linux/arch/parisc/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   7 *
   8 * 1994-07-02  Alan Modra
   9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 */
  13#include <linux/errno.h>
  14#include <linux/module.h>
  15#include <linux/rtc.h>
  16#include <linux/sched.h>
  17#include <linux/sched/clock.h>
  18#include <linux/sched_clock.h>
  19#include <linux/kernel.h>
  20#include <linux/param.h>
  21#include <linux/string.h>
  22#include <linux/mm.h>
  23#include <linux/interrupt.h>
  24#include <linux/time.h>
  25#include <linux/init.h>
  26#include <linux/smp.h>
  27#include <linux/profile.h>
  28#include <linux/clocksource.h>
  29#include <linux/platform_device.h>
  30#include <linux/ftrace.h>
  31
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/irq.h>
  35#include <asm/page.h>
  36#include <asm/param.h>
  37#include <asm/pdc.h>
  38#include <asm/led.h>
  39
  40#include <linux/timex.h>
  41
  42static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
  43
  44/*
  45 * We keep time on PA-RISC Linux by using the Interval Timer which is
  46 * a pair of registers; one is read-only and one is write-only; both
  47 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  48 * and increments by 1 every CPU clock tick.  The architecture only
  49 * guarantees us a rate between 0.5 and 2, but all implementations use a
  50 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  51 * 32 bits of the read-only register compare equal to the write-only
  52 * register, it raises a maskable external interrupt.  Each processor has
  53 * an Interval Timer of its own and they are not synchronised.  
  54 *
  55 * We want to generate an interrupt every 1/HZ seconds.  So we program
  56 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  57 * is programmed with the intended time of the next tick.  We can be
  58 * held off for an arbitrarily long period of time by interrupts being
  59 * disabled, so we may miss one or more ticks.
  60 */
  61irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  62{
  63        unsigned long now;
  64        unsigned long next_tick;
  65        unsigned long ticks_elapsed = 0;
  66        unsigned int cpu = smp_processor_id();
  67        struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  68
  69        /* gcc can optimize for "read-only" case with a local clocktick */
  70        unsigned long cpt = clocktick;
  71
  72        profile_tick(CPU_PROFILING);
  73
  74        /* Initialize next_tick to the old expected tick time. */
  75        next_tick = cpuinfo->it_value;
  76
  77        /* Calculate how many ticks have elapsed. */
  78        do {
  79                ++ticks_elapsed;
  80                next_tick += cpt;
  81                now = mfctl(16);
  82        } while (next_tick - now > cpt);
  83
  84        /* Store (in CR16 cycles) up to when we are accounting right now. */
  85        cpuinfo->it_value = next_tick;
  86
  87        /* Go do system house keeping. */
  88        if (cpu == 0)
  89                xtime_update(ticks_elapsed);
  90
  91        update_process_times(user_mode(get_irq_regs()));
  92
  93        /* Skip clockticks on purpose if we know we would miss those.
  94         * The new CR16 must be "later" than current CR16 otherwise
  95         * itimer would not fire until CR16 wrapped - e.g 4 seconds
  96         * later on a 1Ghz processor. We'll account for the missed
  97         * ticks on the next timer interrupt.
  98         * We want IT to fire modulo clocktick even if we miss/skip some.
  99         * But those interrupts don't in fact get delivered that regularly.
 100         *
 101         * "next_tick - now" will always give the difference regardless
 102         * if one or the other wrapped. If "now" is "bigger" we'll end up
 103         * with a very large unsigned number.
 104         */
 105        while (next_tick - mfctl(16) > cpt)
 106                next_tick += cpt;
 107
 108        /* Program the IT when to deliver the next interrupt.
 109         * Only bottom 32-bits of next_tick are writable in CR16!
 110         * Timer interrupt will be delivered at least a few hundred cycles
 111         * after the IT fires, so if we are too close (<= 500 cycles) to the
 112         * next cycle, simply skip it.
