linux/arch/sparc/mm/srmmu.c
<<
>>
Prefs
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/spinlock.h>
  13#include <linux/bootmem.h>
  14#include <linux/pagemap.h>
  15#include <linux/vmalloc.h>
  16#include <linux/kdebug.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/gfp.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24
  25#include <asm/mmu_context.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/io-unit.h>
  29#include <asm/pgalloc.h>
  30#include <asm/pgtable.h>
  31#include <asm/bitext.h>
  32#include <asm/vaddrs.h>
  33#include <asm/cache.h>
  34#include <asm/traps.h>
  35#include <asm/oplib.h>
  36#include <asm/mbus.h>
  37#include <asm/page.h>
  38#include <asm/asi.h>
  39#include <asm/msi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END       }
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112        pte_t pte;
 113
 114        pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115        set_pte((pte_t *)ctxp, pte);
 116}
 117
 118void pmd_set(pmd_t *pmdp, pte_t *ptep)
 119{
 120        unsigned long ptp;      /* Physical address, shifted right by 4 */
 121        int i;
 122
 123        ptp = __nocache_pa(ptep) >> 4;
 124        for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 125                set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 126                ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 127        }
 128}
 129
 130void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 131{
 132        unsigned long ptp;      /* Physical address, shifted right by 4 */
 133        int i;
 134
 135        ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
 136        for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 137                set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 138                ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 139        }
 140}
 141
 142/* Find an entry in the third-level page table.. */
 143pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 144{
 145        void *pte;
 146
 147        pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 148        return (pte_t *) pte +
 149            ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 150}
 151
 152/*
 153 * size: bytes to allocate in the nocache area.
 154 * align: bytes, number to align at.
 155 * Returns the virtual address of the allocated area.
 156 */
 157static void *__srmmu_get_nocache(int size, int align)
 158{
 159        int offset;
 160        unsigned long addr;
 161
 162        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 163                printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 164                       size);
 165                size = SRMMU_NOCACHE_BITMAP_SHIFT;
 166        }
 167        if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 168                printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 169                       size);
 170                size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 171        }
 172        BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 173
 174        offset = bit_map_string_get(&srmmu_nocache_map,
 175                                    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 176                                    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 177        if (offset == -1) {
 178                printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 179                       size, (int) srmmu_nocache_size,
 180                       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 181                return NULL;
 182        }
 183
 184        addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 185        return (void *)addr;
 186}
 187
 188void *srmmu_get_nocache(int size, int align)
 189{
 190        void *tmp;
 191
 192        tmp = __srmmu_get_nocache(size, align);
 193
 194        if (tmp)
 195                memset(tmp, 0, size);
 196
 197        return tmp;
 198}
 199
 200void srmmu_free_nocache(void *addr, int size)
 201{
 202        unsigned long vaddr;
 203        int offset;
 204
 205        vaddr = (unsigned long)addr;
 206        if (vaddr < SRMMU_NOCACHE_VADDR) {
 207                printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 208                    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 209                BUG();
 210        }
 211        if (vaddr + size > srmmu_nocache_end) {
 212                printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 213                    vaddr, srmmu_nocache_end);
 214                BUG();
 215        }
 216        if (!is_power_of_2(size)) {
 217                printk("Size 0x%x is not a power of 2\n", size);
 218                BUG();
 219        }
 220        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 221                printk("Size 0x%x is too small\n", size);
 222                BUG();
 223        }
 224        if (vaddr & (size - 1)) {
 225                printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 226                BUG();
 227        }
 228
 229        offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 230        size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 231
 232        bit_map_clear(&srmmu_nocache_map, offset, size);
 233}
 234
 235static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 236                                                 unsigned long end);
 237
 238/* Return how much physical memory we have.  */
 239static unsigned long __init probe_memory(void)
 240{
 241        unsigned long total = 0;
 242        int i;
 243
 244        for (i = 0; sp_banks[i].num_bytes; i++)
 245                total += sp_banks[i].num_bytes;
 246
 247        return total;
 248}
 249
 250/*
 251 * Reserve nocache dynamically proportionally to the amount of
 252 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 253 */
 254static void __init srmmu_nocache_calcsize(void)
 255{
 256        unsigned long sysmemavail = probe_memory() / 1024;
 257        int srmmu_nocache_npages;
 258
 259        srmmu_nocache_npages =
 260                sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 261
 262 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 263        // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 264        if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 265                srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 266
 267        /* anything above 1280 blows up */
 268        if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 269                srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 270
 271        srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 272        srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 273}
 274
 275static void __init srmmu_nocache_init(void)
 276{
 277        void *srmmu_nocache_bitmap;
 278        unsigned int bitmap_bits;
 279        pgd_t *pgd;
 280        pmd_t *pmd;
 281        pte_t *pte;
 282        unsigned long paddr, vaddr;
 283        unsigned long pteval;
 284
 285        bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 286
 287        srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 288                SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 289        memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 290
 291        srmmu_nocache_bitmap =
 292                __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 293                                SMP_CACHE_BYTES, 0UL);
 294        bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 295
 296        srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 297        memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 298        init_mm.pgd = srmmu_swapper_pg_dir;
 299
 300        srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 301
 302        paddr = __pa((unsigned long)srmmu_nocache_pool);
 303        vaddr = SRMMU_NOCACHE_VADDR;
 304
 305        while (vaddr < srmmu_nocache_end) {
 306                pgd = pgd_offset_k(vaddr);
 307                pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 308                pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 309
 310                pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 311
 312                if (srmmu_cache_pagetables)
 313                        pteval |= SRMMU_CACHE;
 314
 315                set_pte(__nocache_fix(pte), __pte(pteval));
 316
 317                vaddr += PAGE_SIZE;
 318                paddr += PAGE_SIZE;
 319        }
 320
 321        flush_cache_all();
 322        flush_tlb_all();
 323}
 324
 325pgd_t *get_pgd_fast(void)
 326{
 327        pgd_t *pgd = NULL;
 328
 329        pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 330        if (pgd) {
 331                pgd_t *init = pgd_offset_k(0);
 332                memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 333                memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 334                                                (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 335        }
 336
 337        return pgd;
 338}
 339
 340/*
 341 * Hardware needs alignment to 256 only, but we align to whole page size
 342 * to reduce fragmentation problems due to the buddy principle.
 343 * XXX Provide actual fragmentation statistics in /proc.
 344 *
 345 * Alignments up to the page size are the same for physical and virtual
 346 * addresses of the nocache area.
