linux/arch/sparc/net/bpf_jit_comp_32.c
<<
>>
Prefs
   1#include <linux/moduleloader.h>
   2#include <linux/workqueue.h>
   3#include <linux/netdevice.h>
   4#include <linux/filter.h>
   5#include <linux/cache.h>
   6#include <linux/if_vlan.h>
   7
   8#include <asm/cacheflush.h>
   9#include <asm/ptrace.h>
  10
  11#include "bpf_jit_32.h"
  12
  13int bpf_jit_enable __read_mostly;
  14
  15static inline bool is_simm13(unsigned int value)
  16{
  17        return value + 0x1000 < 0x2000;
  18}
  19
  20#define SEEN_DATAREF 1 /* might call external helpers */
  21#define SEEN_XREG    2 /* ebx is used */
  22#define SEEN_MEM     4 /* use mem[] for temporary storage */
  23
  24#define S13(X)          ((X) & 0x1fff)
  25#define IMMED           0x00002000
  26#define RD(X)           ((X) << 25)
  27#define RS1(X)          ((X) << 14)
  28#define RS2(X)          ((X))
  29#define OP(X)           ((X) << 30)
  30#define OP2(X)          ((X) << 22)
  31#define OP3(X)          ((X) << 19)
  32#define COND(X)         ((X) << 25)
  33#define F1(X)           OP(X)
  34#define F2(X, Y)        (OP(X) | OP2(Y))
  35#define F3(X, Y)        (OP(X) | OP3(Y))
  36
  37#define CONDN           COND(0x0)
  38#define CONDE           COND(0x1)
  39#define CONDLE          COND(0x2)
  40#define CONDL           COND(0x3)
  41#define CONDLEU         COND(0x4)
  42#define CONDCS          COND(0x5)
  43#define CONDNEG         COND(0x6)
  44#define CONDVC          COND(0x7)
  45#define CONDA           COND(0x8)
  46#define CONDNE          COND(0x9)
  47#define CONDG           COND(0xa)
  48#define CONDGE          COND(0xb)
  49#define CONDGU          COND(0xc)
  50#define CONDCC          COND(0xd)
  51#define CONDPOS         COND(0xe)
  52#define CONDVS          COND(0xf)
  53
  54#define CONDGEU         CONDCC
  55#define CONDLU          CONDCS
  56
  57#define WDISP22(X)      (((X) >> 2) & 0x3fffff)
  58
  59#define BA              (F2(0, 2) | CONDA)
  60#define BGU             (F2(0, 2) | CONDGU)
  61#define BLEU            (F2(0, 2) | CONDLEU)
  62#define BGEU            (F2(0, 2) | CONDGEU)
  63#define BLU             (F2(0, 2) | CONDLU)
  64#define BE              (F2(0, 2) | CONDE)
  65#define BNE             (F2(0, 2) | CONDNE)
  66
  67#define BE_PTR          BE
  68
  69#define SETHI(K, REG)   \
  70        (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  71#define OR_LO(K, REG)   \
  72        (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  73
  74#define ADD             F3(2, 0x00)
  75#define AND             F3(2, 0x01)
  76#define ANDCC           F3(2, 0x11)
  77#define OR              F3(2, 0x02)
  78#define XOR             F3(2, 0x03)
  79#define SUB             F3(2, 0x04)
  80#define SUBCC           F3(2, 0x14)
  81#define MUL             F3(2, 0x0a)     /* umul */
  82#define DIV             F3(2, 0x0e)     /* udiv */
  83#define SLL             F3(2, 0x25)
  84#define SRL             F3(2, 0x26)
  85#define JMPL            F3(2, 0x38)
  86#define CALL            F1(1)
  87#define BR              F2(0, 0x01)
  88#define RD_Y            F3(2, 0x28)
  89#define WR_Y            F3(2, 0x30)
  90
  91#define LD32            F3(3, 0x00)
  92#define LD8             F3(3, 0x01)
  93#define LD16            F3(3, 0x02)
  94#define LD64            F3(3, 0x0b)
  95#define ST32            F3(3, 0x04)
  96
  97#define LDPTR           LD32
  98#define BASE_STACKFRAME 96
  99
 100#define LD32I           (LD32 | IMMED)
 101#define LD8I            (LD8 | IMMED)
 102#define LD16I           (LD16 | IMMED)
 103#define LD64I           (LD64 | IMMED)
 104#define LDPTRI          (LDPTR | IMMED)
 105#define ST32I           (ST32 | IMMED)
 106
 107#define emit_nop()              \
 108do {                            \
 109        *prog++ = SETHI(0, G0); \
 110} while (0)
 111
 112#define emit_neg()                                      \
 113do {    /* sub %g0, r_A, r_A */                         \
 114        *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
 115} while (0)
 116
 117#define emit_reg_move(FROM, TO)                         \
 118do {    /* or %g0, FROM, TO */                          \
 119        *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
 120} while (0)
 121
 122#define emit_clear(REG)                                 \
 123do {    /* or %g0, %g0, REG */                          \
