linux/arch/powerpc/kernel/machine_kexec_64.c
<<
>>
Prefs
   1/*
   2 * PPC64 code to handle Linux booting another kernel.
   3 *
   4 * Copyright (C) 2004-2005, IBM Corp.
   5 *
   6 * Created by: Milton D Miller II
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12
  13#include <linux/kexec.h>
  14#include <linux/smp.h>
  15#include <linux/thread_info.h>
  16#include <linux/init_task.h>
  17#include <linux/errno.h>
  18#include <linux/kernel.h>
  19#include <linux/cpu.h>
  20#include <linux/hardirq.h>
  21
  22#include <asm/page.h>
  23#include <asm/current.h>
  24#include <asm/machdep.h>
  25#include <asm/cacheflush.h>
  26#include <asm/firmware.h>
  27#include <asm/paca.h>
  28#include <asm/mmu.h>
  29#include <asm/sections.h>       /* _end */
  30#include <asm/prom.h>
  31#include <asm/smp.h>
  32#include <asm/hw_breakpoint.h>
  33#include <asm/asm-prototypes.h>
  34
  35int default_machine_kexec_prepare(struct kimage *image)
  36{
  37        int i;
  38        unsigned long begin, end;       /* limits of segment */
  39        unsigned long low, high;        /* limits of blocked memory range */
  40        struct device_node *node;
  41        const unsigned long *basep;
  42        const unsigned int *sizep;
  43
  44        /*
  45         * Since we use the kernel fault handlers and paging code to
  46         * handle the virtual mode, we must make sure no destination
  47         * overlaps kernel static data or bss.
  48         */
  49        for (i = 0; i < image->nr_segments; i++)
  50                if (image->segment[i].mem < __pa(_end))
  51                        return -ETXTBSY;
  52
  53        /* We also should not overwrite the tce tables */
  54        for_each_node_by_type(node, "pci") {
  55                basep = of_get_property(node, "linux,tce-base", NULL);
  56                sizep = of_get_property(node, "linux,tce-size", NULL);
  57                if (basep == NULL || sizep == NULL)
  58                        continue;
  59
  60                low = *basep;
  61                high = low + (*sizep);
  62
  63                for (i = 0; i < image->nr_segments; i++) {
  64                        begin = image->segment[i].mem;
  65                        end = begin + image->segment[i].memsz;
  66
  67                        if ((begin < high) && (end > low))
  68                                return -ETXTBSY;
  69                }
  70        }
  71
  72        return 0;
  73}
  74
  75static void copy_segments(unsigned long ind)
  76{
  77        unsigned long entry;
  78        unsigned long *ptr;
  79        void *dest;
  80        void *addr;
  81
  82        /*
  83         * We rely on kexec_load to create a lists that properly
  84         * initializes these pointers before they are used.
  85         * We will still crash if the list is wrong, but at least
  86         * the compiler will be quiet.
  87         */
  88        ptr = NULL;
  89        dest = NULL;
  90
  91        for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
  92                addr = __va(entry & PAGE_MASK);
  93
  94                switch (entry & IND_FLAGS) {
  95                case IND_DESTINATION:
  96                        dest = addr;
  97                        break;
  98                case IND_INDIRECTION:
  99                        ptr = addr;
 100                        break;
 101                case IND_SOURCE:
 102                        copy_page(dest, addr);
 103                        dest += PAGE_SIZE;
 104                }
 105        }
 106}
 107
 108void kexec_copy_flush(struct kimage *image)
 109{
 110        long i, nr_segments = image->nr_segments;
 111        struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
 112
 113        /* save the ranges on the stack to efficiently flush the icache */
 114        memcpy(ranges, image->segment, sizeof(ranges));
 115
 116        /*
 117         * After this call we may not use anything allocated in dynamic
 118         * memory, including *image.
 119         *
 120         * Only globals and the stack are allowed.
 121         */
 122        copy_segments(image->head);
 123
 124        /*
 125         * we need to clear the icache for all dest pages sometime,
 126         * including ones that were in place on the original copy
 127         */
 128        for (i = 0; i < nr_segments; i++)
 129                flush_icache_range((unsigned long)__va(ranges[i].mem),
 130                        (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
 131}
 132
 133#ifdef CONFIG_SMP
 134
 135static int kexec_all_irq_disabled = 0;
 136
 137static void kexec_smp_down(void *arg)
 138{
 139        local_irq_disable();
 140        hard_irq_disable();
 141
 142        mb(); /* make sure our irqs are disabled before we say they are */
 143        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 144        while(kexec_all_irq_disabled == 0)
 145                cpu_relax();
 146        mb(); /* make sure all irqs are disabled before this */
 147        hw_breakpoint_disable();
 148        /*
 149         * Now every CPU has IRQs off, we can clear out any pending
 150         * IPIs and be sure that no more will come in after this.