 347 */
 348pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 349{
 350        unsigned long pte;
 351        struct page *page;
 352
 353        if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 354                return NULL;
 355        page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 356        if (!pgtable_page_ctor(page)) {
 357                __free_page(page);
 358                return NULL;
 359        }
 360        return page;
 361}
 362
 363void pte_free(struct mm_struct *mm, pgtable_t pte)
 364{
 365        unsigned long p;
 366
 367        pgtable_page_dtor(pte);
 368        p = (unsigned long)page_address(pte);   /* Cached address (for test) */
 369        if (p == 0)
 370                BUG();
 371        p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
 372
 373        /* free non cached virtual address*/
 374        srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 375}
 376
 377/* context handling - a dynamically sized pool is used */
 378#define NO_CONTEXT      -1
 379
 380struct ctx_list {
 381        struct ctx_list *next;
 382        struct ctx_list *prev;
 383        unsigned int ctx_number;
 384        struct mm_struct *ctx_mm;
 385};
 386
 387static struct ctx_list *ctx_list_pool;
 388static struct ctx_list ctx_free;
 389static struct ctx_list ctx_used;
 390
 391/* At boot time we determine the number of contexts */
 392static int num_contexts;
 393
 394static inline void remove_from_ctx_list(struct ctx_list *entry)
 395{
 396        entry->next->prev = entry->prev;
 397        entry->prev->next = entry->next;
 398}
 399
 400static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 401{
 402        entry->next = head;
 403        (entry->prev = head->prev)->next = entry;
 404        head->prev = entry;
 405}
 406#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 407#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 408
 409
 410static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 411{
 412        struct ctx_list *ctxp;
 413
 414        ctxp = ctx_free.next;
 415        if (ctxp != &ctx_free) {
 416                remove_from_ctx_list(ctxp);
 417                add_to_used_ctxlist(ctxp);
 418                mm->context = ctxp->ctx_number;
 419                ctxp->ctx_mm = mm;
 420                return;
 421        }
 422        ctxp = ctx_used.next;
 423        if (ctxp->ctx_mm == old_mm)
 424                ctxp = ctxp->next;
 425        if (ctxp == &ctx_used)
 426                panic("out of mmu contexts");
 427        flush_cache_mm(ctxp->ctx_mm);
 428        flush_tlb_mm(ctxp->ctx_mm);
 429        remove_from_ctx_list(ctxp);
 430        add_to_used_ctxlist(ctxp);
 431        ctxp->ctx_mm->context = NO_CONTEXT;
 432        ctxp->ctx_mm = mm;
 433        mm->context = ctxp->ctx_number;
 434}
 435
 436static inline void free_context(int context)
 437{
 438        struct ctx_list *ctx_old;
 439
 440        ctx_old = ctx_list_pool + context;
 441        remove_from_ctx_list(ctx_old);
 442        add_to_free_ctxlist(ctx_old);
 443}
 444
 445static void __init sparc_context_init(int numctx)
 446{
 447        int ctx;
 448        unsigned long size;
 449
 450        size = numctx * sizeof(struct ctx_list);
 451        ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 452
 453        for (ctx = 0; ctx < numctx; ctx++) {
 454                struct ctx_list *clist;
 455
 456                clist = (ctx_list_pool + ctx);
 457                clist->ctx_number = ctx;
 458                clist->ctx_mm = NULL;
 459        }
 460        ctx_free.next = ctx_free.prev = &ctx_free;
 461        ctx_used.next = ctx_used.prev = &ctx_used;
 462        for (ctx = 0; ctx < numctx; ctx++)
 463                add_to_free_ctxlist(ctx_list_pool + ctx);
 464}
 465
 466void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 467               struct task_struct *tsk)
 468{
 469        unsigned long flags;
 470
 471        if (mm->context == NO_CONTEXT) {
 472                spin_lock_irqsave(&srmmu_context_spinlock, flags);
 473                alloc_context(old_mm, mm);
 474                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 475                srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 476        }
 477
 478        if (sparc_cpu_model == sparc_leon)
 479                leon_switch_mm();
 480
 481        if (is_hypersparc)
 482                hyper_flush_whole_icache();
 483
 484        srmmu_set_context(mm->context);
 485}
 486
 487/* Low level IO area allocation on the SRMMU. */
 488static inline void srmmu_mapioaddr(unsigned long physaddr,
 489                                   unsigned long virt_addr, int bus_type)
 490{
 491        pgd_t *pgdp;
 492        pmd_t *pmdp;
 493        pte_t *ptep;
 494        unsigned long tmp;
 495
 496        physaddr &= PAGE_MASK;
 497        pgdp = pgd_offset_k(virt_addr);
 498        pmdp = pmd_offset(pgdp, virt_addr);
 499        ptep = pte_offset_kernel(pmdp, virt_addr);
 500        tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 501
 502        /* I need to test whether this is consistent over all
 503         * sun4m's.  The bus_type represents the upper 4 bits of
 504         * 36-bit physical address on the I/O space lines...
 505         */
 506        tmp |= (bus_type << 28);
 507        tmp |= SRMMU_PRIV;
 508        __flush_page_to_ram(virt_addr);
 509        set_pte(ptep, __pte(tmp));
 510}
 511
 512void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 513                      unsigned long xva, unsigned int len)
 514{
 515        while (len != 0) {
 516                len -= PAGE_SIZE;
 517                srmmu_mapioaddr(xpa, xva, bus);
 518                xva += PAGE_SIZE;
 519                xpa += PAGE_SIZE;
 520        }
 521        flush_tlb_all();
 522}
 523
 524static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 525{
 526        pgd_t *pgdp;
 527        pmd_t *pmdp;
 528        pte_t *ptep;
 529
 530        pgdp = pgd_offset_k(virt_addr);
 531        pmdp = pmd_offset(pgdp, virt_addr);
 532        ptep = pte_offset_kernel(pmdp, virt_addr);
 533
 534        /* No need to flush uncacheable page. */
 535        __pte_clear(ptep);
 536}
 537
 538void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 539{
 540        while (len != 0) {
 541                len -= PAGE_SIZE;
 542                srmmu_unmapioaddr(virt_addr);
 543                virt_addr += PAGE_SIZE;
 544        }
 545        flush_tlb_all();
 546}
 547
 548/* tsunami.S */
 549extern void tsunami_flush_cache_all(void);
 550extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 551extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 552extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 553extern void tsunami_flush_page_to_ram(unsigned long page);
 554extern void tsunami_flush_page_for_dma(unsigned long page);
 555extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 556extern void tsunami_flush_tlb_all(void);
 557extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 558extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 559extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 560extern void tsunami_setup_blockops(void);
 561
 562/* swift.S */
 563extern void swift_flush_cache_all(void);
 564extern void swift_flush_cache_mm(struct mm_struct *mm);
 565extern void swift_flush_cache_range(struct vm_area_struct *vma,
 566                                    unsigned long start, unsigned long end);
 567extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 568extern void swift_flush_page_to_ram(unsigned long page);
 569extern void swift_flush_page_for_dma(unsigned long page);
 570extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 571extern void swift_flush_tlb_all(void);
 572extern void swift_flush_tlb_mm(struct mm_struct *mm);
 573extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 574                                  unsigned long start, unsigned long end);
 575extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 576
 577#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 578void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 579{
 580        int cctx, ctx1;
 581
 582        page &= PAGE_MASK;
 583        if ((ctx1 = vma->vm_mm->context) != -1) {
 584                cctx = srmmu_get_context();
 585/* Is context # ever different from current context? P3 */
 586                if (cctx != ctx1) {
 587                        printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 588                        srmmu_set_context(ctx1);
 589                        swift_flush_page(page);
 590                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 591                                        "r" (page), "i" (ASI_M_FLUSH_PROBE));
 592                        srmmu_set_context(cctx);
 593                } else {
 594                         /* Rm. prot. bits from virt. c. */
 595                        /* swift_flush_cache_all(); */
 596                        /* swift_flush_cache_page(vma, page); */
 597                        swift_flush_page(page);
 598
 599                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 600                                "r" (page), "i" (ASI_M_FLUSH_PROBE));
 601                        /* same as above: srmmu_flush_tlb_page() */
 602                }
 603        }
 604}
 605#endif
 606
 607/*
 608 * The following are all MBUS based SRMMU modules, and therefore could
 609 * be found in a multiprocessor configuration.  On the whole, these
 610 * chips seems to be much more touchy about DVMA and page tables
 611 * with respect to cache coherency.