 124        *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
 125} while (0)
 126
 127#define emit_set_const(K, REG)                                  \
 128do {    /* sethi %hi(K), REG */                                 \
 129        *prog++ = SETHI(K, REG);                                \
 130        /* or REG, %lo(K), REG */                               \
 131        *prog++ = OR_LO(K, REG);                                \
 132} while (0)
 133
 134        /* Emit
 135         *
 136         *      OP      r_A, r_X, r_A
 137         */
 138#define emit_alu_X(OPCODE)                                      \
 139do {                                                            \
 140        seen |= SEEN_XREG;                                      \
 141        *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
 142} while (0)
 143
 144        /* Emit either:
 145         *
 146         *      OP      r_A, K, r_A
 147         *
 148         * or
 149         *
 150         *      sethi   %hi(K), r_TMP
 151         *      or      r_TMP, %lo(K), r_TMP
 152         *      OP      r_A, r_TMP, r_A
 153         *
 154         * depending upon whether K fits in a signed 13-bit
 155         * immediate instruction field.  Emit nothing if K
 156         * is zero.
 157         */
 158#define emit_alu_K(OPCODE, K)                                   \
 159do {                                                            \
 160        if (K || OPCODE == AND || OPCODE == MUL) {              \
 161                unsigned int _insn = OPCODE;                    \
 162                _insn |= RS1(r_A) | RD(r_A);                    \
 163                if (is_simm13(K)) {                             \
 164                        *prog++ = _insn | IMMED | S13(K);       \
 165                } else {                                        \
 166                        emit_set_const(K, r_TMP);               \
 167                        *prog++ = _insn | RS2(r_TMP);           \
 168                }                                               \
 169        }                                                       \
 170} while (0)
 171
 172#define emit_loadimm(K, DEST)                                           \
 173do {                                                                    \
 174        if (is_simm13(K)) {                                             \
 175                /* or %g0, K, DEST */                                   \
 176                *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
 177        } else {                                                        \
 178                emit_set_const(K, DEST);                                \
 179        }                                                               \
 180} while (0)
 181
 182#define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
 183do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 184        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
 185        *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
 186} while (0)
 187
 188#define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
 189do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 190        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
 191        *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
 192} while (0)
 193
 194#define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
 195do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 196        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
 197        *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
 198} while (0)
 199
 200#define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
 201do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 202        *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
 203} while (0)
 204
 205#define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
 206do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
 207        __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
 208} while (0)
 209
 210#define BIAS (-4)
 211
 212#define emit_ldmem(OFF, DEST)                                           \
 213do {    *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);       \
 214} while (0)
 215
 216#define emit_stmem(OFF, SRC)                                            \
 217do {    *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);        \
