linux/arch/x86/power/cpu.c
<<
>>
Prefs
   1/*
   2 * Suspend support specific for i386/x86-64.
   3 *
   4 * Distribute under GPLv2
   5 *
   6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
   7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
   9 */
  10
  11#include <linux/suspend.h>
  12#include <linux/export.h>
  13#include <linux/smp.h>
  14#include <linux/perf_event.h>
  15#include <linux/tboot.h>
  16
  17#include <asm/pgtable.h>
  18#include <asm/proto.h>
  19#include <asm/mtrr.h>
  20#include <asm/page.h>
  21#include <asm/mce.h>
  22#include <asm/suspend.h>
  23#include <asm/fpu/internal.h>
  24#include <asm/debugreg.h>
  25#include <asm/cpu.h>
  26#include <asm/mmu_context.h>
  27#include <linux/dmi.h>
  28
  29#ifdef CONFIG_X86_32
  30__visible unsigned long saved_context_ebx;
  31__visible unsigned long saved_context_esp, saved_context_ebp;
  32__visible unsigned long saved_context_esi, saved_context_edi;
  33__visible unsigned long saved_context_eflags;
  34#endif
  35struct saved_context saved_context;
  36
  37static void msr_save_context(struct saved_context *ctxt)
  38{
  39        struct saved_msr *msr = ctxt->saved_msrs.array;
  40        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  41
  42        while (msr < end) {
  43                msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
  44                msr++;
  45        }
  46}
  47
  48static void msr_restore_context(struct saved_context *ctxt)
  49{
  50        struct saved_msr *msr = ctxt->saved_msrs.array;
  51        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  52
  53        while (msr < end) {
  54                if (msr->valid)
  55                        wrmsrl(msr->info.msr_no, msr->info.reg.q);
  56                msr++;
  57        }
  58}
  59
  60/**
  61 *      __save_processor_state - save CPU registers before creating a
  62 *              hibernation image and before restoring the memory state from it
  63 *      @ctxt - structure to store the registers contents in
  64 *
  65 *      NOTE: If there is a CPU register the modification of which by the
  66 *      boot kernel (ie. the kernel used for loading the hibernation image)
  67 *      might affect the operations of the restored target kernel (ie. the one
  68 *      saved in the hibernation image), then its contents must be saved by this
  69 *      function.  In other words, if kernel A is hibernated and different
  70 *      kernel B is used for loading the hibernation image into memory, the
  71 *      kernel A's __save_processor_state() function must save all registers
  72 *      needed by kernel A, so that it can operate correctly after the resume
  73 *      regardless of what kernel B does in the meantime.
  74 */
  75static void __save_processor_state(struct saved_context *ctxt)
  76{
  77#ifdef CONFIG_X86_32
  78        mtrr_save_fixed_ranges(NULL);
  79#endif
  80        kernel_fpu_begin();
  81
  82        /*
  83         * descriptor tables
  84         */
  85#ifdef CONFIG_X86_32
  86        store_idt(&ctxt->idt);
  87#else
  88/* CONFIG_X86_64 */
  89        store_idt((struct desc_ptr *)&ctxt->idt_limit);
  90#endif
  91        /*
  92         * We save it here, but restore it only in the hibernate case.
  93         * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
  94         * mode in "secondary_startup_64". In 32-bit mode it is done via
  95         * 'pmode_gdt' in wakeup_start.
  96         */
  97        ctxt->gdt_desc.size = GDT_SIZE - 1;
  98        ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
  99
 100        store_tr(ctxt->tr);
 101
 102        /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 103        /*
 104         * segment registers
 105         */
 106#ifdef CONFIG_X86_32
 107        savesegment(es, ctxt->es);
 108        savesegment(fs, ctxt->fs);
 109        savesegment(gs, ctxt->gs);
 110        savesegment(ss, ctxt->ss);
 111#else
 112/* CONFIG_X86_64 */
 113        asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
 114        asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
 115        asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
 116        asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
 117        asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
 118
 119        rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 120        rdmsrl(MSR_GS_BASE, ctxt->gs_base);
 121        rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 122        mtrr_save_fixed_ranges(NULL);
 123
 124        rdmsrl(MSR_EFER, ctxt->efer);
 125#endif
 126
 127        /*
 128         * control registers
 129         */
 130        ctxt->cr0 = read_cr0();
 131        ctxt->cr2 = read_cr2();
 132        ctxt->cr3 = read_cr3();
 133        ctxt->cr4 = __read_cr4();
 134#ifdef CONFIG_X86_64
 135        ctxt->cr8 = read_cr8();
 136#endif
 137        ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
 138                                               &ctxt->misc_enable);
 139        msr_save_context(ctxt);
 140}
 141
 142/* Needed by apm.c */
 143void save_processor_state(void)
 144{
 145        __save_processor_state(&saved_context);
 146        x86_platform.save_sched_clock_state();
 147}
 148#ifdef CONFIG_X86_32
 149EXPORT_SYMBOL(save_processor_state);
 150#endif
 151
 152static void do_fpu_end(void)
 153{
 154        /*
 155         * Restore FPU regs if necessary.