 612 */
 613
 614/* viking.S */
 615extern void viking_flush_cache_all(void);
 616extern void viking_flush_cache_mm(struct mm_struct *mm);
 617extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 618                                     unsigned long end);
 619extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 620extern void viking_flush_page_to_ram(unsigned long page);
 621extern void viking_flush_page_for_dma(unsigned long page);
 622extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 623extern void viking_flush_page(unsigned long page);
 624extern void viking_mxcc_flush_page(unsigned long page);
 625extern void viking_flush_tlb_all(void);
 626extern void viking_flush_tlb_mm(struct mm_struct *mm);
 627extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 628                                   unsigned long end);
 629extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 630                                  unsigned long page);
 631extern void sun4dsmp_flush_tlb_all(void);
 632extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 633extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 634                                   unsigned long end);
 635extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 636                                  unsigned long page);
 637
 638/* hypersparc.S */
 639extern void hypersparc_flush_cache_all(void);
 640extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 641extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 642extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 643extern void hypersparc_flush_page_to_ram(unsigned long page);
 644extern void hypersparc_flush_page_for_dma(unsigned long page);
 645extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 646extern void hypersparc_flush_tlb_all(void);
 647extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 648extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 649extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 650extern void hypersparc_setup_blockops(void);
 651
 652/*
 653 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 654 *       kernel mappings are done with one single contiguous chunk of
 655 *       ram.  On small ram machines (classics mainly) we only get
 656 *       around 8mb mapped for us.
 657 */
 658
 659static void __init early_pgtable_allocfail(char *type)
 660{
 661        prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 662        prom_halt();
 663}
 664
 665static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 666                                                        unsigned long end)
 667{
 668        pgd_t *pgdp;
 669        pmd_t *pmdp;
 670        pte_t *ptep;
 671
 672        while (start < end) {
 673                pgdp = pgd_offset_k(start);
 674                if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 675                        pmdp = __srmmu_get_nocache(
 676                            SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 677                        if (pmdp == NULL)
 678                                early_pgtable_allocfail("pmd");
 679                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 680                        pgd_set(__nocache_fix(pgdp), pmdp);
 681                }
 682                pmdp = pmd_offset(__nocache_fix(pgdp), start);
 683                if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 684                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 685                        if (ptep == NULL)
 686                                early_pgtable_allocfail("pte");
 687                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 688                        pmd_set(__nocache_fix(pmdp), ptep);
 689                }
 690                if (start > (0xffffffffUL - PMD_SIZE))
 691                        break;
 692                start = (start + PMD_SIZE) & PMD_MASK;
 693        }
 694}
 695
 696static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 697                                                  unsigned long end)
 698{
 699        pgd_t *pgdp;
 700        pmd_t *pmdp;
 701        pte_t *ptep;
 702
 703        while (start < end) {
 704                pgdp = pgd_offset_k(start);
 705                if (pgd_none(*pgdp)) {
 706                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 707                        if (pmdp == NULL)
 708                                early_pgtable_allocfail("pmd");
 709                        memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 710                        pgd_set(pgdp, pmdp);
 711                }
 712                pmdp = pmd_offset(pgdp, start);
 713                if (srmmu_pmd_none(*pmdp)) {
 714                        ptep = __srmmu_get_nocache(PTE_SIZE,
 715                                                             PTE_SIZE);
 716                        if (ptep == NULL)
 717                                early_pgtable_allocfail("pte");
 718                        memset(ptep, 0, PTE_SIZE);
 719                        pmd_set(pmdp, ptep);
 720                }
 721                if (start > (0xffffffffUL - PMD_SIZE))
 722                        break;
 723                start = (start + PMD_SIZE) & PMD_MASK;
 724        }
 725}
 726
 727/* These flush types are not available on all chips... */
 728static inline unsigned long srmmu_probe(unsigned long vaddr)
 729{
 730        unsigned long retval;
 731
 732        if (sparc_cpu_model != sparc_leon) {
 733
 734                vaddr &= PAGE_MASK;
 735                __asm__ __volatile__("lda [%1] %2, %0\n\t" :
 736                                     "=r" (retval) :
 737                                     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 738        } else {
 739                retval = leon_swprobe(vaddr, NULL);
 740        }
 741        return retval;
 742}
 743
 744/*
 745 * This is much cleaner than poking around physical address space
 746 * looking at the prom's page table directly which is what most
 747 * other OS's do.  Yuck... this is much better.
 748 */
 749static void __init srmmu_inherit_prom_mappings(unsigned long start,
 750                                               unsigned long end)
 751{
 752        unsigned long probed;
 753        unsigned long addr;
 754        pgd_t *pgdp;
 755        pmd_t *pmdp;
 756        pte_t *ptep;
 757        int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 758
 759        while (start <= end) {
 760                if (start == 0)
 761                        break; /* probably wrap around */
 762                if (start == 0xfef00000)
 763                        start = KADB_DEBUGGER_BEGVM;
 764                probed = srmmu_probe(start);
 765                if (!probed) {
 766                        /* continue probing until we find an entry */
 767                        start += PAGE_SIZE;
 768                        continue;
 769                }
 770
 771                /* A red snapper, see what it really is. */
 772                what = 0;
 773                addr = start - PAGE_SIZE;
 774
 775                if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 776                        if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 777                                what = 1;
 778                }
 779
 780                if (!(start & ~(SRMMU_PGDIR_MASK))) {
 781                        if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 782                                what = 2;
 783                }
 784
 785                pgdp = pgd_offset_k(start);
 786                if (what == 2) {
 787                        *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 788                        start += SRMMU_PGDIR_SIZE;
 789                        continue;
 790                }
 791                if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 792                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 793                                                   SRMMU_PMD_TABLE_SIZE);
 794                        if (pmdp == NULL)
 795                                early_pgtable_allocfail("pmd");
 796                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 797                        pgd_set(__nocache_fix(pgdp), pmdp);
 798                }
 799                pmdp = pmd_offset(__nocache_fix(pgdp), start);
 800                if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 801                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 802                        if (ptep == NULL)
 803                                early_pgtable_allocfail("pte");
 804                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 805                        pmd_set(__nocache_fix(pmdp), ptep);
 806                }
 807                if (what == 1) {
 808                        /* We bend the rule where all 16 PTPs in a pmd_t point
 809                         * inside the same PTE page, and we leak a perfectly
 810                         * good hardware PTE piece. Alternatives seem worse.
