linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/sched/clock.h>
   6#include <linux/init.h>
   7#include <linux/export.h>
   8#include <linux/timer.h>
   9#include <linux/acpi_pmtmr.h>
  10#include <linux/cpufreq.h>
  11#include <linux/delay.h>
  12#include <linux/clocksource.h>
  13#include <linux/percpu.h>
  14#include <linux/timex.h>
  15#include <linux/static_key.h>
  16
  17#include <asm/hpet.h>
  18#include <asm/timer.h>
  19#include <asm/vgtod.h>
  20#include <asm/time.h>
  21#include <asm/delay.h>
  22#include <asm/hypervisor.h>
  23#include <asm/nmi.h>
  24#include <asm/x86_init.h>
  25#include <asm/geode.h>
  26#include <asm/apic.h>
  27#include <asm/intel-family.h>
  28
  29unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  30EXPORT_SYMBOL(cpu_khz);
  31
  32unsigned int __read_mostly tsc_khz;
  33EXPORT_SYMBOL(tsc_khz);
  34
  35/*
  36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  37 */
  38static int __read_mostly tsc_unstable;
  39
  40/* native_sched_clock() is called before tsc_init(), so
  41   we must start with the TSC soft disabled to prevent
  42   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  43static int __read_mostly tsc_disabled = -1;
  44
  45static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  46
  47int tsc_clocksource_reliable;
  48
  49static u32 art_to_tsc_numerator;
  50static u32 art_to_tsc_denominator;
  51static u64 art_to_tsc_offset;
  52struct clocksource *art_related_clocksource;
  53
  54/*
  55 * Use a ring-buffer like data structure, where a writer advances the head by
  56 * writing a new data entry and a reader advances the tail when it observes a
  57 * new entry.
  58 *
  59 * Writers are made to wait on readers until there's space to write a new
  60 * entry.
  61 *
  62 * This means that we can always use an {offset, mul} pair to compute a ns
  63 * value that is 'roughly' in the right direction, even if we're writing a new
  64 * {offset, mul} pair during the clock read.
  65 *
  66 * The down-side is that we can no longer guarantee strict monotonicity anymore
  67 * (assuming the TSC was that to begin with), because while we compute the
  68 * intersection point of the two clock slopes and make sure the time is
  69 * continuous at the point of switching; we can no longer guarantee a reader is
  70 * strictly before or after the switch point.
  71 *
  72 * It does mean a reader no longer needs to disable IRQs in order to avoid
  73 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  74 * no longer run the risk of hitting half-written state.
  75 */
  76
  77struct cyc2ns {
  78        struct cyc2ns_data data[2];     /*  0 + 2*24 = 48 */
  79        struct cyc2ns_data *head;       /* 48 + 8    = 56 */
  80        struct cyc2ns_data *tail;       /* 56 + 8    = 64 */
  81}; /* exactly fits one cacheline */
  82
  83static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  84
  85struct cyc2ns_data *cyc2ns_read_begin(void)
  86{
  87        struct cyc2ns_data *head;
  88
  89        preempt_disable();
  90
  91        head = this_cpu_read(cyc2ns.head);
  92        /*
  93         * Ensure we observe the entry when we observe the pointer to it.
  94         * matches the wmb from cyc2ns_write_end().
  95         */
  96        smp_read_barrier_depends();
  97        head->__count++;
  98        barrier();
  99
 100        return head;
 101}
 102
 103void cyc2ns_read_end(struct cyc2ns_data *head)
 104{
 105        barrier();
 106        /*
 107         * If we're the outer most nested read; update the tail pointer
 108         * when we're done. This notifies possible pending writers
 109         * that we've observed the head pointer and that the other
 110         * entry is now free.
 111         */
 112        if (!--head->__count) {
 113                /*
 114                 * x86-TSO does not reorder writes with older reads;
 115                 * therefore once this write becomes visible to another
 116                 * cpu, we must be finished reading the cyc2ns_data.
 117                 *
 118                 * matches with cyc2ns_write_begin().
 119                 */
 120                this_cpu_write(cyc2ns.tail, head);
 121        }
 122        preempt_enable();
 123}
 124
 125/*
 126 * Begin writing a new @data entry for @cpu.
 127 *
 128 * Assumes some sort of write side lock; currently 'provided' by the assumption
 129 * that cpufreq will call its notifiers sequentially.
 130 */
 131static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 132{
 133        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 134        struct cyc2ns_data *data = c2n->data;
 135
 136        if (data == c2n->head)
 137                data++;
 138
 139        /* XXX send an IPI to @cpu in order to guarantee a read? */
 140
 141        /*
 142         * When we observe the tail write from cyc2ns_read_end(),
 143         * the cpu must be done with that entry and its safe
 144         * to start writing to it.
 145         */
 146        while (c2n->tail == data)
 147                cpu_relax();
 148
 149        return data;
 150}
 151
 152static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 153{
 154        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 155
 156        /*
 157         * Ensure the @data writes are visible before we publish the
 158         * entry. Matches the data-depencency in cyc2ns_read_begin().
 159         */
 160        smp_wmb();
 161
 162        ACCESS_ONCE(c2n->head) = data;
 163}
 164
 165/*
 166 * Accelerators for sched_clock()
 167 * convert from cycles(64bits) => nanoseconds (64bits)
 168 *  basic equation:
 169 *              ns = cycles / (freq / ns_per_sec)
 170 *              ns = cycles * (ns_per_sec / freq)
 171 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 172 *              ns = cycles * (10^6 / cpu_khz)
 173 *
 174 *      Then we use scaling math (suggested by george@mvista.com) to get:
 175 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 176 *              ns = cycles * cyc2ns_scale / SC
 177 *
 178 *      And since SC is a constant power of two, we can convert the div
 179 *  into a shift. The larger SC is, the more accurate the conversion, but
 180 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 181 *  (64-bit result) can be used.
