_KUP)
 302                        pr_cont("KUp ");
 303                if (regs->cp0_status & ST0_IEP)
 304                        pr_cont("IEp ");
 305                if (regs->cp0_status & ST0_KUC)
 306                        pr_cont("KUc ");
 307                if (regs->cp0_status & ST0_IEC)
 308                        pr_cont("IEc ");
 309        } else if (cpu_has_4kex) {
 310                if (regs->cp0_status & ST0_KX)
 311                        pr_cont("KX ");
 312                if (regs->cp0_status & ST0_SX)
 313                        pr_cont("SX ");
 314                if (regs->cp0_status & ST0_UX)
 315                        pr_cont("UX ");
 316                switch (regs->cp0_status & ST0_KSU) {
 317                case KSU_USER:
 318                        pr_cont("USER ");
 319                        break;
 320                case KSU_SUPERVISOR:
 321                        pr_cont("SUPERVISOR ");
 322                        break;
 323                case KSU_KERNEL:
 324                        pr_cont("KERNEL ");
 325                        break;
 326                default:
 327                        pr_cont("BAD_MODE ");
 328                        break;
 329                }
 330                if (regs->cp0_status & ST0_ERL)
 331                        pr_cont("ERL ");
 332                if (regs->cp0_status & ST0_EXL)
 333                        pr_cont("EXL ");
 334                if (regs->cp0_status & ST0_IE)
 335                        pr_cont("IE ");
 336        }
 337        pr_cont("\n");
 338
 339        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 340        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 341
 342        if (1 <= exccode && exccode <= 5)
 343                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 344
 345        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 346               cpu_name_string());
 347}
 348
 349/*
 350 * FIXME: really the generic show_regs should take a const pointer argument.
 351 */
 352void show_regs(struct pt_regs *regs)
 353{
 354        __show_regs((struct pt_regs *)regs);
 355}
 356
 357void show_registers(struct pt_regs *regs)
 358{
 359        const int field = 2 * sizeof(unsigned long);
 360        mm_segment_t old_fs = get_fs();
 361
 362        __show_regs(regs);
 363        print_modules();
 364        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 365               current->comm, current->pid, current_thread_info(), current,
 366              field, current_thread_info()->tp_value);
 367        if (cpu_has_userlocal) {
 368                unsigned long tls;
 369
 370                tls = read_c0_userlocal();
 371                if (tls != current_thread_info()->tp_value)
 372                        printk("*HwTLS: %0*lx\n", field, tls);
 373        }
 374
 375        if (!user_mode(regs))
 376                /* Necessary for getting the correct stack content */
 377                set_fs(KERNEL_DS);
 378        show_stacktrace(current, regs);
 379        show_code((unsigned int __user *) regs->cp0_epc);
 380        printk("\n");
 381        set_fs(old_fs);
 382}
 383
 384static DEFINE_RAW_SPINLOCK(die_lock);
 385
 386void __noreturn die(const char *str, struct pt_regs *regs)
 387{
 388        static int die_counter;
 389        int sig = SIGSEGV;
 390
 391        oops_enter();
 392
 393        if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 394                       SIGSEGV) == NOTIFY_STOP)
 395                sig = 0;
 396
 397        console_verbose();
 398        raw_spin_lock_irq(&die_lock);
 399        bust_spinlocks(1);
 400
 401        printk("%s[#%d]:\n", str, ++die_counter);
 402        show_registers(regs);
 403        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 404        raw_spin_unlock_irq(&die_lock);
 405
 406        oops_exit();
 407
 408        if (in_interrupt())
 409                panic("Fatal exception in interrupt");
 410
 411        if (panic_on_oops)
 412                panic("Fatal exception");
 413
 414        if (regs && kexec_should_crash(current))
 415                crash_kexec(regs);
 416
 417        do_exit(sig);
 418}
 419
 420extern struct exception_table_entry __start___dbe_table[];
 421extern struct exception_table_entry __stop___dbe_table[];
 422
 423__asm__(
 424"       .section        __dbe_table, \"a\"\n"
 425"       .previous                       \n");
 426
 427/* Given an address, look for it in the exception tables. */
 428static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 429{
 430        const struct exception_table_entry *e;
 431
 432        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 433        if (!e)
 434                e = search_module_dbetables(addr);
 435        return e;
 436}
 437
 438asmlinkage void do_be(struct pt_regs *regs)
 439{
 440        const int field = 2 * sizeof(unsigned long);
 441        const struct exception_table_entry *fixup = NULL;
 442        int data = regs->cp0_cause & 4;
 443        int action = MIPS_BE_FATAL;
 444        enum ctx_state prev_state;
 445
 446        prev_state = exception_enter();
 447        /* XXX For now.  Fixme, this searches the wrong table ...  */
 448        if (data && !user_mode(regs))
 449                fixup = search_dbe_tables(exception_epc(regs));
 450
 451        if (fixup)
 452                action = MIPS_BE_FIXUP;
 453
 454        if (board_be_handler)
 455                action = board_be_handler(regs, fixup != NULL);
 456        else
 457                mips_cm_error_report();
 458
 459        switch (action) {
 460        case MIPS_BE_DISCARD:
 461                goto out;
 462        case MIPS_BE_FIXUP:
 463                if (fixup) {
 464                        regs->cp0_epc = fixup->nextinsn;
 465                        goto out;
 466                }
 467                break;
 468        default:
 469                break;
 470        }
 471
 472        /*
 473         * Assume it would be too dangerous to continue ...
 474         */
 475        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 476               data ? "Data" : "Instruction",
 477               field, regs->cp0_epc, field, regs->regs[31]);
 478        if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 479                       SIGBUS) == NOTIFY_STOP)
 480                goto out;
 481
 482        die_if_kernel("Oops", regs);
 483        force_sig(SIGBUS, current);
 484
 485out:
 486        exception_exit(prev_state);
 487}
 488
 489/*
 490 * ll/sc, rdhwr, sync emulation
 491 */
 492
 493#define OPCODE 0xfc000000
 494#define BASE   0x03e00000
 495#define RT     0x001f0000
 496#define OFFSET 0x0000ffff
 497#define LL     0xc0000000
 498#define SC     0xe0000000
 499#define SPEC0  0x00000000
 500#define SPEC3  0x7c000000
 501#define RD     0x0000f800
 502#define FUNC   0x0000003f
 503#define SYNC   0x0000000f
 504#define RDHWR  0x0000003b
 505
 506/*  microMIPS definitions   */
 507#define MM_POOL32A_FUNC 0xfc00ffff
 508#define MM_RDHWR        0x00006b3c
 509#define MM_RS           0x001f0000
 510#define MM_RT           0x03e00000
 511
 512/*
 513 * The ll_bit is cleared by r*_switch.S
 514 */
 515
 516unsigned int ll_bit;
 517struct task_struct *ll_task;
 518
 519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 520{
 521        unsigned long value, __user *vaddr;
 522        long offset;
 523
 524        /*
 525         * analyse the ll instruction that just caused a ri exception
 526         * and put the referenced address to addr.
 527         */
 528
 529        /* sign extend offset */
 530        offset = opcode & OFFSET;
 531        offset <<= 16;
 532        offset >>= 16;
 533
 534        vaddr = (unsigned long __user *)
 535                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 536
 537        if ((unsigned long)vaddr & 3)
 538                return SIGBUS;
 539        if (get_user(value, vaddr))
 540                return SIGSEGV;
 541
 542        preempt_disable();
 543
 544        if (ll_task == NULL || ll_task == current) {
 545                ll_bit = 1;
 546        } else {
 547                ll_bit = 0;
 548        }
 549        ll_task = current;
 550
 551        preempt_enable();
 552
 553        regs->regs[(opcode & RT) >> 16] = value;
 554
 555        return 0;
 556}
 557
 558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 559{
 560        unsigned long __user *vaddr;
 561        unsigned long reg;
 562        long offset;
 563
 564        /*
 565         * analyse the sc instruction that just caused a ri exception
 566         * and put the referenced address to addr.
 567         */
 568
 569        /* sign extend offset */
 570        offset = opcode & OFFSET;
 571        offset <<= 16;
 572        offset >>= 16;
 573
 574        vaddr = (unsigned long __user *)
 575                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 576        reg = (opcode & RT) >> 16;
 577
 578        if ((unsigned long)vaddr & 3)
 579                return SIGBUS;
 580
 581        preempt_disable();
 582
 583        if (ll_bit == 0 || ll_task != current) {
 584                regs->regs[reg] = 0;
 585                preempt_enable();
 586                return 0;
 587        }
 588
 589        preempt_enable();
 590
 591        if (put_user(regs->regs[reg], vaddr))
 592                return SIGSEGV;
 593
 594        regs->regs[reg] = 1;
 595
 596        return 0;
 597}
 598
 599/*
 600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 601 * opcodes are supposed to result in coprocessor unusable exceptions if
 602 * executed on ll/sc-less processors.  That's the theory.  In practice a
 603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 604 * instead, so we're doing the emulation thing in both exception handlers.
