linux/arch/powerpc/kvm/book3s_64_mmu_radix.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/string.h>
  11#include <linux/kvm.h>
  12#include <linux/kvm_host.h>
  13
  14#include <asm/kvm_ppc.h>
  15#include <asm/kvm_book3s.h>
  16#include <asm/page.h>
  17#include <asm/mmu.h>
  18#include <asm/pgtable.h>
  19#include <asm/pgalloc.h>
  20
  21/*
  22 * Supported radix tree geometry.
  23 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
  24 * for a page size of 64k or 4k.
  25 */
  26static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
  27
  28int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  29                           struct kvmppc_pte *gpte, bool data, bool iswrite)
  30{
  31        struct kvm *kvm = vcpu->kvm;
  32        u32 pid;
  33        int ret, level, ps;
  34        __be64 prte, rpte;
  35        unsigned long ptbl;
  36        unsigned long root, pte, index;
  37        unsigned long rts, bits, offset;
  38        unsigned long gpa;
  39        unsigned long proc_tbl_size;
  40
  41        /* Work out effective PID */
  42        switch (eaddr >> 62) {
  43        case 0:
  44                pid = vcpu->arch.pid;
  45                break;
  46        case 3:
  47                pid = 0;
  48                break;
  49        default:
  50                return -EINVAL;
  51        }
  52        proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
  53        if (pid * 16 >= proc_tbl_size)
  54                return -EINVAL;
  55
  56        /* Read partition table to find root of tree for effective PID */
  57        ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
  58        ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
  59        if (ret)
  60                return ret;
  61
  62        root = be64_to_cpu(prte);
  63        rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
  64                ((root & RTS2_MASK) >> RTS2_SHIFT);
  65        bits = root & RPDS_MASK;
  66        root = root & RPDB_MASK;
  67
  68        /* P9 DD1 interprets RTS (radix tree size) differently */
  69        offset = rts + 31;
  70        if (cpu_has_feature(CPU_FTR_POWER9_DD1))
  71                offset -= 3;
  72
  73        /* current implementations only support 52-bit space */
  74        if (offset != 52)
  75                return -EINVAL;
  76
  77        for (level = 3; level >= 0; --level) {
  78                if (level && bits != p9_supported_radix_bits[level])
  79                        return -EINVAL;
  80                if (level == 0 && !(bits == 5 || bits == 9))
  81                        return -EINVAL;
  82                offset -= bits;
  83                index = (eaddr >> offset) & ((1UL << bits) - 1);
  84                /* check that low bits of page table base are zero */
  85                if (root & ((1UL << (bits + 3)) - 1))
  86                        return -EINVAL;
  87                ret = kvm_read_guest(kvm, root + index * 8,
  88                                     &rpte, sizeof(rpte));
  89                if (ret)
  90                        return ret;
  91                pte = __be64_to_cpu(rpte);
  92                if (!(pte & _PAGE_PRESENT))
  93                        return -ENOENT;
  94                if (pte & _PAGE_PTE)
  95                        break;
  96                bits = pte & 0x1f;
  97                root = pte & 0x0fffffffffffff00ul;
  98        }
  99        /* need a leaf at lowest level; 512GB pages not supported */
 100        if (level < 0 || level == 3)
 101                return -EINVAL;
 102
 103        /* offset is now log base 2 of the page size */
 104        gpa = pte & 0x01fffffffffff000ul;
 105        if (gpa & ((1ul << offset) - 1))
 106                return -EINVAL;
 107        gpa += eaddr & ((1ul << offset) - 1);
 108        for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
 109                if (offset == mmu_psize_defs[ps].shift)
 110                        break;
 111        gpte->page_size = ps;
 112
 113        gpte->eaddr = eaddr;
 114        gpte->raddr = gpa;
 115
 116        /* Work out permissions */
 117        gpte->may_read = !!(pte & _PAGE_READ);
 118        gpte->may_write = !!(pte & _PAGE_WRITE);
 119        gpte->may_execute = !!(pte & _PAGE_EXEC);
 120        if (kvmppc_get_msr(vcpu) & MSR_PR) {
 121                if (pte & _PAGE_PRIVILEGED) {
 122                        gpte->may_read = 0;
 123                        gpte->may_write = 0;
 124                        gpte->may_execute = 0;
 125                }
 126        } else {
 127                if (!(pte & _PAGE_PRIVILEGED)) {
 128                        /* Check AMR/IAMR to see if strict mode is in force */