 182 *
 183 *  We can use khz divisor instead of mhz to keep a better precision.
 184 *  (mathieu.desnoyers@polymtl.ca)
 185 *
 186 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 187 */
 188
 189static void cyc2ns_data_init(struct cyc2ns_data *data)
 190{
 191        data->cyc2ns_mul = 0;
 192        data->cyc2ns_shift = 0;
 193        data->cyc2ns_offset = 0;
 194        data->__count = 0;
 195}
 196
 197static void cyc2ns_init(int cpu)
 198{
 199        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 200
 201        cyc2ns_data_init(&c2n->data[0]);
 202        cyc2ns_data_init(&c2n->data[1]);
 203
 204        c2n->head = c2n->data;
 205        c2n->tail = c2n->data;
 206}
 207
 208static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 209{
 210        struct cyc2ns_data *data, *tail;
 211        unsigned long long ns;
 212
 213        /*
 214         * See cyc2ns_read_*() for details; replicated in order to avoid
 215         * an extra few instructions that came with the abstraction.
 216         * Notable, it allows us to only do the __count and tail update
 217         * dance when its actually needed.
 218         */
 219
 220        preempt_disable_notrace();
 221        data = this_cpu_read(cyc2ns.head);
 222        tail = this_cpu_read(cyc2ns.tail);
 223
 224        if (likely(data == tail)) {
 225                ns = data->cyc2ns_offset;
 226                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 227        } else {
 228                data->__count++;
 229
 230                barrier();
 231
 232                ns = data->cyc2ns_offset;
 233                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 234
 235                barrier();
 236
 237                if (!--data->__count)
 238                        this_cpu_write(cyc2ns.tail, data);
 239        }
 240        preempt_enable_notrace();
 241
 242        return ns;
 243}
 244
 245static void set_cyc2ns_scale(unsigned long khz, int cpu)
 246{
 247        unsigned long long tsc_now, ns_now;
 248        struct cyc2ns_data *data;
 249        unsigned long flags;
 250
 251        local_irq_save(flags);
 252        sched_clock_idle_sleep_event();
 253
 254        if (!khz)
 255                goto done;
 256
 257        data = cyc2ns_write_begin(cpu);
 258
 259        tsc_now = rdtsc();
 260        ns_now = cycles_2_ns(tsc_now);
 261
 262        /*
 263         * Compute a new multiplier as per the above comment and ensure our
 264         * time function is continuous; see the comment near struct
 265         * cyc2ns_data.
 266         */
 267        clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
 268                               NSEC_PER_MSEC, 0);
 269
 270        /*
 271         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 272         * not expected to be greater than 31 due to the original published
 273         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 274         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 275         */
 276        if (data->cyc2ns_shift == 32) {
 277                data->cyc2ns_shift = 31;
 278                data->cyc2ns_mul >>= 1;
 279        }
 280
 281        data->cyc2ns_offset = ns_now -
 282                mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 283
 284        cyc2ns_write_end(cpu, data);
 285
 286done:
 287        sched_clock_idle_wakeup_event(0);
 288        local_irq_restore(flags);
 289}
 290/*
 291 * Scheduler clock - returns current time in nanosec units.
 292 */
 293u64 native_sched_clock(void)
 294{
 295        if (static_branch_likely(&__use_tsc)) {
 296                u64 tsc_now = rdtsc();
 297
 298                /* return the value in ns */
 299                return cycles_2_ns(tsc_now);
 300        }
 301
 302        /*
 303         * Fall back to jiffies if there's no TSC available:
 304         * ( But note that we still use it if the TSC is marked
 305         *   unstable. We do this because unlike Time Of Day,
 306         *   the scheduler clock tolerates small errors and it's
 307         *   very important for it to be as fast as the platform
 308         *   can achieve it. )
 309         */
 310
 311        /* No locking but a rare wrong value is not a big deal: */
 312        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 313}
 314
 315/*
 316 * Generate a sched_clock if you already have a TSC value.