 156         */
 157        kernel_fpu_end();
 158}
 159
 160static void fix_processor_context(void)
 161{
 162        int cpu = smp_processor_id();
 163        struct tss_struct *t = &per_cpu(cpu_tss, cpu);
 164#ifdef CONFIG_X86_64
 165        struct desc_struct *desc = get_cpu_gdt_rw(cpu);
 166        tss_desc tss;
 167#endif
 168        set_tss_desc(cpu, t);   /*
 169                                 * This just modifies memory; should not be
 170                                 * necessary. But... This is necessary, because
 171                                 * 386 hardware has concept of busy TSS or some
 172                                 * similar stupidity.
 173                                 */
 174
 175#ifdef CONFIG_X86_64
 176        memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
 177        tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
 178        write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
 179
 180        syscall_init();                         /* This sets MSR_*STAR and related */
 181#endif
 182        load_TR_desc();                         /* This does ltr */
 183        load_mm_ldt(current->active_mm);        /* This does lldt */
 184
 185        fpu__resume_cpu();
 186
 187        /* The processor is back on the direct GDT, load back the fixmap */
 188        load_fixmap_gdt(cpu);
 189}
 190
 191/**
 192 *      __restore_processor_state - restore the contents of CPU registers saved
 193 *              by __save_processor_state()
 194 *      @ctxt - structure to load the registers contents from
 195 */
 196static void notrace __restore_processor_state(struct saved_context *ctxt)
 197{
 198        if (ctxt->misc_enable_saved)
 199                wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
 200        /*
 201         * control registers
 202         */
 203        /* cr4 was introduced in the Pentium CPU */
 204#ifdef CONFIG_X86_32
 205        if (ctxt->cr4)
 206                __write_cr4(ctxt->cr4);
 207#else
 208/* CONFIG X86_64 */
 209        wrmsrl(MSR_EFER, ctxt->efer);
 210        write_cr8(ctxt->cr8);
 211        __write_cr4(ctxt->cr4);
 212#endif
 213        write_cr3(ctxt->cr3);
 214        write_cr2(ctxt->cr2);
 215        write_cr0(ctxt->cr0);
 216
 217        /*
 218         * now restore the descriptor tables to their proper values
 219         * ltr is done i fix_processor_context().
 220         */
 221#ifdef CONFIG_X86_32
 222        load_idt(&ctxt->idt);
 223#else
 224/* CONFIG_X86_64 */
 225        load_idt((const struct desc_ptr *)&ctxt->idt_limit);
 226#endif
 227
 228        /*
 229         * segment registers
 230         */
 231#ifdef CONFIG_X86_32
 232        loadsegment(es, ctxt->es);
 233        loadsegment(fs, ctxt->fs);
 234        loadsegment(gs, ctxt->gs);
 235        loadsegment(ss, ctxt->ss);
 236
 237        /*
 238         * sysenter MSRs
 239         */
 240        if (boot_cpu_has(X86_FEATURE_SEP))
 241                enable_sep_cpu();
 242#else
 243/* CONFIG_X86_64 */
 244        asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
 245        asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
 246        asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
 247        load_gs_index(ctxt->gs);
 248        asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
 249
 250        wrmsrl(MSR_FS_BASE, ctxt->fs_base);
 251        wrmsrl(MSR_GS_BASE, ctxt->gs_base);
 252        wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 253#endif
 254
 255        fix_processor_context();
 256
 257        do_fpu_end();
 258        tsc_verify_tsc_adjust(true);
 259        x86_platform.restore_sched_clock_state();
 260        mtrr_bp_restore();
 261        perf_restore_debug_store();
 262        msr_restore_context(ctxt);
 263}
 264
 265/* Needed by apm.c */
 266void notrace restore_processor_state(void)
 267{
 268        __restore_processor_state(&saved_context);
 269}
 270#ifdef CONFIG_X86_32
 271EXPORT_SYMBOL(restore_processor_state);
 272#endif
 273
 274#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
 275static void resume_play_dead(void)
 276{
 277        play_dead_common();
 278        tboot_shutdown(TB_SHUTDOWN_WFS);
 279        hlt_play_dead();
 280}
 281
 282int hibernate_resume_nonboot_cpu_disable(void)
 283{
 284        void (*play_dead)(void) = smp_ops.play_dead;
 285        int ret;
 286
 287        /*
 288         * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
 289         * during hibernate image restoration, because it is likely that the
 290         * monitored address will be actually written to at that time and then
 291         * the "dead" CPU will attempt to execute instructions again, but the
 292         * address in its instruction pointer may not be possible to resolve
 293         * any more at that point (the page tables used by it previously may
 294         * have been overwritten by hibernate image data).