 811                         */
 812                        unsigned int x; /* Index of HW PMD in soft cluster */
 813                        unsigned long *val;
 814                        x = (start >> PMD_SHIFT) & 15;
 815                        val = &pmdp->pmdv[x];
 816                        *(unsigned long *)__nocache_fix(val) = probed;
 817                        start += SRMMU_REAL_PMD_SIZE;
 818                        continue;
 819                }
 820                ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 821                *(pte_t *)__nocache_fix(ptep) = __pte(probed);
 822                start += PAGE_SIZE;
 823        }
 824}
 825
 826#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 827
 828/* Create a third-level SRMMU 16MB page mapping. */
 829static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 830{
 831        pgd_t *pgdp = pgd_offset_k(vaddr);
 832        unsigned long big_pte;
 833
 834        big_pte = KERNEL_PTE(phys_base >> 4);
 835        *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 836}
 837
 838/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 839static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 840{
 841        unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 842        unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 843        unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 844        /* Map "low" memory only */
 845        const unsigned long min_vaddr = PAGE_OFFSET;
 846        const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 847
 848        if (vstart < min_vaddr || vstart >= max_vaddr)
 849                return vstart;
 850
 851        if (vend > max_vaddr || vend < min_vaddr)
 852                vend = max_vaddr;
 853
 854        while (vstart < vend) {
 855                do_large_mapping(vstart, pstart);
 856                vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 857        }
 858        return vstart;
 859}
 860
 861static void __init map_kernel(void)
 862{
 863        int i;
 864
 865        if (phys_base > 0) {
 866                do_large_mapping(PAGE_OFFSET, phys_base);
 867        }
 868
 869        for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 870                map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 871        }
 872}
 873
 874void (*poke_srmmu)(void) = NULL;
 875
 876void __init srmmu_paging_init(void)
 877{
 878        int i;
 879        phandle cpunode;
 880        char node_str[128];
 881        pgd_t *pgd;
 882        pmd_t *pmd;
 883        pte_t *pte;
 884        unsigned long pages_avail;
 885
 886        init_mm.context = (unsigned long) NO_CONTEXT;
 887        sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
 888
 889        if (sparc_cpu_model == sun4d)
 890                num_contexts = 65536; /* We know it is Viking */
 891        else {
 892                /* Find the number of contexts on the srmmu. */
 893                cpunode = prom_getchild(prom_root_node);
 894                num_contexts = 0;
 895                while (cpunode != 0) {
 896                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 897                        if (!strcmp(node_str, "cpu")) {
 898                                num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 899                                break;
 900                        }
 901                        cpunode = prom_getsibling(cpunode);
 902                }
 903        }
 904
 905        if (!num_contexts) {
 906                prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 907                prom_halt();
 908        }
 909
 910        pages_avail = 0;
 911        last_valid_pfn = bootmem_init(&pages_avail);
 912
 913        srmmu_nocache_calcsize();
 914        srmmu_nocache_init();
 915        srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 916        map_kernel();
 917
 918        /* ctx table has to be physically aligned to its size */
 919        srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 920        srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 921
 922        for (i = 0; i < num_contexts; i++)
 923                srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 924
 925        flush_cache_all();
 926        srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 927#ifdef CONFIG_SMP
 928        /* Stop from hanging here... */
 929        local_ops->tlb_all();
 930#else
 931        flush_tlb_all();
 932#endif
 933        poke_srmmu();
 934
 935        srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 936        srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 937
 938        srmmu_allocate_ptable_skeleton(
 939                __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 940        srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 941
 942        pgd = pgd_offset_k(PKMAP_BASE);
 943        pmd = pmd_offset(pgd, PKMAP_BASE);
 944        pte = pte_offset_kernel(pmd, PKMAP_BASE);
 945        pkmap_page_table = pte;
 946
 947        flush_cache_all();
 948        flush_tlb_all();
 949
 950        sparc_context_init(num_contexts);
 951
 952        kmap_init();
 953
 954        {
 955                unsigned long zones_size[MAX_NR_ZONES];
 956                unsigned long zholes_size[MAX_NR_ZONES];
 957                unsigned long npages;
 958                int znum;
 959
 960                for (znum = 0; znum < MAX_NR_ZONES; znum++)
 961                        zones_size[znum] = zholes_size[znum] = 0;
 962
 963                npages = max_low_pfn - pfn_base;
 964
 965                zones_size[ZONE_DMA] = npages;
 966                zholes_size[ZONE_DMA] = npages - pages_avail;
 967
 968                npages = highend_pfn - max_low_pfn;
 969                zones_size[ZONE_HIGHMEM] = npages;
 970                zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 971
 972                free_area_init_node(0, zones_size, pfn_base, zholes_size);
 973        }
 974}
 975
 976void mmu_info(struct seq_file *m)
 977{
 978        seq_printf(m,
 979                   "MMU type\t: %s\n"
 980                   "contexts\t: %d\n"
 981                   "nocache total\t: %ld\n"
 982                   "nocache used\t: %d\n",
 983                   srmmu_name,
 984                   num_contexts,
 985                   srmmu_nocache_size,
 986                   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 987}
 988
 989int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 990{
 991        mm->context = NO_CONTEXT;
 992        return 0;
 993}
 994
 995void destroy_context(struct mm_struct *mm)
 996{
 997        unsigned long flags;
 998
 999        if (mm->context != NO_CONTEXT) {
1000                flush_cache_mm(mm);
1001                srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1002                flush_tlb_mm(mm);
1003                spin_lock_irqsave(&srmmu_context_spinlock, flags);
1004                free_context(mm->context);
1005                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1006                mm->context = NO_CONTEXT;
1007        }
1008}
1009
1010/* Init various srmmu chip types. */
1011static void __init srmmu_is_bad(void)
1012{
1013        prom_printf("Could not determine SRMMU chip type.\n");
1014        prom_halt();
1015}
1016
1017static void __init init_vac_layout(void)
1018{
1019        phandle nd;
1020        int cache_lines;
1021        char node_str[128];
1022#ifdef CONFIG_SMP
1023        int cpu = 0;
1024        unsigned long max_size = 0;
1025        unsigned long min_line_size = 0x10000000;
1026#endif
1027
1028        nd = prom_getchild(prom_root_node);
1029        while ((nd = prom_getsibling(nd)) != 0) {
1030                prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1031                if (!strcmp(node_str, "cpu")) {
1032                        vac_line_size = prom_getint(nd, "cache-line-size");
1033                        if (vac_line_size == -1) {
1034                                prom_printf("can't determine cache-line-size, halting.\n");
1035                                prom_halt();
1036                        }
1037                        cache_lines = prom_getint(nd, "cache-nlines");
1038                        if (cache_lines == -1) {
1039                                prom_printf("can't determine cache-nlines, halting.\n");
1040                                prom_halt();
1041                        }
1042
1043                        vac_cache_size = cache_lines * vac_line_size;
1044#ifdef CONFIG_SMP
1045                        if (vac_cache_size > max_size)
1046                                max_size = vac_cache_size;
1047                        if (vac_line_size < min_line_size)
1048                                min_line_size = vac_line_size;
1049                        //FIXME: cpus not contiguous!!