 317 */
 318u64 native_sched_clock_from_tsc(u64 tsc)
 319{
 320        return cycles_2_ns(tsc);
 321}
 322
 323/* We need to define a real function for sched_clock, to override the
 324   weak default version */
 325#ifdef CONFIG_PARAVIRT
 326unsigned long long sched_clock(void)
 327{
 328        return paravirt_sched_clock();
 329}
 330
 331bool using_native_sched_clock(void)
 332{
 333        return pv_time_ops.sched_clock == native_sched_clock;
 334}
 335#else
 336unsigned long long
 337sched_clock(void) __attribute__((alias("native_sched_clock")));
 338
 339bool using_native_sched_clock(void) { return true; }
 340#endif
 341
 342int check_tsc_unstable(void)
 343{
 344        return tsc_unstable;
 345}
 346EXPORT_SYMBOL_GPL(check_tsc_unstable);
 347
 348#ifdef CONFIG_X86_TSC
 349int __init notsc_setup(char *str)
 350{
 351        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 352        tsc_disabled = 1;
 353        return 1;
 354}
 355#else
 356/*
 357 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 358 * in cpu/common.c
 359 */
 360int __init notsc_setup(char *str)
 361{
 362        setup_clear_cpu_cap(X86_FEATURE_TSC);
 363        return 1;
 364}
 365#endif
 366
 367__setup("notsc", notsc_setup);
 368
 369static int no_sched_irq_time;
 370
 371static int __init tsc_setup(char *str)
 372{
 373        if (!strcmp(str, "reliable"))
 374                tsc_clocksource_reliable = 1;
 375        if (!strncmp(str, "noirqtime", 9))
 376                no_sched_irq_time = 1;
 377        return 1;
 378}
 379
 380__setup("tsc=", tsc_setup);
 381
 382#define MAX_RETRIES     5
 383#define SMI_TRESHOLD    50000
 384
 385/*
 386 * Read TSC and the reference counters. Take care of SMI disturbance
 387 */
 388static u64 tsc_read_refs(u64 *p, int hpet)
 389{
 390        u64 t1, t2;
 391        int i;
 392
 393        for (i = 0; i < MAX_RETRIES; i++) {
 394                t1 = get_cycles();
 395                if (hpet)
 396                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 397                else
 398                        *p = acpi_pm_read_early();
 399                t2 = get_cycles();
 400                if ((t2 - t1) < SMI_TRESHOLD)
 401                        return t2;
 402        }
 403        return ULLONG_MAX;
 404}
 405
 406/*
 407 * Calculate the TSC frequency from HPET reference
 408 */
 409static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 410{
 411        u64 tmp;
 412
 413        if (hpet2 < hpet1)
 414                hpet2 += 0x100000000ULL;
 415        hpet2 -= hpet1;
 416        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 417        do_div(tmp, 1000000);
 418        do_div(deltatsc, tmp);
 419
 420        return (unsigned long) deltatsc;
 421}
 422
 423/*
 424 * Calculate the TSC frequency from PMTimer reference
 425 */
 426static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 427{
 428        u64 tmp;
 429
 430        if (!pm1 && !pm2)
 431                return ULONG_MAX;
 432
 433        if (pm2 < pm1)
 434                pm2 += (u64)ACPI_PM_OVRRUN;
 435        pm2 -= pm1;
 436        tmp = pm2 * 1000000000LL;
 437        do_div(tmp, PMTMR_TICKS_PER_SEC);
 438        do_div(deltatsc, tmp);
 439
 440        return (unsigned long) deltatsc;
 441}
 442
 443#define CAL_MS          10
 444#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 445#define CAL_PIT_LOOPS   1000
 446
 447#define CAL2_MS         50
 448#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 449#define CAL2_PIT_LOOPS  5000
 450
 451
 452/*
 453 * Try to calibrate the TSC against the Programmable
 454 * Interrupt Timer and return the frequency of the TSC
 455 * in kHz.
 456 *
 457 * Return ULONG_MAX on failure to calibrate.
 458 */
 459static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 460{
 461        u64 tsc, t1, t2, delta;
 462        unsigned long tscmin, tscmax;
 463        int pitcnt;
 464
 465        /* Set the Gate high, disable speaker */
 466        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 467
 468        /*
 469         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 470         * count mode), binary count. Set the latch register to 50ms
 471         * (LSB then MSB) to begin countdown.
 472         */
 473        outb(0xb0, 0x43);
 474        outb(latch & 0xff, 0x42);
 475        outb(latch >> 8, 0x42);
 476
 477        tsc = t1 = t2 = get_cycles();
 478
 479        pitcnt = 0;
 480        tscmax = 0;
 481        tscmin = ULONG_MAX;
 482        while ((inb(0x61) & 0x20) == 0) {
 483                t2 = get_cycles();
 484                delta = t2 - tsc;
 485                tsc = t2;
 486                if ((unsigned long) delta < tscmin)
 487                        tscmin = (unsigned int) delta;
 488                if ((unsigned long) delta > tscmax)
 489                        tscmax = (unsigned int) delta;
 490                pitcnt++;
 491        }
 492
 493        /*
 494         * Sanity checks:
 495         *
 496         * If we were not able to read the PIT more than loopmin
 497         * times, then we have been hit by a massive SMI
 498         *
 499         * If the maximum is 10 times larger than the minimum,
 500         * then we got hit by an SMI as well.
 501         */
 502        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 503                return ULONG_MAX;
 504
 505        /* Calculate the PIT value */
 506        delta = t2 - t1;
 507        do_div(delta, ms);
 508        return delta;
 509}
 510
 511/*
 512 * This reads the current MSB of the PIT counter, and
 513 * checks if we are running on sufficiently fast and
 514 * non-virtualized hardware.
 515 *
 516 * Our expectations are:
 517 *
 518 *  - the PIT is running at roughly 1.19MHz
 519 *
 520 *  - each IO is going to take about 1us on real hardware,
 521 *    but we allow it to be much faster (by a factor of 10) or
 522 *    _slightly_ slower (ie we allow up to a 2us read+counter
 523 *    update - anything else implies a unacceptably slow CPU
 524 *    or PIT for the fast calibration to work.
 525 *
 526 *  - with 256 PIT ticks to read the value, we have 214us to
 527 *    see the same MSB (and overhead like doing a single TSC
 528 *    read per MSB value etc).
 529 *
 530 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 531 *    them each to take about a microsecond on real hardware.
 532 *    So we expect a count value of around 100. But we'll be
 533 *    generous, and accept anything over 50.
 534 *
 535 *  - if the PIT is stuck, and we see *many* more reads, we
 536 *    return early (and the next caller of pit_expect_msb()
 537 *    then consider it a failure when they don't see the
 538 *    next expected value).