 129                        if (vcpu->arch.amr & (1ul << 62))
 130                                gpte->may_read = 0;
 131                        if (vcpu->arch.amr & (1ul << 63))
 132                                gpte->may_write = 0;
 133                        if (vcpu->arch.iamr & (1ul << 62))
 134                                gpte->may_execute = 0;
 135                }
 136        }
 137
 138        return 0;
 139}
 140
 141#ifdef CONFIG_PPC_64K_PAGES
 142#define MMU_BASE_PSIZE  MMU_PAGE_64K
 143#else
 144#define MMU_BASE_PSIZE  MMU_PAGE_4K
 145#endif
 146
 147static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
 148                                    unsigned int pshift)
 149{
 150        int psize = MMU_BASE_PSIZE;
 151
 152        if (pshift >= PMD_SHIFT)
 153                psize = MMU_PAGE_2M;
 154        addr &= ~0xfffUL;
 155        addr |= mmu_psize_defs[psize].ap << 5;
 156        asm volatile("ptesync": : :"memory");
 157        asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
 158                     : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
 159        asm volatile("ptesync": : :"memory");
 160}
 161
 162unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
 163                                      unsigned long clr, unsigned long set,
 164                                      unsigned long addr, unsigned int shift)
 165{
 166        unsigned long old = 0;
 167
 168        if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
 169            pte_present(*ptep)) {
 170                /* have to invalidate it first */
 171                old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
 172                kvmppc_radix_tlbie_page(kvm, addr, shift);
 173                set |= _PAGE_PRESENT;
 174                old &= _PAGE_PRESENT;
 175        }
 176        return __radix_pte_update(ptep, clr, set) | old;
 177}
 178
 179void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
 180                             pte_t *ptep, pte_t pte)
 181{
 182        radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
 183}
 184
 185static struct kmem_cache *kvm_pte_cache;
 186
 187static pte_t *kvmppc_pte_alloc(void)
 188{
 189        return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
 190}
 191
 192static void kvmppc_pte_free(pte_t *ptep)
 193{
 194        kmem_cache_free(kvm_pte_cache, ptep);
 195}
 196
 197static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
 198                             unsigned int level, unsigned long mmu_seq)
 199{
 200        pgd_t *pgd;
 201        pud_t *pud, *new_pud = NULL;
 202        pmd_t *pmd, *new_pmd = NULL;
 203        pte_t *ptep, *new_ptep = NULL;
 204        unsigned long old;
 205        int ret;
 206
 207        /* Traverse the guest's 2nd-level tree, allocate new levels needed */
 208        pgd = kvm->arch.pgtable + pgd_index(gpa);
 209        pud = NULL;
 210        if (pgd_present(*pgd))
 211                pud = pud_offset(pgd, gpa);
 212        else
 213                new_pud = pud_alloc_one(kvm->mm, gpa);
 214
 215        pmd = NULL;
 216        if (pud && pud_present(*pud))
 217                pmd = pmd_offset(pud, gpa);
 218        else
 219                new_pmd = pmd_alloc_one(kvm->mm, gpa);
 220
 221        if (level == 0 && !(pmd && pmd_present(*pmd)))
 222                new_ptep = kvmppc_pte_alloc();
 223
 224        /* Check if we might have been invalidated; let the guest retry if so */
 225        spin_lock(&kvm->mmu_lock);
 226        ret = -EAGAIN;
 227        if (mmu_notifier_retry(kvm, mmu_seq))
 228                goto out_unlock;
 229
 230        /* Now traverse again under the lock and change the tree */
 231        ret = -ENOMEM;
 232        if (pgd_none(*pgd)) {
 233                if (!new_pud)
 234                        goto out_unlock;
 235                pgd_populate(kvm->mm, pgd, new_pud);
 236                new_pud = NULL;
 237        }
 238        pud = pud_offset(pgd, gpa);
 239        if (pud_none(*pud)) {
 240                if (!new_pmd)
 241                        goto out_unlock;
 242                pud_populate(kvm->mm, pud, new_pmd);
 243                new_pmd = NULL;
 244        }
 245        pmd = pmd_offset(pud, gpa);
 246        if (pmd_large(*pmd)) {
 247                /* Someone else has instantiated a large page here; retry */
 248                ret = -EAGAIN;
 249                goto out_unlock;
 250        }
 251        if (level == 1 && !pmd_none(*pmd)) {
 252                /*
 253                 * There's a page table page here, but we wanted
 254                 * to install a large page.  Tell the caller and let
 255                 * it try installing a normal page if it wants.