1050                        cpu++;
1051                        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1052                                break;
1053#else
1054                        break;
1055#endif
1056                }
1057        }
1058        if (nd == 0) {
1059                prom_printf("No CPU nodes found, halting.\n");
1060                prom_halt();
1061        }
1062#ifdef CONFIG_SMP
1063        vac_cache_size = max_size;
1064        vac_line_size = min_line_size;
1065#endif
1066        printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1067               (int)vac_cache_size, (int)vac_line_size);
1068}
1069
1070static void poke_hypersparc(void)
1071{
1072        volatile unsigned long clear;
1073        unsigned long mreg = srmmu_get_mmureg();
1074
1075        hyper_flush_unconditional_combined();
1076
1077        mreg &= ~(HYPERSPARC_CWENABLE);
1078        mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1079        mreg |= (HYPERSPARC_CMODE);
1080
1081        srmmu_set_mmureg(mreg);
1082
1083#if 0 /* XXX I think this is bad news... -DaveM */
1084        hyper_clear_all_tags();
1085#endif
1086
1087        put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1088        hyper_flush_whole_icache();
1089        clear = srmmu_get_faddr();
1090        clear = srmmu_get_fstatus();
1091}
1092
1093static const struct sparc32_cachetlb_ops hypersparc_ops = {
1094        .cache_all      = hypersparc_flush_cache_all,
1095        .cache_mm       = hypersparc_flush_cache_mm,
1096        .cache_page     = hypersparc_flush_cache_page,
1097        .cache_range    = hypersparc_flush_cache_range,
1098        .tlb_all        = hypersparc_flush_tlb_all,
1099        .tlb_mm         = hypersparc_flush_tlb_mm,
1100        .tlb_page       = hypersparc_flush_tlb_page,
1101        .tlb_range      = hypersparc_flush_tlb_range,
1102        .page_to_ram    = hypersparc_flush_page_to_ram,
1103        .sig_insns      = hypersparc_flush_sig_insns,
1104        .page_for_dma   = hypersparc_flush_page_for_dma,
1105};
1106
1107static void __init init_hypersparc(void)
1108{
1109        srmmu_name = "ROSS HyperSparc";
1110        srmmu_modtype = HyperSparc;
1111
1112        init_vac_layout();
1113
1114        is_hypersparc = 1;
1115        sparc32_cachetlb_ops = &hypersparc_ops;
1116
1117        poke_srmmu = poke_hypersparc;
1118
1119        hypersparc_setup_blockops();
1120}
1121
1122static void poke_swift(void)
1123{
1124        unsigned long mreg;
1125
1126        /* Clear any crap from the cache or else... */
1127        swift_flush_cache_all();
1128
1129        /* Enable I & D caches */
1130        mreg = srmmu_get_mmureg();
1131        mreg |= (SWIFT_IE | SWIFT_DE);
1132        /*
1133         * The Swift branch folding logic is completely broken.  At
1134         * trap time, if things are just right, if can mistakenly
1135         * think that a trap is coming from kernel mode when in fact
1136         * it is coming from user mode (it mis-executes the branch in
1137         * the trap code).  So you see things like crashme completely
1138         * hosing your machine which is completely unacceptable.  Turn
1139         * this shit off... nice job Fujitsu.
1140         */
1141        mreg &= ~(SWIFT_BF);
1142        srmmu_set_mmureg(mreg);
1143}
1144
1145static const struct sparc32_cachetlb_ops swift_ops = {
1146        .cache_all      = swift_flush_cache_all,
1147        .cache_mm       = swift_flush_cache_mm,
1148        .cache_page     = swift_flush_cache_page,
1149        .cache_range    = swift_flush_cache_range,
1150        .tlb_all        = swift_flush_tlb_all,
1151        .tlb_mm         = swift_flush_tlb_mm,
1152        .tlb_page       = swift_flush_tlb_page,
1153        .tlb_range      = swift_flush_tlb_range,
1154        .page_to_ram    = swift_flush_page_to_ram,
1155        .sig_insns      = swift_flush_sig_insns,
1156        .page_for_dma   = swift_flush_page_for_dma,
1157};
1158
1159#define SWIFT_MASKID_ADDR  0x10003018
1160static void __init init_swift(void)
1161{
1162        unsigned long swift_rev;
1163
1164        __asm__ __volatile__("lda [%1] %2, %0\n\t"
1165                             "srl %0, 0x18, %0\n\t" :
1166                             "=r" (swift_rev) :
1167                             "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1168        srmmu_name = "Fujitsu Swift";
1169        switch (swift_rev) {
1170        case 0x11:
1171        case 0x20:
1172        case 0x23:
1173        case 0x30:
1174                srmmu_modtype = Swift_lots_o_bugs;
1175                hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1176                /*
1177                 * Gee george, I wonder why Sun is so hush hush about
1178                 * this hardware bug... really braindamage stuff going
1179                 * on here.  However I think we can find a way to avoid
1180                 * all of the workaround overhead under Linux.  Basically,
1181                 * any page fault can cause kernel pages to become user
1182                 * accessible (the mmu gets confused and clears some of
1183                 * the ACC bits in kernel ptes).  Aha, sounds pretty
1184                 * horrible eh?  But wait, after extensive testing it appears
1185                 * that if you use pgd_t level large kernel pte's (like the
1186                 * 4MB pages on the Pentium) the bug does not get tripped
1187                 * at all.  This avoids almost all of the major overhead.
1188                 * Welcome to a world where your vendor tells you to,
1189                 * "apply this kernel patch" instead of "sorry for the
1190                 * broken hardware, send it back and we'll give you
1191                 * properly functioning parts"
1192                 */
1193                break;
1194        case 0x25:
1195        case 0x31:
1196                srmmu_modtype = Swift_bad_c;
1197                hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1198                /*
1199                 * You see Sun allude to this hardware bug but never
1200                 * admit things directly, they'll say things like,
1201                 * "the Swift chip cache problems" or similar.