 539 *
 540 * These expectations mean that we know that we have seen the
 541 * transition from one expected value to another with a fairly
 542 * high accuracy, and we didn't miss any events. We can thus
 543 * use the TSC value at the transitions to calculate a pretty
 544 * good value for the TSC frequencty.
 545 */
 546static inline int pit_verify_msb(unsigned char val)
 547{
 548        /* Ignore LSB */
 549        inb(0x42);
 550        return inb(0x42) == val;
 551}
 552
 553static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 554{
 555        int count;
 556        u64 tsc = 0, prev_tsc = 0;
 557
 558        for (count = 0; count < 50000; count++) {
 559                if (!pit_verify_msb(val))
 560                        break;
 561                prev_tsc = tsc;
 562                tsc = get_cycles();
 563        }
 564        *deltap = get_cycles() - prev_tsc;
 565        *tscp = tsc;
 566
 567        /*
 568         * We require _some_ success, but the quality control
 569         * will be based on the error terms on the TSC values.
 570         */
 571        return count > 5;
 572}
 573
 574/*
 575 * How many MSB values do we want to see? We aim for
 576 * a maximum error rate of 500ppm (in practice the
 577 * real error is much smaller), but refuse to spend
 578 * more than 50ms on it.
 579 */
 580#define MAX_QUICK_PIT_MS 50
 581#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 582
 583static unsigned long quick_pit_calibrate(void)
 584{
 585        int i;
 586        u64 tsc, delta;
 587        unsigned long d1, d2;
 588
 589        /* Set the Gate high, disable speaker */
 590        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 591
 592        /*
 593         * Counter 2, mode 0 (one-shot), binary count
 594         *
 595         * NOTE! Mode 2 decrements by two (and then the
 596         * output is flipped each time, giving the same
 597         * final output frequency as a decrement-by-one),
 598         * so mode 0 is much better when looking at the
 599         * individual counts.
 600         */
 601        outb(0xb0, 0x43);
 602
 603        /* Start at 0xffff */
 604        outb(0xff, 0x42);
 605        outb(0xff, 0x42);
 606
 607        /*
 608         * The PIT starts counting at the next edge, so we
 609         * need to delay for a microsecond. The easiest way
 610         * to do that is to just read back the 16-bit counter
 611         * once from the PIT.
 612         */
 613        pit_verify_msb(0);
 614
 615        if (pit_expect_msb(0xff, &tsc, &d1)) {
 616                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 617                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 618                                break;
 619
 620                        delta -= tsc;
 621
 622                        /*
 623                         * Extrapolate the error and fail fast if the error will
 624                         * never be below 500 ppm.
 625                         */
 626                        if (i == 1 &&
 627                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 628                                return 0;
 629
 630                        /*
 631                         * Iterate until the error is less than 500 ppm
 632                         */
 633                        if (d1+d2 >= delta >> 11)
 634                                continue;
 635
 636                        /*
 637                         * Check the PIT one more time to verify that
 638                         * all TSC reads were stable wrt the PIT.
 639                         *
 640                         * This also guarantees serialization of the
 641                         * last cycle read ('d2') in pit_expect_msb.
 642                         */
 643                        if (!pit_verify_msb(0xfe - i))
 644                                break;
 645                        goto success;
 646                }
 647        }
 648        pr_info("Fast TSC calibration failed\n");
 649        return 0;
 650
 651success:
 652        /*
 653         * Ok, if we get here, then we've seen the
 654         * MSB of the PIT decrement 'i' times, and the
 655         * error has shrunk to less than 500 ppm.
 656         *
 657         * As a result, we can depend on there not being
 658         * any odd delays anywhere, and the TSC reads are
 659         * reliable (within the error).
 660         *
 661         * kHz = ticks / time-in-seconds / 1000;
 662         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 663         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 664         */
 665        delta *= PIT_TICK_RATE;
 666        do_div(delta, i*256*1000);
 667        pr_info("Fast TSC calibration using PIT\n");
 668        return delta;
 669}
 670
 671/**
 672 * native_calibrate_tsc
 673 * Determine TSC frequency via CPUID, else return 0.
 674 */
 675unsigned long native_calibrate_tsc(void)
 676{
 677        unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 678        unsigned int crystal_khz;
 679
 680        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 681                return 0;
 682
 683        if (boot_cpu_data.cpuid_level < 0x15)
 684                return 0;
 685
 686        eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 687
 688        /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 689        cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 690
 691        if (ebx_numerator == 0 || eax_denominator == 0)
 692                return 0;
 693
 694        crystal_khz = ecx_hz / 1000;
 695
 696        if (crystal_khz == 0) {
 697                switch (boot_cpu_data.x86_model) {
 698                case INTEL_FAM6_SKYLAKE_MOBILE:
 699                case INTEL_FAM6_SKYLAKE_DESKTOP:
 700                case INTEL_FAM6_KABYLAKE_MOBILE:
 701                case INTEL_FAM6_KABYLAKE_DESKTOP:
 702                        crystal_khz = 24000;    /* 24.0 MHz */
 703                        break;
 704                case INTEL_FAM6_SKYLAKE_X:
 705                case INTEL_FAM6_ATOM_DENVERTON:
 706                        crystal_khz = 25000;    /* 25.0 MHz */
 707                        break;
 708                case INTEL_FAM6_ATOM_GOLDMONT:
 709                        crystal_khz = 19200;    /* 19.2 MHz */
 710                        break;
 711                }
 712        }
 713
 714        /*
 715         * TSC frequency determined by CPUID is a "hardware reported"
 716         * frequency and is the most accurate one so far we have. This
 717         * is considered a known frequency.