 256                 */
 257                ret = -EBUSY;
 258                goto out_unlock;
 259        }
 260        if (level == 0) {
 261                if (pmd_none(*pmd)) {
 262                        if (!new_ptep)
 263                                goto out_unlock;
 264                        pmd_populate(kvm->mm, pmd, new_ptep);
 265                        new_ptep = NULL;
 266                }
 267                ptep = pte_offset_kernel(pmd, gpa);
 268                if (pte_present(*ptep)) {
 269                        /* PTE was previously valid, so invalidate it */
 270                        old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
 271                                                      0, gpa, 0);
 272                        kvmppc_radix_tlbie_page(kvm, gpa, 0);
 273                        if (old & _PAGE_DIRTY)
 274                                mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
 275                }
 276                kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
 277        } else {
 278                kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
 279        }
 280        ret = 0;
 281
 282 out_unlock:
 283        spin_unlock(&kvm->mmu_lock);
 284        if (new_pud)
 285                pud_free(kvm->mm, new_pud);
 286        if (new_pmd)
 287                pmd_free(kvm->mm, new_pmd);
 288        if (new_ptep)
 289                kvmppc_pte_free(new_ptep);
 290        return ret;
 291}
 292
 293int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 294                                   unsigned long ea, unsigned long dsisr)
 295{
 296        struct kvm *kvm = vcpu->kvm;
 297        unsigned long mmu_seq, pte_size;
 298        unsigned long gpa, gfn, hva, pfn;
 299        struct kvm_memory_slot *memslot;
 300        struct page *page = NULL, *pages[1];
 301        long ret, npages, ok;
 302        unsigned int writing;
 303        struct vm_area_struct *vma;
 304        unsigned long flags;
 305        pte_t pte, *ptep;
 306        unsigned long pgflags;
 307        unsigned int shift, level;
 308
 309        /* Check for unusual errors */
 310        if (dsisr & DSISR_UNSUPP_MMU) {
 311                pr_err("KVM: Got unsupported MMU fault\n");
 312                return -EFAULT;
 313        }
 314        if (dsisr & DSISR_BADACCESS) {
 315                /* Reflect to the guest as DSI */
 316                pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
 317                kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
 318                return RESUME_GUEST;
 319        }
 320
 321        /* Translate the logical address and get the page */
 322        gpa = vcpu->arch.fault_gpa & ~0xfffUL;
 323        gpa &= ~0xF000000000000000ul;
 324        gfn = gpa >> PAGE_SHIFT;
 325        if (!(dsisr & DSISR_PGDIRFAULT))
 326                gpa |= ea & 0xfff;
 327        memslot = gfn_to_memslot(kvm, gfn);
 328
 329        /* No memslot means it's an emulated MMIO region */
 330        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
 331                if (dsisr & (DSISR_PGDIRFAULT | DSISR_BADACCESS |
 332                             DSISR_SET_RC)) {
 333                        /*
 334                         * Bad address in guest page table tree, or other
 335                         * unusual error - reflect it to the guest as DSI.