 605 */
 606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 607{
 608        if ((opcode & OPCODE) == LL) {
 609                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 610                                1, regs, 0);
 611                return simulate_ll(regs, opcode);
 612        }
 613        if ((opcode & OPCODE) == SC) {
 614                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 615                                1, regs, 0);
 616                return simulate_sc(regs, opcode);
 617        }
 618
 619        return -1;                      /* Must be something else ... */
 620}
 621
 622/*
 623 * Simulate trapping 'rdhwr' instructions to provide user accessible
 624 * registers not implemented in hardware.
 625 */
 626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 627{
 628        struct thread_info *ti = task_thread_info(current);
 629
 630        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 631                        1, regs, 0);
 632        switch (rd) {
 633        case MIPS_HWR_CPUNUM:           /* CPU number */
 634                regs->regs[rt] = smp_processor_id();
 635                return 0;
 636        case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
 637                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 638                                     current_cpu_data.icache.linesz);
 639                return 0;
 640        case MIPS_HWR_CC:               /* Read count register */
 641                regs->regs[rt] = read_c0_count();
 642                return 0;
 643        case MIPS_HWR_CCRES:            /* Count register resolution */
 644                switch (current_cpu_type()) {
 645                case CPU_20KC:
 646                case CPU_25KF:
 647                        regs->regs[rt] = 1;
 648                        break;
 649                default:
 650                        regs->regs[rt] = 2;
 651                }
 652                return 0;
 653        case MIPS_HWR_ULR:              /* Read UserLocal register */
 654                regs->regs[rt] = ti->tp_value;
 655                return 0;
 656        default:
 657                return -1;
 658        }
 659}
 660
 661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 662{
 663        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 664                int rd = (opcode & RD) >> 11;
 665                int rt = (opcode & RT) >> 16;
 666
 667                simulate_rdhwr(regs, rd, rt);
 668                return 0;
 669        }
 670
 671        /* Not ours.  */
 672        return -1;
 673}
 674
 675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 676{
 677        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 678                int rd = (opcode & MM_RS) >> 16;
 679                int rt = (opcode & MM_RT) >> 21;
 680                simulate_rdhwr(regs, rd, rt);
 681                return 0;
 682        }
 683
 684        /* Not ours.  */
 685        return -1;
 686}
 687
 688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 689{
 690        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 691                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 692                                1, regs, 0);
 693                return 0;
 694        }
 695
 696        return -1;                      /* Must be something else ... */
 697}
 698
 699asmlinkage void do_ov(struct pt_regs *regs)
 700{
 701        enum ctx_state prev_state;
 702        siginfo_t info = {
 703                .si_signo = SIGFPE,
 704                .si_code = FPE_INTOVF,
 705                .si_addr = (void __user *)regs->cp0_epc,
 706        };
 707
 708        prev_state = exception_enter();
 709        die_if_kernel("Integer overflow", regs);
 710
 711        force_sig_info(SIGFPE, &info, current);
 712        exception_exit(prev_state);
 713}
 714
 715/*
 716 * Send SIGFPE according to FCSR Cause bits, which must have already
 717 * been masked against Enable bits.  This is impotant as Inexact can
 718 * happen together with Overflow or Underflow, and `ptrace' can set
 719 * any bits.
 720 */
 721void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 722                     struct task_struct *tsk)
 723{
 724        struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
 725
 726        if (fcr31 & FPU_CSR_INV_X)
 727                si.si_code = FPE_FLTINV;
 728        else if (fcr31 & FPU_CSR_DIV_X)
 729                si.si_code = FPE_FLTDIV;
 730        else if (fcr31 & FPU_CSR_OVF_X)
 731                si.si_code = FPE_FLTOVF;
 732        else if (fcr31 & FPU_CSR_UDF_X)
 733                si.si_code = FPE_FLTUND;
 734        else if (fcr31 & FPU_CSR_INE_X)
 735                si.si_code = FPE_FLTRES;
 736        else
 737                si.si_code = __SI_FAULT;
 738        force_sig_info(SIGFPE, &si, tsk);
 739}
 740
 741int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 742{
 743        struct siginfo si = { 0 };
 744        struct vm_area_struct *vma;
 745
 746        switch (sig) {
 747        case 0:
 748                return 0;
 749
 750        case SIGFPE:
 751                force_fcr31_sig(fcr31, fault_addr, current);
 752                return 1;
 753
 754        case SIGBUS:
 755                si.si_addr = fault_addr;
 756                si.si_signo = sig;
 757                si.si_code = BUS_ADRERR;
 758                force_sig_info(sig, &si, current);
 759                return 1;
 760
 761        case SIGSEGV:
 762                si.si_addr = fault_addr;
 763                si.si_signo = sig;
 764                down_read(&current->mm->mmap_sem);
 765                vma = find_vma(current->mm, (unsigned long)fault_addr);
 766                if (vma && (vma->vm_start <= (unsigned long)fault_addr))
 767                        si.si_code = SEGV_ACCERR;
 768                else
 769                        si.si_code = SEGV_MAPERR;
 770                up_read(&current->mm->mmap_sem);
 771                force_sig_info(sig, &si, current);
 772                return 1;
 773
 774        default:
 775                force_sig(sig, current);
 776                return 1;
 777        }
 778}
 779
 780static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 781                       unsigned long old_epc, unsigned long old_ra)
 782{
 783        union mips_instruction inst = { .word = opcode };
 784        void __user *fault_addr;
 785        unsigned long fcr31;
 786        int sig;
 787
 788        /* If it's obviously not an FP instruction, skip it */
 789        switch (inst.i_format.opcode) {
 790        case cop1_op:
 791        case cop1x_op:
 792        case lwc1_op:
 793        case ldc1_op:
 794        case swc1_op:
 795        case sdc1_op:
 796                break;
 797
 798        default:
 799                return -1;
 800        }
 801
 802        /*
 803         * do_ri skipped over the instruction via compute_return_epc, undo
 804         * that for the FPU emulator.
 805         */
 806        regs->cp0_epc = old_epc;
 807        regs->regs[31] = old_ra;
 808
 809        /* Save the FP context to struct thread_struct */
 810        lose_fpu(1);
 811
 812        /* Run the emulator */
 813        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 814                                       &fault_addr);
 815
 816        /*
 817         * We can't allow the emulated instruction to leave any
 818         * enabled Cause bits set in $fcr31.
 819         */
 820        fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 821        current->thread.fpu.fcr31 &= ~fcr31;
 822
 823        /* Restore the hardware register state */
 824        own_fpu(1);
 825
 826        /* Send a signal if required.  */
 827        process_fpemu_return(sig, fault_addr, fcr31);
 828
 829        return 0;
 830}
 831
 832/*
 833 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 834 */
 835asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 836{
 837        enum ctx_state prev_state;
 838        void __user *fault_addr;
 839        int sig;
 840
 841        prev_state = exception_enter();
 842        if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 843                       SIGFPE) == NOTIFY_STOP)
 844                goto out;
 845
 846        /* Clear FCSR.Cause before enabling interrupts */
 847        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 848        local_irq_enable();
 849
 850        die_if_kernel("FP exception in kernel code", regs);
 851
 852        if (fcr31 & FPU_CSR_UNI_X) {
 853                /*
 854                 * Unimplemented operation exception.  If we've got the full
 855                 * software emulator on-board, let's use it...
 856                 *
 857                 * Force FPU to dump state into task/thread context.  We're
 858                 * moving a lot of data here for what is probably a single
 859                 * instruction, but the alternative is to pre-decode the FP
 860                 * register operands before invoking the emulator, which seems
 861                 * a bit extreme for what should be an infrequent event.
 862                 */
 863                /* Ensure 'resume' not overwrite saved fp context again. */
 864                lose_fpu(1);
 865
 866                /* Run the emulator */
 867                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 868                                               &fault_addr);
 869
 870                /*
 871                 * We can't allow the emulated instruction to leave any
 872                 * enabled Cause bits set in $fcr31.