 718         */
 719        setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 720
 721        /*
 722         * For Atom SoCs TSC is the only reliable clocksource.
 723         * Mark TSC reliable so no watchdog on it.
 724         */
 725        if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 726                setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 727
 728        return crystal_khz * ebx_numerator / eax_denominator;
 729}
 730
 731static unsigned long cpu_khz_from_cpuid(void)
 732{
 733        unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 734
 735        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 736                return 0;
 737
 738        if (boot_cpu_data.cpuid_level < 0x16)
 739                return 0;
 740
 741        eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 742
 743        cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 744
 745        return eax_base_mhz * 1000;
 746}
 747
 748/**
 749 * native_calibrate_cpu - calibrate the cpu on boot
 750 */
 751unsigned long native_calibrate_cpu(void)
 752{
 753        u64 tsc1, tsc2, delta, ref1, ref2;
 754        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 755        unsigned long flags, latch, ms, fast_calibrate;
 756        int hpet = is_hpet_enabled(), i, loopmin;
 757
 758        fast_calibrate = cpu_khz_from_cpuid();
 759        if (fast_calibrate)
 760                return fast_calibrate;
 761
 762        fast_calibrate = cpu_khz_from_msr();
 763        if (fast_calibrate)
 764                return fast_calibrate;
 765
 766        local_irq_save(flags);
 767        fast_calibrate = quick_pit_calibrate();
 768        local_irq_restore(flags);
 769        if (fast_calibrate)
 770                return fast_calibrate;
 771
 772        /*
 773         * Run 5 calibration loops to get the lowest frequency value
 774         * (the best estimate). We use two different calibration modes
 775         * here:
 776         *
 777         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 778         * load a timeout of 50ms. We read the time right after we
 779         * started the timer and wait until the PIT count down reaches
 780         * zero. In each wait loop iteration we read the TSC and check
 781         * the delta to the previous read. We keep track of the min
 782         * and max values of that delta. The delta is mostly defined
 783         * by the IO time of the PIT access, so we can detect when a
 784         * SMI/SMM disturbance happened between the two reads. If the
 785         * maximum time is significantly larger than the minimum time,
 786         * then we discard the result and have another try.
 787         *
 788         * 2) Reference counter. If available we use the HPET or the
 789         * PMTIMER as a reference to check the sanity of that value.
 790         * We use separate TSC readouts and check inside of the
 791         * reference read for a SMI/SMM disturbance. We dicard
 792         * disturbed values here as well. We do that around the PIT
 793         * calibration delay loop as we have to wait for a certain
 794         * amount of time anyway.
 795         */
 796
 797        /* Preset PIT loop values */
 798        latch = CAL_LATCH;
 799        ms = CAL_MS;
 800        loopmin = CAL_PIT_LOOPS;
 801
 802        for (i = 0; i < 3; i++) {
 803                unsigned long tsc_pit_khz;
 804
 805                /*
 806                 * Read the start value and the reference count of
 807                 * hpet/pmtimer when available. Then do the PIT
 808                 * calibration, which will take at least 50ms, and
 809                 * read the end value.
 810                 */
 811                local_irq_save(flags);
 812                tsc1 = tsc_read_refs(&ref1, hpet);
 813                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 814                tsc2 = tsc_read_refs(&ref2, hpet);
 815                local_irq_restore(flags);
 816
 817                /* Pick the lowest PIT TSC calibration so far */
 818                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 819
 820                /* hpet or pmtimer available ? */
 821                if (ref1 == ref2)
 822                        continue;
 823
 824                /* Check, whether the sampling was disturbed by an SMI */
 825                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 826                        continue;
 827
 828                tsc2 = (tsc2 - tsc1) * 1000000LL;
 829                if (hpet)
 830                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 831                else
 832                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 833
 834                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 835
 836                /* Check the reference deviation */
 837                delta = ((u64) tsc_pit_min) * 100;
 838                do_div(delta, tsc_ref_min);
 839
 840                /*
 841                 * If both calibration results are inside a 10% window
 842                 * then we can be sure, that the calibration
 843                 * succeeded. We break out of the loop right away. We
 844                 * use the reference value, as it is more precise.
 845                 */
 846                if (delta >= 90 && delta <= 110) {
 847                        pr_info("PIT calibration matches %s. %d loops\n",
 848                                hpet ? "HPET" : "PMTIMER", i + 1);
 849                        return tsc_ref_min;
 850                }
 851
 852                /*
 853                 * Check whether PIT failed more than once. This
 854                 * happens in virtualized environments. We need to
 855                 * give the virtual PC a slightly longer timeframe for
 856                 * the HPET/PMTIMER to make the result precise.
 857                 */
 858                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 859                        latch = CAL2_LATCH;
 860                        ms = CAL2_MS;
 861                        loopmin = CAL2_PIT_LOOPS;
 862                }
 863        }
 864
 865        /*
 866         * Now check the results.