 151         */
 152        if (ppc_md.kexec_cpu_down)
 153                ppc_md.kexec_cpu_down(0, 1);
 154
 155        kexec_smp_wait();
 156        /* NOTREACHED */
 157}
 158
 159static void kexec_prepare_cpus_wait(int wait_state)
 160{
 161        int my_cpu, i, notified=-1;
 162
 163        hw_breakpoint_disable();
 164        my_cpu = get_cpu();
 165        /* Make sure each CPU has at least made it to the state we need.
 166         *
 167         * FIXME: There is a (slim) chance of a problem if not all of the CPUs
 168         * are correctly onlined.  If somehow we start a CPU on boot with RTAS
 169         * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
 170         * time, the boot CPU will timeout.  If it does eventually execute
 171         * stuff, the secondary will start up (paca[].cpu_start was written) and
 172         * get into a peculiar state.  If the platform supports
 173         * smp_ops->take_timebase(), the secondary CPU will probably be spinning
 174         * in there.  If not (i.e. pseries), the secondary will continue on and
 175         * try to online itself/idle/etc. If it survives that, we need to find
 176         * these possible-but-not-online-but-should-be CPUs and chaperone them
 177         * into kexec_smp_wait().
 178         */
 179        for_each_online_cpu(i) {
 180                if (i == my_cpu)
 181                        continue;
 182
 183                while (paca[i].kexec_state < wait_state) {
 184                        barrier();
 185                        if (i != notified) {
 186                                printk(KERN_INFO "kexec: waiting for cpu %d "
 187                                       "(physical %d) to enter %i state\n",
 188                                       i, paca[i].hw_cpu_id, wait_state);
 189                                notified = i;
 190                        }
 191                }
 192        }
 193        mb();
 194}
 195
 196/*
 197 * We need to make sure each present CPU is online.  The next kernel will scan
 198 * the device tree and assume primary threads are online and query secondary
 199 * threads via RTAS to online them if required.  If we don't online primary
 200 * threads, they will be stuck.  However, we also online secondary threads as we
 201 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
 202 * threads as offline -- and again, these CPUs will be stuck.
 203 *
 204 * So, we online all CPUs that should be running, including secondary threads.
 205 */
 206static void wake_offline_cpus(void)
 207{
 208        int cpu = 0;
 209
 210        for_each_present_cpu(cpu) {
 211                if (!cpu_online(cpu)) {
 212                        printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
 213                               cpu);
 214                        WARN_ON(cpu_up(cpu));
 215                }
 216        }
 217}
 218
 219static void kexec_prepare_cpus(void)
 220{
 221        wake_offline_cpus();
 222        smp_call_function(kexec_smp_down, NULL, /* wait */0);
 223        local_irq_disable();
 224        hard_irq_disable();
 225
 226        mb(); /* make sure IRQs are disabled before we say they are */
 227        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 228
 229        kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
 230        /* we are sure every CPU has IRQs off at this point */
 231        kexec_all_irq_disabled = 1;
 232
 233        /* after we tell the others to go down */
 234        if (ppc_md.kexec_cpu_down)
 235                ppc_md.kexec_cpu_down(0, 0);
 236
 237        /*
 238         * Before removing MMU mappings make sure all CPUs have entered real
 239         * mode:
 240         */
 241        kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
 242
 243        put_cpu();
 244}
 245
 246#else /* ! SMP */
 247
 248static void kexec_prepare_cpus(void)
 249{
 250        /*
 251         * move the secondarys to us so that we can copy
 252         * the new kernel 0-0x100 safely
 253         *
 254         * do this if kexec in setup.c ?
 255         *
 256         * We need to release the cpus if we are ever going from an
 257         * UP to an SMP kernel.
 258         */
 259        smp_release_cpus();
 260        if (ppc_md.kexec_cpu_down)
 261                ppc_md.kexec_cpu_down(0, 0);
 262        local_irq_disable();
 263        hard_irq_disable();
 264}
 265
 266#endif /* SMP */
 267
 268/*
 269 * kexec thread structure and stack.
 270 *
 271 * We need to make sure that this is 16384-byte aligned due to the
 272 * way process stacks are handled.  It also must be statically allocated
 273 * or allocated as part of the kimage, because everything else may be
 274 * overwritten when we copy the kexec image.  We piggyback on the
 275 * "init_task" linker section here to statically allocate a stack.
 276 *
 277 * We could use a smaller stack if we don't care about anything using
 278 * current, but that audit has not been performed.