 336                         */
 337                        kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
 338                        return RESUME_GUEST;
 339                }
 340                return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 341                                              dsisr & DSISR_ISSTORE);
 342        }
 343
 344        /* used to check for invalidations in progress */
 345        mmu_seq = kvm->mmu_notifier_seq;
 346        smp_rmb();
 347
 348        writing = (dsisr & DSISR_ISSTORE) != 0;
 349        hva = gfn_to_hva_memslot(memslot, gfn);
 350        if (dsisr & DSISR_SET_RC) {
 351                /*
 352                 * Need to set an R or C bit in the 2nd-level tables;
 353                 * if the relevant bits aren't already set in the linux
 354                 * page tables, fall through to do the gup_fast to
 355                 * set them in the linux page tables too.
 356                 */
 357                ok = 0;
 358                pgflags = _PAGE_ACCESSED;
 359                if (writing)
 360                        pgflags |= _PAGE_DIRTY;
 361                local_irq_save(flags);
 362                ptep = __find_linux_pte_or_hugepte(current->mm->pgd, hva,
 363                                                   NULL, NULL);
 364                if (ptep) {
 365                        pte = READ_ONCE(*ptep);
 366                        if (pte_present(pte) &&
 367                            (pte_val(pte) & pgflags) == pgflags)
 368                                ok = 1;
 369                }
 370                local_irq_restore(flags);
 371                if (ok) {
 372                        spin_lock(&kvm->mmu_lock);
 373                        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 374                                spin_unlock(&kvm->mmu_lock);
 375                                return RESUME_GUEST;
 376                        }
 377                        ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable,
 378                                                        gpa, NULL, &shift);
 379                        if (ptep && pte_present(*ptep)) {
 380                                kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
 381                                                        gpa, shift);
 382                                spin_unlock(&kvm->mmu_lock);
 383                                return RESUME_GUEST;
 384                        }
 385                        spin_unlock(&kvm->mmu_lock);
 386                }
 387        }
 388
 389        ret = -EFAULT;
 390        pfn = 0;
 391        pte_size = PAGE_SIZE;
 392        pgflags = _PAGE_READ | _PAGE_EXEC;
 393        level = 0;
 394        npages = get_user_pages_fast(hva, 1, writing, pages);
 395        if (npages < 1) {
 396                /* Check if it's an I/O mapping */
 397                down_read(&current->mm->mmap_sem);
 398                vma = find_vma(current->mm, hva);
 399                if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
 400                    (vma->vm_flags & VM_PFNMAP)) {
 401                        pfn = vma->vm_pgoff +
 402                                ((hva - vma->vm_start) >> PAGE_SHIFT);
 403                        pgflags = pgprot_val(vma->vm_page_prot);
 404                }
 405                up_read(&current->mm->mmap_sem);
 406                if (!pfn)
 407                        return -EFAULT;
 408        } else {
 409                page = pages[0];
 410                pfn = page_to_pfn(page);
 411                if (PageHuge(page)) {
 412                        page = compound_head(page);
 413                        pte_size <<= compound_order(page);
 414                        /* See if we can insert a 2MB large-page PTE here */
 415                        if (pte_size >= PMD_SIZE &&
 416                            (gpa & PMD_MASK & PAGE_MASK) ==
 417                            (hva & PMD_MASK & PAGE_MASK)) {
 418                                level = 1;
 419                                pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
 420                        }
 421                }
 422                /* See if we can provide write access */
 423                if (writing) {
 424                        /*
 425                         * We assume gup_fast has set dirty on the host PTE.
 426                         */
 427                        pgflags |= _PAGE_WRITE;
 428                } else {
 429                        local_irq_save(flags);
 430                        ptep = __find_linux_pte_or_hugepte(current->mm->pgd,
 431                                                        hva, NULL, NULL);
 432                        if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
 433                                pgflags |= _PAGE_WRITE;
 434                        local_irq_restore(flags);
 435                }
 436        }
 437
 438        /*
 439         * Compute the PTE value that we need to insert.
 440         */
 441        pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
 442        if (pgflags & _PAGE_WRITE)
 443                pgflags |= _PAGE_DIRTY;
 444        pte = pfn_pte(pfn, __pgprot(pgflags));
 445
 446        /* Allocate space in the tree and write the PTE */
 447        ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
 448        if (ret == -EBUSY) {
 449                /*
 450                 * There's already a PMD where wanted to install a large page;
 451                 * for now, fall back to installing a small page.