 218} while (0)
 219
 220#ifdef CONFIG_SMP
 221#define emit_load_cpu(REG)                                              \
 222        emit_load32(G6, struct thread_info, cpu, REG)
 223#else
 224#define emit_load_cpu(REG)      emit_clear(REG)
 225#endif
 226
 227#define emit_skb_loadptr(FIELD, DEST) \
 228        emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
 229#define emit_skb_load32(FIELD, DEST) \
 230        emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
 231#define emit_skb_load16(FIELD, DEST) \
 232        emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
 233#define __emit_skb_load8(FIELD, DEST) \
 234        __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 235#define emit_skb_load8(FIELD, DEST) \
 236        emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 237
 238#define emit_jmpl(BASE, IMM_OFF, LREG) \
 239        *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
 240
 241#define emit_call(FUNC)                                 \
 242do {    void *_here = image + addrs[i] - 8;             \
 243        unsigned int _off = (void *)(FUNC) - _here;     \
 244        *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
 245        emit_nop();                                     \
 246} while (0)
 247
 248#define emit_branch(BR_OPC, DEST)                       \
 249do {    unsigned int _here = addrs[i] - 8;              \
 250        *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
 251} while (0)
 252
 253#define emit_branch_off(BR_OPC, OFF)                    \
 254do {    *prog++ = BR_OPC | WDISP22(OFF);                \
 255} while (0)
 256
 257#define emit_jump(DEST)         emit_branch(BA, DEST)
 258
 259#define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
 260#define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
 261
 262#define emit_cmp(R1, R2) \
 263        *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
 264
 265#define emit_cmpi(R1, IMM) \
 266        *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 267
 268#define emit_btst(R1, R2) \
 269        *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
 270
 271#define emit_btsti(R1, IMM) \
 272        *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 273
 274#define emit_sub(R1, R2, R3) \
 275        *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
 276
 277#define emit_subi(R1, IMM, R3) \
 278        *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 279
 280#define emit_add(R1, R2, R3) \
 281        *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
 282
 283#define emit_addi(R1, IMM, R3) \
 284        *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 285
 286#define emit_and(R1, R2, R3) \
 287        *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
 288
 289#define emit_andi(R1, IMM, R3) \
 290        *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 291
 292#define emit_alloc_stack(SZ) \
 293        *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 294
 295#define emit_release_stack(SZ) \
 296        *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 297
 298/* A note about branch offset calculations.  The addrs[] array,
 299 * indexed by BPF instruction, records the address after all the
 300 * sparc instructions emitted for that BPF instruction.
 301 *
 302 * The most common case is to emit a branch at the end of such
 303 * a code sequence.  So this would be two instructions, the
 304 * branch and it's delay slot.
 305 *
 306 * Therefore by default the branch emitters calculate the branch
 307 * offset field as:
 308 *
 309 *      destination - (addrs[i] - 8)
 310 *
 311 * This "addrs[i] - 8" is the address of the branch itself or
 312 * what "." would be in assembler notation.  The "8" part is
 313 * how we take into consideration the branch and it's delay
 314 * slot mentioned above.
 315 *
 316 * Sometimes we need to emit a branch earlier in the code
 317 * sequence.  And in these situations we adjust "destination"
 318 * to accommodate this difference.  For example, if we needed
 319 * to emit a branch (and it's delay slot) right before the
 320 * final instruction emitted for a BPF opcode, we'd use
 321 * "destination + 4" instead of just plain "destination" above.
 322 *
 323 * This is why you see all of these funny emit_branch() and
 324 * emit_jump() calls with adjusted offsets.