 867         */
 868        if (tsc_pit_min == ULONG_MAX) {
 869                /* PIT gave no useful value */
 870                pr_warn("Unable to calibrate against PIT\n");
 871
 872                /* We don't have an alternative source, disable TSC */
 873                if (!hpet && !ref1 && !ref2) {
 874                        pr_notice("No reference (HPET/PMTIMER) available\n");
 875                        return 0;
 876                }
 877
 878                /* The alternative source failed as well, disable TSC */
 879                if (tsc_ref_min == ULONG_MAX) {
 880                        pr_warn("HPET/PMTIMER calibration failed\n");
 881                        return 0;
 882                }
 883
 884                /* Use the alternative source */
 885                pr_info("using %s reference calibration\n",
 886                        hpet ? "HPET" : "PMTIMER");
 887
 888                return tsc_ref_min;
 889        }
 890
 891        /* We don't have an alternative source, use the PIT calibration value */
 892        if (!hpet && !ref1 && !ref2) {
 893                pr_info("Using PIT calibration value\n");
 894                return tsc_pit_min;
 895        }
 896
 897        /* The alternative source failed, use the PIT calibration value */
 898        if (tsc_ref_min == ULONG_MAX) {
 899                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 900                return tsc_pit_min;
 901        }
 902
 903        /*
 904         * The calibration values differ too much. In doubt, we use
 905         * the PIT value as we know that there are PMTIMERs around
 906         * running at double speed. At least we let the user know:
 907         */
 908        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 909                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 910        pr_info("Using PIT calibration value\n");
 911        return tsc_pit_min;
 912}
 913
 914int recalibrate_cpu_khz(void)
 915{
 916#ifndef CONFIG_SMP
 917        unsigned long cpu_khz_old = cpu_khz;
 918
 919        if (!boot_cpu_has(X86_FEATURE_TSC))
 920                return -ENODEV;
 921
 922        cpu_khz = x86_platform.calibrate_cpu();
 923        tsc_khz = x86_platform.calibrate_tsc();
 924        if (tsc_khz == 0)
 925                tsc_khz = cpu_khz;
 926        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 927                cpu_khz = tsc_khz;
 928        cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 929                                                    cpu_khz_old, cpu_khz);
 930
 931        return 0;
 932#else
 933        return -ENODEV;
 934#endif
 935}
 936
 937EXPORT_SYMBOL(recalibrate_cpu_khz);
 938
 939
 940static unsigned long long cyc2ns_suspend;
 941
 942void tsc_save_sched_clock_state(void)
 943{
 944        if (!sched_clock_stable())
 945                return;
 946
 947        cyc2ns_suspend = sched_clock();
 948}
 949
 950/*
 951 * Even on processors with invariant TSC, TSC gets reset in some the
 952 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 953 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 954 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 955 * that sched_clock() continues from the point where it was left off during
 956 * suspend.
 957 */
 958void tsc_restore_sched_clock_state(void)
 959{
 960        unsigned long long offset;
 961        unsigned long flags;
 962        int cpu;
 963
 964        if (!sched_clock_stable())
 965                return;
 966
 967        local_irq_save(flags);
 968
 969        /*
 970         * We're coming out of suspend, there's no concurrency yet; don't
 971         * bother being nice about the RCU stuff, just write to both
 972         * data fields.
 973         */
 974
 975        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 976        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 977
 978        offset = cyc2ns_suspend - sched_clock();
 979
 980        for_each_possible_cpu(cpu) {
 981                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 982                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 983        }
 984
 985        local_irq_restore(flags);
 986}
 987
 988#ifdef CONFIG_CPU_FREQ
 989
 990/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 991 * changes.
 992 *
 993 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 994 * not that important because current Opteron setups do not support
 995 * scaling on SMP anyroads.
 996 *
 997 * Should fix up last_tsc too. Currently gettimeofday in the
 998 * first tick after the change will be slightly wrong.
 999 */
1000
1001static unsigned int  ref_freq;
1002static unsigned long loops_per_jiffy_ref;
1003static unsigned long tsc_khz_ref;
1004
1005static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1006                                void *data)
1007{
1008        struct cpufreq_freqs *freq = data;
1009        unsigned long *lpj;
1010
1011        lpj = &boot_cpu_data.loops_per_jiffy;
1012#ifdef CONFIG_SMP
1013        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1014                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1015#endif
1016
1017        if (!ref_freq) {
1018                ref_freq = freq->old;
1019                loops_per_jiffy_ref = *lpj;
1020                tsc_khz_ref = tsc_khz;
1021        }
1022        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1023                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1024                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1025
1026                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1027                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1028                        mark_tsc_unstable("cpufreq changes");
1029
1030                set_cyc2ns_scale(tsc_khz, freq->cpu);
1031        }
1032
1033        return 0;
1034}
1035
1036static struct notifier_block time_cpufreq_notifier_block = {
1037        .notifier_call  = time_cpufreq_notifier
1038};
1039
1040static int __init cpufreq_register_tsc_scaling(void)
1041{
1042        if (!boot_cpu_has(X86_FEATURE_TSC))
1043                return 0;
1044        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1045                return 0;
1046        cpufreq_register_notifier(&time_cpufreq_notifier_block,
1047                                CPUFREQ_TRANSITION_NOTIFIER);
1048        return 0;
1049}
1050
1051core_initcall(cpufreq_register_tsc_scaling);
1052
1053#endif /* CONFIG_CPU_FREQ */
1054
1055#define ART_CPUID_LEAF (0x15)
1056#define ART_MIN_DENOMINATOR (1)
1057
1058
1059/*
1060 * If ART is present detect the numerator:denominator to convert to TSC
1061 */
1062static void detect_art(void)
1063{
1064        unsigned int unused[2];
1065
1066        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1067                return;
1068
1069        /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1070        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1071            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1072            !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1073                return;
1074
1075        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1076              &art_to_tsc_numerator, unused, unused+1);
1077
1078        if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1079                return;
1080
1081        rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1082
1083        /* Make this sticky over multiple CPU init calls */
1084        setup_force_cpu_cap(X86_FEATURE_ART);
1085}
1086
1087
1088/* clocksource code */
1089
1090static struct clocksource clocksource_tsc;
1091
1092static void tsc_resume(struct clocksource *cs)
1093{
1094        tsc_verify_tsc_adjust(true);
1095}
1096
1097/*
1098 * We used to compare the TSC to the cycle_last value in the clocksource
1099 * structure to avoid a nasty time-warp. This can be observed in a
1100 * very small window right after one CPU updated cycle_last under
1101 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1102 * is smaller than the cycle_last reference value due to a TSC which
1103 * is slighty behind. This delta is nowhere else observable, but in
1104 * that case it results in a forward time jump in the range of hours
1105 * due to the unsigned delta calculation of the time keeping core
1106 * code, which is necessary to support wrapping clocksources like pm
1107 * timer.