1202                 */
1203                break;
1204        default:
1205                srmmu_modtype = Swift_ok;
1206                break;
1207        }
1208
1209        sparc32_cachetlb_ops = &swift_ops;
1210        flush_page_for_dma_global = 0;
1211
1212        /*
1213         * Are you now convinced that the Swift is one of the
1214         * biggest VLSI abortions of all time?  Bravo Fujitsu!
1215         * Fujitsu, the !#?!%$'d up processor people.  I bet if
1216         * you examined the microcode of the Swift you'd find
1217         * XXX's all over the place.
1218         */
1219        poke_srmmu = poke_swift;
1220}
1221
1222static void turbosparc_flush_cache_all(void)
1223{
1224        flush_user_windows();
1225        turbosparc_idflash_clear();
1226}
1227
1228static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1229{
1230        FLUSH_BEGIN(mm)
1231        flush_user_windows();
1232        turbosparc_idflash_clear();
1233        FLUSH_END
1234}
1235
1236static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1237{
1238        FLUSH_BEGIN(vma->vm_mm)
1239        flush_user_windows();
1240        turbosparc_idflash_clear();
1241        FLUSH_END
1242}
1243
1244static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1245{
1246        FLUSH_BEGIN(vma->vm_mm)
1247        flush_user_windows();
1248        if (vma->vm_flags & VM_EXEC)
1249                turbosparc_flush_icache();
1250        turbosparc_flush_dcache();
1251        FLUSH_END
1252}
1253
1254/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1255static void turbosparc_flush_page_to_ram(unsigned long page)
1256{
1257#ifdef TURBOSPARC_WRITEBACK
1258        volatile unsigned long clear;
1259
1260        if (srmmu_probe(page))
1261                turbosparc_flush_page_cache(page);
1262        clear = srmmu_get_fstatus();
1263#endif
1264}
1265
1266static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1267{
1268}
1269
1270static void turbosparc_flush_page_for_dma(unsigned long page)
1271{
1272        turbosparc_flush_dcache();
1273}
1274
1275static void turbosparc_flush_tlb_all(void)
1276{
1277        srmmu_flush_whole_tlb();
1278}
1279
1280static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1281{
1282        FLUSH_BEGIN(mm)
1283        srmmu_flush_whole_tlb();
1284        FLUSH_END
1285}
1286
1287static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1288{
1289        FLUSH_BEGIN(vma->vm_mm)
1290        srmmu_flush_whole_tlb();
1291        FLUSH_END
1292}
1293
1294static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1295{
1296        FLUSH_BEGIN(vma->vm_mm)
1297        srmmu_flush_whole_tlb();
1298        FLUSH_END
1299}
1300
1301
1302static void poke_turbosparc(void)
1303{
1304        unsigned long mreg = srmmu_get_mmureg();
1305        unsigned long ccreg;
1306
1307        /* Clear any crap from the cache or else... */
1308        turbosparc_flush_cache_all();
1309        /* Temporarily disable I & D caches */
1310        mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1311        mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1312        srmmu_set_mmureg(mreg);
1313
1314        ccreg = turbosparc_get_ccreg();
1315
1316#ifdef TURBOSPARC_WRITEBACK
1317        ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1318        ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1319                        /* Write-back D-cache, emulate VLSI
1320                         * abortion number three, not number one */
1321#else
1322        /* For now let's play safe, optimize later */
1323        ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1324                        /* Do DVMA snooping in Dcache, Write-thru D-cache */
1325        ccreg &= ~(TURBOSPARC_uS2);
1326                        /* Emulate VLSI abortion number three, not number one */
1327#endif
1328
1329        switch (ccreg & 7) {
1330        case 0: /* No SE cache */
1331        case 7: /* Test mode */
1332                break;
1333        default:
1334                ccreg |= (TURBOSPARC_SCENABLE);
1335        }
1336        turbosparc_set_ccreg(ccreg);
1337
1338        mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1339        mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1340        srmmu_set_mmureg(mreg);
1341}
1342
1343static const struct sparc32_cachetlb_ops turbosparc_ops = {
1344        .cache_all      = turbosparc_flush_cache_all,
1345        .cache_mm       = turbosparc_flush_cache_mm,
1346        .cache_page     = turbosparc_flush_cache_page,
1347        .cache_range    = turbosparc_flush_cache_range,
1348        .tlb_all        = turbosparc_flush_tlb_all,
1349        .tlb_mm         = turbosparc_flush_tlb_mm,
1350        .tlb_page       = turbosparc_flush_tlb_page,
1351        .tlb_range      = turbosparc_flush_tlb_range,
1352        .page_to_ram    = turbosparc_flush_page_to_ram,
1353        .sig_insns      = turbosparc_flush_sig_insns,
1354        .page_for_dma   = turbosparc_flush_page_for_dma,
1355};
1356
1357static void __init init_turbosparc(void)
1358{
1359        srmmu_name = "Fujitsu TurboSparc";
1360        srmmu_modtype = TurboSparc;
1361        sparc32_cachetlb_ops = &turbosparc_ops;
1362        poke_srmmu = poke_turbosparc;
1363}
1364
1365static void poke_tsunami(void)
1366{
1367        unsigned long mreg = srmmu_get_mmureg();
1368
1369        tsunami_flush_icache();
1370        tsunami_flush_dcache();
1371        mreg &= ~TSUNAMI_ITD;
1372        mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1373        srmmu_set_mmureg(mreg);
1374}
1375
1376static const struct sparc32_cachetlb_ops tsunami_ops = {
1377        .cache_all      = tsunami_flush_cache_all,
1378        .cache_mm       = tsunami_flush_cache_mm,
1379        .cache_page     = tsunami_flush_cache_page,
1380        .cache_range    = tsunami_flush_cache_range,
1381        .tlb_all        = tsunami_flush_tlb_all,
1382        .tlb_mm         = tsunami_flush_tlb_mm,
1383        .tlb_page       = tsunami_flush_tlb_page,
1384        .tlb_range      = tsunami_flush_tlb_range,
1385        .page_to_ram    = tsunami_flush_page_to_ram,
1386        .sig_insns      = tsunami_flush_sig_insns,
1387        .page_for_dma   = tsunami_flush_page_for_dma,
1388};
1389
1390static void __init init_tsunami(void)
1391{
1392        /*
1393         * Tsunami's pretty sane, Sun and TI actually got it
1394         * somewhat right this time.  Fujitsu should have
1395         * taken some lessons from them.
1396         */
1397
1398        srmmu_name = "TI Tsunami";
1399        srmmu_modtype = Tsunami;
1400        sparc32_cachetlb_ops = &tsunami_ops;
1401        poke_srmmu = poke_tsunami;
1402
1403        tsunami_setup_blockops();
1404}
1405
1406static void poke_viking(void)
1407{
1408        unsigned long mreg = srmmu_get_mmureg();
1409        static int smp_catch;
1410
1411        if (viking_mxcc_present) {
1412                unsigned long mxcc_control = mxcc_get_creg();
1413
1414                mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1415                mxcc_control &= ~(MXCC_CTL_RRC);
1416                mxcc_set_creg(mxcc_control);
1417
1418                /*
1419                 * We don't need memory parity checks.