 325 */
 326
 327void bpf_jit_compile(struct bpf_prog *fp)
 328{
 329        unsigned int cleanup_addr, proglen, oldproglen = 0;
 330        u32 temp[8], *prog, *func, seen = 0, pass;
 331        const struct sock_filter *filter = fp->insns;
 332        int i, flen = fp->len, pc_ret0 = -1;
 333        unsigned int *addrs;
 334        void *image;
 335
 336        if (!bpf_jit_enable)
 337                return;
 338
 339        addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
 340        if (addrs == NULL)
 341                return;
 342
 343        /* Before first pass, make a rough estimation of addrs[]
 344         * each bpf instruction is translated to less than 64 bytes
 345         */
 346        for (proglen = 0, i = 0; i < flen; i++) {
 347                proglen += 64;
 348                addrs[i] = proglen;
 349        }
 350        cleanup_addr = proglen; /* epilogue address */
 351        image = NULL;
 352        for (pass = 0; pass < 10; pass++) {
 353                u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
 354
 355                /* no prologue/epilogue for trivial filters (RET something) */
 356                proglen = 0;
 357                prog = temp;
 358
 359                /* Prologue */
 360                if (seen_or_pass0) {
 361                        if (seen_or_pass0 & SEEN_MEM) {
 362                                unsigned int sz = BASE_STACKFRAME;
 363                                sz += BPF_MEMWORDS * sizeof(u32);
 364                                emit_alloc_stack(sz);
 365                        }
 366
 367                        /* Make sure we dont leek kernel memory. */
 368                        if (seen_or_pass0 & SEEN_XREG)
 369                                emit_clear(r_X);
 370
 371                        /* If this filter needs to access skb data,
 372                         * load %o4 and %o5 with:
 373                         *  %o4 = skb->len - skb->data_len
 374                         *  %o5 = skb->data
 375                         * And also back up %o7 into r_saved_O7 so we can
 376                         * invoke the stubs using 'call'.
 377                         */
 378                        if (seen_or_pass0 & SEEN_DATAREF) {
 379                                emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
 380                                emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
 381                                emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
 382                                emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
 383                        }
 384                }
 385                emit_reg_move(O7, r_saved_O7);
 386
 387                /* Make sure we dont leak kernel information to the user. */
 388                if (bpf_needs_clear_a(&filter[0]))
 389                        emit_clear(r_A); /* A = 0 */
 390
 391                for (i = 0; i < flen; i++) {
 392                        unsigned int K = filter[i].k;
 393                        unsigned int t_offset;
 394                        unsigned int f_offset;
 395                        u32 t_op, f_op;
 396                        u16 code = bpf_anc_helper(&filter[i]);
 397                        int ilen;
 398
 399                        switch (code) {
 400                        case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
 401                                emit_alu_X(ADD);
 402                                break;
 403                        case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
 404                                emit_alu_K(ADD, K);
 405                                break;
 406                        case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
 407                                emit_alu_X(SUB);
 408                                break;
 409                        case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
 410                                emit_alu_K(SUB, K);
 411                                break;
 412                        case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
 413                                emit_alu_X(AND);
 414                                break;
 415                        case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
 416                                emit_alu_K(AND, K);
 417                                break;
 418                        case BPF_ALU | BPF_OR | BPF_X:  /* A |= X */
 419                                emit_alu_X(OR);
 420                                break;
 421                        case BPF_ALU | BPF_OR | BPF_K:  /* A |= K */
 422                                emit_alu_K(OR, K);
 423                                break;
 424                        case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
 425                        case BPF_ALU | BPF_XOR | BPF_X:
 426                                emit_alu_X(XOR);
 427                                break;
 428                        case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
 429                                emit_alu_K(XOR, K);
 430                                break;
 431                        case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
 432                                emit_alu_X(SLL);
 433                                break;
 434                        case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
 435                                emit_alu_K(SLL, K);
 436                                break;
 437                        case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
 438                                emit_alu_X(SRL);
 439                                break;
 440                        case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
 441                                emit_alu_K(SRL, K);
 442                                break;
 443                        case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
 444                                emit_alu_X(MUL);
 445                                break;
 446                        case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
 447                                emit_alu_K(MUL, K);
 448                                break;
 449                        case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
 450                                if (K == 1)
 451                                        break;
 452                                emit_write_y(G0);
 453                                /* The Sparc v8 architecture requires
 454                                 * three instructions between a %y
 455                                 * register write and the first use.