 873                 */
 874                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 875                current->thread.fpu.fcr31 &= ~fcr31;
 876
 877                /* Restore the hardware register state */
 878                own_fpu(1);     /* Using the FPU again.  */
 879        } else {
 880                sig = SIGFPE;
 881                fault_addr = (void __user *) regs->cp0_epc;
 882        }
 883
 884        /* Send a signal if required.  */
 885        process_fpemu_return(sig, fault_addr, fcr31);
 886
 887out:
 888        exception_exit(prev_state);
 889}
 890
 891void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 892        const char *str)
 893{
 894        siginfo_t info = { 0 };
 895        char b[40];
 896
 897#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 898        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 899                         SIGTRAP) == NOTIFY_STOP)
 900                return;
 901#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 902
 903        if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 904                       SIGTRAP) == NOTIFY_STOP)
 905                return;
 906
 907        /*
 908         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 909         * insns, even for trap and break codes that indicate arithmetic
 910         * failures.  Weird ...
 911         * But should we continue the brokenness???  --macro
 912         */
 913        switch (code) {
 914        case BRK_OVERFLOW:
 915        case BRK_DIVZERO:
 916                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 917                die_if_kernel(b, regs);
 918                if (code == BRK_DIVZERO)
 919                        info.si_code = FPE_INTDIV;
 920                else
 921                        info.si_code = FPE_INTOVF;
 922                info.si_signo = SIGFPE;
 923                info.si_addr = (void __user *) regs->cp0_epc;
 924                force_sig_info(SIGFPE, &info, current);
 925                break;
 926        case BRK_BUG:
 927                die_if_kernel("Kernel bug detected", regs);
 928                force_sig(SIGTRAP, current);
 929                break;
 930        case BRK_MEMU:
 931                /*
 932                 * This breakpoint code is used by the FPU emulator to retake
 933                 * control of the CPU after executing the instruction from the
 934                 * delay slot of an emulated branch.
 935                 *
 936                 * Terminate if exception was recognized as a delay slot return
 937                 * otherwise handle as normal.
 938                 */
 939                if (do_dsemulret(regs))
 940                        return;
 941
 942                die_if_kernel("Math emu break/trap", regs);
 943                force_sig(SIGTRAP, current);
 944                break;
 945        default:
 946                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 947                die_if_kernel(b, regs);
 948                if (si_code) {
 949                        info.si_signo = SIGTRAP;
 950                        info.si_code = si_code;
 951                        force_sig_info(SIGTRAP, &info, current);
 952                } else {
 953                        force_sig(SIGTRAP, current);
 954                }
 955        }
 956}
 957
 958asmlinkage void do_bp(struct pt_regs *regs)
 959{
 960        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 961        unsigned int opcode, bcode;
 962        enum ctx_state prev_state;
 963        mm_segment_t seg;
 964
 965        seg = get_fs();
 966        if (!user_mode(regs))
 967                set_fs(KERNEL_DS);
 968
 969        prev_state = exception_enter();
 970        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 971        if (get_isa16_mode(regs->cp0_epc)) {
 972                u16 instr[2];
 973
 974                if (__get_user(instr[0], (u16 __user *)epc))
 975                        goto out_sigsegv;
 976
 977                if (!cpu_has_mmips) {
 978                        /* MIPS16e mode */
 979                        bcode = (instr[0] >> 5) & 0x3f;
 980                } else if (mm_insn_16bit(instr[0])) {
 981                        /* 16-bit microMIPS BREAK */
 982                        bcode = instr[0] & 0xf;
 983                } else {
 984                        /* 32-bit microMIPS BREAK */
 985                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 986                                goto out_sigsegv;
 987                        opcode = (instr[0] << 16) | instr[1];
 988                        bcode = (opcode >> 6) & ((1 << 20) - 1);
 989                }
 990        } else {
 991                if (__get_user(opcode, (unsigned int __user *)epc))
 992                        goto out_sigsegv;
 993                bcode = (opcode >> 6) & ((1 << 20) - 1);
 994        }
 995
 996        /*
 997         * There is the ancient bug in the MIPS assemblers that the break
 998         * code starts left to bit 16 instead to bit 6 in the opcode.
 999         * Gas is bug-compatible, but not always, grrr...
1000         * We handle both cases with a simple heuristics.  --macro
1001         */
1002        if (bcode >= (1 << 10))
1003                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1004
1005        /*
1006         * notify the kprobe handlers, if instruction is likely to
1007         * pertain to them.
1008         */
1009        switch (bcode) {
1010        case BRK_UPROBE:
1011                if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1012                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013                        goto out;
1014                else
1015                        break;
1016        case BRK_UPROBE_XOL:
1017                if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1018                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019                        goto out;
1020                else
1021                        break;
1022        case BRK_KPROBE_BP:
1023                if (notify_die(DIE_BREAK, "debug", regs, bcode,
1024                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1025                        goto out;
1026                else
1027                        break;
1028        case BRK_KPROBE_SSTEPBP:
1029                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1030                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1031                        goto out;
1032                else
1033                        break;
1034        default:
1035                break;
1036        }
1037
1038        do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1039
1040out:
1041        set_fs(seg);
1042        exception_exit(prev_state);
1043        return;
1044
1045out_sigsegv:
1046        force_sig(SIGSEGV, current);
1047        goto out;
1048}
1049
1050asmlinkage void do_tr(struct pt_regs *regs)
1051{
1052        u32 opcode, tcode = 0;
1053        enum ctx_state prev_state;
1054        u16 instr[2];
1055        mm_segment_t seg;
1056        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1057
1058        seg = get_fs();
1059        if (!user_mode(regs))
1060                set_fs(get_ds());
1061
1062        prev_state = exception_enter();
1063        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1064        if (get_isa16_mode(regs->cp0_epc)) {
1065                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1066                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1067                        goto out_sigsegv;
1068                opcode = (instr[0] << 16) | instr[1];
1069                /* Immediate versions don't provide a code.  */
1070                if (!(opcode & OPCODE))
1071                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1072        } else {
1073                if (__get_user(opcode, (u32 __user *)epc))
1074                        goto out_sigsegv;
1075                /* Immediate versions don't provide a code.  */
1076                if (!(opcode & OPCODE))
1077                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1078        }
1079
1080        do_trap_or_bp(regs, tcode, 0, "Trap");
1081
1082out:
1083        set_fs(seg);
1084        exception_exit(prev_state);
1085        return;
1086
1087out_sigsegv:
1088        force_sig(SIGSEGV, current);
1089        goto out;
1090}
1091
1092asmlinkage void do_ri(struct pt_regs *regs)
1093{
1094        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1095        unsigned long old_epc = regs->cp0_epc;
1096        unsigned long old31 = regs->regs[31];
1097        enum ctx_state prev_state;
1098        unsigned int opcode = 0;
1099        int status = -1;
1100
1101        /*
1102         * Avoid any kernel code. Just emulate the R2 instruction
1103         * as quickly as possible.
1104         */
1105        if (mipsr2_emulation && cpu_has_mips_r6 &&
1106            likely(user_mode(regs)) &&
1107            likely(get_user(opcode, epc) >= 0)) {
1108                unsigned long fcr31 = 0;
1109
1110                status = mipsr2_decoder(regs, opcode, &fcr31);
1111                switch (status) {
1112                case 0:
1113                case SIGEMT:
1114                        return;
1115                case SIGILL:
1116                        goto no_r2_instr;
1117                default:
1118                        process_fpemu_return(status,
1119                                             &current->thread.cp0_baduaddr,
1120                                             fcr31);
1121                        return;
1122                }
1123        }
1124
1125no_r2_instr:
1126
1127        prev_state = exception_enter();
1128        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1129
1130        if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1131                       SIGILL) == NOTIFY_STOP)
1132                goto out;
1133
1134        die_if_kernel("Reserved instruction in kernel code", regs);
1135
1136        if (unlikely(compute_return_epc(regs) < 0))
1137                goto out;
1138
1139        if (!get_isa16_mode(regs->cp0_epc)) {
1140                if (unlikely(get_user(opcode, epc) < 0))
1141                        status = SIGSEGV;
1142
1143                if (!cpu_has_llsc && status < 0)
1144                        status = simulate_llsc(regs, opcode);
1145
1146                if (status < 0)
1147                        status = simulate_rdhwr_normal(regs, opcode);
1148
1149                if (status < 0)
1150                        status = simulate_sync(regs, opcode);
1151
1152                if (status < 0)
1153                        status = simulate_fp(regs, opcode, old_epc, old31);
1154        } else if (cpu_has_mmips) {
1155                unsigned short mmop[2] = { 0 };
1156
1157                if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1158                        status = SIGSEGV;
1159                if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1160                        status = SIGSEGV;
1161                opcode = mmop[0];
1162                opcode = (opcode << 16) | mmop[1];
1163
1164                if (status < 0)
1165                        status = simulate_rdhwr_mm(regs, opcode);
1166        }
1167
1168        if (status < 0)
1169                status = SIGILL;
1170
1171        if (unlikely(status > 0)) {
1172                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1173                regs->regs[31] = old31;
1174                force_sig(status, current);
1175        }
1176
1177out:
1178        exception_exit(prev_state);
1179}
1180
1181/*
1182 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1183 * emulated more than some threshold number of instructions, force migration to
1184 * a "CPU" that has FP support.