 113         */
 114        if (next_tick - mfctl(16) <= 500)
 115                next_tick += cpt;
 116        mtctl(next_tick, 16);
 117
 118        return IRQ_HANDLED;
 119}
 120
 121
 122unsigned long profile_pc(struct pt_regs *regs)
 123{
 124        unsigned long pc = instruction_pointer(regs);
 125
 126        if (regs->gr[0] & PSW_N)
 127                pc -= 4;
 128
 129#ifdef CONFIG_SMP
 130        if (in_lock_functions(pc))
 131                pc = regs->gr[2];
 132#endif
 133
 134        return pc;
 135}
 136EXPORT_SYMBOL(profile_pc);
 137
 138
 139/* clock source code */
 140
 141static u64 notrace read_cr16(struct clocksource *cs)
 142{
 143        return get_cycles();
 144}
 145
 146static struct clocksource clocksource_cr16 = {
 147        .name                   = "cr16",
 148        .rating                 = 300,
 149        .read                   = read_cr16,
 150        .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 151        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 152};
 153
 154void __init start_cpu_itimer(void)
 155{
 156        unsigned int cpu = smp_processor_id();
 157        unsigned long next_tick = mfctl(16) + clocktick;
 158
 159        mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 160
 161        per_cpu(cpu_data, cpu).it_value = next_tick;
 162}
 163
 164#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
 165static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 166{
 167        struct pdc_tod tod_data;
 168
 169        memset(tm, 0, sizeof(*tm));
 170        if (pdc_tod_read(&tod_data) < 0)
 171                return -EOPNOTSUPP;
 172
 173        /* we treat tod_sec as unsigned, so this can work until year 2106 */
 174        rtc_time64_to_tm(tod_data.tod_sec, tm);
 175        return rtc_valid_tm(tm);
 176}
 177
 178static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
 179{
 180        time64_t secs = rtc_tm_to_time64(tm);
 181
 182        if (pdc_tod_set(secs, 0) < 0)
 183                return -EOPNOTSUPP;
 184
 185        return 0;
 186}
 187
 188static const struct rtc_class_ops rtc_generic_ops = {
 189        .read_time = rtc_generic_get_time,
 190        .set_time = rtc_generic_set_time,
 191};
 192
 193static int __init rtc_init(void)
 194{
 195        struct platform_device *pdev;
 196
 197        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
 198                                             &rtc_generic_ops,
 199                                             sizeof(rtc_generic_ops));
 200
 201        return PTR_ERR_OR_ZERO(pdev);
 202}
 203device_initcall(rtc_init);
 204#endif
 205
 206void read_persistent_clock(struct timespec *ts)
 207{
 208        static struct pdc_tod tod_data;
 209        if (pdc_tod_read(&tod_data) == 0) {
 210                ts->tv_sec = tod_data.tod_sec;
 211                ts->tv_nsec = tod_data.tod_usec * 1000;
 212        } else {
 213                printk(KERN_ERR "Error reading tod clock\n");
 214                ts->tv_sec = 0;
 215                ts->tv_nsec = 0;
 216        }
 217}
 218
 219
 220static u64 notrace read_cr16_sched_clock(void)
 221{
 222        return get_cycles();
 223}
 224
 225
 226/*
 227 * timer interrupt and sched_clock() initialization
 228 */
 229
 230void __init time_init(void)
 231{
 232        unsigned long cr16_hz;
 233
 234        clocktick = (100 * PAGE0->mem_10msec) / HZ;
 235        start_cpu_itimer();     /* get CPU 0 started */
 236
 237        cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
 238
 239        /* register as sched_clock source */
 240        sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
 241}
 242
 243static int __init init_cr16_clocksource(void)
 244{
 245        /*
 246         * The cr16 interval timers are not syncronized across CPUs, so mark
 247         * them unstable and lower rating on SMP systems.
 248         */
 249        if (num_online_cpus() > 1) {
 250                clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
 251                clocksource_cr16.rating = 0;
 252        }
 253
 254        /* register at clocksource framework */
 255        clocksource_register_hz(&clocksource_cr16,
 256                100 * PAGE0->mem_10msec);
 257
 258        return 0;
 259}
 260
 261device_initcall(init_cr16_clocksource);
 262