 452                 */
 453                level = 0;
 454                pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
 455                pte = pfn_pte(pfn, __pgprot(pgflags));
 456                ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
 457        }
 458        if (ret == 0 || ret == -EAGAIN)
 459                ret = RESUME_GUEST;
 460
 461        if (page) {
 462                /*
 463                 * We drop pages[0] here, not page because page might
 464                 * have been set to the head page of a compound, but
 465                 * we have to drop the reference on the correct tail
 466                 * page to match the get inside gup()
 467                 */
 468                put_page(pages[0]);
 469        }
 470        return ret;
 471}
 472
 473static void mark_pages_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot,
 474                             unsigned long gfn, unsigned int order)
 475{
 476        unsigned long i, limit;
 477        unsigned long *dp;
 478
 479        if (!memslot->dirty_bitmap)
 480                return;
 481        limit = 1ul << order;
 482        if (limit < BITS_PER_LONG) {
 483                for (i = 0; i < limit; ++i)
 484                        mark_page_dirty(kvm, gfn + i);
 485                return;
 486        }
 487        dp = memslot->dirty_bitmap + (gfn - memslot->base_gfn);
 488        limit /= BITS_PER_LONG;
 489        for (i = 0; i < limit; ++i)
 490                *dp++ = ~0ul;
 491}
 492
 493/* Called with kvm->lock held */
 494int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 495                    unsigned long gfn)
 496{
 497        pte_t *ptep;
 498        unsigned long gpa = gfn << PAGE_SHIFT;
 499        unsigned int shift;
 500        unsigned long old;
 501
 502        ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
 503                                           NULL, &shift);
 504        if (ptep && pte_present(*ptep)) {
 505                old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
 506                                              gpa, shift);
 507                kvmppc_radix_tlbie_page(kvm, gpa, shift);
 508                if (old & _PAGE_DIRTY) {
 509                        if (!shift)
 510                                mark_page_dirty(kvm, gfn);
 511                        else
 512                                mark_pages_dirty(kvm, memslot,
 513                                                 gfn, shift - PAGE_SHIFT);
 514                }
 515        }
 516        return 0;                               
 517}
 518
 519/* Called with kvm->lock held */
 520int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 521                  unsigned long gfn)
 522{
 523        pte_t *ptep;
 524        unsigned long gpa = gfn << PAGE_SHIFT;
 525        unsigned int shift;
 526        int ref = 0;
 527
 528        ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
 529                                           NULL, &shift);
 530        if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
 531                kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
 532                                        gpa, shift);
 533                /* XXX need to flush tlb here? */
 534                ref = 1;
 535        }
 536        return ref;
 537}
 538
 539/* Called with kvm->lock held */
 540int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
 541                       unsigned long gfn)
 542{
 543        pte_t *ptep;
 544        unsigned long gpa = gfn << PAGE_SHIFT;
 545        unsigned int shift;
 546        int ref = 0;
 547
 548        ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
 549                                           NULL, &shift);
 550        if (ptep && pte_present(*ptep) && pte_young(*ptep))
 551                ref = 1;
 552        return ref;
 553}
 554
 555/* Returns the number of PAGE_SIZE pages that are dirty */
 556static int kvm_radix_test_clear_dirty(struct kvm *kvm,
 557                                struct kvm_memory_slot *memslot, int pagenum)
 558{
 559        unsigned long gfn = memslot->base_gfn + pagenum;
 560        unsigned long gpa = gfn << PAGE_SHIFT;
 561        pte_t *ptep;
 562        unsigned int shift;
 563        int ret = 0;
 564
 565        ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
 566                                           NULL, &shift);
 567        if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
 568                ret = 1;
 569                if (shift)
 570                        ret = 1 << (shift - PAGE_SHIFT);
 571                kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
 572                                        gpa, shift);
 573                kvmppc_radix_tlbie_page(kvm, gpa, shift);
 574        }
 575        return ret;
 576}
 577
 578long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
 579                        struct kvm_memory_slot *memslot, unsigned long *map)
 580{
 581        unsigned long i, j;
 582        unsigned long n, *p;
 583        int npages;
 584
 585        /*
 586         * Radix accumulates dirty bits in the first half of the
 587         * memslot's dirty_bitmap area, for when pages are paged
 588         * out or modified by the host directly.  Pick up these
 589         * bits and add them to the map.