1108 *
1109 * This sanity check is now done in the core timekeeping code.
1110 * checking the result of read_tsc() - cycle_last for being negative.
1111 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1112 */
1113static u64 read_tsc(struct clocksource *cs)
1114{
1115        return (u64)rdtsc_ordered();
1116}
1117
1118static void tsc_cs_mark_unstable(struct clocksource *cs)
1119{
1120        if (tsc_unstable)
1121                return;
1122
1123        tsc_unstable = 1;
1124        if (using_native_sched_clock())
1125                clear_sched_clock_stable();
1126        disable_sched_clock_irqtime();
1127        pr_info("Marking TSC unstable due to clocksource watchdog\n");
1128}
1129
1130/*
1131 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1132 */
1133static struct clocksource clocksource_tsc = {
1134        .name                   = "tsc",
1135        .rating                 = 300,
1136        .read                   = read_tsc,
1137        .mask                   = CLOCKSOURCE_MASK(64),
1138        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139                                  CLOCK_SOURCE_MUST_VERIFY,
1140        .archdata               = { .vclock_mode = VCLOCK_TSC },
1141        .resume                 = tsc_resume,
1142        .mark_unstable          = tsc_cs_mark_unstable,
1143};
1144
1145void mark_tsc_unstable(char *reason)
1146{
1147        if (tsc_unstable)
1148                return;
1149
1150        tsc_unstable = 1;
1151        if (using_native_sched_clock())
1152                clear_sched_clock_stable();
1153        disable_sched_clock_irqtime();
1154        pr_info("Marking TSC unstable due to %s\n", reason);
1155        /* Change only the rating, when not registered */
1156        if (clocksource_tsc.mult) {
1157                clocksource_mark_unstable(&clocksource_tsc);
1158        } else {
1159                clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1160                clocksource_tsc.rating = 0;
1161        }
1162}
1163
1164EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1165
1166static void __init check_system_tsc_reliable(void)
1167{
1168#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1169        if (is_geode_lx()) {
1170                /* RTSC counts during suspend */
1171#define RTSC_SUSP 0x100
1172                unsigned long res_low, res_high;
1173
1174                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1175                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1176                if (res_low & RTSC_SUSP)
1177                        tsc_clocksource_reliable = 1;
1178        }
1179#endif
1180        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1181                tsc_clocksource_reliable = 1;
1182}
1183
1184/*
1185 * Make an educated guess if the TSC is trustworthy and synchronized
1186 * over all CPUs.
1187 */
1188int unsynchronized_tsc(void)
1189{
1190        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1191                return 1;
1192
1193#ifdef CONFIG_SMP
1194        if (apic_is_clustered_box())
1195                return 1;
1196#endif
1197
1198        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1199                return 0;
1200
1201        if (tsc_clocksource_reliable)
1202                return 0;
1203        /*
1204         * Intel systems are normally all synchronized.
1205         * Exceptions must mark TSC as unstable:
1206         */
1207        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1208                /* assume multi socket systems are not synchronized: */
1209                if (num_possible_cpus() > 1)
1210                        return 1;
1211        }
1212
1213        return 0;
1214}
1215
1216/*
1217 * Convert ART to TSC given numerator/denominator found in detect_art()
1218 */
1219struct system_counterval_t convert_art_to_tsc(u64 art)
1220{
1221        u64 tmp, res, rem;
1222
1223        rem = do_div(art, art_to_tsc_denominator);
1224
1225        res = art * art_to_tsc_numerator;
1226        tmp = rem * art_to_tsc_numerator;
1227
1228        do_div(tmp, art_to_tsc_denominator);
1229        res += tmp + art_to_tsc_offset;
1230
1231        return (struct system_counterval_t) {.cs = art_related_clocksource,
1232                        .cycles = res};
1233}
1234EXPORT_SYMBOL(convert_art_to_tsc);
1235
1236static void tsc_refine_calibration_work(struct work_struct *work);
1237static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1238/**
1239 * tsc_refine_calibration_work - Further refine tsc freq calibration
1240 * @work - ignored.
1241 *
1242 * This functions uses delayed work over a period of a
1243 * second to further refine the TSC freq value. Since this is
1244 * timer based, instead of loop based, we don't block the boot
1245 * process while this longer calibration is done.
1246 *
1247 * If there are any calibration anomalies (too many SMIs, etc),
1248 * or the refined calibration is off by 1% of the fast early
1249 * calibration, we throw out the new calibration and use the
1250 * early calibration.
1251 */
1252static void tsc_refine_calibration_work(struct work_struct *work)
1253{
1254        static u64 tsc_start = -1, ref_start;
1255        static int hpet;
1256        u64 tsc_stop, ref_stop, delta;
1257        unsigned long freq;
1258
1259        /* Don't bother refining TSC on unstable systems */
1260        if (check_tsc_unstable())
1261                goto out;
1262
1263        /*
1264         * Since the work is started early in boot, we may be
1265         * delayed the first time we expire. So set the workqueue
1266         * again once we know timers are working.