1420                 * XXX This is a mess, have to dig out later. ecd.
1421                viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1422                 */
1423
1424                /* We do cache ptables on MXCC. */
1425                mreg |= VIKING_TCENABLE;
1426        } else {
1427                unsigned long bpreg;
1428
1429                mreg &= ~(VIKING_TCENABLE);
1430                if (smp_catch++) {
1431                        /* Must disable mixed-cmd mode here for other cpu's. */
1432                        bpreg = viking_get_bpreg();
1433                        bpreg &= ~(VIKING_ACTION_MIX);
1434                        viking_set_bpreg(bpreg);
1435
1436                        /* Just in case PROM does something funny. */
1437                        msi_set_sync();
1438                }
1439        }
1440
1441        mreg |= VIKING_SPENABLE;
1442        mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1443        mreg |= VIKING_SBENABLE;
1444        mreg &= ~(VIKING_ACENABLE);
1445        srmmu_set_mmureg(mreg);
1446}
1447
1448static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1449        .cache_all      = viking_flush_cache_all,
1450        .cache_mm       = viking_flush_cache_mm,
1451        .cache_page     = viking_flush_cache_page,
1452        .cache_range    = viking_flush_cache_range,
1453        .tlb_all        = viking_flush_tlb_all,
1454        .tlb_mm         = viking_flush_tlb_mm,
1455        .tlb_page       = viking_flush_tlb_page,
1456        .tlb_range      = viking_flush_tlb_range,
1457        .page_to_ram    = viking_flush_page_to_ram,
1458        .sig_insns      = viking_flush_sig_insns,
1459        .page_for_dma   = viking_flush_page_for_dma,
1460};
1461
1462#ifdef CONFIG_SMP
1463/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1464 * perform the local TLB flush and all the other cpus will see it.
1465 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1466 * that requires that we add some synchronization to these flushes.
1467 *
1468 * The bug is that the fifo which keeps track of all the pending TLB
1469 * broadcasts in the system is an entry or two too small, so if we
1470 * have too many going at once we'll overflow that fifo and lose a TLB
1471 * flush resulting in corruption.
1472 *
1473 * Our workaround is to take a global spinlock around the TLB flushes,
1474 * which guarentees we won't ever have too many pending.  It's a big
1475 * hammer, but a semaphore like system to make sure we only have N TLB
1476 * flushes going at once will require SMP locking anyways so there's
1477 * no real value in trying any harder than this.
1478 */
1479static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1480        .cache_all      = viking_flush_cache_all,
1481        .cache_mm       = viking_flush_cache_mm,
1482        .cache_page     = viking_flush_cache_page,
1483        .cache_range    = viking_flush_cache_range,
1484        .tlb_all        = sun4dsmp_flush_tlb_all,
1485        .tlb_mm         = sun4dsmp_flush_tlb_mm,
1486        .tlb_page       = sun4dsmp_flush_tlb_page,
1487        .tlb_range      = sun4dsmp_flush_tlb_range,
1488        .page_to_ram    = viking_flush_page_to_ram,
1489        .sig_insns      = viking_flush_sig_insns,
1490        .page_for_dma   = viking_flush_page_for_dma,
1491};
1492#endif
1493
1494static void __init init_viking(void)
1495{
1496        unsigned long mreg = srmmu_get_mmureg();
1497
1498        /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1499        if (mreg & VIKING_MMODE) {
1500                srmmu_name = "TI Viking";
1501                viking_mxcc_present = 0;
1502                msi_set_sync();
1503
1504                /*
1505                 * We need this to make sure old viking takes no hits
1506                 * on it's cache for dma snoops to workaround the
1507                 * "load from non-cacheable memory" interrupt bug.
1508                 * This is only necessary because of the new way in
1509                 * which we use the IOMMU.
1510                 */
1511                viking_ops.page_for_dma = viking_flush_page;
1512#ifdef CONFIG_SMP
1513                viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1514#endif
1515                flush_page_for_dma_global = 0;
1516        } else {
1517                srmmu_name = "TI Viking/MXCC";
1518                viking_mxcc_present = 1;
1519                srmmu_cache_pagetables = 1;
1520        }
1521
1522        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1523                &viking_ops;
1524#ifdef CONFIG_SMP
1525        if (sparc_cpu_model == sun4d)
1526                sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1527                        &viking_sun4d_smp_ops;
1528#endif
1529
1530        poke_srmmu = poke_viking;
1531}
1532
1533/* Probe for the srmmu chip version. */
1534static void __init get_srmmu_type(void)
1535{
1536        unsigned long mreg, psr;
1537        unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1538
1539        srmmu_modtype = SRMMU_INVAL_MOD;
1540        hwbug_bitmask = 0;
1541
1542        mreg = srmmu_get_mmureg(); psr = get_psr();
1543        mod_typ = (mreg & 0xf0000000) >> 28;
1544        mod_rev = (mreg & 0x0f000000) >> 24;
1545        psr_typ = (psr >> 28) & 0xf;
1546        psr_vers = (psr >> 24) & 0xf;
1547
1548        /* First, check for sparc-leon. */
1549        if (sparc_cpu_model == sparc_leon) {
1550                init_leon();
1551                return;
1552        }
1553
1554        /* Second, check for HyperSparc or Cypress. */
1555        if (mod_typ == 1) {
1556                switch (mod_rev) {
1557                case 7:
1558                        /* UP or MP Hypersparc */
1559                        init_hypersparc();
1560                        break;
1561                case 0:
1562                case 2:
1563                case 10:
1564                case 11:
1565                case 12:
1566                case 13:
1567                case 14:
1568                case 15:
1569                default:
1570                        prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1571                        prom_halt();
1572                        break;
1573                }
1574                return;
1575        }
1576
1577        /* Now Fujitsu TurboSparc. It might happen that it is
1578         * in Swift emulation mode, so we will check later...