 295         */
 296        smp_ops.play_dead = resume_play_dead;
 297        ret = disable_nonboot_cpus();
 298        smp_ops.play_dead = play_dead;
 299        return ret;
 300}
 301#endif
 302
 303/*
 304 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 305 * is disabled already. So it's unnessary to handle race condition between
 306 * cpumask query and cpu hotplug.
 307 */
 308static int bsp_check(void)
 309{
 310        if (cpumask_first(cpu_online_mask) != 0) {
 311                pr_warn("CPU0 is offline.\n");
 312                return -ENODEV;
 313        }
 314
 315        return 0;
 316}
 317
 318static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
 319                           void *ptr)
 320{
 321        int ret = 0;
 322
 323        switch (action) {
 324        case PM_SUSPEND_PREPARE:
 325        case PM_HIBERNATION_PREPARE:
 326                ret = bsp_check();
 327                break;
 328#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
 329        case PM_RESTORE_PREPARE:
 330                /*
 331                 * When system resumes from hibernation, online CPU0 because
 332                 * 1. it's required for resume and
 333                 * 2. the CPU was online before hibernation
 334                 */
 335                if (!cpu_online(0))
 336                        _debug_hotplug_cpu(0, 1);
 337                break;
 338        case PM_POST_RESTORE:
 339                /*
 340                 * When a resume really happens, this code won't be called.
 341                 *
 342                 * This code is called only when user space hibernation software
 343                 * prepares for snapshot device during boot time. So we just
 344                 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
 345                 * preparing the snapshot device.
 346                 *
 347                 * This works for normal boot case in our CPU0 hotplug debug
 348                 * mode, i.e. CPU0 is offline and user mode hibernation
 349                 * software initializes during boot time.
 350                 *
 351                 * If CPU0 is online and user application accesses snapshot
 352                 * device after boot time, this will offline CPU0 and user may
 353                 * see different CPU0 state before and after accessing
 354                 * the snapshot device. But hopefully this is not a case when
 355                 * user debugging CPU0 hotplug. Even if users hit this case,
 356                 * they can easily online CPU0 back.
 357                 *
 358                 * To simplify this debug code, we only consider normal boot
 359                 * case. Otherwise we need to remember CPU0's state and restore
 360                 * to that state and resolve racy conditions etc.
 361                 */
 362                _debug_hotplug_cpu(0, 0);
 363                break;
 364#endif
 365        default:
 366                break;
 367        }
 368        return notifier_from_errno(ret);
 369}
 370
 371static int __init bsp_pm_check_init(void)
 372{
 373        /*
 374         * Set this bsp_pm_callback as lower priority than
 375         * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
 376         * earlier to disable cpu hotplug before bsp online check.
 377         */
 378        pm_notifier(bsp_pm_callback, -INT_MAX);
 379        return 0;
 380}
 381
 382core_initcall(bsp_pm_check_init);
 383
 384static int msr_init_context(const u32 *msr_id, const int total_num)
 385{
 386        int i = 0;
 387        struct saved_msr *msr_array;
 388
 389        if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
 390                pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
 391                return -EINVAL;
 392        }
 393
 394        msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
 395        if (!msr_array) {
 396                pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
 397                return -ENOMEM;
 398        }
 399
 400        for (i = 0; i < total_num; i++) {
 401                msr_array[i].info.msr_no        = msr_id[i];
 402                msr_array[i].valid              = false;
 403                msr_array[i].info.reg.q         = 0;
 404        }
 405        saved_context.saved_msrs.num    = total_num;
 406        saved_context.saved_msrs.array  = msr_array;
 407
 408        return 0;
 409}
 410
 411/*
 412 * The following section is a quirk framework for problematic BIOSen:
 413 * Sometimes MSRs are modified by the BIOSen after suspended to
 414 * RAM, this might cause unexpected behavior after wakeup.
 415 * Thus we save/restore these specified MSRs across suspend/resume
 416 * in order to work around it.
 417 *
 418 * For any further problematic BIOSen/platforms,
 419 * please add your own function similar to msr_initialize_bdw.
 420 */
 421static int msr_initialize_bdw(const struct dmi_system_id *d)
 422{
 423        /* Add any extra MSR ids into this array. */
 424        u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
 425
 426        pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
 427        return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
 428}
 429
 430static struct dmi_system_id msr_save_dmi_table[] = {
 431        {
 432         .callback = msr_initialize_bdw,
 433         .ident = "BROADWELL BDX_EP",
 434         .matches = {
 435                DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
 436                DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
 437                },
 438        },
 439        {}
 440};
 441
 442static int pm_check_save_msr(void)
 443{
 444        dmi_check_system(msr_save_dmi_table);
 445        return 0;
 446}
 447
 448device_initcall(pm_check_save_msr);
 449