 456                                 */
 457                                emit_nop();
 458                                emit_nop();
 459                                emit_nop();
 460                                emit_alu_K(DIV, K);
 461                                break;
 462                        case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
 463                                emit_cmpi(r_X, 0);
 464                                if (pc_ret0 > 0) {
 465                                        t_offset = addrs[pc_ret0 - 1];
 466                                        emit_branch(BE, t_offset + 20);
 467                                        emit_nop(); /* delay slot */
 468                                } else {
 469                                        emit_branch_off(BNE, 16);
 470                                        emit_nop();
 471                                        emit_jump(cleanup_addr + 20);
 472                                        emit_clear(r_A);
 473                                }
 474                                emit_write_y(G0);
 475                                /* The Sparc v8 architecture requires
 476                                 * three instructions between a %y
 477                                 * register write and the first use.
 478                                 */
 479                                emit_nop();
 480                                emit_nop();
 481                                emit_nop();
 482                                emit_alu_X(DIV);
 483                                break;
 484                        case BPF_ALU | BPF_NEG:
 485                                emit_neg();
 486                                break;
 487                        case BPF_RET | BPF_K:
 488                                if (!K) {
 489                                        if (pc_ret0 == -1)
 490                                                pc_ret0 = i;
 491                                        emit_clear(r_A);
 492                                } else {
 493                                        emit_loadimm(K, r_A);
 494                                }
 495                                /* Fallthrough */
 496                        case BPF_RET | BPF_A:
 497                                if (seen_or_pass0) {
 498                                        if (i != flen - 1) {
 499                                                emit_jump(cleanup_addr);
 500                                                emit_nop();
 501                                                break;
 502                                        }
 503                                        if (seen_or_pass0 & SEEN_MEM) {
 504                                                unsigned int sz = BASE_STACKFRAME;
 505                                                sz += BPF_MEMWORDS * sizeof(u32);
 506                                                emit_release_stack(sz);
 507                                        }
 508                                }
 509                                /* jmpl %r_saved_O7 + 8, %g0 */
 510                                emit_jmpl(r_saved_O7, 8, G0);
 511                                emit_reg_move(r_A, O0); /* delay slot */
 512                                break;
 513                        case BPF_MISC | BPF_TAX:
 514                                seen |= SEEN_XREG;
 515                                emit_reg_move(r_A, r_X);
 516                                break;
 517                        case BPF_MISC | BPF_TXA:
 518                                seen |= SEEN_XREG;
 519                                emit_reg_move(r_X, r_A);
 520                                break;
 521                        case BPF_ANC | SKF_AD_CPU:
 522                                emit_load_cpu(r_A);
 523                                break;
 524                        case BPF_ANC | SKF_AD_PROTOCOL:
 525                                emit_skb_load16(protocol, r_A);
 526                                break;
 527                        case BPF_ANC | SKF_AD_PKTTYPE:
 528                                __emit_skb_load8(__pkt_type_offset, r_A);
 529                                emit_andi(r_A, PKT_TYPE_MAX, r_A);
 530                                emit_alu_K(SRL, 5);
 531                                break;
 532                        case BPF_ANC | SKF_AD_IFINDEX:
 533                                emit_skb_loadptr(dev, r_A);
 534                                emit_cmpi(r_A, 0);
 535                                emit_branch(BE_PTR, cleanup_addr + 4);
 536                                emit_nop();
 537                                emit_load32(r_A, struct net_device, ifindex, r_A);
 538                                break;
 539                        case BPF_ANC | SKF_AD_MARK:
 540                                emit_skb_load32(mark, r_A);
 541                                break;
 542                        case BPF_ANC | SKF_AD_QUEUE:
 543                                emit_skb_load16(queue_mapping, r_A);
 544                                break;
 545                        case BPF_ANC | SKF_AD_HATYPE:
 546                                emit_skb_loadptr(dev, r_A);
 547                                emit_cmpi(r_A, 0);
 548                                emit_branch(BE_PTR, cleanup_addr + 4);
 549                                emit_nop();
 550                                emit_load16(r_A, struct net_device, type, r_A);
 551                                break;
 552                        case BPF_ANC | SKF_AD_RXHASH:
 553                                emit_skb_load32(hash, r_A);
 554                                break;
 555                        case BPF_ANC | SKF_AD_VLAN_TAG:
 556                        case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 557                                emit_skb_load16(vlan_tci, r_A);
 558                                if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
 559                                        emit_alu_K(SRL, 12);
 560                                        emit_andi(r_A, 1, r_A);
 561                                } else {
 562                                        emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
 563                                        emit_and(r_A, r_TMP, r_A);
 564                                }
 565                                break;
 566                        case BPF_LD | BPF_W | BPF_LEN:
 567                                emit_skb_load32(len, r_A);
 568                                break;
 569                        case BPF_LDX | BPF_W | BPF_LEN:
 570                                emit_skb_load32(len, r_X);
 571                                break;
 572                        case BPF_LD | BPF_IMM:
 573                                emit_loadimm(K, r_A);
 574                                break;
 575                        case BPF_LDX | BPF_IMM:
 576                                emit_loadimm(K, r_X);
 577                                break;
 578                        case BPF_LD | BPF_MEM:
 579                                seen |= SEEN_MEM;
 580                                emit_ldmem(K * 4, r_A);
 581                                break;
 582                        case BPF_LDX | BPF_MEM:
 583                                seen |= SEEN_MEM | SEEN_XREG;
 584                                emit_ldmem(K * 4, r_X);
 585                                break;
 586                        case BPF_ST:
 587                                seen |= SEEN_MEM;
 588                                emit_stmem(K * 4, r_A);
 589                                break;
 590                        case BPF_STX:
 591                                seen |= SEEN_MEM | SEEN_XREG;
 592                                emit_stmem(K * 4, r_X);
 593                                break;
 594
 595#define CHOOSE_LOAD_FUNC(K, func) \
 596        ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 597
 598                        case BPF_LD | BPF_W | BPF_ABS:
 599                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
 600common_load:                    seen |= SEEN_DATAREF;
 601                                emit_loadimm(K, r_OFF);
 602                                emit_call(func);
 603                                break;
 604                        case BPF_LD | BPF_H | BPF_ABS:
 605                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
 606                                goto common_load;
 607                        case BPF_LD | BPF_B | BPF_ABS:
 608                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
 609                                goto common_load;
 610                        case BPF_LDX | BPF_B | BPF_MSH:
 611                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
 612                                goto common_load;
 613                        case BPF_LD | BPF_W | BPF_IND:
 614                                func = bpf_jit_load_word;
 615common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
 616                                if (K) {
 617                                        if (is_simm13(K)) {
 618                                                emit_addi(r_X, K, r_OFF);
 619                                        } else {
 620                                                emit_loadimm(K, r_TMP);
 621                                                emit_add(r_X, r_TMP, r_OFF);
 622                                        }
 623                                } else {
 624                                        emit_reg_move(r_X, r_OFF);
 625                                }
 626                                emit_call(func);
 627                                break;
 628                        case BPF_LD | BPF_H | BPF_IND:
 629                                func = bpf_jit_load_half;
 630                                goto common_load_ind;
 631                        case BPF_LD | BPF_B | BPF_IND:
 632                                func = bpf_jit_load_byte;
 633                                goto common_load_ind;
 634                        case BPF_JMP | BPF_JA:
 635                                emit_jump(addrs[i + K]);
 636                                emit_nop();
 637                                break;
 638
 639#define COND_SEL(CODE, TOP, FOP)        \
 640        case CODE:                      \
 641                t_op = TOP;             \
 642                f_op = FOP;             \
 643                goto cond_branch
 644
 645                        COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
 646                        COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
 647                        COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
 648                        COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
 649                        COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
 650                        COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
 651                        COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
 652                        COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