1185 */
1186static void mt_ase_fp_affinity(void)
1187{
1188#ifdef CONFIG_MIPS_MT_FPAFF
1189        if (mt_fpemul_threshold > 0 &&
1190             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1191                /*
1192                 * If there's no FPU present, or if the application has already
1193                 * restricted the allowed set to exclude any CPUs with FPUs,
1194                 * we'll skip the procedure.
1195                 */
1196                if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1197                        cpumask_t tmask;
1198
1199                        current->thread.user_cpus_allowed
1200                                = current->cpus_allowed;
1201                        cpumask_and(&tmask, &current->cpus_allowed,
1202                                    &mt_fpu_cpumask);
1203                        set_cpus_allowed_ptr(current, &tmask);
1204                        set_thread_flag(TIF_FPUBOUND);
1205                }
1206        }
1207#endif /* CONFIG_MIPS_MT_FPAFF */
1208}
1209
1210/*
1211 * No lock; only written during early bootup by CPU 0.
1212 */
1213static RAW_NOTIFIER_HEAD(cu2_chain);
1214
1215int __ref register_cu2_notifier(struct notifier_block *nb)
1216{
1217        return raw_notifier_chain_register(&cu2_chain, nb);
1218}
1219
1220int cu2_notifier_call_chain(unsigned long val, void *v)
1221{
1222        return raw_notifier_call_chain(&cu2_chain, val, v);
1223}
1224
1225static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1226        void *data)
1227{
1228        struct pt_regs *regs = data;
1229
1230        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1231                              "instruction", regs);
1232        force_sig(SIGILL, current);
1233
1234        return NOTIFY_OK;
1235}
1236
1237static int wait_on_fp_mode_switch(atomic_t *p)
1238{
1239        /*
1240         * The FP mode for this task is currently being switched. That may
1241         * involve modifications to the format of this tasks FP context which
1242         * make it unsafe to proceed with execution for the moment. Instead,
1243         * schedule some other task.
1244         */
1245        schedule();
1246        return 0;
1247}
1248
1249static int enable_restore_fp_context(int msa)
1250{
1251        int err, was_fpu_owner, prior_msa;
1252
1253        /*
1254         * If an FP mode switch is currently underway, wait for it to
1255         * complete before proceeding.
1256         */
1257        wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1258                         wait_on_fp_mode_switch, TASK_KILLABLE);
1259
1260        if (!used_math()) {
1261                /* First time FP context user. */
1262                preempt_disable();
1263                err = init_fpu();
1264                if (msa && !err) {
1265                        enable_msa();
1266                        init_msa_upper();
1267                        set_thread_flag(TIF_USEDMSA);
1268                        set_thread_flag(TIF_MSA_CTX_LIVE);
1269                }
1270                preempt_enable();
1271                if (!err)
1272                        set_used_math();
1273                return err;
1274        }
1275
1276        /*
1277         * This task has formerly used the FP context.
1278         *
1279         * If this thread has no live MSA vector context then we can simply
1280         * restore the scalar FP context. If it has live MSA vector context
1281         * (that is, it has or may have used MSA since last performing a
1282         * function call) then we'll need to restore the vector context. This
1283         * applies even if we're currently only executing a scalar FP
1284         * instruction. This is because if we were to later execute an MSA
1285         * instruction then we'd either have to:
1286         *
1287         *  - Restore the vector context & clobber any registers modified by
1288         *    scalar FP instructions between now & then.
1289         *
1290         * or
1291         *
1292         *  - Not restore the vector context & lose the most significant bits
1293         *    of all vector registers.
1294         *
1295         * Neither of those options is acceptable. We cannot restore the least
1296         * significant bits of the registers now & only restore the most
1297         * significant bits later because the most significant bits of any
1298         * vector registers whose aliased FP register is modified now will have
1299         * been zeroed. We'd have no way to know that when restoring the vector
1300         * context & thus may load an outdated value for the most significant
1301         * bits of a vector register.
1302         */
1303        if (!msa && !thread_msa_context_live())
1304                return own_fpu(1);
1305
1306        /*
1307         * This task is using or has previously used MSA. Thus we require
1308         * that Status.FR == 1.
1309         */
1310        preempt_disable();
1311        was_fpu_owner = is_fpu_owner();
1312        err = own_fpu_inatomic(0);
1313        if (err)
1314                goto out;
1315
1316        enable_msa();
1317        write_msa_csr(current->thread.fpu.msacsr);
1318        set_thread_flag(TIF_USEDMSA);
1319
1320        /*
1321         * If this is the first time that the task is using MSA and it has
1322         * previously used scalar FP in this time slice then we already nave
1323         * FP context which we shouldn't clobber. We do however need to clear
1324         * the upper 64b of each vector register so that this task has no
1325         * opportunity to see data left behind by another.
1326         */
1327        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1328        if (!prior_msa && was_fpu_owner) {
1329                init_msa_upper();
1330
1331                goto out;
1332        }
1333
1334        if (!prior_msa) {
1335                /*
1336                 * Restore the least significant 64b of each vector register
1337                 * from the existing scalar FP context.
1338                 */
1339                _restore_fp(current);
1340
1341                /*
1342                 * The task has not formerly used MSA, so clear the upper 64b
1343                 * of each vector register such that it cannot see data left
1344                 * behind by another task.
1345                 */
1346                init_msa_upper();
1347        } else {
1348                /* We need to restore the vector context. */
1349                restore_msa(current);
1350
1351                /* Restore the scalar FP control & status register */
1352                if (!was_fpu_owner)
1353                        write_32bit_cp1_register(CP1_STATUS,
1354                                                 current->thread.fpu.fcr31);
1355        }
1356
1357out:
1358        preempt_enable();
1359
1360        return 0;
1361}
1362
1363asmlinkage void do_cpu(struct pt_regs *regs)
1364{
1365        enum ctx_state prev_state;
1366        unsigned int __user *epc;
1367        unsigned long old_epc, old31;
1368        void __user *fault_addr;
1369        unsigned int opcode;
1370        unsigned long fcr31;
1371        unsigned int cpid;
1372        int status, err;
1373        int sig;
1374
1375        prev_state = exception_enter();
1376        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1377
1378        if (cpid != 2)
1379                die_if_kernel("do_cpu invoked from kernel context!", regs);
1380
1381        switch (cpid) {
1382        case 0:
1383                epc = (unsigned int __user *)exception_epc(regs);
1384                old_epc = regs->cp0_epc;
1385                old31 = regs->regs[31];
1386                opcode = 0;
1387                status = -1;
1388
1389                if (unlikely(compute_return_epc(regs) < 0))
1390                        break;
1391
1392                if (!get_isa16_mode(regs->cp0_epc)) {
1393                        if (unlikely(get_user(opcode, epc) < 0))
1394                                status = SIGSEGV;
1395
1396                        if (!cpu_has_llsc && status < 0)
1397                                status = simulate_llsc(regs, opcode);
1398                }
1399
1400                if (status < 0)
1401                        status = SIGILL;
1402
1403                if (unlikely(status > 0)) {
1404                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1405                        regs->regs[31] = old31;
1406                        force_sig(status, current);
1407                }
1408
1409                break;
1410
1411        case 3:
1412                /*
1413                 * The COP3 opcode space and consequently the CP0.Status.CU3
1414                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1415                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1416                 * up the space has been reused for COP1X instructions, that
1417                 * are enabled by the CP0.Status.CU1 bit and consequently
1418                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1419                 * exceptions.  Some FPU-less processors that implement one
1420                 * of these ISAs however use this code erroneously for COP1X
1421                 * instructions.  Therefore we redirect this trap to the FP
1422                 * emulator too.