1579         */
1580        if (psr_typ == 0 && psr_vers == 5) {
1581                init_turbosparc();
1582                return;
1583        }
1584
1585        /* Next check for Fujitsu Swift. */
1586        if (psr_typ == 0 && psr_vers == 4) {
1587                phandle cpunode;
1588                char node_str[128];
1589
1590                /* Look if it is not a TurboSparc emulating Swift... */
1591                cpunode = prom_getchild(prom_root_node);
1592                while ((cpunode = prom_getsibling(cpunode)) != 0) {
1593                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1594                        if (!strcmp(node_str, "cpu")) {
1595                                if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1596                                    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1597                                        init_turbosparc();
1598                                        return;
1599                                }
1600                                break;
1601                        }
1602                }
1603
1604                init_swift();
1605                return;
1606        }
1607
1608        /* Now the Viking family of srmmu. */
1609        if (psr_typ == 4 &&
1610           ((psr_vers == 0) ||
1611            ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1612                init_viking();
1613                return;
1614        }
1615
1616        /* Finally the Tsunami. */
1617        if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1618                init_tsunami();
1619                return;
1620        }
1621
1622        /* Oh well */
1623        srmmu_is_bad();
1624}
1625
1626#ifdef CONFIG_SMP
1627/* Local cross-calls. */
1628static void smp_flush_page_for_dma(unsigned long page)
1629{
1630        xc1((smpfunc_t) local_ops->page_for_dma, page);
1631        local_ops->page_for_dma(page);
1632}
1633
1634static void smp_flush_cache_all(void)
1635{
1636        xc0((smpfunc_t) local_ops->cache_all);
1637        local_ops->cache_all();
1638}
1639
1640static void smp_flush_tlb_all(void)
1641{
1642        xc0((smpfunc_t) local_ops->tlb_all);
1643        local_ops->tlb_all();
1644}
1645
1646static void smp_flush_cache_mm(struct mm_struct *mm)
1647{
1648        if (mm->context != NO_CONTEXT) {
1649                cpumask_t cpu_mask;
1650                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1651                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1652                if (!cpumask_empty(&cpu_mask))
1653                        xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1654                local_ops->cache_mm(mm);
1655        }
1656}
1657
1658static void smp_flush_tlb_mm(struct mm_struct *mm)
1659{
1660        if (mm->context != NO_CONTEXT) {
1661                cpumask_t cpu_mask;
1662                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1663                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1664                if (!cpumask_empty(&cpu_mask)) {
1665                        xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1666                        if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1667                                cpumask_copy(mm_cpumask(mm),
1668                                             cpumask_of(smp_processor_id()));
1669                }
1670                local_ops->tlb_mm(mm);
1671        }
1672}
1673
1674static void smp_flush_cache_range(struct vm_area_struct *vma,
1675                                  unsigned long start,
1676                                  unsigned long end)
1677{
1678        struct mm_struct *mm = vma->vm_mm;
1679
1680        if (mm->context != NO_CONTEXT) {
1681                cpumask_t cpu_mask;
1682                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1683                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1684                if (!cpumask_empty(&cpu_mask))
1685                        xc3((smpfunc_t) local_ops->cache_range,
1686                            (unsigned long) vma, start, end);
1687                local_ops->cache_range(vma, start, end);
1688        }
1689}
1690
1691static void smp_flush_tlb_range(struct vm_area_struct *vma,
1692                                unsigned long start,
1693                                unsigned long end)
1694{
1695        struct mm_struct *mm = vma->vm_mm;
1696
1697        if (mm->context != NO_CONTEXT) {
1698                cpumask_t cpu_mask;
1699                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1700                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1701                if (!cpumask_empty(&cpu_mask))
1702                        xc3((smpfunc_t) local_ops->tlb_range,
1703                            (unsigned long) vma, start, end);
1704                local_ops->tlb_range(vma, start, end);
1705        }
1706}
1707
1708static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1709{
1710        struct mm_struct *mm = vma->vm_mm;
1711
1712        if (mm->context != NO_CONTEXT) {
1713                cpumask_t cpu_mask;
1714                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1715                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1716                if (!cpumask_empty(&cpu_mask))
1717                        xc2((smpfunc_t) local_ops->cache_page,
1718                            (unsigned long) vma, page);
1719                local_ops->cache_page(vma, page);
1720        }
1721}
1722
1723static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1724{
1725        struct mm_struct *mm = vma->vm_mm;
1726
1727        if (mm->context != NO_CONTEXT) {
1728                cpumask_t cpu_mask;
1729                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1730                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1731                if (!cpumask_empty(&cpu_mask))
1732                        xc2((smpfunc_t) local_ops->tlb_page,
1733                            (unsigned long) vma, page);
1734                local_ops->tlb_page(vma, page);
1735        }
1736}
1737
1738static void smp_flush_page_to_ram(unsigned long page)
1739{
1740        /* Current theory is that those who call this are the one's
1741         * who have just dirtied their cache with the pages contents
1742         * in kernel space, therefore we only run this on local cpu.
1743         *
1744         * XXX This experiment failed, research further... -DaveM
1745         */
1746#if 1
1747        xc1((smpfunc_t) local_ops->page_to_ram, page);
1748#endif
1749        local_ops->page_to_ram(page);
1750}
1751
1752static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1753{
1754        cpumask_t cpu_mask;
1755        cpumask_copy(&cpu_mask, mm_cpumask(mm));
1756        cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1757        if (!cpumask_empty(&cpu_mask))
1758                xc2((smpfunc_t) local_ops->sig_insns,
1759                    (unsigned long) mm, insn_addr);
1760        local_ops->sig_insns(mm, insn_addr);
1761}
1762
1763static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1764        .cache_all      = smp_flush_cache_all,
1765        .cache_mm       = smp_flush_cache_mm,
1766        .cache_page     = smp_flush_cache_page,
1767        .cache_range    = smp_flush_cache_range,
1768        .tlb_all        = smp_flush_tlb_all,
1769        .tlb_mm         = smp_flush_tlb_mm,
1770        .tlb_page       = smp_flush_tlb_page,
1771        .tlb_range      = smp_flush_tlb_range,
1772        .page_to_ram    = smp_flush_page_to_ram,
1773        .sig_insns      = smp_flush_sig_insns,
1774        .page_for_dma   = smp_flush_page_for_dma,
1775};
1776#endif
1777
1778/* Load up routines and constants for sun4m and sun4d mmu */
1779void __init load_mmu(void)
1780{
1781        /* Functions */
1782        get_srmmu_type();
1783
1784#ifdef CONFIG_SMP
1785        /* El switcheroo... */
1786        local_ops = sparc32_cachetlb_ops;
1787
1788        if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1789                smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1790                smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1791                smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1792                smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1793        }
1794
1795        if (poke_srmmu == poke_viking) {
1796                /* Avoid unnecessary cross calls. */
1797                smp_cachetlb_ops.cache_all = local_ops->cache_all;
1798                smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1799                smp_cachetlb_ops.cache_range = local_ops->cache_range;
1800                smp_cachetlb_ops.cache_page = local_ops->cache_page;
1801
1802                smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1803                smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1804                smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1805        }
1806
1807        /* It really is const after this point. */
1808        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1809                &smp_cachetlb_ops;
1810#endif
1811
1812        if (sparc_cpu_model == sun4d)
1813                ld_mmu_iounit();
1814        else
1815                ld_mmu_iommu();
1816#ifdef CONFIG_SMP
1817        if (sparc_cpu_model == sun4d)
1818                sun4d_init_smp();
1819        else if (sparc_cpu_model == sparc_leon)
1820                leon_init_smp();
1821        else
1822                sun4m_init_smp();
1823#endif
1824}
1825