 653
 654cond_branch:                    f_offset = addrs[i + filter[i].jf];
 655                                t_offset = addrs[i + filter[i].jt];
 656
 657                                /* same targets, can avoid doing the test :) */
 658                                if (filter[i].jt == filter[i].jf) {
 659                                        emit_jump(t_offset);
 660                                        emit_nop();
 661                                        break;
 662                                }
 663
 664                                switch (code) {
 665                                case BPF_JMP | BPF_JGT | BPF_X:
 666                                case BPF_JMP | BPF_JGE | BPF_X:
 667                                case BPF_JMP | BPF_JEQ | BPF_X:
 668                                        seen |= SEEN_XREG;
 669                                        emit_cmp(r_A, r_X);
 670                                        break;
 671                                case BPF_JMP | BPF_JSET | BPF_X:
 672                                        seen |= SEEN_XREG;
 673                                        emit_btst(r_A, r_X);
 674                                        break;
 675                                case BPF_JMP | BPF_JEQ | BPF_K:
 676                                case BPF_JMP | BPF_JGT | BPF_K:
 677                                case BPF_JMP | BPF_JGE | BPF_K:
 678                                        if (is_simm13(K)) {
 679                                                emit_cmpi(r_A, K);
 680                                        } else {
 681                                                emit_loadimm(K, r_TMP);
 682                                                emit_cmp(r_A, r_TMP);
 683                                        }
 684                                        break;
 685                                case BPF_JMP | BPF_JSET | BPF_K:
 686                                        if (is_simm13(K)) {
 687                                                emit_btsti(r_A, K);
 688                                        } else {
 689                                                emit_loadimm(K, r_TMP);
 690                                                emit_btst(r_A, r_TMP);
 691                                        }
 692                                        break;
 693                                }
 694                                if (filter[i].jt != 0) {
 695                                        if (filter[i].jf)
 696                                                t_offset += 8;
 697                                        emit_branch(t_op, t_offset);
 698                                        emit_nop(); /* delay slot */
 699                                        if (filter[i].jf) {
 700                                                emit_jump(f_offset);
 701                                                emit_nop();
 702                                        }
 703                                        break;
 704                                }
 705                                emit_branch(f_op, f_offset);
 706                                emit_nop(); /* delay slot */
 707                                break;
 708
 709                        default:
 710                                /* hmm, too complex filter, give up with jit compiler */
 711                                goto out;
 712                        }
 713                        ilen = (void *) prog - (void *) temp;
 714                        if (image) {
 715                                if (unlikely(proglen + ilen > oldproglen)) {
 716                                        pr_err("bpb_jit_compile fatal error\n");
 717                                        kfree(addrs);
 718                                        module_memfree(image);
 719                                        return;
 720                                }
 721                                memcpy(image + proglen, temp, ilen);
 722                        }
 723                        proglen += ilen;
 724                        addrs[i] = proglen;
 725                        prog = temp;
 726                }
 727                /* last bpf instruction is always a RET :
 728                 * use it to give the cleanup instruction(s) addr
 729                 */
 730                cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
 731                if (seen_or_pass0 & SEEN_MEM)
 732                        cleanup_addr -= 4; /* add %sp, X, %sp; */
 733
 734                if (image) {
 735                        if (proglen != oldproglen)
 736                                pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
 737                                       proglen, oldproglen);
 738                        break;
 739                }
 740                if (proglen == oldproglen) {
 741                        image = module_alloc(proglen);
 742                        if (!image)
 743                                goto out;
 744                }
 745                oldproglen = proglen;
 746        }
 747
 748        if (bpf_jit_enable > 1)
 749                bpf_jit_dump(flen, proglen, pass + 1, image);
 750
 751        if (image) {
 752                fp->bpf_func = (void *)image;
 753                fp->jited = 1;
 754        }
 755out:
 756        kfree(addrs);
 757        return;
 758}
 759
 760void bpf_jit_free(struct bpf_prog *fp)
 761{
 762        if (fp->jited)
 763                module_memfree(fp->bpf_func);
 764
 765        bpf_prog_unlock_free(fp);
 766}
 767