1423                 */
1424                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1425                        force_sig(SIGILL, current);
1426                        break;
1427                }
1428                /* Fall through.  */
1429
1430        case 1:
1431                err = enable_restore_fp_context(0);
1432
1433                if (raw_cpu_has_fpu && !err)
1434                        break;
1435
1436                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1437                                               &fault_addr);
1438
1439                /*
1440                 * We can't allow the emulated instruction to leave
1441                 * any enabled Cause bits set in $fcr31.
1442                 */
1443                fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1444                current->thread.fpu.fcr31 &= ~fcr31;
1445
1446                /* Send a signal if required.  */
1447                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1448                        mt_ase_fp_affinity();
1449
1450                break;
1451
1452        case 2:
1453                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1454                break;
1455        }
1456
1457        exception_exit(prev_state);
1458}
1459
1460asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1461{
1462        enum ctx_state prev_state;
1463
1464        prev_state = exception_enter();
1465        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1466        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1467                       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1468                goto out;
1469
1470        /* Clear MSACSR.Cause before enabling interrupts */
1471        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1472        local_irq_enable();
1473
1474        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1475        force_sig(SIGFPE, current);
1476out:
1477        exception_exit(prev_state);
1478}
1479
1480asmlinkage void do_msa(struct pt_regs *regs)
1481{
1482        enum ctx_state prev_state;
1483        int err;
1484
1485        prev_state = exception_enter();
1486
1487        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1488                force_sig(SIGILL, current);
1489                goto out;
1490        }
1491
1492        die_if_kernel("do_msa invoked from kernel context!", regs);
1493
1494        err = enable_restore_fp_context(1);
1495        if (err)
1496                force_sig(SIGILL, current);
1497out:
1498        exception_exit(prev_state);
1499}
1500
1501asmlinkage void do_mdmx(struct pt_regs *regs)
1502{
1503        enum ctx_state prev_state;
1504
1505        prev_state = exception_enter();
1506        force_sig(SIGILL, current);
1507        exception_exit(prev_state);
1508}
1509
1510/*
1511 * Called with interrupts disabled.
1512 */
1513asmlinkage void do_watch(struct pt_regs *regs)
1514{
1515        siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1516        enum ctx_state prev_state;
1517
1518        prev_state = exception_enter();
1519        /*
1520         * Clear WP (bit 22) bit of cause register so we don't loop
1521         * forever.
1522         */
1523        clear_c0_cause(CAUSEF_WP);
1524
1525        /*
1526         * If the current thread has the watch registers loaded, save
1527         * their values and send SIGTRAP.  Otherwise another thread
1528         * left the registers set, clear them and continue.
1529         */
1530        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1531                mips_read_watch_registers();
1532                local_irq_enable();
1533                force_sig_info(SIGTRAP, &info, current);
1534        } else {
1535                mips_clear_watch_registers();
1536                local_irq_enable();
1537        }
1538        exception_exit(prev_state);
1539}
1540
1541asmlinkage void do_mcheck(struct pt_regs *regs)
1542{
1543        int multi_match = regs->cp0_status & ST0_TS;
1544        enum ctx_state prev_state;
1545        mm_segment_t old_fs = get_fs();
1546
1547        prev_state = exception_enter();
1548        show_regs(regs);
1549
1550        if (multi_match) {
1551                dump_tlb_regs();
1552                pr_info("\n");
1553                dump_tlb_all();
1554        }
1555
1556        if (!user_mode(regs))
1557                set_fs(KERNEL_DS);
1558
1559        show_code((unsigned int __user *) regs->cp0_epc);
1560
1561        set_fs(old_fs);
1562
1563        /*
1564         * Some chips may have other causes of machine check (e.g. SB1
1565         * graduation timer)
1566         */
1567        panic("Caught Machine Check exception - %scaused by multiple "
1568              "matching entries in the TLB.",
1569              (multi_match) ? "" : "not ");
1570}
1571
1572asmlinkage void do_mt(struct pt_regs *regs)
1573{
1574        int subcode;
1575
1576        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1577                        >> VPECONTROL_EXCPT_SHIFT;
1578        switch (subcode) {
1579        case 0:
1580                printk(KERN_DEBUG "Thread Underflow\n");
1581                break;
1582        case 1:
1583                printk(KERN_DEBUG "Thread Overflow\n");
1584                break;
1585        case 2:
1586                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1587                break;
1588        case 3:
1589                printk(KERN_DEBUG "Gating Storage Exception\n");
1590                break;
1591        case 4:
1592                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1593                break;
1594        case 5:
1595                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1596                break;
1597        default:
1598                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1599                        subcode);
1600                break;
1601        }
1602        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1603
1604        force_sig(SIGILL, current);
1605}
1606
1607
1608asmlinkage void do_dsp(struct pt_regs *regs)
1609{
1610        if (cpu_has_dsp)
1611                panic("Unexpected DSP exception");
1612
1613        force_sig(SIGILL, current);
1614}
1615
1616asmlinkage void do_reserved(struct pt_regs *regs)
1617{
1618        /*
1619         * Game over - no way to handle this if it ever occurs.  Most probably
1620         * caused by a new unknown cpu type or after another deadly
1621         * hard/software error.
1622         */
1623        show_regs(regs);
1624        panic("Caught reserved exception %ld - should not happen.",
1625              (regs->cp0_cause & 0x7f) >> 2);
1626}
1627
1628static int __initdata l1parity = 1;
1629static int __init nol1parity(char *s)
1630{
1631        l1parity = 0;
1632        return 1;
1633}
1634__setup("nol1par", nol1parity);
1635static int __initdata l2parity = 1;
1636static int __init nol2parity(char *s)
1637{
1638        l2parity = 0;
1639        return 1;
1640}
1641__setup("nol2par", nol2parity);
1642
1643/*
1644 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1645 * it different ways.
1646 */
1647static inline void parity_protection_init(void)
1648{
1649#define ERRCTL_PE       0x80000000
1650#define ERRCTL_L2P      0x00800000
1651
1652        if (mips_cm_revision() >= CM_REV_CM3) {
1653                ulong gcr_ectl, cp0_ectl;
1654
1655                /*
1656                 * With CM3 systems we need to ensure that the L1 & L2
1657                 * parity enables are set to the same value, since this
1658                 * is presumed by the hardware engineers.
1659                 *
1660                 * If the user disabled either of L1 or L2 ECC checking,
1661                 * disable both.
1662                 */
1663                l1parity &= l2parity;
1664                l2parity &= l1parity;
1665
1666                /* Probe L1 ECC support */
1667                cp0_ectl = read_c0_ecc();
1668                write_c0_ecc(cp0_ectl | ERRCTL_PE);
1669                back_to_back_c0_hazard();
1670                cp0_ectl = read_c0_ecc();
1671
1672                /* Probe L2 ECC support */
1673                gcr_ectl = read_gcr_err_control();
1674
1675                if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1676                    !(cp0_ectl & ERRCTL_PE)) {
1677                        /*
1678                         * One of L1 or L2 ECC checking isn't supported,
1679                         * so we cannot enable either.