 590         */
 591        n = kvm_dirty_bitmap_bytes(memslot) / sizeof(long);
 592        p = memslot->dirty_bitmap;
 593        for (i = 0; i < n; ++i)
 594                map[i] |= xchg(&p[i], 0);
 595
 596        for (i = 0; i < memslot->npages; i = j) {
 597                npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
 598
 599                /*
 600                 * Note that if npages > 0 then i must be a multiple of npages,
 601                 * since huge pages are only used to back the guest at guest
 602                 * real addresses that are a multiple of their size.
 603                 * Since we have at most one PTE covering any given guest
 604                 * real address, if npages > 1 we can skip to i + npages.
 605                 */
 606                j = i + 1;
 607                if (npages)
 608                        for (j = i; npages; ++j, --npages)
 609                                __set_bit_le(j, map);
 610        }
 611        return 0;
 612}
 613
 614static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
 615                                 int psize, int *indexp)
 616{
 617        if (!mmu_psize_defs[psize].shift)
 618                return;
 619        info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
 620                (mmu_psize_defs[psize].ap << 29);
 621        ++(*indexp);
 622}
 623
 624int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
 625{
 626        int i;
 627
 628        if (!radix_enabled())
 629                return -EINVAL;
 630        memset(info, 0, sizeof(*info));
 631
 632        /* 4k page size */
 633        info->geometries[0].page_shift = 12;
 634        info->geometries[0].level_bits[0] = 9;
 635        for (i = 1; i < 4; ++i)
 636                info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
 637        /* 64k page size */
 638        info->geometries[1].page_shift = 16;
 639        for (i = 0; i < 4; ++i)
 640                info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
 641
 642        i = 0;
 643        add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
 644        add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
 645        add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
 646        add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
 647
 648        return 0;
 649}
 650
 651int kvmppc_init_vm_radix(struct kvm *kvm)
 652{
 653        kvm->arch.pgtable = pgd_alloc(kvm->mm);
 654        if (!kvm->arch.pgtable)
 655                return -ENOMEM;
 656        return 0;
 657}
 658
 659void kvmppc_free_radix(struct kvm *kvm)
 660{
 661        unsigned long ig, iu, im;
 662        pte_t *pte;
 663        pmd_t *pmd;
 664        pud_t *pud;
 665        pgd_t *pgd;
 666
 667        if (!kvm->arch.pgtable)
 668                return;
 669        pgd = kvm->arch.pgtable;
 670        for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
 671                if (!pgd_present(*pgd))
 672                        continue;
 673                pud = pud_offset(pgd, 0);
 674                for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
 675                        if (!pud_present(*pud))
 676                                continue;
 677                        pmd = pmd_offset(pud, 0);
 678                        for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
 679                                if (pmd_huge(*pmd)) {
 680                                        pmd_clear(pmd);
 681                                        continue;
 682                                }
 683                                if (!pmd_present(*pmd))
 684                                        continue;
 685                                pte = pte_offset_map(pmd, 0);
 686                                memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
 687                                kvmppc_pte_free(pte);
 688                                pmd_clear(pmd);
 689                        }
 690                        pmd_free(kvm->mm, pmd_offset(pud, 0));
 691                        pud_clear(pud);
 692                }
 693                pud_free(kvm->mm, pud_offset(pgd, 0));
 694                pgd_clear(pgd);
 695        }
 696        pgd_free(kvm->mm, kvm->arch.pgtable);
 697}
 698
 699static void pte_ctor(void *addr)
 700{
 701        memset(addr, 0, PTE_TABLE_SIZE);
 702}
 703
 704int kvmppc_radix_init(void)
 705{
 706        unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
 707
 708        kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
 709        if (!kvm_pte_cache)
 710                return -ENOMEM;
 711        return 0;
 712}
 713
 714void kvmppc_radix_exit(void)
 715{
 716        kmem_cache_destroy(kvm_pte_cache);
 717}
 718