1267         */
1268        if (tsc_start == -1) {
1269                /*
1270                 * Only set hpet once, to avoid mixing hardware
1271                 * if the hpet becomes enabled later.
1272                 */
1273                hpet = is_hpet_enabled();
1274                schedule_delayed_work(&tsc_irqwork, HZ);
1275                tsc_start = tsc_read_refs(&ref_start, hpet);
1276                return;
1277        }
1278
1279        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1280
1281        /* hpet or pmtimer available ? */
1282        if (ref_start == ref_stop)
1283                goto out;
1284
1285        /* Check, whether the sampling was disturbed by an SMI */
1286        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1287                goto out;
1288
1289        delta = tsc_stop - tsc_start;
1290        delta *= 1000000LL;
1291        if (hpet)
1292                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1293        else
1294                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1295
1296        /* Make sure we're within 1% */
1297        if (abs(tsc_khz - freq) > tsc_khz/100)
1298                goto out;
1299
1300        tsc_khz = freq;
1301        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1302                (unsigned long)tsc_khz / 1000,
1303                (unsigned long)tsc_khz % 1000);
1304
1305        /* Inform the TSC deadline clockevent devices about the recalibration */
1306        lapic_update_tsc_freq();
1307
1308out:
1309        if (boot_cpu_has(X86_FEATURE_ART))
1310                art_related_clocksource = &clocksource_tsc;
1311        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1312}
1313
1314
1315static int __init init_tsc_clocksource(void)
1316{
1317        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1318                return 0;
1319
1320        if (tsc_clocksource_reliable)
1321                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1322        /* lower the rating if we already know its unstable: */
1323        if (check_tsc_unstable()) {
1324                clocksource_tsc.rating = 0;
1325                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1326        }
1327
1328        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1329                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1330
1331        /*
1332         * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1333         * the refined calibration and directly register it as a clocksource.
1334         */
1335        if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1336                if (boot_cpu_has(X86_FEATURE_ART))
1337                        art_related_clocksource = &clocksource_tsc;
1338                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1339                return 0;
1340        }
1341
1342        schedule_delayed_work(&tsc_irqwork, 0);
1343        return 0;
1344}
1345/*
1346 * We use device_initcall here, to ensure we run after the hpet
1347 * is fully initialized, which may occur at fs_initcall time.
1348 */
1349device_initcall(init_tsc_clocksource);
1350
1351void __init tsc_init(void)
1352{
1353        u64 lpj;
1354        int cpu;
1355
1356        if (!boot_cpu_has(X86_FEATURE_TSC)) {
1357                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1358                return;
1359        }
1360
1361        cpu_khz = x86_platform.calibrate_cpu();
1362        tsc_khz = x86_platform.calibrate_tsc();
1363
1364        /*
1365         * Trust non-zero tsc_khz as authorative,
1366         * and use it to sanity check cpu_khz,
1367         * which will be off if system timer is off.
1368         */
1369        if (tsc_khz == 0)
1370                tsc_khz = cpu_khz;
1371        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1372                cpu_khz = tsc_khz;
1373
1374        if (!tsc_khz) {
1375                mark_tsc_unstable("could not calculate TSC khz");
1376                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1377                return;
1378        }
1379
1380        pr_info("Detected %lu.%03lu MHz processor\n",
1381                (unsigned long)cpu_khz / 1000,
1382                (unsigned long)cpu_khz % 1000);
1383
1384        /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1385        tsc_store_and_check_tsc_adjust(true);
1386
1387        /*
1388         * Secondary CPUs do not run through tsc_init(), so set up
1389         * all the scale factors for all CPUs, assuming the same
1390         * speed as the bootup CPU. (cpufreq notifiers will fix this
1391         * up if their speed diverges)
1392         */
1393        for_each_possible_cpu(cpu) {
1394                cyc2ns_init(cpu);
1395                set_cyc2ns_scale(tsc_khz, cpu);
1396        }
1397
1398        if (tsc_disabled > 0)
1399                return;
1400
1401        /* now allow native_sched_clock() to use rdtsc */
1402
1403        tsc_disabled = 0;
1404        static_branch_enable(&__use_tsc);
1405
1406        if (!no_sched_irq_time)
1407                enable_sched_clock_irqtime();
1408
1409        lpj = ((u64)tsc_khz * 1000);
1410        do_div(lpj, HZ);
1411        lpj_fine = lpj;
1412
1413        use_tsc_delay();
1414
1415        if (unsynchronized_tsc())
1416                mark_tsc_unstable("TSCs unsynchronized");
1417
1418        check_system_tsc_reliable();
1419
1420        detect_art();
1421}
1422
1423#ifdef CONFIG_SMP
1424/*
1425 * If we have a constant TSC and are using the TSC for the delay loop,
1426 * we can skip clock calibration if another cpu in the same socket has already
1427 * been calibrated. This assumes that CONSTANT_TSC applies to all
1428 * cpus in the socket - this should be a safe assumption.
1429 */
1430unsigned long calibrate_delay_is_known(void)
1431{
1432        int sibling, cpu = smp_processor_id();
1433        struct cpumask *mask = topology_core_cpumask(cpu);
1434
1435        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1436                return 0;
1437
1438        if (!mask)
1439                return 0;
1440
1441        sibling = cpumask_any_but(mask, cpu);
1442        if (sibling < nr_cpu_ids)
1443                return cpu_data(sibling).loops_per_jiffy;
1444        return 0;
1445}
1446#endif
1447