1680                         */
1681                        l1parity = l2parity = 0;
1682                }
1683
1684                /* Configure L1 ECC checking */
1685                if (l1parity)
1686                        cp0_ectl |= ERRCTL_PE;
1687                else
1688                        cp0_ectl &= ~ERRCTL_PE;
1689                write_c0_ecc(cp0_ectl);
1690                back_to_back_c0_hazard();
1691                WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1692
1693                /* Configure L2 ECC checking */
1694                if (l2parity)
1695                        gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1696                else
1697                        gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1698                write_gcr_err_control(gcr_ectl);
1699                gcr_ectl = read_gcr_err_control();
1700                gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1701                WARN_ON(!!gcr_ectl != l2parity);
1702
1703                pr_info("Cache parity protection %sabled\n",
1704                        l1parity ? "en" : "dis");
1705                return;
1706        }
1707
1708        switch (current_cpu_type()) {
1709        case CPU_24K:
1710        case CPU_34K:
1711        case CPU_74K:
1712        case CPU_1004K:
1713        case CPU_1074K:
1714        case CPU_INTERAPTIV:
1715        case CPU_PROAPTIV:
1716        case CPU_P5600:
1717        case CPU_QEMU_GENERIC:
1718        case CPU_P6600:
1719                {
1720                        unsigned long errctl;
1721                        unsigned int l1parity_present, l2parity_present;
1722
1723                        errctl = read_c0_ecc();
1724                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1725
1726                        /* probe L1 parity support */
1727                        write_c0_ecc(errctl | ERRCTL_PE);
1728                        back_to_back_c0_hazard();
1729                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1730
1731                        /* probe L2 parity support */
1732                        write_c0_ecc(errctl|ERRCTL_L2P);
1733                        back_to_back_c0_hazard();
1734                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1735
1736                        if (l1parity_present && l2parity_present) {
1737                                if (l1parity)
1738                                        errctl |= ERRCTL_PE;
1739                                if (l1parity ^ l2parity)
1740                                        errctl |= ERRCTL_L2P;
1741                        } else if (l1parity_present) {
1742                                if (l1parity)
1743                                        errctl |= ERRCTL_PE;
1744                        } else if (l2parity_present) {
1745                                if (l2parity)
1746                                        errctl |= ERRCTL_L2P;
1747                        } else {
1748                                /* No parity available */
1749                        }
1750
1751                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1752
1753                        write_c0_ecc(errctl);
1754                        back_to_back_c0_hazard();
1755                        errctl = read_c0_ecc();
1756                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1757
1758                        if (l1parity_present)
1759                                printk(KERN_INFO "Cache parity protection %sabled\n",
1760                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1761
1762                        if (l2parity_present) {
1763                                if (l1parity_present && l1parity)
1764                                        errctl ^= ERRCTL_L2P;
1765                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1766                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1767                        }
1768                }
1769                break;
1770
1771        case CPU_5KC:
1772        case CPU_5KE:
1773        case CPU_LOONGSON1:
1774                write_c0_ecc(0x80000000);
1775                back_to_back_c0_hazard();
1776                /* Set the PE bit (bit 31) in the c0_errctl register. */
1777                printk(KERN_INFO "Cache parity protection %sabled\n",
1778                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1779                break;
1780        case CPU_20KC:
1781        case CPU_25KF:
1782                /* Clear the DE bit (bit 16) in the c0_status register. */
1783                printk(KERN_INFO "Enable cache parity protection for "
1784                       "MIPS 20KC/25KF CPUs.\n");
1785                clear_c0_status(ST0_DE);
1786                break;
1787        default:
1788                break;
1789        }
1790}
1791
1792asmlinkage void cache_parity_error(void)
1793{
1794        const int field = 2 * sizeof(unsigned long);
1795        unsigned int reg_val;
1796
1797        /* For the moment, report the problem and hang. */
1798        printk("Cache error exception:\n");
1799        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1800        reg_val = read_c0_cacheerr();
1801        printk("c0_cacheerr == %08x\n", reg_val);
1802
1803        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1804               reg_val & (1<<30) ? "secondary" : "primary",
1805               reg_val & (1<<31) ? "data" : "insn");
1806        if ((cpu_has_mips_r2_r6) &&
1807            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1808                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1809                        reg_val & (1<<29) ? "ED " : "",
1810                        reg_val & (1<<28) ? "ET " : "",
1811                        reg_val & (1<<27) ? "ES " : "",
1812                        reg_val & (1<<26) ? "EE " : "",
1813                        reg_val & (1<<25) ? "EB " : "",
1814                        reg_val & (1<<24) ? "EI " : "",
1815                        reg_val & (1<<23) ? "E1 " : "",
1816                        reg_val & (1<<22) ? "E0 " : "");
1817        } else {
1818                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1819                        reg_val & (1<<29) ? "ED " : "",
1820                        reg_val & (1<<28) ? "ET " : "",
1821                        reg_val & (1<<26) ? "EE " : "",
1822                        reg_val & (1<<25) ? "EB " : "",
1823                        reg_val & (1<<24) ? "EI " : "",
1824                        reg_val & (1<<23) ? "E1 " : "",
1825                        reg_val & (1<<22) ? "E0 " : "");
1826        }
1827        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1828
1829#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1830        if (reg_val & (1<<22))
1831                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1832
1833        if (reg_val & (1<<23))
1834                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1835#endif
1836
1837        panic("Can't handle the cache error!");
1838}
1839
1840asmlinkage void do_ftlb(void)
1841{
1842        const int field = 2 * sizeof(unsigned long);
1843        unsigned int reg_val;
1844
1845        /* For the moment, report the problem and hang. */
1846        if ((cpu_has_mips_r2_r6) &&
1847            (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1848            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1849                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1850                       read_c0_ecc());
1851                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1852                reg_val = read_c0_cacheerr();
1853                pr_err("c0_cacheerr == %08x\n", reg_val);
1854
1855                if ((reg_val & 0xc0000000) == 0xc0000000) {
1856                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1857                } else {
1858                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1859                               reg_val & (1<<30) ? "secondary" : "primary",
1860                               reg_val & (1<<31) ? "data" : "insn");
1861                }
1862        } else {
1863                pr_err("FTLB error exception\n");
1864        }
1865        /* Just print the cacheerr bits for now */
1866        cache_parity_error();
1867}
1868
1869/*
1870 * SDBBP EJTAG debug exception handler.
1871 * We skip the instruction and return to the next instruction.
1872 */
1873void ejtag_exception_handler(struct pt_regs *regs)
1874{
1875        const int field = 2 * sizeof(unsigned long);
1876        unsigned long depc, old_epc, old_ra;
1877        unsigned int debug;
1878
1879        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1880        depc = read_c0_depc();
1881        debug = read_c0_debug();
1882        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1883        if (debug & 0x80000000) {
1884                /*
1885                 * In branch delay slot.
1886                 * We cheat a little bit here and use EPC to calculate the
1887                 * debug return address (DEPC). EPC is restored after the
1888                 * calculation.
1889                 */
1890                old_epc = regs->cp0_epc;
1891                old_ra = regs->regs[31];
1892                regs->cp0_epc = depc;
1893                compute_return_epc(regs);
1894                depc = regs->cp0_epc;
1895                regs->cp0_epc = old_epc;
1896                regs->regs[31] = old_ra;
1897        } else
1898                depc += 4;
1899        write_c0_depc(depc);
1900
1901#if 0
1902        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1903        write_c0_debug(debug | 0x100);
1904#endif
1905}
1906
1907/*
1908 * NMI exception handler.
1909 * No lock; only written during early bootup by CPU 0.
1910 */
1911static RAW_NOTIFIER_HEAD(nmi_chain);
1912
1913int register_nmi_notifier(struct notifier_block *nb)
1914{
1915        return raw_notifier_chain_register(&nmi_chain, nb);
1916}
1917
1918void __noreturn nmi_exception_handler(struct pt_regs *regs)
1919{
1920        char str[100];
1921
1922        nmi_enter();
1923        raw_notifier_call_chain(&nmi_chain, 0, regs);
1924        bust_spinlocks(1);
1925        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1926                 smp_processor_id(), regs->cp0_epc);
1927        regs->cp0_epc = read_c0_errorepc();
1928        die(str, regs);
1929        nmi_exit();
1930}
1931
1932#define VECTORSPACING 0x100     /* for EI/VI mode */
1933
1934unsigned long ebase;
1935EXPORT_SYMBOL_GPL(ebase);
1936unsigned long exception_handlers[32];
1937unsigned long vi_handlers[64];
1938
1939void __init *set_except_vector(int n, void *addr)
1940{
1941        unsigned long handler = (unsigned long) addr;
1942        unsigned long old_handler;
1943
1944#ifdef CONFIG_CPU_MICROMIPS
1945        /*
1946         * Only the TLB handlers are cache aligned with an even
1947         * address. All other handlers are on an odd address and
1948         * require no modification. Otherwise, MIPS32 mode will
1949         * be entered when handling any TLB exceptions. That
1950         * would be bad...since we must stay in microMIPS mode.