 279 */
 280static union thread_union kexec_stack __init_task_data =
 281        { };
 282
 283/*
 284 * For similar reasons to the stack above, the kexecing CPU needs to be on a
 285 * static PACA; we switch to kexec_paca.
 286 */
 287struct paca_struct kexec_paca;
 288
 289/* Our assembly helper, in misc_64.S */
 290extern void kexec_sequence(void *newstack, unsigned long start,
 291                           void *image, void *control,
 292                           void (*clear_all)(void),
 293                           bool copy_with_mmu_off) __noreturn;
 294
 295/* too late to fail here */
 296void default_machine_kexec(struct kimage *image)
 297{
 298        bool copy_with_mmu_off;
 299
 300        /* prepare control code if any */
 301
 302        /*
 303        * If the kexec boot is the normal one, need to shutdown other cpus
 304        * into our wait loop and quiesce interrupts.
 305        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
 306        * stopping other CPUs and collecting their pt_regs is done before
 307        * using debugger IPI.
 308        */
 309
 310        if (!kdump_in_progress())
 311                kexec_prepare_cpus();
 312
 313        printk("kexec: Starting switchover sequence.\n");
 314
 315        /* switch to a staticly allocated stack.  Based on irq stack code.
 316         * We setup preempt_count to avoid using VMX in memcpy.
 317         * XXX: the task struct will likely be invalid once we do the copy!
 318         */
 319        kexec_stack.thread_info.task = current_thread_info()->task;
 320        kexec_stack.thread_info.flags = 0;
 321        kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
 322        kexec_stack.thread_info.cpu = current_thread_info()->cpu;
 323
 324        /* We need a static PACA, too; copy this CPU's PACA over and switch to
 325         * it.  Also poison per_cpu_offset to catch anyone using non-static
 326         * data.
 327         */
 328        memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
 329        kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
 330        paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
 331                kexec_paca.paca_index;
 332        setup_paca(&kexec_paca);
 333
 334        /* XXX: If anyone does 'dynamic lppacas' this will also need to be
 335         * switched to a static version!
 336         */
 337        /*
 338         * On Book3S, the copy must happen with the MMU off if we are either
 339         * using Radix page tables or we are not in an LPAR since we can
 340         * overwrite the page tables while copying.
 341         *
 342         * In an LPAR, we keep the MMU on otherwise we can't access beyond
 343         * the RMA. On BookE there is no real MMU off mode, so we have to
 344         * keep it enabled as well (but then we have bolted TLB entries).
 345         */
 346#ifdef CONFIG_PPC_BOOK3E
 347        copy_with_mmu_off = false;
 348#else
 349        copy_with_mmu_off = radix_enabled() ||
 350                !(firmware_has_feature(FW_FEATURE_LPAR) ||
 351                  firmware_has_feature(FW_FEATURE_PS3_LV1));
 352#endif
 353
 354        /* Some things are best done in assembly.  Finding globals with
 355         * a toc is easier in C, so pass in what we can.
 356         */
 357        kexec_sequence(&kexec_stack, image->start, image,
 358                       page_address(image->control_code_page),
 359                       mmu_cleanup_all, copy_with_mmu_off);
 360        /* NOTREACHED */
 361}
 362
 363#ifdef CONFIG_PPC_STD_MMU_64
 364/* Values we need to export to the second kernel via the device tree. */
 365static unsigned long htab_base;
 366static unsigned long htab_size;
 367
 368static struct property htab_base_prop = {
 369        .name = "linux,htab-base",
 370        .length = sizeof(unsigned long),
 371        .value = &htab_base,
 372};
 373
 374static struct property htab_size_prop = {
 375        .name = "linux,htab-size",
 376        .length = sizeof(unsigned long),
 377        .value = &htab_size,
 378};
 379
 380static int __init export_htab_values(void)
 381{
 382        struct device_node *node;
 383
 384        /* On machines with no htab htab_address is NULL */
 385        if (!htab_address)
 386                return -ENODEV;
 387
 388        node = of_find_node_by_path("/chosen");
 389        if (!node)
 390                return -ENODEV;
 391
 392        /* remove any stale propertys so ours can be found */
 393        of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
 394        of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
 395
 396        htab_base = cpu_to_be64(__pa(htab_address));
 397        of_add_property(node, &htab_base_prop);
 398        htab_size = cpu_to_be64(htab_size_bytes);
 399        of_add_property(node, &htab_size_prop);
 400
 401        of_node_put(node);
 402        return 0;
 403}
 404late_initcall(export_htab_values);
 405#endif /* CONFIG_PPC_STD_MMU_64 */
 406