1951         */
1952        if (!(handler & 0x1))
1953                handler |= 1;
1954#endif
1955        old_handler = xchg(&exception_handlers[n], handler);
1956
1957        if (n == 0 && cpu_has_divec) {
1958#ifdef CONFIG_CPU_MICROMIPS
1959                unsigned long jump_mask = ~((1 << 27) - 1);
1960#else
1961                unsigned long jump_mask = ~((1 << 28) - 1);
1962#endif
1963                u32 *buf = (u32 *)(ebase + 0x200);
1964                unsigned int k0 = 26;
1965                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1966                        uasm_i_j(&buf, handler & ~jump_mask);
1967                        uasm_i_nop(&buf);
1968                } else {
1969                        UASM_i_LA(&buf, k0, handler);
1970                        uasm_i_jr(&buf, k0);
1971                        uasm_i_nop(&buf);
1972                }
1973                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1974        }
1975        return (void *)old_handler;
1976}
1977
1978static void do_default_vi(void)
1979{
1980        show_regs(get_irq_regs());
1981        panic("Caught unexpected vectored interrupt.");
1982}
1983
1984static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1985{
1986        unsigned long handler;
1987        unsigned long old_handler = vi_handlers[n];
1988        int srssets = current_cpu_data.srsets;
1989        u16 *h;
1990        unsigned char *b;
1991
1992        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1993
1994        if (addr == NULL) {
1995                handler = (unsigned long) do_default_vi;
1996                srs = 0;
1997        } else
1998                handler = (unsigned long) addr;
1999        vi_handlers[n] = handler;
2000
2001        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2002
2003        if (srs >= srssets)
2004                panic("Shadow register set %d not supported", srs);
2005
2006        if (cpu_has_veic) {
2007                if (board_bind_eic_interrupt)
2008                        board_bind_eic_interrupt(n, srs);
2009        } else if (cpu_has_vint) {
2010                /* SRSMap is only defined if shadow sets are implemented */
2011                if (srssets > 1)
2012                        change_c0_srsmap(0xf << n*4, srs << n*4);
2013        }
2014
2015        if (srs == 0) {
2016                /*
2017                 * If no shadow set is selected then use the default handler
2018                 * that does normal register saving and standard interrupt exit
2019                 */
2020                extern char except_vec_vi, except_vec_vi_lui;
2021                extern char except_vec_vi_ori, except_vec_vi_end;
2022                extern char rollback_except_vec_vi;
2023                char *vec_start = using_rollback_handler() ?
2024                        &rollback_except_vec_vi : &except_vec_vi;
2025#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2026                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2027                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2028#else
2029                const int lui_offset = &except_vec_vi_lui - vec_start;
2030                const int ori_offset = &except_vec_vi_ori - vec_start;
2031#endif
2032                const int handler_len = &except_vec_vi_end - vec_start;
2033
2034                if (handler_len > VECTORSPACING) {
2035                        /*
2036                         * Sigh... panicing won't help as the console
2037                         * is probably not configured :(
2038                         */
2039                        panic("VECTORSPACING too small");
2040                }
2041
2042                set_handler(((unsigned long)b - ebase), vec_start,
2043#ifdef CONFIG_CPU_MICROMIPS
2044                                (handler_len - 1));
2045#else
2046                                handler_len);
2047#endif
2048                h = (u16 *)(b + lui_offset);
2049                *h = (handler >> 16) & 0xffff;
2050                h = (u16 *)(b + ori_offset);
2051                *h = (handler & 0xffff);
2052                local_flush_icache_range((unsigned long)b,
2053                                         (unsigned long)(b+handler_len));
2054        }
2055        else {
2056                /*
2057                 * In other cases jump directly to the interrupt handler. It
2058                 * is the handler's responsibility to save registers if required
2059                 * (eg hi/lo) and return from the exception using "eret".
2060                 */
2061                u32 insn;
2062
2063                h = (u16 *)b;
2064                /* j handler */
2065#ifdef CONFIG_CPU_MICROMIPS
2066                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2067#else
2068                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2069#endif
2070                h[0] = (insn >> 16) & 0xffff;
2071                h[1] = insn & 0xffff;
2072                h[2] = 0;
2073                h[3] = 0;
2074                local_flush_icache_range((unsigned long)b,
2075                                         (unsigned long)(b+8));
2076        }
2077
2078        return (void *)old_handler;
2079}
2080
2081void *set_vi_handler(int n, vi_handler_t addr)
2082{
2083        return set_vi_srs_handler(n, addr, 0);
2084}
2085
2086extern void tlb_init(void);
2087
2088/*
2089 * Timer interrupt
2090 */
2091int cp0_compare_irq;
2092EXPORT_SYMBOL_GPL(cp0_compare_irq);
2093int cp0_compare_irq_shift;
2094
2095/*
2096 * Performance counter IRQ or -1 if shared with timer
2097 */
2098int cp0_perfcount_irq;
2099EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2100
2101/*
2102 * Fast debug channel IRQ or -1 if not present
2103 */
2104int cp0_fdc_irq;
2105EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2106
2107static int noulri;
2108
2109static int __init ulri_disable(char *s)
2110{
2111        pr_info("Disabling ulri\n");
2112        noulri = 1;
2113
2114        return 1;
2115}
2116__setup("noulri", ulri_disable);
2117
2118/* configure STATUS register */
2119static void configure_status(void)
2120{
2121        /*
2122         * Disable coprocessors and select 32-bit or 64-bit addressing
2123         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2124         * flag that some firmware may have left set and the TS bit (for
2125         * IP27).  Set XX for ISA IV code to work.
2126         */
2127        unsigned int status_set = ST0_CU0;
2128#ifdef CONFIG_64BIT
2129        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2130#endif
2131        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2132                status_set |= ST0_XX;
2133        if (cpu_has_dsp)
2134                status_set |= ST0_MX;
2135
2136        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2137                         status_set);
2138}
2139
2140unsigned int hwrena;
2141EXPORT_SYMBOL_GPL(hwrena);
2142
2143/* configure HWRENA register */
2144static void configure_hwrena(void)
2145{
2146        hwrena = cpu_hwrena_impl_bits;
2147
2148        if (cpu_has_mips_r2_r6)
2149                hwrena |= MIPS_HWRENA_CPUNUM |
2150                          MIPS_HWRENA_SYNCISTEP |
2151                          MIPS_HWRENA_CC |
2152                          MIPS_HWRENA_CCRES;
2153
2154        if (!noulri && cpu_has_userlocal)
2155                hwrena |= MIPS_HWRENA_ULR;
2156
2157        if (hwrena)
2158                write_c0_hwrena(hwrena);
2159}
2160
2161static void configure_exception_vector(void)
2162{
2163        if (cpu_has_veic || cpu_has_vint) {
2164                unsigned long sr = set_c0_status(ST0_BEV);
2165                /* If available, use WG to set top bits of EBASE */
2166                if (cpu_has_ebase_wg) {
2167#ifdef CONFIG_64BIT
2168                        write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2169#else
2170                        write_c0_ebase(ebase | MIPS_EBASE_WG);
2171#endif
2172                }
2173                write_c0_ebase(ebase);
2174                write_c0_status(sr);
2175                /* Setting vector spacing enables EI/VI mode  */
2176                change_c0_intctl(0x3e0, VECTORSPACING);
2177        }
2178        if (cpu_has_divec) {
2179                if (cpu_has_mipsmt) {
2180                        unsigned int vpflags = dvpe();
2181                        set_c0_cause(CAUSEF_IV);
2182                        evpe(vpflags);
2183                } else
2184                        set_c0_cause(CAUSEF_IV);
2185        }
2186}
2187
2188void per_cpu_trap_init(bool is_boot_cpu)
2189{
2190        unsigned int cpu = smp_processor_id();
2191
2192        configure_status();
2193        configure_hwrena();
2194
2195        configure_exception_vector();
2196
2197        /*
2198         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2199         *
2200         *  o read IntCtl.IPTI to determine the timer interrupt
2201         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2202         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2203         */
2204        if (cpu_has_mips_r2_r6) {
2205                /*
2206                 * We shouldn't trust a secondary core has a sane EBASE register
2207                 * so use the one calculated by the boot CPU.
2208                 */
2209                if (!is_boot_cpu) {
2210                        /* If available, use WG to set top bits of EBASE */
2211                        if (cpu_has_ebase_wg) {
2212#ifdef CONFIG_64BIT
2213                                write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2214#else
2215                                write_c0_ebase(ebase | MIPS_EBASE_WG);
2216#endif
2217                        }
2218                        write_c0_ebase(ebase);
2219                }
2220
2221                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2222                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2223                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2224                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2225                if (!cp0_fdc_irq)
2226                        cp0_fdc_irq = -1;
2227
2228        } else {
2229                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2230                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2231                cp0_perfcount_irq = -1;
2232                cp0_fdc_irq = -1;
2233        }
2234
2235        if (!cpu_data[cpu].asid_cache)
2236                cpu_data[cpu].asid_cache = asid_first_version(cpu);
2237
2238        mmgrab(&init_mm);
2239        current->active_mm = &init_mm;
2240        BUG_ON(current->mm);
2241        enter_lazy_tlb(&init_mm, current);
2242
2243        /* Boot CPU's cache setup in setup_arch(). */
2244        if (!is_boot_cpu)
2245                cpu_cache_init();
2246        tlb_init();
2247        TLBMISS_HANDLER_SETUP();
2248}
2249
2250/* Install CPU exception handler */
2251void set_handler(unsigned long offset, void *addr, unsigned long size)
2252{
2253#ifdef CONFIG_CPU_MICROMIPS
2254        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2255#else
2256        memcpy((void *)(ebase + offset), addr, size);
2257#endif
2258        local_flush_icache_range(ebase + offset, ebase + offset + size);
2259}
2260
2261static const char panic_null_cerr[] =
2262        "Trying to set NULL cache error exception handler\n";
2263
2264/*
2265 * Install uncached CPU exception handler.
2266 * This is suitable only for the cache error exception which is the only
2267 * exception handler that is being run uncached.
2268 */
2269void set_uncached_handler(unsigned long offset, void *addr,
2270        unsigned long size)
2271{
2272        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2273
2274        if (!addr)
2275                panic(panic_null_cerr);
2276
2277        memcpy((void *)(uncached_ebase + offset), addr, size);
2278}
2279
2280static int __initdata rdhwr_noopt;
2281static int __init set_rdhwr_noopt(char *str)
2282{
2283        rdhwr_noopt = 1;
2284        return 1;
2285}
2286
2287__setup("rdhwr_noopt", set_rdhwr_noopt);
2288
2289void __init trap_init(void)
2290{
2291        extern char except_vec3_generic;
2292        extern char except_vec4;
2293        extern char except_vec3_r4000;
2294        unsigned long i;
2295
2296        check_wait();
2297
2298        if (cpu_has_veic || cpu_has_vint) {
2299                unsigned long size = 0x200 + VECTORSPACING*64;
2300                phys_addr_t ebase_pa;
2301
2302                ebase = (unsigned long)
2303                        __alloc_bootmem(size, 1 << fls(size), 0);
2304
2305                /*
2306                 * Try to ensure ebase resides in KSeg0 if possible.
2307                 *
2308                 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2309                 * hitting a poorly defined exception base for Cache Errors.
2310                 * The allocation is likely to be in the low 512MB of physical,
2311                 * in which case we should be able to convert to KSeg0.
2312                 *
2313                 * EVA is special though as it allows segments to be rearranged
2314                 * and to become uncached during cache error handling.
2315                 */
2316                ebase_pa = __pa(ebase);
2317                if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2318                        ebase = CKSEG0ADDR(ebase_pa);
2319        } else {
2320                ebase = CAC_BASE;
2321
2322                if (cpu_has_mips_r2_r6) {
2323                        if (cpu_has_ebase_wg) {
2324#ifdef CONFIG_64BIT
2325                                ebase = (read_c0_ebase_64() & ~0xfff);
2326#else
2327                                ebase = (read_c0_ebase() & ~0xfff);
2328#endif
2329                        } else {
2330                                ebase += (read_c0_ebase() & 0x3ffff000);
2331                        }
2332                }
2333        }
2334
2335        if (cpu_has_mmips) {
2336                unsigned int config3 = read_c0_config3();
2337
2338                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2339                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2340                else
2341                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2342        }
2343
2344        if (board_ebase_setup)
2345                board_ebase_setup();
2346        per_cpu_trap_init(true);
2347
2348        /*
2349         * Copy the generic exception handlers to their final destination.
2350         * This will be overridden later as suitable for a particular
2351         * configuration.
2352         */
2353        set_handler(0x180, &except_vec3_generic, 0x80);
2354
2355        /*
2356         * Setup default vectors
2357         */
2358        for (i = 0; i <= 31; i++)
2359                set_except_vector(i, handle_reserved);
2360
2361        /*
2362         * Copy the EJTAG debug exception vector handler code to it's final
2363         * destination.
2364         */
2365        if (cpu_has_ejtag && board_ejtag_handler_setup)
2366                board_ejtag_handler_setup();
2367
2368        /*
2369         * Only some CPUs have the watch exceptions.
2370         */
2371        if (cpu_has_watch)
2372                set_except_vector(EXCCODE_WATCH, handle_watch);
2373
2374        /*
2375         * Initialise interrupt handlers
2376         */
2377        if (cpu_has_veic || cpu_has_vint) {
2378                int nvec = cpu_has_veic ? 64 : 8;
2379                for (i = 0; i < nvec; i++)
2380                        set_vi_handler(i, NULL);
2381        }
2382        else if (cpu_has_divec)
2383                set_handler(0x200, &except_vec4, 0x8);
2384
2385        /*
2386         * Some CPUs can enable/disable for cache parity detection, but does
2387         * it different ways.
2388         */
2389        parity_protection_init();
2390
2391        /*
2392         * The Data Bus Errors / Instruction Bus Errors are signaled
2393         * by external hardware.  Therefore these two exceptions
2394         * may have board specific handlers.
2395         */
2396        if (board_be_init)
2397                board_be_init();
2398
2399        set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2400                                        rollback_handle_int : handle_int);
2401        set_except_vector(EXCCODE_MOD, handle_tlbm);
2402        set_except_vector(EXCCODE_TLBL, handle_tlbl);
2403        set_except_vector(EXCCODE_TLBS, handle_tlbs);
2404
2405        set_except_vector(EXCCODE_ADEL, handle_adel);
2406        set_except_vector(EXCCODE_ADES, handle_ades);
2407
2408        set_except_vector(EXCCODE_IBE, handle_ibe);
2409        set_except_vector(EXCCODE_DBE, handle_dbe);
2410
2411        set_except_vector(EXCCODE_SYS, handle_sys);
2412        set_except_vector(EXCCODE_BP, handle_bp);
2413
2414        if (rdhwr_noopt)
2415                set_except_vector(EXCCODE_RI, handle_ri);
2416        else {
2417                if (cpu_has_vtag_icache)
2418                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419                else if (current_cpu_type() == CPU_LOONGSON3)
2420                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2421                else
2422                        set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2423        }
2424
2425        set_except_vector(EXCCODE_CPU, handle_cpu);
2426        set_except_vector(EXCCODE_OV, handle_ov);
2427        set_except_vector(EXCCODE_TR, handle_tr);
2428        set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2429
2430        if (current_cpu_type() == CPU_R6000 ||
2431            current_cpu_type() == CPU_R6000A) {
2432                /*
2433                 * The R6000 is the only R-series CPU that features a machine
2434                 * check exception (similar to the R4000 cache error) and
2435                 * unaligned ldc1/sdc1 exception.  The handlers have not been
2436                 * written yet.  Well, anyway there is no R6000 machine on the
2437                 * current list of targets for Linux/MIPS.
2438                 * (Duh, crap, there is someone with a triple R6k machine)
2439                 */
2440                //set_except_vector(14, handle_mc);
2441                //set_except_vector(15, handle_ndc);
2442        }
2443
2444
2445        if (board_nmi_handler_setup)
2446                board_nmi_handler_setup();
2447
2448        if (cpu_has_fpu && !cpu_has_nofpuex)
2449                set_except_vector(EXCCODE_FPE, handle_fpe);
2450
2451        set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2452
2453        if (cpu_has_rixiex) {
2454                set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2455                set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2456        }
2457
2458        set_except_vector(EXCCODE_MSADIS, handle_msa);
2459        set_except_vector(EXCCODE_MDMX, handle_mdmx);
2460
2461        if (cpu_has_mcheck)
2462                set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2463
2464        if (cpu_has_mipsmt)
2465                set_except_vector(EXCCODE_THREAD, handle_mt);
2466
2467        set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2468
2469        if (board_cache_error_setup)
2470                board_cache_error_setup();
2471
2472        if (cpu_has_vce)
2473                /* Special exception: R4[04]00 uses also the divec space. */
2474                set_handler(0x180, &except_vec3_r4000, 0x100);
2475        else if (cpu_has_4kex)
2476                set_handler(0x180, &except_vec3_generic, 0x80);
2477        else
2478                set_handler(0x080, &except_vec3_generic, 0x80);
2479
2480        local_flush_icache_range(ebase, ebase + 0x400);
2481
2482        sort_extable(__start___dbe_table, __stop___dbe_table);
2483
2484        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2485}
2486
2487static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2488                            void *v)
2489{
2490        switch (cmd) {
2491        case CPU_PM_ENTER_FAILED:
2492        case CPU_PM_EXIT:
2493                configure_status();
2494                configure_hwrena();
2495                configure_exception_vector();
2496
2497                /* Restore register with CPU number for TLB handlers */
2498                TLBMISS_HANDLER_RESTORE();
2499
2500                break;
2501        }
2502
2503        return NOTIFY_OK;
2504}
2505
2506static struct notifier_block trap_pm_notifier_block = {
2507        .notifier_call = trap_pm_notifier,
2508};
2509
2510static int __init trap_pm_init(void)
2511{
2512        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2513}
2514arch_initcall(trap_pm_init);
2515